
HAL Id: hal-01393686
https://hal.science/hal-01393686v1

Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aggregating CP-nets with Unfeasible Outcomes
Umberto Grandi, Hang Luo, Nicolas Maudet, Francesca Rossi

To cite this version:
Umberto Grandi, Hang Luo, Nicolas Maudet, Francesca Rossi. Aggregating CP-nets with Unfeasible
Outcomes. 20th International Conference on Principles and Practice of Constraint Programming
(CP-2014), Sep 2014, Lyon, France. pp.366 - 381, �10.1007/978-3-319-10428-7_28�. �hal-01393686�

https://hal.science/hal-01393686v1
https://hal.archives-ouvertes.fr


Aggregating CP-nets with unfeasible outcomes

Umberto Grandi1, Hang Luo2, Nicolas Maudet2, and Francesca Rossi1

1 University of Padova
umberto.uni@gmail.com, frossi@math.unipd.it

2 Université Pierre et Marie Curie
nicolas.maudet@lip6.fr, hang.luo@etu.upmc.fr

Abstract. We consider settings where a collection of agents express preferences
over a set of candidates with a combinatorial structure via the use of CP-nets,
and we need to exploit the information contained in the CP-nets to choose one
of the candidates. Moreover, there is a set of constraints which defines the un-
feasible candidates, which cannot be the result of the preference aggregation. We
propose a method to achieve this which is based on voting, and considers one
variable at a time in a sequence. This method has been studied in the literature
to aggregate non-constrained CP-nets. Here we generalise it to work with con-
strained CP-nets, and we study its properties. The constraints are used to leave
in the variable domains only the admissible values. This allows the voting steps
to return only feasible values. We find conditions of coherence between the pref-
erence expressed in the CP nets and the constraints, in order to guarantee that
the classical sequential aggregation method always returns a feasible candidate.
Even when such conditions are not met, but the constraints defining the unfea-
sible candidates have a tree structure (or a structure with bounded tree-width),
and the collection of CP-nets is O-legal (that is, the dependency graphs of the
CP-nets are compatible), we show that our more general voting procedure can be
used, and that it is polynomial in the number of features describing the candidates
and in the number of voters.

1 Introduction

Preferences are ubiquitous in real life. Often we need to express our preferences over
a large set of objects, which has a combinatorial structure and can be described as the
Cartesian product of the domains of a set of decision variables. Consider for example
a situation where we give our opinion about cars. A car may be described by several
features, like the model, the colour, the engine, the shape, and the maker. Each feature
may have several possible choices. We may have various models, colours, engine types,
shapes, and makers. If the features are modelled by variables and the choices as variable
domains, formally a car can be modelled by an assignment of values to such variables.

However, it may be that not all cars are available in the market. For example, while
there are red cars and diesel cars, there could be no red diesel car in the current list of
available cars. So we are expressing our preferences over all possible cars, but some of
them are actually not available.

Often we take group decisions, together with other individuals. For example, a hus-
band and wife could go and look for a car together, each having his/her own preferences



over all cars. To decide on what car to buy, they need to consider the preferences of both
and also the possible feasibility constraints, in order to select a car that is on the market
and that satisfies their preferences as well as possible.

In this paper we are interested in modeling and studying these scenarios. To model
individual’s preferences, we use CP-nets [2], a qualitative formalism to express condi-
tional preferential statements. In the car example, using CP-nets we can say that, if the
maker is Citroen, we prefer a gasoline engine to a diesel engine. In particular, we study
acyclic CP-nets, which have an acyclic dependency structure, since we believe they are
expressive enough to model most rational preference orderings. In acyclic CP-nets, it is
computationally easy to determine the most preferred object.

We then use constraints to model the feasibility restrictions. Thus we pair CP-nets
with a set of constraints, which define the feasible objects, while the CP-net discriminate
among the feasible objects via the preferences. Constrained CP-nets have been studied
in the literature, and procedures to obtain a feasible undominated outcome have been
proposed [3].

A set of constraints [8] compactly models a set of feasible variable assignments.
Each constraint usually involves few variables, and the feasible objects are those that
satisfy them all. While the task of finding a feasible variable assignment in a generic
constraint set is NP-hard, there are classes of constraint problems where this task is
computationally easy. One of these classes consists of those constraint sets whose graph
(where nodes model variables and arcs model constraints) is a tree, or a graph with
bounded tree-width.

