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ON THE NAVIER-STOKES SYSTEM WITH THE COULOMB FRICTION LAW BOUNDARY CONDITION

We propose a new model for the motion of a viscous incompressible fluid. More precisely, we consider the Navier-Stokes system with a boundary condition governed by the Coulomb friction law. With this boundary condition, the fluid can slip on the boundary if the tangential component of the stress tensor is too large. We prove the existence and uniqueness of weak solution in the two-dimensional problem and the existence of at least one solution in the three-dimensional case, together with regularity properties and an energy estimate. We also propose a fully discrete scheme of our problem using the characteristic method and we present numerical simulations in two physical examples.

Introduction

In this paper, we analyze the existence and uniqueness of solutions for the Navier-Stokes system when the boundary condition is governed by the Coulomb friction law. We recall that the classical results of existence and uniqueness of solutions for the Navier-Stokes system with Dirichlet or Neumann boundary conditions can be found in the literature in many publications, as for instance [START_REF] Ladyzhenskaya | The mathematical theory of viscous incomprehensible flow[END_REF][START_REF] Temam | Theory and numerical analysis[END_REF][START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. In previous works [START_REF] Conca | Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF][START_REF] San Martín | Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid[END_REF] and references therein, these results have been extended to the case of solid-fluid interactions. In [START_REF] San Martín | Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid[END_REF], the authors have obtained a non-intuitive result, which asserts that two rigid solids can't collide if they are surrounded by a viscous incompressible fluid. In that result, a key ingredient is the nonslip boundary condition. In order to get a more realistic model for this situations, the authors in [START_REF] Gérard-Varet | Existence of weak solutions up to collision for viscous fluidsolid systems with slip[END_REF] studied the model with the so-called Navier boundary condition and after that, in [START_REF] Gérard-Varet | The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow[END_REF] they proved that with this boundary condition, the solid can collide with the boundary. In our paper, we propose to study the existence of weak solutions for the Navier-Stokes system when we impose the Coulomb friction law as a boundary condition. This boundary condition seems to be more natural since, for small tangential stresses, it gives the non-slip boundary condition and after a certain threshold the fluid can slip at the boundary.

In order to write this new boundary condition we use the technique of subdifferential. In Section 2 we describe the model using this technique and we state the main result of the paper. Section 3 is devoted to prove the main result. Finally, in Section 4 we propose a numerical scheme and we present simulations in order to show the influence of this boundary condition on two physical situations: an abrupt contraction and the vortices after a cylindrical obstacle.

Model Description and Main Result

We consider a viscous incompressible fluid that occupies an open bounded domain Ω ⊂ R d , with d = 2 or d = 3, where the boundary of Ω is locally Lipschitz. The Eulerian velocity field u and the pressure field p of the fluid satisfy the following Navier-Stokes system:

∂u ∂t + (u • ∇)u -div σ(u, p) = 0 in Ω, (1) 
div u = 0 in Ω, (2) 
where σ denotes the stress tensor field. Using the classical notation D(u) = 1 2 (∇u) + (∇u) T , σ is defined by [START_REF] Duvaut | Les inéquations en méchanique et en physique[END_REF] σ(u, p) = 2µD(u) -pId, with Id the identity matrix in M d (R) and µ > 0 the dynamic viscosity of the fluid, which is supposed to be a constant.

In order to describe the boundary conditions considered in this paper, we introduce some additional notation. If we denote by n := n(x) the exterior unit normal of ∂Ω, we can decompose any vector a ∈ R d as follows:

(4) a = (a • n)n + a -(a • n)n . Each component of this decomposition is denoted by a n , respectively a τ . That is, [START_REF] Gérard-Varet | The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow[END_REF] a n := (a • n)n, a τ := a -(a • n)n and a = a n + a τ . Using this notation, we are now able to describe the Coulomb friction law. The velocity field u and the normal stress tensor σ(u, p)n on the boundary ∂Ω are decomposed in accordance with [START_REF] Gérard-Varet | The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow[END_REF]. We first impose that the normal component of the fluid velocity u n is equal to 0. Secondly, for the tangential components, we assume that there exists a physical constant g > 0 such that if |(σ(u, p)n) τ | < g then u τ = 0 and if |(σ(u, p)n) τ | = g then u τ has the same direction and sense with -(σ(u, p)n) τ . This boundary condition is known in the literature as the Coulomb friction law (or dry friction law). We now use the classical convex theory applied to mechanics and physics (see for instance [START_REF] Duvaut | Les inéquations en méchanique et en physique[END_REF][START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF]), in order to show that this boundary condition can be written as follows

u n = 0 on ∂Ω, (6) 
-u τ ∈ ∂I B(0,g) ((σ(u, p)n) τ ) on ∂Ω, (7) 
where I B(0,g) denotes the indicator function of closed convex ball B(0, g) and is defined by ( 8)

