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Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics

The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works.

Let X be a Banach space over a domain Ω ⊂ R d (d ≥ 1) being equipped with the norm . X . Our goal is to approximate functions f from a given compact set S ⊂ X which represent the states of a physical system taking place in Ω. For this, any f ∈ S will be approximated by combining two ingredients. The first is the use of a certain amount m of measurements of f collected directly from the system itself. We represent them as linear functionals of X (the dual of X ) evaluated on f . The second ingredient is the use of a (family of) subspace(s) V n of finite dimension n which is assumed to approximate well the set S. To limit the complexity in the approximation and also economize in the amount of sensors to place in the system, a desirable feature is to find appropriate sensors and the appropriate spaces V n for which m and n are moderate. A necessary hypothesis to allow this is to assume some properties on the geometry of S expressed in terms of a rapid decay of the Kolmogorov n-width of S in X ,

d n (S, X ) := inf X⊂X dim(X)≤n max u∈S min v∈X u -v X .
Under this hypothesis on the decay of d n (S, X ), one can in principle build a sequence {X n } n s.t. dist(S, X n ) := max u∈S min v∈X u -v X ≤ ε, where dim(X n ) = n ≡ n(ε) is moderate.

Algorithms to build {X n } n (or at least the first spaces in the sequence allowing to approximate beyond a given accuracy) and find appropriate linear functionals have been proposed in the community of reduced modeling (see [START_REF] Maday | A Generalized Empirical Interpolation Method: application of reduced basis techniques to data assimilation[END_REF][START_REF] Maday | A Parameterized-Background Data-Weak approach to variational data assimilation: formulation, analysis, and application to acoustics[END_REF][START_REF] Maday | Convergence analysis of the generalized empirical interpolation method[END_REF]). Note that, even if this is not required in the previous statements, the construction of the spaces X n is then recursive, i.e. X n-1 ⊂ X n . There, the approximation of f ∈ S is done by interpolation or related approximations. The methods (in practice mainly based on a greedy procedure) are however not robust with respect to noise in the measurements and this paper introduces a constrained least squares approximation for which numerical experiments indicate its potential to address this obstruction.

Mathematical setting

Let us assume that M = span(S) (where the B denotes the closure in X of the set B) admits a Schauder basis {q i } i , i.e., for every f ∈ X there exists a unique sequence {c i (f )} of scalars such that lim n→∞ f -n i=1 c i (f )q i X = 0. For every n ≥ 1, we define the n-dimensional subspace X n := span{q 1 , . . . , q n }. Let us formulate in a different manner the hypothesis made involving the Kolmogorov n-width of S in X : let us assume that the error in approximating the functions of S in X n is max f ∈S dist(f, X n ) ≤ ε n , where the sequence (ε n ) n decays at a nice rate with n.

Let now {λ i } be the set of linear functionals of X (of unity norm in X ) such that for every n ≥ 1, {λ 1 , . . . , λ n } and {q 1 , . . . , q n } are such that, for every n ≥ 1 and every 1 ≤ j ≤ n, ∀i, 1 ≤ i ≤ j λ i (q j ) = δ i,j . For any n ≥ 1, we can now define a (generalized) interpolation operator J n : X → X n such that for all f ∈ X λ i (f ) = λ i (J n (f )) , i ∈ {1, . . . , n}. By construction, for any n ≥ 1 and any f ∈ X , J n (f ) = J n-1 (f ) + c n (f )q n . where c n (f ) = λ n (f -J n-1 (f )) and, for notational coherence, we set J 0 = 0.

Using J n to approximate the functions of S yields the error bound

max f ∈S f -J n (f ) X ≤ (1 + Λ n ) ε n , (1) 
where

Λ n := sup f ∈X J n (f ) X / f X is the Lebesgue constant.
The value of Λ n diverges at a certain rate so the behavior of max f ∈S f -J n [f ] with the dimension is dictated by the trade-off between the rate of divergence of (Λ n ) (that is generally slow) and the convergence of (ε n ) (that is generally very fast). Also, for any

f ∈ S |c n (f )| ≤ (1 + Λ n-1 )ε n-1 , n ≥ 1 (2) 
where Λ 0 = 0 and ε 0 = max f ∈S f . For any α > 0, let us define the cone

