A Reduction Technique for Mistuned Bladed Disks with Superposition of Large Geometric Mistuning and Small Model Uncertainties

> Vladislav Ganine, Mathias Legrand, Christophe Pierre, Hannah Michalska

Faculty of Engineering, McGill University

12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii

February 20th, 2008

Motivation 000	Proposed Method	Numerical Studies	General Conclusion O
Outline			
			INO DO
1 Motiv	ation		
Propo Propo	osed Method		
3 Nume	rical Studies		
4 Gener	al Conclusion		

Motivation •00 Proposed Method

Numerical Studies

Structures with cyclic symmetry

- ideal "tuned" bladed disks feature cyclic symmetry
- entire model can be created by revolution of a fundamental entity called sector
- block-circulant mass and stiffness matrices
- response can be calculated very efficiently using a single sector only

Motivation	Proposed Method	Numerical Studies	General Conclusion
O●O	00000		O
Mistuning			

- in practice differences are unavoidable among sectors
- cyclic symmetry analysis fail to predict accurately the response
- symmetry destroyed, full FEM analysis required
- mode localization, significant increase in maximum blade vibration amplitude and stress

Tuned disk response to EO 3 excitation

Mistuned disk response to EO 3 excitation

reduced order modeling

- quantitative predictions of the dynamic response of real disks with ROM based on parent FEM
- statistical analysis of forced response using Monte-Carlo simulation

previous research

- Component Mode Synthesis, Lim et al. (2003)
 - compact ROM, introduction of "measurable" small mistuning, ease of update in MC
 - "large" mistuning projection leads to slow convergence and high order ROM
- Static Mode Compensation, Lim et al. (2004)
 - compact ROM with "large" geometric mistuning
 - too expensive in MC loop for small mistuning projection, "non-measurable" small mistuning

reduced order modeling

- quantitative predictions of the dynamic response of real disks with ROM based on parent FEM
- statistical analysis of forced response using Monte-Carlo simulation

objective

• combine CMM and SMC to study small random parameter variations on geometrically mistuned disks in a computationally efficient way

• Consider a large generalized Hermitian definite eigenvalue problem in \mathbb{R}^n

$K\Phi=\Lambda M\Phi$

usually only small number of λ_i and ϕ_i are desired

- Choose a k-dimensional subspace V with k ≪ n to find accurate approximations of eigenpairs in V
- That leads to the projected problem of significantly lower order

$\mathbf{V}^{\mathsf{T}}\mathbf{K}\mathbf{V}\mathbf{Y} = \mathbf{\Theta}\mathbf{V}^{\mathsf{T}}\mathbf{M}\mathbf{V}\mathbf{Y}$

where θ_i is approximate eigenvalue and $\phi_i = \mathbf{V} y_i$ eigenvector

• Consider a large generalized Hermitian definite eigenvalue problem in \mathbb{R}^n

$K\Phi=\Lambda M\Phi$

usually only small number of λ_i and ϕ_i are desired

- Choose a k-dimensional subspace V with k ≪ n to find accurate approximations of eigenpairs in V
- Projected problem with mistuning

$$\mathbf{V}^{\mathcal{T}}(\mathbf{K}+\mathbf{K}^{\delta})\mathbf{V}\mathbf{Y}=\mathbf{\Theta}\mathbf{V}^{\mathcal{T}}(\mathbf{M}+\mathbf{M}^{\delta})\mathbf{V}\mathbf{Y}$$

- Use SMC method to obtain a set of compensated basis vectors $(\Phi_{\Gamma}^{S} \Psi^{S,Q}G_{\Gamma}^{Q}).$
- **②** Project large mistuning \mathbf{K}^{δ_L} and \mathbf{M}^{δ_L} onto the subspace spanned by the basis vectors.
- Calculate mode participation factors of CMM method using $(\Phi_{\Gamma}^{S} \Psi^{S,Q} G_{\Gamma}^{Q}).$
- Project small mistuning $\mathbf{K}^{\delta s}$ and $\mathbf{M}^{\delta s}$.
- Semigroup Assemble total reduced order model mass and stiffness matrices $\mu_L^{syn} + \mu_S^{syn}$ and $\kappa_L^{syn} + \kappa_S^{syn}$.
- Solve the reduced system.

Note that only steps 4 to 5 are repeated in Monte-Carlo loop.