I B(0,g) : R d → R ∪ {+∞} x → I B(0,g) (x) = 0 if |x| ≤ g, +∞ if |x| > g.
Moreover, ∂I B(0,g) (x 0 ) denotes the set of all subgradients at x 0 of function I B(0,g) , which is defined by [START_REF] Ladyzhenskaya | The mathematical theory of viscous incomprehensible flow[END_REF] y

∈ ∂I B(0,g) (x 0 ) ⇐⇒ I B(0,g) (x 0 ) + y • (x -x 0 ) ≤ I B(0,g) (x) ∀x ∈ R d .
In order to rewrite the condition [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF], we first note that definition (9) could be written as follows [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] y ∈ ∂I B(0,g) (x 0 ) ⇐⇒ I B(0,g) (x 0 ) + y • (xx 0 ) ≤ 0 ∀x ∈ B(0, g). Using relation [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] we deduce that if x 0 ∈ B(0, g), then ∂I B(0,g) (x 0 ) is the empty set. For x 0 ∈ Int B(0, g), we have y = 0. Finally, for any x 0 such that |x 0 | = g, we get that y belongs to the normal cone of B(0, g) in x 0 , then there exists α ≥ 0 such that y = αx 0 . Due to the above remarks, we deduce that the boundary condition ( 7) is equivalent to the following relations [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF] |(σ(u, p)n) τ | ≤ g and ( 12)

u τ = 0 if |(σ(u, p)n) τ | < g, -α(σ(u, p)n) τ if |(σ(u, p)n) τ | = g, where α ≥ 0.
Thus, relations ( 11)-( 12) are exactly the classical expressions of the Coulomb friction law described above.

Let us now use again results of convex analysis in order to transform the condition (7) into a global inequality. We begin by recalling that, since I B(0,g) is a lower semi-continuous function, then [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF] is equivalent to ( 13)

-(σ(u, p)n) τ ∈ ∂I * B(0,g) (u τ )
, where I * B(0,g) represents the conjugate function of I B(0,g) with respect to the inner product in R d , which is defined by ( 14)

I * B(0,g) (y) = sup x∈R d y • x -I B(0,g) (x) ∀y ∈ R d .
Simple computation yields to (15)

I * B(0,g) (y) = sup x∈B(0,g) y • x = sup x∈B(0,1) gy • x = g|y| ∀y ∈ R d .
Due to these relations, the boundary condition ( 7) can be written as follows [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF])

(σ(u, p)n) τ • y ≥ g|u τ | -g|u τ + y| ∀y ∈ R d .
We can now rewrite the complete system that we are interested in considering also the corresponding initial data. Precisely,

∂u ∂t + (u • ∇)u -div σ(u, p) = 0 in Ω, ( 17 
)
div u = 0 in Ω, (18) 
u n = 0 on ∂Ω, (19) (σ(u, p)n) τ • y ≥ g|u τ | -g|u τ + y| on ∂Ω, ∀y ∈ R d , (20) u(x, 0) = u 0 (x) ∀x ∈ Ω. ( 21 
)
Let us introduce the weak formulation of system ( 17)-(21). To this end, we consider the following Hilbert spaces:

H = {v ∈ L 2 (Ω) d : div v = 0, v n = 0 on ∂Ω}, V = {v ∈ H 1 (Ω) d : div v = 0, v n = 0 on ∂Ω},
where L 2 (Ω) and H 1 (Ω) are the classical Lebesgue and Sobolev spaces defined in [START_REF] Brezis | Analyse fonctionnelle[END_REF]Chapters 4 and 9]. Let us denote by V ′ the dual space of V with respect to H.