K n (α) := {v ∈ V n : v = n i=1 c i q i |c i | ≤ α(1 + Λ i-1 )ε i-1 }.
We have for any n ≥ 1 and any f ∈ S J n (f ) ∈ K n (1). In presence of noise in the measurements, we assume that we receive values η 1 (f ), . . . , η n (f ) such that η i (f ) ∼ λ i (f ) + N (0, σ 2 ) for i ∈ {1, . . . , n}. Interpolating from these values yields an element in X n denoted as J n (f ; N ) that satisfies blurred error bound with respect to (2) that, depending on the precise definition of σ and the norm of X can be

E max f ∈S f -J n (f ; N ) ≤ (1 + Λ n ) ε n + (1 + Λ n ) √ nσ. (3) 
The second term of the bound diverges as n increases and shows that the method is not asymptotically robust in presence of noise. An illustration of this can be found in the numerical results below. This motivates the search for other methods which would ideally yield a bound of the form (1 + Λ n ) ε n + σ and for which the error is asymptotically at the level of the noise σ.

We propose to correct the interpolation operator by using more the structure of the manifold S that, at the discrete level, is expressed in the fact that the approximation should belong to K n . Indeed, the belonging of J n (f ; N ) to K n is not satisfied any more except if there exists f in S such that λ i ( f ) = η i (f ) for any i, 1 ≤ i ≤ n (which is rarely the case). In addition, in order to minimize the effect of the noise, we can increase the number of measurements and use m larger than n linear functional evaluations at a given dimension n. This leads to propose a least-squares projection on K n . For a given n, we now collect the values

η n,1 (f ), . . . , η n,m(n) (f ) with m(n) ≥ n and such that η n,i (f ) ∼ λ i (f ) + N (0, σ 2 ), 1 ≤ i ≤ m(n). Any f ∈ S is now approximated by A n (f ) = arg min v∈Kn(α) m(n) i=1 (λ n,i (v) -η n,i (f )) 2 (4)
where α > 1 is suitabily chosen.

In this paper, we are running the greedy algorithm of the so-called Generalized Empirical Interpolation Method (GEIM, [START_REF] Maday | A Generalized Empirical Interpolation Method: application of reduced basis techniques to data assimilation[END_REF]), to generate a basis {q i } i and the linear functionals {λ i } i . This method is reported to have a nice behavior for the Lebesgue constant, at least in case it is trained on a set S with small Kolmogorov dimension (see [START_REF] Maday | Convergence analysis of the generalized empirical interpolation method[END_REF]). This approach allows an empirical optimal selections of the positions of the sensors that provide (in case where no noise pollutes the measures) a stable representation of the physical system. The precise algorithm is documented elsewhere (see [START_REF] Maday | A Generalized Empirical Interpolation Method: application of reduced basis techniques to data assimilation[END_REF] and [START_REF] Gong | The Empirical Interpolation Method applied to the neutron diffusion equations with parameter dependence[END_REF]). Then, we approximate any f ∈ S with the function A n (f ) defined in ( 4) with α = 2. We call this scheme Constrained Stabilized GEIM (CS-GEIM).

Note that the above approach could also be used with a POD approach to provide the imbedded spaces {X n } n (that are more expensive to provide than the greedy GEIM approach but are more accurate) and well chosen linear functionals λ n,i the choice of which infer on the behavior of the Lebesgue constant Λ n .

3 Numerical results

Modelling the physical problem

For the physical problem that we consider in this paper, the model is the two group neutron diffusion equation : the flux φ has two energy groups φ = (φ 1 , φ 2 ). Index 1 denotes the high energy group and 2 the thermal energy one. These are modeled by the following parameter dependent PDE model :

-∇ (D 1 ∇φ 1 ) + (Σ a,1 + Σ s,1→2 )φ 1 = 1 keff (χ 1 νΣ f,1 φ 1 + χ 1 νΣ f,2 φ 2 ) -∇ (D 2 ∇φ 2 ) + Σ a,2 φ 2 -Σ s,1→2 φ 1 = 1 keff (χ 2 νΣ f,1 φ 1 + χ 2 νΣ f,2 φ 2 ) , (5) 
here k eff is the so-called multiplication factor and is not a data but an unknown of the problem1 , and the given parameters are

• D i is the diffusion coefficient of group i with i ∈ {1, 2}.
• Σ a,i is the macroscopic absorption cross section of group i.