Modal Acceleration Method

$$\mathbf{\Phi}^{S} = \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) + \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix

$$\begin{aligned} \mathbf{F}^{\mathsf{Q}} &= \left(-\left[\mathbf{\Lambda}^{\mathcal{S}} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{\mathcal{S}} \\ &= \left\{ \begin{array}{c} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{\mathcal{S}} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\mathsf{F}}^{\mathcal{S}} \right\} \end{aligned}$$

Motivation
OOProposed Method
OONumerical Studies
OOGeneral Conclusion
OCalculation of compensated basis vectorsCalculation

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(- \left[\mathbf{\Lambda}^{S} - \omega_{c}^{2} \mathbf{I} \right] \left[\mathbf{M} + \mathbf{M}^{\delta_{L}} \right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}} \right] - \omega_{c}^{2} \left[\mathbf{M} + \mathbf{M}^{\delta_{L}} \right] \right) \mathbf{\Phi}^{S} \\ &= \left\{ \mathbf{0} \\ \left(- \left[\mathbf{\Lambda}^{S} - \omega_{c}^{2} \mathbf{I} \right] \mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2} \mathbf{M}^{\delta_{L}} \right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

 Motivation
 Proposed Method
 Numerical Studies
 General Conclusion

 Calculation of compensated basis vectors
 Image: Conclusion of Compensated basis vectors
 Image: Conclusion of Compensated basis vectors

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\boldsymbol{\omega}) = \sum_{i=1}^{N} \left(\frac{(\boldsymbol{\omega})^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\boldsymbol{\omega})}{\widehat{\lambda}_{i} - (\boldsymbol{\omega})^{2}} \widehat{\mathbf{\Phi}}_{i}$$

 ω correspond to "tuned" system natural frequencies and equivalent to large mistuning excitation matrix is

$$\mathbf{F}^{Q} = \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right)\mathbf{\Phi}^{S}$$
$$= \left\{ \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right)\mathbf{\Phi}_{\Gamma}^{S} \right\}$$

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{S} \\ &= \left\{ \begin{matrix} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

Compensated "tuned" normal modes

$$\Phi^{S} - \left(\left(\mathbf{K} + \mathbf{K}^{\delta_{L}} \right) - \omega_{c}^{2} \left(\mathbf{M} + \mathbf{M}^{\delta_{L}} \right) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\Phi}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\Phi}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{S} \\ &= \left\{ \begin{matrix} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

taking advantage of number of non zero terms in \mathbf{M}^{δ_L} and \mathbf{K}^{δ_L}

$$(\mathbf{K} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}))^{-1} = [\mathbf{K} - \omega_{c}^{2} \mathbf{M}]^{-1} (\mathbf{I} + [\mathbf{K}^{\delta_{L}} - \omega_{c}^{2} \mathbf{M}^{\delta_{L}}] [\mathbf{K} - \omega_{c}^{2} \mathbf{M}^{S}]^{-1})^{-1}$$

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{S} \\ &= \left\{ \begin{matrix} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

taking advantage of number of non zero terms in \mathbf{M}^{δ_L} and \mathbf{K}^{δ_L}

$$(\mathbf{K} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}))^{-1} = \\ [\mathbf{K} - \omega_{c}^{2} \mathbf{M}]^{-1} (\mathbf{I} + [\mathbf{K}^{\delta_{L}} - \omega_{c}^{2} \mathbf{M}^{\delta_{L}}] [\mathbf{K} - \omega_{c}^{2} \mathbf{M}^{S}]^{-1})^{-1}$$

 Motivation
 Proposed Method
 Numerical Studies
 General Conclusion

 Calculation of compensated basis vectors
 Image: Calculation of Compensated basis vectors
 Image: Calculation of Calculation of Calculation of Calculation of Calculation

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{S} \\ &= \left\{ \begin{matrix} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

block-wise inversion using cyclic symmetry

$$\widetilde{\boldsymbol{\Psi}}_{\Gamma}^{S,Q} = \underset{h=1,\ldots,H}{\widetilde{\mathsf{B}}} \operatorname{diag}\left[(\widetilde{\boldsymbol{\mathsf{K}}}_{h} - \omega_{c}^{2} \widetilde{\boldsymbol{\mathsf{M}}}_{h})_{\Gamma}^{-1} \right]$$

Compensated "tuned" normal modes

$$\mathbf{\Phi}^{S} - \left((\mathbf{K} + \mathbf{K}^{\delta_{L}}) - \omega_{c}^{2} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) \right)^{-1} \mathbf{F}(\omega) = \sum_{i=1}^{N} \left(\frac{\omega^{2} - \omega_{c}^{2}}{\widehat{\lambda}_{i} - \omega_{c}^{2}} \right) \frac{\widehat{\mathbf{\Phi}}_{i}^{T} \mathbf{F}(\omega)}{\widehat{\lambda}_{i} - \omega^{2}} \widehat{\mathbf{\Phi}}_{i}$$