For any v ∈ V , we multiply equation ( 17) by v, we integrate by parts and we use the definition (3) to get ( 22)

Ω ∂u ∂t + (u • ∇)u • v dx + 2µ Ω D(u) : D(v) dx = ∂Ω σ(u, p)n • v dΓ.
Since v n = 0, using decomposition (5), we have ( 23)

Ω ∂u ∂t + (u • ∇)u • v dx + 2µ Ω D(u) : D(v) dx = ∂Ω (σ(u, p)n) τ • v dΓ.
Using inequality (20) and the fact that u n = 0, we get (24)

Ω ∂u ∂t + (u • ∇)u • v dx + 2µ Ω D(u) : D(v) dx ≥ ∂Ω (g|u| -g|u + v|) dΓ, that is (25) Ω ∂u ∂t + (u • ∇)u • v dx + a(u, v) + J(u + v) -J(u) ≥ 0,
where we use the following notation:

a(u, v) = 2µ Ω D(u) : D(v) dx, (26) 
J(v) = ∂Ω g|v| dΓ. ( 27 
)
We remark that relation (25) will be used as a first step to construct a numerical scheme (see Section 4 below).

Additionally, using the properties u n = 0 and div u = 0, we deduce that (28)

Ω ∂u ∂t + (u • ∇)u • v dx = d dt Ω u • v dx - Ω u • ∂v ∂t + [(u • ∇)v] • u dx.
Thus, replacing (28) in (24), integrating in time and taking v(T ) = 0, the weak formulation writes as follows:

(29) - 

Ω u 0 (x) • v(0, x) dx - (0,T )×Ω u • ∂v ∂t + [(u • ∇)v] • u dx dt + T 0 a(u, v) dt + T 0 J(u + v) dt - T 0 J(u) dt ≥ 0.
(34) - Ω u 0 (x) • v(0, x) dx - (0,T )×Ω u D • ∂v ∂t + [(u D • ∇)v] • u D dx dt + T 0 a(u D , v) dt - (0,T )×∂Ω (σ(u D , p D )n) τ • v dΓ dt = 0, for all v ∈ C 1 c ([0, T ); V ).
Then, if we compute the left hand side of (29), we get

(35) (0,T )×∂Ω g|v| + (σ(u D , p D )n) τ • v dΓ dt,
from where we conclude that u D is a solution of (29) if and only if |σ(u D , p D )n) τ | ≤ g.

Proof of main result

For any ε > 0 and m ∈ N * , we introduce a (ε, m)-regularized problem of (29) as follows: we begin by defining

(36) J ε (v) = ∂Ω gj ε (v) dΓ,
where j ε (x) is a C 1 convex regularized version of |x| satisfying the following properties:

j ε (0) = 0, (37) ∇j ε (x) • x ≥ 0 ∀x ∈ R d , (38) |∇j ε (x)| ≤ 1 ∀x ∈ R d , (39) |j ε (x) -|x|| ≤ ε ∀x ∈ R d . ( 40 
)
We then use the Galerkin method. To this end, let us consider an orthonormal basis (v j ) of H such that v j ∈ V and we denote by V m = Span{v 1 , . . . , v m }. Then, we find the approximate solution of (29) as the function

u ε,m (t, x) = m j=1 ϕ j (t)v j (x) with ϕ j ∈ C 1 (0, T ),
satisfying the following equation:

(41) Ω ∂u ε,m ∂t • v dx - Ω [(u ε,m • ∇)v] • u ε,m dx + a(u ε,m , v) + ∂Ω g∇j ε (u ε,m ) • v dΓ = 0,
for any v ∈ V m , with the initial condition u ε,m (0, •) being the orthogonal projection of u 0 onto V m . We remark that in order to write (41) we have considered an approximation of inequality (25), where |u| has been approximated by the function j ε (u). Since this function is convex and differentiable, the variational inequality becomes a variational equation by using ∇j ε .

By taking the test function v i , relation (41) can be written as

(42) ϕ ′ i (t) - m j,k=1 Ω [(v j • ∇)v i ] • v k dx ϕ j ϕ k + m j=1 a(v j , v i ) ϕ j + ∂Ω g∇j ε m j=1 ϕ j (t)v j (x) • v i dΓ = 0, for all i = 1, . . . , m and ϕ i (0) = Ω u 0 • v i dx.
We note that equation ( 42) is of the form