We then consider collections of several acyclic CP-nets, as many as the individuals,
plus a set of constraints defining the feasible objects. To aggregate such preferences and
make sure we return a feasible object, we use voting rules [1] and we define a sequen-
tial voting procedure that considers one variable at a time and uses one of the voting
rules to decide the ”winning value” for that variable. Sequential voting has been al-
ready defined for CP-nets with no feasibility constraints [5]. We show that the classical
sequential voting procedure can be used also in this more general setting when CP-nets
and constraints are coherent according to three consistency notions that we introduce. In
these cases, this procedure returns a feasible outcome. When consistency does not hold,
we define a generalization of the classical sequential voting procedure which takes the
constraints into account and still returns a feasible outcome. This is computed in time
polynomial in the size of the profile, if all the used voting rules are polynomial for win-
ner determination and if the constraints are tractable. This means that the presence of
feasibility does not make sequential preference aggregation over CP-nets more difficult,
provided that the constraints belong to a tractable class.

2 Background

2.1 CP-nets

CP-nets [2] are a graphical model for compactly representing conditional and qualitative
preference relations. CP-nets are sets of ceteris paribus (cp) preference statements. For
instance, the statement “I prefer red wine to white wine if meat is served.” asserts that,



given two meals that differ only in the kind of wine served and both containing meat,
the meal with red wine is preferable to the meal with white wine.

A CP-net has a set of features, modelled by variables F = {x1, . . . , xm}, with finite
domains D(x1), . . . ,D(xm). For each feature xi, it is given a set of parent features
Pa(xi) that can affect the preferences over the values of xi. This defines a dependency
graph in which each node xi has Pa(xi) as its immediate predecessors. Given this
structural information, the agent explicitly specifies her preference over the values of
xi for each complete assignment on Pa(xi). This preference is assumed to take the form
of total or partial order over D(xi). An acyclic CP-net is one in which this dependency
graph is acyclic. A separable CP-net is one in which there is no preferential dependency
(that is, the dependency graph has no edges).

Consider a CP-net whose features areA,B,C, andD, with binary domains contain-
ing f and f if F is the name of the feature, and with preference statements as follows:
a � a, b � b, (a ∧ b) ∨ (a ∧ b) : c � c, (a ∧ b) ∨ (a ∧ b) : c � c, c : d � d, c : d � d.
Here, statement a � a represents the unconditional preference for A = a over A = a,
while statement c : d � d states that D = d is preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to a value which is less pre-
ferred by the CP-statement for that variable. For example, in the CP-net above, passing
from abcd to abcd is a worsening flip since c is better than c given a and b. One outcome
α is better than another outcome β (written α � β) iff there is a chain of worsening
flips from α to β. This definition induces a preorder over the outcomes.

In general, finding the optimal outcome of a CP-net is NP-hard. However, in acyclic
CP-nets, there is only one optimal outcome and this can be found in linear time. We
simply sweep through the CP-net, following the arrows in the dependency graph and
assigning at each step the most preferred value in the preference table. For instance, in
the CP-net above, we would chooseA = a andB = b, thenC = c and thenD = d. The
optimal outcome is therefore abcd. Determining if one outcome is better than another (a
dominance query) is NP-hard even for acyclic CP-nets. Whilst tractable special cases
exist, there are also acyclic CP-nets in which there are exponentially long chains of
worsening flips between two outcomes. In the CP-net of the example, abcd is worse
than abcd.

2.2 Constraints

In this paper we refer to the usual notation and terminology for constraint satisfac-
tion problems (CSPs), that can be found for example in [8]. In a constraint prob-
lem (CSP) (V,D,C), where V = (v1, . . . , vn) is a set of variables, with domains
D = (D1, . . . , Dn), and C is a set of constraints, a solution is an assignment of val-
ues to all its variables that satisfies all constraints. In the following, we say that a partial
assignment to a subset of the variables in V is feasible if it can be extended to a solution.

We will also use classical results about tractability of constraint problems and the
relationship between local and global consistency. In particular, we will exploit the
fact that CSPs whose constraint graph has a bounded tree-width, such as trees, are
tractable. For trees, a standard polynomial algorithm to solve them involves deciding
on an ordering over which to instantiate the variables to construct a solution, achieving



directional arc-consistency on such an order, and then instantiating the variables with
no backtracking.