and equivalent to large mistuning excitation matrix is

$$\begin{aligned} \mathbf{F}^{Q} &= \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right] + \left[\mathbf{K} + \mathbf{K}^{\delta_{L}}\right] - \omega_{c}^{2}\left[\mathbf{M} + \mathbf{M}^{\delta_{L}}\right]\right) \mathbf{\Phi}^{S} \\ &= \left\{ \begin{matrix} \mathbf{0} \\ \left(-\left[\mathbf{\Lambda}^{S} - \omega_{c}^{2}\mathbf{I}\right]\mathbf{M}^{\delta_{L}} + \mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}\right) \mathbf{\Phi}_{\Gamma}^{S} \right\} \end{aligned}$$

then the equivalent force can be expressed as

$$\mathbf{G}_{\Gamma}^{Q} = \left\{ \begin{matrix} \mathbf{0} \\ \left(\mathbf{I} + [\mathbf{K}^{\delta_{L}} - \omega_{c}^{2}\mathbf{M}^{\delta_{L}}] \mathbf{\Psi}_{\Gamma}^{S,Q}\right)^{-1} \mathbf{F}_{\Gamma}^{Q} \right\}$$

Geometric mistuning projection			
000	00000	000	0
Motivation	Proposed Method	Numerical Studies	General Conclusion

The reduced order stiffness matrix due to geometric mistuning

$$\boldsymbol{\kappa}_{L}^{syn} = (\boldsymbol{\Phi}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} (\mathbf{K} + \mathbf{K}^{\delta_{L}}) (\boldsymbol{\Phi}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{k}^{Q})$$

Mass matrix

$$\boldsymbol{\mu}_{L}^{\text{syn}} = (\boldsymbol{\Phi}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{\mathsf{T}} (\mathbf{M} + \mathbf{M}^{\delta_{L}}) (\boldsymbol{\Phi}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})$$

Those products can be taken on a sector-by-sector basis in a memory efficient way

Motivation 000	Proposed Method ○○○○●	Numerical Studies	General Conclusion O
Small mistuning projection			

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

Small mis	tuning projection		
000	00000	000	0
IVIOTIVATION	Proposed Method	INUMERICAL STUDIES	General Conclusion

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

Reduced mass matrix

$$\mu^{syn} = \mu_L^{syn} + (\mathbf{\Phi}_{\Gamma}^S - \mathbf{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^Q)^T \mathbf{M}^{\delta_S} (\mathbf{\Phi}_{\Gamma}^S - \mathbf{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^Q)$$
$$= \mu_L^{syn} + \sum_{n=1}^N \mathbf{q}_n^{M^T} \mathbf{U}_n^{M^T} \mathbf{M}_n^{\delta_S} \mathbf{U}_n^M \mathbf{q}_n^M$$

$$\begin{aligned} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{aligned}$$

Reduced mass matrix

$$\mu^{syn} = \mu_L^{syn} + (\mathbf{\Phi}_{\Gamma}^{S} - \mathbf{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^T \mathbf{M}^{\delta_S} (\mathbf{\Phi}_{\Gamma}^{S} - \mathbf{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})$$
$$= \mu_L^{syn} + \sum_{n=1}^N \mathbf{q}_n^{M^T} \mathbf{U}_n^{M^T} \mathbf{M}_n^{\delta_S} \mathbf{U}_n^M \mathbf{q}_n^M$$

where the blade portion of compensated system normal modes

$$(\boldsymbol{\Phi}_{\Gamma}^{\mathcal{S}}-\boldsymbol{\Psi}^{\mathcal{S},\mathcal{Q}}\boldsymbol{\mathsf{G}}_{\Gamma}^{\mathcal{Q}})=\underset{\textit{h}=1,...,\mathcal{H}}{\widetilde{\mathrm{B}}}\widetilde{\mathrm{diag}}\left[\boldsymbol{\mathsf{U}}_{\textit{n}}\right]\boldsymbol{\mathsf{q}}$$

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

where the blade portion of compensated system normal modes

$$(\mathbf{\Phi}_{\Gamma}^{S} - \mathbf{\Psi}^{S,Q}\mathbf{G}_{\Gamma}^{Q}) = \mathop{\mathrm{Bdiag}}_{h=1,...,H} [\mathbf{U}_{n}]\mathbf{q}$$

is described by cantilevered-blade normal modes

$$\mathbf{U}_{n}^{K} = \begin{bmatrix} \mathbf{\Phi}_{n}^{B} \ \mathbf{\Psi}_{n}^{B,K} \\ \mathbf{0} \ \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{\Phi}_{n}^{B} \ -(\mathbf{K}_{n,\Gamma_{ii}} + \mathbf{K}_{n_{ii}}^{\delta_{L}})^{-1}(\mathbf{K}_{n,\Gamma_{ib}} + \mathbf{K}_{n_{ib}}^{\delta_{L}}) \\ \mathbf{0} \ \mathbf{I} \end{bmatrix}$$