• Σ s,1→2 is the macroscopic scattering cross section from group 1 to 2.

• Σ f,i is the macroscopic fission cross section of group i.

• ν is the average number of neutrons emitted per fission.

• χ i is the fission spectrum of group i.

they are condensed in µ = {D 1 , D 2 , Σ a,1 , Σ a,2 , Σ s,1→2 , νΣ f,1 , νΣ f,2 , χ 1 , χ 2 }.
We assume that the parameters of our diffusion model range in, say,

D 1 ∈ [D 1,min , D 1,max ], D 2 ∈ [D 2,min , D 2,max ], . . . , χ 2 ∈ [χ 2,min , χ 2,max ], then D := [D 1,min , D 1,max ] × • • • × [χ 2,min , χ 2,
max ] is the set of all parameters and the set of all possible states of the flux is given by

S := {(φ 1 , φ 2 , P )(µ) : µ ∈ D}, (6) 
where the power P (µ) is defined from (φ 1 , φ 2 )(µ) as P (µ)(x) := νΣ f,1 φ 1 (µ)(x)+ νΣ f,2 φ 2 (µ)(x), ∀x ∈ Ω We assume (see [START_REF] Cohen | Kolmogorov widths under holomorphic mappings[END_REF] for elements sustaining this hypothesis) that the Kolmogorov-width decays rapidly, hence, it is possible to approximate all the states of the flux (given by S) with an accuracy ε in well-chosen subspaces X n ⊂ X of relatively small dimension n(ε).

To ensure enough stability in the reconstruction and minimize the approximation error, it is necessary to find the optimal placement of the sensors in the core. The selection is done with GEIM. If we denote σ(φ i , x), i ∈ {1, 2}, the measurement of φ i at a position x ∈ Ω by a certain sensor, this measurement can be modeled by a local average over φ i centered at x ∈ Ω. Another possibility is to directly assume that the value φ i (x) at point x is σ(φ i , x)2 . Note that, in principle, the measurement could depend on other parameters apart from the position. We could imagine for instance that we have sensors with different types of accuracy or different physical properties. This flexibility is not included in the current notation but the reader will be able to extrapolate from the current explanations.

A specificity of the approach here is that S is composed of vectorial functions (φ 1 , φ 2 , P )(µ). We deliberately choose to take measurements only on one of the components (say φ 2 ) and thus reconstruct the whole field φ 1 , φ 2 and P with the only knowledge of thermal flux measurements.

Another specificity of our approach is on the spatial location of the measurements. We consider two cases:

• Case I: the sensors can be placed at any point in the domain of definition of φ 2 .

• Case II: the admissible sensor locations are restricted to be deployed in a restricted part of that domain;

We have already reported in [START_REF] Argaud | Sensor placement in nuclear reactors[END_REF] that these two specificities are well supported by the (G)EIM approach, as long as the greedy method is taught to achieve the goal of reconstructing the whole field (φ 1 , φ 2 , P )(µ).

Our aim here is to show that the noise can be controlled through our Constrained Stabilized (G)EIM approach.

Description of the 2D IAEA benchmark

We consider the classical 2D IAEA Benchmark Problem [START_REF]Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society[END_REF], the core geometry which can be seen in figure 1. The problem conditions and the requested results are stated in page 437 of reference [START_REF]Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society[END_REF]. It is identified with the code 11-A2, and its descriptive title is Two-dimensional LWR Problem, also known as 2D IAEA Benchmark Problem. This problem represents the mid-plane z = 190 cm of the 3D IAEA Benchmark Problem, that is used by references [START_REF]IAEA 3D PWR problem[END_REF] and show in application within [START_REF] Theler | Solution of the 2D IAEA PWR Benchmark with the neutronic code Milonga[END_REF].