Another tractability result that we will use in this paper is the fact that, in CSPs with
Boolean variables and binary constraints, strong 3-consistency (that is, arc- and path-
consistency) is sufficient to assure global consistency. This means that it is polynomial
to solve such CSPs. In fact, even if we do not have strong 3- consistency, we can achieve
it in polynomial time while remaining in the class of binary constraints with Boolean
variables, and then we can apply this result.

We will also use a graph which is obtained by the constraint graph of a CSP by first
achieving path-consistency and then taking only those edges that correspond to non-
trivial constraints (that is, constraints that are a proper subset of the Cartesian domain
of their variables). We will call this the path-closure graph of the CSP.

2.3 Constrained CP-nets

A constrained CP-net is just a CP-net N with the addition of a set of constraints C over
the same variables. An outcome is feasible if it satisfies all constraints in C. An optimal
outcome for a constrained CP-net (N,C) is a feasible outcome which is not dominated
by any other feasible outcome in the CP-net preference ordering.

While for acyclic CP-nets finding an optimal outcome is computationally easy, for
acyclic constrained CP-nets it is as difficult as solving (possibly several times) the con-
straint set C. In [3] an algorithm (Search-CP) is defined to find an optimal outcome in
a constrained CP-net.

Therefore, when the constraint set is tractable, for example it has a tree structure,
then this problem is computationally easy. In this paper we consider constrained CP-
nets where the CP-net is acyclic, and for some results we will also exploit the tractability
of the constraint set. However, we will not compute the optimal outcome of any single
constrained CP-net, but rather use the constraints to make sure we obtain a feasible
outcome as the result of the aggregation of several CP-nets.

Even if the literature has focussed on finding optimal outcomes of constrained CP-
nets, it is also an interesting question to know whether preferences expressed by the
CP-net comply (and to what extent) with the constraints. In Section 3 we discuss several
possible ways to define such a compliance.

2.4 Voting theory

A voting rule allows a set of voters to choose one among a set of candidates. Voters
need to submit their vote, that is, their preference ordering over the set of candidates (or
part of it), and the voting rule aggregates such votes to yield a final result, usually called
the winner. In the classical setting [1], given a set of candidates, a profile is a collection
of total orderings over the set of candidates, one for each voter. Given a profile, a voting
rule maps it into a single winning candidate.

Some examples of widely used voting rules are:

– Plurality, where each voter states who the preferred candidate is, and the candidate
who is preferred by the largest number of voters wins;



– Borda, where, given m candidates, each voter gives a ranking of all candidates and
the ith ranked candidate scores m − i, and the candidate with the greatest sum of
scores wins;

– Approval, where each voter approves between 1 and m − 1 candidates on m total
candidates, and the candidate with most approvals wins;

– Copeland, where the winner is the candidate that wins the most pairwise competi-
tions against all the other candidates.

When there are ties, a unique winner is chosen according to some tie-breaking rule.
Voting theory has considered many desirable properties of voting rules. Some ex-

amples are anonymity, neutrality, consistency, monotonicity, Pareto efficiency, indepen-
dence of irrelevant alternatives (IIA), non-dictatoriality, strategy proofness, and partic-
ipation [1]. All the above rules are anonymous, neutral, non-dictatorial, monotone, and
Pareto efficient, while only Approval is IIA. All but Copeland are consistent and partic-
ipative.

2.5 Aggregating CP-nets

There is extensive literature that has considered the task of aggregating preferences
modelled via CP-nets [5]. In this setting, n agents express their preferences over a set
of candidates with a combinatorial structure: there are m features, and each candidate
is an assignment of values to all features. Agents’ preferences over the candidates are
usually modeled via acyclic CP-nets. Moreover, the dependency graphs of such CP-
nets are usually assumed to be compatible with a linear order O over the features: for
each voter, the preference over a feature is independent of features following it in O.3

This implies that the n CP-nets N1, . . . , Nn are such that the union of their dependency
graphs, that we call Dep(N1, . . . , Nn), does not contain cycles. Notice that CP-nets
with this property may have different dependency graphs.

Given n agents, m binary features, and a linear ordering O over the features, a pro-
file is thus a collection of n acyclic CP-nets over the m features which are compatible
with O.

To aggregate the preferences expressed via CP-nets, what is often done is to employ
a sequential approach, with as many steps as the number of features. The algorithm uses
as many voting rules as the number of features, say 〈r1, . . . , rm〉.