ϕ ′ = F (ϕ), ϕ(0) = ϕ 0 ∈ R m ,
with F a Lipschitz continuous function (since ε > 0). Thus, using the Cauchy-Lipschitz theorem, we deduce the existence of a and then of u ε,m which is a local solution of (41) for any v ∈ V m . Moreover, multiplying each equation of ( 42) by ϕ i and summing from i = 1 to m, we deduce

(43) 1 2 d dt u ε,m 2 L 2 (Ω) d + a(u ε,m , u ε,m ) + ∂Ω g∇j ε (u ε,m ) • u ε,m dΓ = 0.
This shows, due to (38), that u ε,m is a global solution of (41

) in [0, T ]. Consequently, the sequence (u ε,m ) ε,m is bounded in (44) C ([0, T ], H) and L ∞ (0, T ; H) ∩ L 2 (0, T ; V ).
Moreover, using equation ( 41), we deduce that

∂u ε,m ∂t (t) V ′ ≤ C u ε,m (t) 2 L 4 (Ω) + u ε,m (t) V + 1 .
Then, using the classical Sobolev injections depending on the space dimension d (see for instance [10, pp. 72-74]), we obtain that

∂u ε,m ∂t (t) V ′ ≤ C ( u ε,m (t) H u ε,m (t) V + u ε,m (t) V + 1) if d = 2, (45) ∂u ε,m ∂t (t) V ′ ≤ C u ε,m (t) 1/2 H u ε,m (t) 3/2 V + u ε,m (t) V + 1 if d = 3. (46)
From the above estimates and from the regularities (44) of u ε,m , we also deduce that the

sequence ∂uε,m ∂t ε,m is bounded in L 2 (0, T ; V ′ ) if d = 2, ( 47 
)
L 4/3 (0, T ; V ′ ) if d = 3. (48)
Consequently, taking ε = 1 m , and passing to the limit as m → ∞, we get that, up to a subsequence,

u ε,m ⇀ u weakly* in L ∞ (0, T ; H) ∩ L 2 (0, T ; V ), (49) ∂u ε,m ∂t ⇀ ∂u ∂t weakly in L 2 (0, T ; V ′ ) if d = 2, (50) ∂u ε,m ∂t ⇀ ∂u ∂t weakly in L 4/3 (0, T ; V ′ ) if d = 3. (51) 
In order to pass to the limit in the nonlinear terms, we use the compactness result stated in Theorem 2.1 from [17, pp. 271]. To this end, we define the space V η as follows

V η = {v ∈ H η (Ω) d : div v = 0, v n = 0 on ∂Ω},
with H η (Ω) the classical interpolated Sobolev space (for its definition see, for instance, [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]Chapter 9]. Since, for any η ∈ (0, 1), V ⊂ V η ⊂ H, where the first injection is compact (see [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]Theorem 16.1]) then, from Theorem 2.1 in [17, pp. 271], we obtain that (52) u ε,m → u strongly in L 2 (0, T ; V η ), and, in particular, for η > 1/2, we deduce that (53) u ε,m → u strongly in L 2 (0, T ; L 2 (∂Ω)). In order to pass to the limit, we begin by rewriting (41), for any

v ∈ C 1 c ([0, T ); V m ) and integrating over [0, T ]. We have (54) - Ω u 0 ε,m (x) • v(0, x) dx - (0,T )×Ω u ε,m • ∂v ∂t + [(u ε,m • ∇)v] • u ε,m dx dt + T 0 a(u ε,m , v) dt + (0,T )×∂Ω g∇j ε (u ε,m ) • v dΓ dt = 0.
Since j ε is a convex function, we have

(55) ∇j ε (u ε,m ) • (v + u ε,m -u ε,m ) ≤ j ε (v + u ε,m ) -j ε (u ε,m ). Using the above inequality in (54), it implies that for any v ∈ C 1 c ([0, T ); V m ), (56) 
-

Ω u 0 ε,m (x) • v(0, x) dx - (0,T )×Ω u ε,m • ∂v ∂t + [(u ε,m • ∇)v] • u ε,m dx dt + T 0 a(u ε,m , v) dt + T 0 J ε (v + u ε,m ) dt - T 0 J ε (u ε,m ) dt ≥ 0.
Let fix v ∈ C 1 c ([0, T ); V m 0 ) and let pass to the limit in (56). From the weak convergence (49), it follows that we can pass to the limit in all linear terms. Moreover, using the compactness properties (52)-(53) and property (40), we can also pass to the limit in the nonlinear terms and thus we get