The reactor domain is Ω = region(1, 2, 3, 4). The core and the reflector are Ω core = region(1, 2, 3) and Ω refl = region(4) respectively. We consider only the value of D 1 | Ωrefl in the reflector Ω refl as a parameter (so p = 1 and µ = D 1 | Ωrefl ). We assume that D 1 | Ωrefl ∈ [1.0, 3.0]. The rest of the coefficients of the diffusion model (5) (including D 1 | Ωcore ) are fixed to the values indicated in Table 1. In principle, one could also consider these coefficients as parameters but we have decided to focus only on D 1 | Ωrefl because of its crucial role in the physical estate of the core: its variation can be understood as a change in the boundary conditions in Ω core which, up to a certain extent, allows to compensate the bias of the diffusion model with respect to reality. We shall report in a future paper more extended variations of the parameters and more involved problems, like the one addressed in [START_REF] Sartori | Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics[END_REF][START_REF] Sartori | A reduced order model for multigroup time-dependent parametrized reactor spatial kinetics[END_REF] where a reduced basis is built to approximate the flux distribution when the position of the control rods varies. In comparison to their approach, the current methodology brings the additional ingredient of incorporating measurement information to the reconstruction. Note that these papers support the idea that the solution manifold in this frame of physics has a small Kolmogorov n-width.

Fig. 1: Geometry of 2D IAEA benchmark, upper octant: region assignments, lower octant: fuel assembly identification (from reference [START_REF] Theler | Solution of the 2D IAEA PWR Benchmark with the neutronic code Milonga[END_REF]).

Hypothesis of (CS-)GEIM application

We propose to reconstruct (φ 1 , φ 2 , P ) as explained above (see [START_REF] Argaud | Sensor placement in nuclear reactors[END_REF]) i.e., φ 2 will be approximated with its direct interpolant J n [φ 2 ] while φ 1 and P will be reconstructed from the measurements of φ 2 , using the same coefficients in a coherent basis set. These are denoted as J n [φ 1 ] and J n [P ]. 

Numerical results

Let us now turn to the analysis of the results. We study the performance of the reconstruction strategy by considering first of all the decay of the errors

e (training) n (φ 2 ) := max µ∈D (training) φ 2 (µ) -J n [φ 2 ](µ) L 2 (Ω) (7) 
in the greedy algorithm. Since both case I and case II yield very similar results, we only present plots of case II for the sake of concision. In figure 3a, the decay is compared to an indicator of the optimal performance in L 2 (Ω) which is obtained by a singular value decomposition of the snapshots φ 2 (µ), ∀µ ∈ D (training) . Note that e (training) n (φ 2 ) decays at a similar rate as the SVD which suggests that GEIM behaves in a quasi-optimal way (see [START_REF] Maday | Convergence analysis of the generalized empirical interpolation method[END_REF]). We now estimate the accuracy to reconstruct (φ 1 , φ 2 , P )(D 1 | Ωrefl ) for any D 1 | Ωrefl ∈ [0.5, 2.0] which does not necessary belong to the training set of snapshots. For this, we consider a test set of 300 parameters D (test) different from D (training) and compute the errors

     e (test) n (φ 1 ) := max µ∈D (test) φ 1 (µ) -J n [φ 1 ](µ) L 2 (Ω) e (test) n (φ 2 ) := max µ∈D (test) φ 1 (µ) -J n [φ 2 ](µ) L 2 (Ω) e (test) n (P ) := max µ∈D (test) P (µ) -J n [P ](µ) L 2 (Ω) (8)
The decay of the errors ( 8) is plotted in figure 3b. The fact that e (test) n (φ 2 ) decays very similarly to e (training) n (φ 2 ) confirms that the set of 300 training snapshots was representative enough of the whole manifold S. Also, the fast decay of e (test) n (φ 1 ) and e (test) n (P ) shows that the use of the operator J n to approximate φ 1 and P is accurate enough.

Instead of working with L 2 (Ω), it is also possible to work with other norms (provided some spacial regularity in the manifold). A particularly relevant case in neutronics is L ∞ (Ω). Figure 4 shows the results of the reconstruction procedure when working in this norm and figure 5 shows the behavior when considering the H 1 (Ω) and working with its classical semi-norm |u| 

(Ω) norm: Reconstruction of (φ 1 , φ 2 , P )(µ) with J n [φ 1 ], J n [φ 2 ], J n [P ] (µ).
(Ω) norm: Reconstruction of (φ 1 , φ 2 , P )(µ) with J n [φ 1 ], J n [φ 2 ], J n [P ] (µ).
Figure 6a shows the behavior of the Lebesgue constants in both cases. We can find that 1) the Lebesgue constant increases with GEIM interpolation function dimension, 2) if detectors are limited in a domain part (Case II), the Lebesgue constant gets worse, as an effect of the extrapolation that is required here, nevertheless the increase is still moderate.