Taken the features in the order O, say 〈x1, . . . , xm〉, the aggregation considers one
feature at a time in this order and returns a “winner”, that is, a variable assignment
for such variables, say 〈d1, . . . , dn〉. It starts from variable x1, which is for sure an
independent variable, and applies voting rule r1 to the profile obtained by the preference
orderings given by all CP-nets over the domain of x1, returning a winner value d1. If
we have already considered variables x1, . . . , xk, obtaining values d1, . . . , dk, we then
consider variable xk+1 and apply voting rule rk+1 to the profile obtained by considering
the preference ordering over the domain of xk+1 in all CP-nets. If xk+1 is a dependent
variable, we choose the preference ordering which corresponds to the assignment of the
previous variables. Notice that all parents of xk+1 must have been assigned already at

3 This coincides with the notion of O-legality in [5].



this point, because of the way the ordering O is defined. This procedure is sometimes
called sequential voting [5], or also Level Aggregation (LA) [7].

Example. Consider three agents, each expressing their preferences over candidates
defined by 3 binary features. So we have 3 CP-nets N1, N2, and N3, with features
A, B, and C, where each feature X has values x and x̄. N1 contains the preferential
statements a � a, b � b, (a ∧ b) ∨ (a ∧ b) : c � c, (a ∧ b) ∨ (a ∧ b) : c � c.
We recall that a � a represents the unconditional preference for A = a over A = a,
while (a ∧ b) ∨ (a ∧ b) : c � c states that C = c is preferred to C = c, when
A = a and B = b and also when A = a and B = b. Thus, in N1, A and B are
independent variables, while C depends on both A and B. N2 contains instead the
following preferential statements: a � a, a : b � b, a : b � b, b : c � c, b : c � c. Thus,
in N2, A is an independent variable, while B depends on A and C depends on B. N3

is defined by: a � a, b � b, c � c. Thus, in N3, all variables are independent. Figure 1
shows this profile.

Consider now ordering O = 〈A,B,C〉, and let us apply the sequential voting pro-
cedure with voting rule Majority for all three variables. For variable A, we have the
preferences a � a from all agents, thus we select A = a. Then, given this choice,
we pass on to variable B, getting preferences b � b from all agents. Thus we choose
B = b. Notice that, while feature B is independent from A in agent 1 and 3, in agent
2 it depends on A. Thus the preferences on the values of B in such an agent are those
corresponding to the value of A chosen in the previous step. Passing on to C, we get
preferences c � c from all agents, thus we chooseC = c. Thus the sequential procedure
chooses the variable assignment 〈A = a,B = b, C = c〉.

A

a � a

A

a � a

A

a � a

B

b � b

B
a : b � b

a : b � b
B

b � b

C

(a ∧ b) ∨ (a ∧ b) : c � c

(a ∧ b) ∨ (a ∧ b) : c � c

C

b : c � c

b : c � c

C

c � c

Fig. 1. A profile of CP-nets.



Sequential voting provides an efficient way to determine the winning candidate
when preferences are expressed compactly with CP-nets or other preference formalisms.
Moreover, it maintains many of the desirable properties of the local voting rules used at
every step [5].

3 Consistency in constrained CP-nets

Given a constrained CP-net (N,C), we now study some notions of consistency between
the preference structure expressed by N and the set of constraints C. The reason we are
interested in these consistency notions is that in some cases they make the aggregation
simpler, when preferences are expressed by a collection of constrained CP-nets, as we
will see in Section 5.

3.1 Consistency notions

The first notion of consistency relates the optimal outcome of the CP-net to the con-
straints.

Definition 1. A constrained CP-net (N,C) is top-consistent if the optimal outcome of
N satisfies the constraints in C.

For example, the CP-net of agent 1 in Figure 1 is top-consistent with the set of
constraints {A = B}.

The next notion of consistency acts at the variable level and makes sure that feasi-
bility is maintained when passing from the parents of the variable to its most preferred
value.

Definition 2. A constrained CP-net (N,C) is locally-consistent if there is no line in
the CP-tables of N of the form o : b > b̄ such that o is feasible but ob is not.

Since o and ob can be partial outcomes, that is, assigning values to only some of the
variables, we recall that a partial outcome is feasible if it can be extended to a solution.

The third notion of consistency we define is a structural property, that related the
dependency graph of the CP-net to the path-closure graph of the constraints.

Definition 3. A constrained CP-net (N,C) is dependency-consistent if the path-closure
graph of C is a subset of the undirected version of the dependency graph of N .