(57) - Ω u 0 (x) • v(0, x) dx - (0,T )×Ω u • ∂v ∂t + [(u • ∇)v] • u dx dt + T 0 a(u, v) dt + T 0 J(v + u) dt - T 0 J(u) dt ≥ 0, for any v ∈ C 1 c ([0, T ); V m 0 ). For any v ∈ C 1 c ([0, T ); V )
, we denote by P m v the orthogonal projection of v on V m with respect to the inner product on V . We use P m v as the test function in (57) and we get

(58) - Ω u 0 (x) • P m v(0, x) dx - (0,T )×Ω u • ∂P m v ∂t + [(u • ∇)P m v] • u dx dt + T 0 a(u, P m v) dt + T 0 J(P m v + u) dt - T 0 J(u) dt ≥ 0.
Therefore, using the strong convergence of P m v to v in C 1 ([0, T ]; V ), we can pass to the limit as m → ∞ in all terms of (58) and we get the inequality (29) for all v ∈ C 1 c ([0, T ); V ).

Therefore, we have proved the existence of a weak solution of the Navier-Stokes system with the Coulomb friction law stated in Theorem 2.2.

Let us now prove the inequality (32). To this end, we integrate (43) in [0, t] and we get (59)

1 2 u ε,m (t) 2 L 2 (Ω) d - 1 2 u ε,m (0) 2 L 2 (Ω) d + t 0 a(u ε,m , u ε,m ) ds + t 0 ∂Ω g∇j ε (u ε,m ) • u ε,m dΓ ds = 0. Since j ε is a convex function, we have j ε (0) ≥ j ε (u ε,m ) + ∇j ε (u ε,m ) • (0 -u ε,m
) and using (37), we can write

(60) 1 2 u ε,m (t) 2 L 2 (Ω) d - 1 2 u ε,m (0) 2 L 2 (Ω) d + t 0 a(u ε,m , u ε,m ) ds + t 0 J ε (u ε,m ) ds ≤ 0.
We multiply this equality by φ(t), where φ ∈ D((0, T )), φ(t) ≥ 0, and we integrate in time to get (61)

T 0 φ(t) 1 2 u ε,m (t) 2 L 2 (Ω) d - 1 2 u ε,m (0) 2 L 2 (Ω) d + t 0 a(u ε,m , u ε,m ) ds + t 0 J ε (u ε,m ) ds dt ≤ 0.
Then, by taking the limit inferior of the above inequality and using the convergences (49) and (53), we obtain (62)

T 0 φ(t) 1 2 u(t) 2 L 2 (Ω) d - 1 2 u(0) 2 L 2 (Ω) d + t 0 a(u, u) ds + t 0 J(u) ds dt ≤ 0.
Thus, inequality (32) is a direct consequence of the fact that the above estimate is valid for any φ ∈ D((0, T )), φ(t) ≥ 0.

Finally, let us prove the uniqueness in the 2-dimensional case (d = 2). First, from Lemma 1.2 in [17, p. 260], we obtain (33). We can integrate by parts in (29) and rewrite it as (63)

(0,T ) ∂u ∂t , v V ′ ,V dt - (0,T )×Ω [(u • ∇)v] • u dx dt + T 0 a(u, v) dt + T 0 J(u + v) dt - T 0 J(u) dt ≥ 0.
Now, a density argument shows that (63) holds for test functions v such that v ∈ L 2 (0, T ; V ).

In particular, for any w ∈ L 2 (0, T ; V ) and any t ∈ [0, T ], we can take the special test function v defined by

(64) v(s) = w(s) -u(s) if s ∈ [0, t], 0 if s ∈ (t, T ]
and we obtain:

(65)

(0,t) ∂u ∂t , w -u V ′ ,V ds - (0,t)×Ω [(u • ∇)w] • u dx ds + t 0 a(u, w -u) ds + t 0 J(w) ds - t 0 J(u) ds ≥ 0.
Assume now that we have two solutions u (1) and u (2) of system (65). Taking w = u (2) as a test function in the inequality (65) satisfied by u (1) and taking w = u (1) as a test function in the inequality (65) satisfied by u (2) , we deduce (66)

1 2 (0,t) ∂ ∂t u (1) -u (2) 2 L 2 (Ω) 2 ds + 2µ (0,t)×Ω |D(u (2) -u (1) )| 2 dx ds ≤ (0,t)×Ω
(u (1) • ∇)u (1) • u (2) dx ds -

(0,t)×Ω
(u (2) • ∇)u (1) • u (2) dx ds

= - (0,t)×Ω ((u (1) -u (2) ) • ∇)u (1) • (u (1) -u (2)
) dx ds.