Figure 6b shows the coefficients upper limits described as

r n (x n , µ n ) ≡ (1 + Λ n )ε n (see 2) (so |c n | ≤ r n (x n , µ n ))
for Case I and Case II, which decreases quickly with n.

We still focus on the 300 parameters D (test) , and compute the errors with equation [START_REF]Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society[END_REF], for each test case, we perform the interpolation process with CS-GEIM a number of times. Figure 7 shows the averaged L 2 (Ω) norm for the decay of e (test) n (φ 1 ), e (test) n (φ 2 ) and e (test) n (P ), with noise amplitude 10 -2 for Case I and Case II. For different measurement noise amplitude, the averaged errors in L 2 (Ω) norm, L ∞ (Ω) norm and H 1 (Ω) norm are shown in figure 8, figure 9 and figure 10 respectively, for Case I and Case II. The main conclusions are: in the noisy case, i) CS-GEIM improves the interpolation, with the error comparable to the noise input level, ii) in extrapolation case, CS-GEIM reduces the interpolation error dramatically, which extends GEIM practical use.

If we take more measurements with fixed number of interpolation functions, the ratio n/m of the number of measurements n to the number of interpolation functions m increases, so it is expected to have the same effect than to repeat independent measure at the same point in order to measure the evaluation of the measure. We consider the analytical function g(x, µ) ≡ V(( 10-2 ) CS-GEIM noise(10 -4 ) noise( 10-4 ) CS-GEIM noise(10 -6 ) noise (10 -6 ) CS-GEIM noise free noise(10 -2 ) noise( 10-2 ) CS-GEIM noise(10 -4 ) noise( 10-4 ) CS-GEIM noise(10 -6 ) noise(10 noise free noise( 10-2 ) noise( 10-2 ) CS-GEIM noise(10 -4 ) noise( 10-4 ) CS-GEIM noise(10 noise free noise( 10-2 ) noise( 10-2 ) CS-GEIM noise(10 -4 ) noise( 10-4 ) CS-GEIM noise(10 Fig. 12: CS-GEIM with different n/m ratio, the input noise level is 10 -2 , with the function g(x, µ) ≡ ((x 1 -µ 1 ) 2 + (x 2 -µ 2 ) 2 ) -1/2 , the error converges with ∼ n -1 2 .

x 1 , x 2 ); (µ 1 , µ 2 )) ≡ ((x 1 -µ 1 ) 2 + (x 2 -µ 2 ) 2 ) -1/2 for x ∈ Ω ≡]0, 1[