Dependency consistency can be natural in several settings. For example, if constraints
are known in advance, the process of specifying a CP-net will exploit preferential de-
pendencies among variables connected by a constraint to express qualitative preferences
over the partial outcomes over such variables.

Theorem 1. If a constrained CP-net is both locally and dependency-consistent, then it
is also top-consistent.



Proof. If we have both local and dependency consistency, the optimal outcome is fea-
sible (that is, we have top consistency). In fact, let us compute the optimal outcome by
instantiating one variable at a time, in an order which is compatible with the dependency
graph of the CP-net (that is, parents come before their children). We start from the inde-
pendent variables and we give them their most preferred value. This is a feasible partial
assignment since, by dependency consistency, there are no constraints among indepen-
dent variables. At any step, we instantiate a new variable to its most preferred value
given the chosen instantiation of its parents. If the partial assignment before this step
was feasible, also the new partial assignment is feasible because of local and depen-
dency consistency. Thus all partial assignments built during the procedure, included the
last one which is the optimal outcome, are all feasible. A feasible complete assignment
is, by definition, a solution. �

It is easy to see that neither local nor dependency consistency alone imply top con-
sistency, and viceversa.

Example. Consider the CP-nets in Figure 1 and the constraints cAB = {(A = a,B =
b), (A = a,B = b)} and cBC = {B = b, C = c), (B = b, C = c)}. None of the CP-
nets are top consistent. Moreover, N1 is not locally consistent because of the CP-table
for feature C: ab is a partially feasible assignment but abc is not. N2 is not locally-
consistent either, again because of the CP-table for C: b is feasible but bc is not. On the
other hand, n3 is locally consistent. Only N2 is dependency consistent.

3.2 Checking the consistency notions

We now study the computational complexity of checking the above three notions of
consistency in a constrained CP-net. In what follows we assume CP-nets to be acyclic.

Theorem 2. Given a constrained CP-net (N,C), it is polynomial to check whether it
is top-consistent or dependency consistent.

Proof. For top consistency, it is sufficient to find the optimal outcome of N and check
whether it satisfies the constraints inC. SinceN is acyclic, this is computationally easy.

For dependency consistency, we just need to compare the dependency graph and
the path-closure graph of the constraints. Once we have the two graphs, this is linear
in their size. The path-closure graph can be obtained by achieving 3-consistency on the
constraints, which is polynomial. �

Theorem 3. Given a constrained CP-net (N,C) with Boolean variables, with C a set
of binary constraints, it is polynomial to check whether it is locally consistent.

Proof. We need to check that ob is feasible, for each row in the CP-tables of the form o :
b > b̄ such that o is feasible. Since constraints are binary, for each row in a CP-table, this
can be done in polynomial time. In fact, checking that a partial outcome is feasible with
a set of binary constraints is computationally easy if variables are Boolean (it amounts
to solving a 2SAT problem). The number of rows in a CP-net may be exponential in the
number of issues, but not in the size of the CP-net which is given in the input. Thus the
overall complexity is polynomial. �



Observe that local consistency in general cannot be checked in polynomial time if con-
straints are not binary, even if variables are Boolean, since it would require solving a
SAT problem, while in the binary case it is 2-SAT.

3.3 Achieving top and local consistency in constrained CP-nets

Assume that (N,C) is a constrained CP-net which is not top-consistent or not locally-
consistent. This can happen in scenarios in which we have our own preferences over
the outcomes expressed via a CP-net, and somebody gives us the constraints describing
the feasible outcomes, and the two things together do not have the desired notion of
consistency. We would like to modify our CP-net as little as possible in order to obtain
either top consistency or local consistency.

Top consistency. To achieve top consistency, we may adopt the following procedure. Let
us start from any independent variable (there must be one since N is acyclic) and have
one step for each variable, in an order which is compatible with the dependency graph
of the CP-net (parents come before their children), computing the optimal outcome.
If at any step j, the partial outcome o obtained so far is not feasible, then we modify
the row of the CP-table of variable xj corresponding to the parents’ assignment in o
doing a switching of the ordering. This assures that the new partial outcome is feasible.
This algorithm will produce in polynomial time a CP-net which is top-consistent if the
constraints are binary. However, it does not assure that the resulting CP-net is minimally
distant from the given one, if the distance is the number of different orderings in the
CP-tables. However we conjecture it would be computationally difficult to find the one
which is minimally distant.