The above inequality and the Sobolev embedding theorem yield (67)

1 2 u (1) (t) -u (2) (t) 2 L 2 (Ω) 2 + 2µ (0,t)×Ω |D(u (2) -u (1) )| 2 dx ds ≤ C (0,t) u (1) -u (2) H 1 (Ω) 2 u (1) -u (2) L 2 (Ω) 2 u (1) H 1 (Ω) 2 ds.
By using the Young, PoincarÃľ and Korn inequalities we get (68)

1 2 u (1) (t) -u (2) (t) 2 L 2 (Ω) 2 ≤ C (0,t) u (1) -u (2) 2 L 2 (Ω) 2 u (1) 2 H 1 (Ω) 2 ds.
Uniqueness is a direct consequence of the Gronwall inequality applied to (68) and thus we conclude the proof of Theorem 2.2.

Numerical Tests

In order to write a numerical algorithm to solve the Navier-Stokes/Coulomb friction law system ( 17)-(21), we begin by writing a mixed formulation of inequality (25). To this end, we introduce the following vectorial spaces

M = q ∈ L 2 (Ω) : Ω q dx = 0 , V 0 = v ∈ H 1 (Ω) d : v n = 0 on ∂Ω .
Using these spaces, the problem ( 17)-( 21) can be written as follows:

Find (u, p) ∈ V 0 × M such that (69) Ω ∂u ∂t + (u • ∇)u • v dx + a(u, v) + b(v, p) ≥ J(u) -J(u + v) ∀v ∈ V 0 , (70) 
b(u, q) = 0 ∀q ∈ M, for a.e. t ∈ (0, T ), where

(71) b(u, q) = - Ω div u q dx ∀u ∈ V 0 , q ∈ M.
It is easy to prove that the system (69)-( 70) is equivalent to equation (25).

In order to treat the nonlinear term (u • ∇)u, we use the characteristic functions method (see, for instance, [START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[END_REF][START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF][START_REF] San Martín | Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system[END_REF][START_REF] San Martín | A modified Lagrange-Galerkin method for a fluidrigid system with discontinuous density[END_REF]). More precisely, we define the characteristic function ψ : [0, T ] 2 × Ω → Ω as the solution of the initial value problem (72)

   d dt ψ(t; s, x) = u(t, ψ(t; s, x)) ∀t ∈ [0, T ], ψ(s; s, x) = x.
It is well-known that the material derivative

du dt = ∂u ∂t + (u • ∇)u of u at instant t 0 satisfies: (73) du dt (t 0 , x) = ∂ ∂t [u(t, ψ(t; t 0 , x))] |t=t 0 .
Additionally, we introduce two families of finite element spaces which approximate the spaces V 0 and M. To this end, we consider the discretization parameter h > 0 and a quasiuniform triangulation T h of the domain Ω. We denote by W h the P 2 -finite element space associated with T h for the velocity field in the Stokes problem and by M h the P 1 -finite element space for the pressure (see for instance [START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF]). Then, we define the following finite element space for a conform approximation:

V h = W h ∩ V 0 .
Finally, to approximate the functional J(v), we use the function J h (v) defined by:

(74) J h (v) = ∂Ω gj h (v)dΓ, where (75) j h (v) = 1 4h |v| 2 if |v| < 2h, |v| -h if |v| ≥ 2h.
Using this notation, the discretization of our problem is the following: Let N be a positive integer. We denote ∆t = T /N and t k = k∆t for all k ∈ {0, . . . , N}. Assume that the approximate solution (u k h , p k h ) of ( 69)-(70) at t = t k is known. We describe below the numerical scheme allowing to determinate the approximate solution (u k+1 h , p k+1 h ) at time t = t k+1 . First, we compute the approximated characteristic function ψ k h defined as the solution of (76)

   d dt ψ k h (t; t k+1 , x) = u k h (ψ k h (t; t k+1 , x)) ∀t ∈ [t k , t k+1 ], ψ k h (t k+1 ; t k+1 , x) = x. Then, we define (77) X k h (x) = ψ k h (t k ; t k+1 , x) ∀x ∈ Ω.
With these notations, we consider the following mixed variational fully discrete formulation:

Find (u k+1 h , p k+1 h ) ∈ V h × M h such that (78) Ω u k+1 h -u k h • X k h ∆t • v dx + a(u k+1 h , v) + b(v, p k+1 h ) + ∂Ω g∇j h (u k+1 h ) • v dΓ = 0 ∀v ∈ V h , (79) b(u k+1 h , q) = 0 ∀q ∈ M h .
We remark that since the approximation j h (v) of |u| is convex and differentiable, the discrete formulation associated with the variational inequality (69) is a variational equation by using ∇j h . It is clear from (75) that (80)

∇j h (v) = 1 max{2h, |v|} v.
Consequently, the discrete formulation writes:

Find (u k+1 h , p k+1 h ) ∈ V h × M h such that (81) Ω u k+1 h -u k h • X k h ∆t • v dx + a(u k+1 h , v) + b(v, p k+1 h ) + ∂Ω g max{2h, |u k+1 h |} u k+1 h • v dΓ = 0 ∀v ∈ V h , (82) 
b(u k+1 h , q) = 0 ∀q ∈ M h . The discretized system (81)-( 82) is still nonlinear, due to the boundary integral. In order to deal with this nonlinearity, we use an iterative fixed point method, where we compute u k+1,i+1 h in term of u k+1,i h by solving (81)-( 82), with the boundary integral replaced by

∂Ω g max{2h, |u k+1,i h |} u k+1,i+1 Γ 1 Γ 1 L Γ 3 Figure 2.
Horizontal channel with a cylindrical obstacle.

In both of these domains, we decompose the domain boundary in subsets where we impose the following different boundary conditions: Γ 1 : Homogeneous Dirichlet boundary condition (u x = u y = 0), modelling the contact with an infinitely adherent wall. Γ 2 : Inlet Dirichlet boundary condition, where the inlet velocity field is given by a parabolic profile with a maximum value equal to u max (u x = 4u max y H (1 -y H ), u y = 0). Γ 3 : Outlet boundary condition ((σn) n = 0, u y = 0). Γ 4 : Special wall where we study the Coulomb law effect.

For each example, we are interested in the numerical influence of the Coulomb law on Γ 4 over the solution of Navier-Stokes system. For this reason, we compare the solution obtained using this new boundary condition with the solutions resulted by imposing the classical Dirichlet and Neumann boundary conditions on Γ 4 . To this end, we present three simulations considering the following boundary conditions on 6)-( 8). The simulations considered are divided in two parts. In the first one, in order to construct an initial velocity field, we solve the Stokes system considering one of the three above boundary conditions on Γ 4 . Then, using this initial condition, we solve Navier-Stokes system for t ∈ [0, T ] with the previous corresponding conditions on Γ 4 . In the sequel, we show the most relevant results of these computations for both domains, separately.

The simulations presented here were partially made with the software FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF] (for the case of the Dirichlet boundary condition and the Neumann boundary condition) and with the software Matlab (for the Coulomb law).

4.1.

Results for the rectangular channel with an abrupt contraction. In this section, we show the numerical results obtained for the solutions of Stokes and Navier-Stokes systems for the first geometry given in Figure 1. In the case of the Coulomb law boundary condition, we consider the parameter g = 0.015, because it is smaller than the tangential stress obtained by imposing Dirichlet boundary condition. We have verified that if this parameter is greater than the tangential stress of the problem with the boundary condition a), the solutions of Navier-Stokes system with Coulomb and Dirichlet boundary conditions coincide.

In Figure 3, we present the velocities fields obtained as solution of the Stokes system for the three considered boundary conditions. These velocities fields are considered to be the initial conditions for the Navier-Stokes system. In Figures 45, we see the corresponding velocities fields obtained solving Navier-Stokes system at time t = 1s and t = 5s. In Figures 6789, we see the corresponding tangential stress (σn) τ and tangential velocities fields u τ obtained solving Navier-Stokes system at time t = 1s and t = 5s. In Figure 6, we represent the tangential stress (σn) τ on the boundary Γ 4 at different instants t ∈ [0, 1]. In each instant, in the same graphic, we can see the tangential stress for the three different boundary conditions considered. We can remark that from t = 0.1s the tangential stress obtained for the Coulomb law reaches the bound 0.015 in positive and negative directions. Before t = 0.1s the tangential stress is almost positive. In Figure 7, we plot the tangential velocity on the boundary Γ 4 at the same instants t ∈ [0, 1] considered in Figure 6. Here, we can confirm that, for t < 0.1s, there is no negative tangential velocity on Γ 4 for the Coulomb case. Figures 89are similar to Figures 67, but for instants t ∈ [START_REF] Brezis | Analyse fonctionnelle[END_REF][START_REF] Girault | Finite element approximation of the Navier-Stokes equations[END_REF].