Conclusions and future works

We have presented some results obtained with the Empirical Interpolation Method (EIM) for the reconstruction of the whole field, solution to a simple but representative problem in nuclear reactor physics as an example of a set of parameterized functions. With EIM, a high accuracy can be achieved in reconstructing the physical fields, and also a better sensors deployment is proposed with which most information can be extracted in a given precision even if only part of the field (either in space or in component) is included in the measurement process. Then an improved Empirical Interpolation Method (CS-(G)EIM) is proposed. With CS-(G)EIM, i) the behavior of the interpolant is improved when measurements suffer from noise, ii) the error is dramatically improved in noisy extrapolation case, iii) it is possible to decrease the error by increasing the number of measurements. Further works and perspective are ongoing: i) mathematical analysis of the stable and accurate behavior of this stabilized approach, ii) in this work, our first assumption is the model is perfect (i.e. we work on in silico solutions; a broader class of methods which couple reduced models with measured data named PBDW [START_REF] Maday | PBDW State Estimation: Noisy Observations; Configuration-Adaptive Background Spaces, Physical Interpretations[END_REF] are able to correct the bias of the model and use real data.
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 4 Fig. 4: Case II, L ∞ (Ω) norm: Reconstruction of (φ 1 , φ 2 , P )(µ) with J n [φ 1 ], J n [φ 2 ], J n [P ] (µ).
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 5 Fig. 5: Case II, H 1 (Ω) norm: Reconstruction of (φ 1 , φ 2 , P )(µ) with J n [φ 1 ], J n [φ 2 ], J n [P ] (µ).
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 2 Figure6ashows the behavior of the Lebesgue constants in both cases. We can find that 1) the Lebesgue constant increases with GEIM interpolation function dimension, 2) if detectors are limited in a domain part (Case II), the Lebesgue constant gets worse, as an effect of the extrapolation that is required here, nevertheless the increase is still moderate.Figure6bshows the coefficients upper limits described asr n (x n , µ n ) ≡ (1 + Λ n )ε n (see 2) (so |c n | ≤ r n (x n , µ n ))for Case I and Case II, which decreases quickly with n.We still focus on the 300 parameters D(test) , and compute the errors with equation[START_REF]Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society[END_REF], for each test case, we perform the interpolation process with CS-GEIM a number of times. Figure7shows the averaged L 2 (Ω) norm for the decay of e (test) n (φ 1 ), e(test) n (φ 2 ) and e (test) n (P ), with noise amplitude 10 -2 for Case I and Case II. For different measurement noise amplitude, the averaged errors in L 2 (Ω) norm, L ∞ (Ω) norm and H 1 (Ω) norm are shown in figure8, figure9and figure 10 respectively, for Case I and Case II. The main conclusions are: in the noisy case, i) CS-GEIM improves the interpolation, with the error comparable to the noise input level, ii) in extrapolation case, CS-GEIM reduces the interpolation error dramatically, which extends GEIM practical use.If we take more measurements with fixed number of interpolation functions, the ratio n/m of the number of measurements n to the number of interpolation functions m increases, so it is expected to have the same effect than to repeat independent measure at the same point in order to measure the evaluation of the measure. We consider the analytical function g(x, µ) ≡ V((x 1 , x 2 ); (µ 1 , µ 2 )) ≡ ((x 1 -µ 1 ) 2 + (x 2 -µ 2 ) 2 ) -1/2 for x ∈ Ω ≡]0, 1[ 2 and µ ∈ D ≡ [-1, -0.01] 2 ; we choose for D (training) a uniform discretization sample of 400 points3 . Then we change the ratio n/m of the number of measurements n to the number of interpolation functions m with CS-GEIM process, figure 12 also shows the error converges with ∼ n -1 2 .
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 6 Fig.6: The Lebesgue constant and r n (x n , µ n ) from GEIM
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 91011 Fig. 9: L ∞ (Ω) norm: decay of e (training) n (φ 2 ), with noise amplitude 10 -2 , 10 -4 , 10 -6 .

Table 1 :

 1 Coefficient values: diffusion coefficients D i (in cm) and macroscopic cross sections (in cm -1 ). Axial buckling B 2 zg = 0.8 • 10 -4 for all regions and energy groups. b Here 2.0 is the exact value from reference[START_REF] Theler | Solution of the 2D IAEA PWR Benchmark with the neutronic code Milonga[END_REF].

	Region D 1	D 2	Σ 1→2	Σ a1	Σ a2	νΣ f 2	Material a
	1	1.5	0.4	0.02	0.01	0.080	0.135	Fuel 1
	2	1.5	0.4	0.02	0.01	0.085	0.135	Fuel 2
	3	1.5	0.4	0.02	0.01	0.130	0.135	Fuel 2 + Rod
	4	[1.0, 3.0] or 2.0 b 0.3	0.04	0	0.010	0	Reflector

a

  Reconstruction of (φ 1 , φ 2 , P )(µ) with J n [φ 1 ], J n [φ 2 ], J n [P ] (µ), with noise amplitude 10 -2 .
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Fig. 7: L 2 (Ω) norm: decay of e (test)

n (φ 1 ), e (test) n (φ 2 ) and e (test) n (P ).

We omit here the technical details on the meaning of k eff and refer to general references like[START_REF] Hebert | Applied Reactor Physics[END_REF].

In the following part of this work, we directly assume that the value φ i (x) at point x is σ(φ i , x) as measurement.

We replace the synthetic neutron problem here by the above analytical function so as to be able to have a more thorough and extensive numerical analysis