Local consistency. Instead, to obtain a CP-net which is locally-consistent, it is suffi-
cient to check each row in the CP-tables for the condition of local consistency, again
following an order of the variables which is compatible with the dependency graph. If
one of the rows fails the consistency check, then the preference expressed in this row
needs to be inverted. Since we are moving forward following the dependency structure
of N , we are guaranteed that one of the two possible orders in a row of the CP-table
must be consistent. Notice that this algorithm is different from the previous one since
we need to check all rows of the CP-tables and not just those involved in the compu-
tation of the optimal outcome. Again, the assumption of binary constraints is crucial
for this algorithm to be polynomial. Unlike the previous one, this algorithm guarantees
that the resulting CP-net is minimally distant from the given one, if the distance is the
number of different orderings in the CP-tables.

4 Constrained Profiles

A constrained profile models the scenario in which we have several individuals who
express their preferences over a common set of outcomes by using CP-nets, and the
constraints model the set of feasible outcomes. Only those outcomes that satisfy all



constraints can be returned as the result of the aggregation of the preferences of the
individuals.

Formally, a constrained profile is a collection of CP-nets {N1, . . . , Nn} plus a
set of constraints C. This can also be seen as a collection of constrained CP-nets
{(N1, C), . . . , (Nn, C)}, all having the same constraints.

Notice that all CP-nets share the same set of feasible (and thus unfeasible) candi-
dates, which are those defined by C. Moreover, the CP-nets of all agents share also
the variables and the variable domains. So, what can be different in two agents is the
dependency graph of their CP-nets, as well as CP-tables of the CP-nets.

In this paper, we restrict our attention to constrained profiles which are O-legal, that
is, there is an orderingO of the variables such that, for each CP-net, the preference over
a feature is independent of features following it in O.

Notice that O-legality implies that all CP-nets in the constrained profile are acyclic.

Example. As an example of a constrained profile, let us consider the CP-nets in Figure
1, with the addition of the set of constraints cAB = {(A = a,B = b), (A = a,B = b)},
CBC = {B = b, C = c), (B = b, C = c)}. It is easy to see that this profile is O-legal:
there is an ordering O of the variables which is compatible with all dependency links,
namely O = (A,B,C). Observe that the top outcome is abc for all three agents, and
this would be the result of sequential majority over the three CP-nets. However, this
outcome is not feasible (only abc and abc are).

5 Aggregating preferences in constrained profiles

The goal is to take a constrained profile and return a feasible outcome, which should
satisfy the preferences of the individual CP-nets as much as possible. As we know, when
we have no constraints on the feasible outcomes, sequential voting is used to perform
such an aggregation. We will now see that sometimes sequential voting is all we need
also in presence of constraints. In general, however, we need to take constraints into ac-
count. This can be done by adapting the sequential voting procedure, while maintaining
a polynomial time complexity if constraints are tractable.

5.1 Top, local, and dependency consistency

Under assumptions the consistency notions introduced in Section 3, sequential aggre-
gation using the majority rule outputs a feasible outcome. The first result applies when
we have top consistency, but requires CP-nets to be separable, that is, to have no depen-
dency structure.

Theorem 4. If 〈(N1, . . . , Nn), C〉 is a constrained profile such that all Ni are top-
consistent and separable, and C is a set of binary constraints, then the winner deter-
mined by sequential voting with the majority rule is feasible.

Proof. Since all Ni are separable (and variables are binary), then the order followed by
sequential majority is irrelevant, and the problem is equivalent to binary aggregation
in which all individuals submit their top outcome and issue-by-issue majority voting



is used. We can therefore use the following result from the binary aggregation litera-
ture: issue-by-issue majority outputs a feasible outcome given feasible input (that is, it
is collectively rational) if and only if the constraints are equivalent to a conjunction of
disjunctions of size 2 [4, 6]. First we observe that, by top consistency, each individual
top outcome satisfies the constraints. Second, since we assume constraints in C to be
binary, each constraint can be written as a conjunction of disjunctions of size 2, thus
the whole set of constraints can also be written in this way. Therefore this result ap-
plies here. If the constraints are not binary, it is possible to find examples in which the
outcome of sequential majority is not feasible. �

When the CP-nets have a non-empty dependency structure, we can still apply stan-
dard sequential voting to get a feasible outcome if they are both locally and dependency
consistent (and thus also top consistent). So we need a stronger property on the CP-nets
when we have preferential dependencies.