x [m] tangential stress Tangential stress on boundary Γ 4 (T=0.000s) 

4.2.

Results for the flow around a cylindrical obstacle in a rectangular channel. This numerical test has been performed in the documentation of the FreeFem++ program (see [START_REF] Hecht | New development in FreeFem++[END_REF]) for the case of the Dirichlet boundary condition on Γ 4 . For the case of the Coulomb law we consider two cases: the first one with g = 0.07 and the second with g = 0.2. The first value was chosen below the maximum tangential stress obtained for the Dirichlet boundary condition at t = 0. The second value is greater that the maximum stress at t = 0 (then it is not active for the initial condition, but it becomes active afterward during the simulation). In Figures 1011, we present the velocity field obtained for the four different boundary conditions at t = 0 and t = 2s. In Figure 10, we remark that the solutions of the Stokes problem, subplots a) and d) are the same, since the Coulomb law is reduced to the Dirichlet case with our choice of g. In Figure 11, the four velocity fields are different.

In Figures 121314, we plot the tangential velocity field and the tangential stress on the boundary Γ 4 for the four different boundary conditions considered. In the first one, we present the dependence of both quantities with respect to the angular position around the cylindrical obstacle at t = 2s. In the second one, we give the evolution in time of the maximum of the same quantities for t ∈ [0, 2]. Finally, in Figure 14 

  Γ 4 : a) Homogeneous Dirichlet boundary condition for both components of the velocity field (u n = 0 and u τ = 0). b) Homogeneous Dirichlet boundary condition for the normal velocity field and Neumann boundary condition for the tangential component of the stress field (u n = 0 and (σn) τ = 0). c) Coulomb boundary condition given in (

Figure 3 .

 3 Figure 3. Velocity field at t = 0, obtained as the solution of the Stokes system with the following boundary conditions on Γ 4 : a) Homogeneous Dirichlet boundary condition; b) Neumann boundary condition; c) Coulomb boundary condition.

Figure 4 .Figure 5 .

 45 Figure 4. Velocity field at t = 1s, obtained as the solution of Navier-Stokes equation with the three boundary conditions on Γ 4 : a) Homogeneous Dirichlet boundary condition; b) Neumann boundary condition; c) Coulomb boundary condition.

Figure 6 .

 6 Figure 6. Tangential stress (σn) τ on Γ 4 at different instants t ∈ [0, 1].

Figure 7 .Figure 8 .

 78 Figure 7. Tangential velocity field u τ on Γ 4 at different instants t ∈ [0, 1].

Figure 9 .

 9 Figure 9. Tangential velocity field u τ on Γ 4 at different instants t ∈ [1, 6].

Figure 10 .Figure 11 .Figure 12 .Figure 13 .

 10111213 Figure 10. Velocity field at t = 0, obtained as the solution of Stokes equation with different boundary conditions on Γ 4 (with Re = 100): a) Homogeneous Dirichlet boundary condition b) Neumann boundary condition c) Coulomb boundary condition with g = 0.07 d) Coulomb boundary condition with g = 0.20

Figure 14 .

 14 Figure 14. Graphics of the tangential velocity u τ and the tangential stress (σn) τ on the boundary Γ 4 of the cylinder for t ∈ [0, 0.2].

h • v dΓ.Let us now use the numerical scheme defined in (81)-(82) in two numerical tests. In the first one, we study the flow of a viscous incompressible fluid through the rectangular channel with an abrupt contraction (see Figure1 below). In the second example, we consider the classical fluid flow after a cylindrical obstacle in a rectangular channel (see Figure2 below).Γ 2 H L 1 L 2 Γ 1 Γ 4 Γ 3 h Γ 1 Γ 1Figure 1. Horizontal channel with an abrupt contraction.H x 0 y 0 Γ 2 Γ 4
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