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

where the blade portion of compensated system normal modes

$$(\boldsymbol{\Phi}_{\Gamma}^{\mathcal{S}} - \boldsymbol{\Psi}^{\mathcal{S},\mathcal{Q}} \mathbf{G}_{\Gamma}^{\mathcal{Q}}) = \mathop{\mathrm{Bdiag}}_{h=1,...,H} [\mathbf{U}_{n}] \mathbf{q}$$

is described by cantilevered-blade normal modes + boundary modes

$$\mathbf{U}_{n}^{K} = \begin{bmatrix} \mathbf{\Phi}_{n}^{B} \; \mathbf{\Psi}_{n}^{B,K} \\ \mathbf{0} \; \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{\Phi}_{n}^{B} \; -(\mathbf{K}_{n,\Gamma_{ii}} + \mathbf{K}_{n_{ii}}^{\delta_{L}})^{-1}(\mathbf{K}_{n,\Gamma_{ib}} + \mathbf{K}_{n_{ib}}^{\delta_{L}}) \\ \mathbf{0} \; \mathbf{I} \end{bmatrix}$$

subscripts i and b indicate that each n-th blade component is partitioned into internal and boundary DOFs

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

where the blade portion of compensated system normal modes

$$(\mathbf{\Phi}_{\Gamma}^{S} - \mathbf{\Psi}^{S,Q}\mathbf{G}_{\Gamma}^{Q}) = \mathop{\mathrm{Bdiag}}_{h=1,...,H} [\mathbf{U}_{n}]\mathbf{q}$$

a set of precalculated modal participation factors

$$\mathbf{q}_{n}^{K} = \begin{bmatrix} \mathbf{q}_{\Phi,n}^{K} \\ \mathbf{q}_{\Psi,n} \end{bmatrix} = \begin{bmatrix} \mathbf{\Lambda}_{n}^{B^{-1}} \mathbf{\Phi}_{n}^{B^{T}} (\mathbf{K}_{n,\Gamma} + \mathbf{K}_{n}^{\delta_{L}}) (\mathbf{\Phi}_{n,\Gamma}^{S} - \mathbf{\Psi}^{S,Q} \mathbf{G}_{n,\Gamma}^{Q}) \\ (\mathbf{\Phi}_{n,\Gamma}^{S} - \mathbf{\Psi}^{S,Q} \mathbf{G}_{n,\Gamma}^{Q})_{b} \end{bmatrix}$$

subscript b denotes blade boundary DOF partition of compensated modes

$$\begin{split} \boldsymbol{\kappa}^{syn} &= \boldsymbol{\kappa}_{L}^{syn} + (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q})^{T} \mathbf{K}^{\delta_{S}} (\boldsymbol{\Phi}_{\Gamma}^{S} - \boldsymbol{\Psi}^{S,Q} \mathbf{G}_{\Gamma}^{Q}) \\ &= \boldsymbol{\kappa}_{L}^{syn} + \sum_{n=1}^{N} \mathbf{q}_{n}^{K^{T}} \mathbf{U}_{n}^{K^{T}} \mathbf{K}_{n}^{\delta_{S}} \mathbf{U}_{n}^{K} \mathbf{q}_{n}^{K} \end{split}$$

where the blade portion of compensated system normal modes

$$(\mathbf{\Phi}_{\Gamma}^{S} - \mathbf{\Psi}^{S,Q}\mathbf{G}_{\Gamma}^{Q}) = \mathop{\mathrm{Bdiag}}_{h=1,...,H} [\mathbf{U}_{n}]\mathbf{q}$$

 \mathbf{U}_n^M and \mathbf{q}_n^M for mass mistuning are computed separately in a similar way

introduction of additional small stiffness mistuning NO (proportional mistuning)

• Nominal Young's modulus of the *n*-the blade mistuned as $E_n = E_0(1 + \delta_n^e)$

introduction of additional small stiffness mistuning NO (proportional mistuning)

• Nominal Young's modulus of the *n*-the blade mistuned as $E_n = E_0(1 + \delta_n^e)$

conclusion

- SMC is extended to non-symmetric multiple mistuned sector case and effectively coupled with CMM
- Computational efficiency of FORTRAN implementation with Intel MKL library (\sim 45 sec ROM vs. \sim 5 min ANSYS full test case model analysis)
- Demonstrates accuracy of approximation

future work

- Quantify the error of approximation
- Improve algorithm since it suffers from slow convergence for large amplitude perturbations
- Study the effect of large and small random mistuning on bladed disks (intentional mistuning, design optimization)