Theorem 5. If 〈(N1, . . . , Nn), C〉 is a constrained profile such that all Ni are locally-
consistent and dependency-consistent, and C is a set of binary constraints, then the
winner determined by sequential voting with the majority rule is feasible.

Proof. We will prove by induction on the number of variables that, at each step i be-
tween 1 and m, the partial assignment generated until step i is feasible. For step 1, it is
trivially true since the CP-nets are locally consistent, so the most preferred value in an
independent variable must be feasible. This means that all CP-nets vote for a feasible
value for the first variable, and thus majority chooses a feasible value.

Let us assume that the statement is true until step i, and let us consider step i + 1.
We have a feasible partial assignment 〈v1, . . . , vi〉 obtained so far. For variable i + 1,
assume that there is a majority in favor of b, i.e., at least a majority of the individual
CP-nets prefer b to b̄ given the partial assignment obtained so far. This means that if
individual j is part of this majority, then Nj contains the row oj : b > b̄, where oj
is the assignment of the parent variables of variable i in CP-net Nj which occurs in
the current feasible assignment. By dependency consistency we know that the parent
variables of variable i in each individual CP-net include all variables k that are related
with i by a constraint. By local consistency, we also know that ojb is feasible for each
j between 1 and n. Thus also 〈v1, . . . , vi, b〉 is feasible.

Therefore all partial assignments generated during the sequential voting procedure
are feasible, including the last one, which is a complete assignment and thus a solution
of all the constraints. �

5.2 Aggregation in non-consistent profiles

When none of the sufficient conditions mentioned above hold, we can obtain a feasi-
ble outcome by modifying the sequential voting procedure to take the constraints into
account. Starting from the LA procedure already defined in the literature to aggregate
CP-nets, we define the procedure CLA, for Constrained LA procedure. CLA is very
similar to LA, except that it will work on possibly reduced variable domains, because
of the constraints. As each step, the constraints will tell us what domain values to con-
sider, in order to get a feasible outcome.



Algorithm 1: CLA
Input: A constrained profile 〈(N1, . . . , Nm), C〉, n voting rules r1, . . . , rn, an ordering
O = 〈x1, . . . , xn〉
Output: a variable assignment 〈x1 = v1, . . . , xn = vn〉
for i = 1 to n do

Ti = the constraint graph of C (a tree), rooted at xi;
C′ = DAC(Ti);
Di = the domain of xi in C′;
if Di = ∅ then

return No feasible candidate
for j = 1 to m do

oj = the ordering over Di given by the CP-table in Nj for
x1 = v1, . . . , xi−1 = vi−1;
o′j = oj restricted to D′i;

vi = ri(o
′
1, . . . , o

′
n);

Add the constraint xi = vi to C;
return 〈x1 = v1, . . . , xn = vn〉

The first thing we need to do is to preprocess the constraints in C so to bring to the
variable domains the information about the feasible candidates. In fact, since LA is a
sequential voting procedure which considers one variable at a time, it is important to
leave in the domain of each variable only the values that belong to feasible candidates.

As in the classical sequential voting procedure, we have a collection of m voting
rules 〈r1, . . . , rm〉 that will be used in the m steps of the procedure, one step for each
variable. If variables are Boolean, of course all ri will be the majority voting rule.
Assume for now that the constraint set has a bounded tree-width, so it belongs to a
tractable class. For sake of easiness of presentation, let us consider a tree- like shape.
However, the CLA procedure works also for bounded tree-width constraint sets.

Since the constraints have a tree shape, it is indeed possible to leave in the domain
of each variable only those values that appear in some feasible candidate. We just need
to consider the variable ordering O, take the first variable x1, use it as the root of the
tree, and achieve directional arc-consistency to this tree. At the end, the new domain
of x1, say D′

1, will contain only those values that appear in some feasible candidate.
We can now apply the voting rule r1 to the profile over variable x1, where however the
domain of x1 has been reduced to D′

1. This will choose a value for x1, say v1, which is
feasible (that is, it can be extended to a solution).

Let us now pass to the second variable x2. Given the value v1 chosen for x1, we set
x1 = v1 in C and in all the CP-nets and we apply again DAC bottom-up, now by using
x2 as the root of the tree. This will generate a new domain for x2, say D′

2, which will
contain only those values that appear in some feasible candidate. We can now apply
the voting rule r2 to the profile over variable x2 (given x1 = v1), where however the
domain of x2 has been reduced to D′

2. This will choose a value for x2, say v2. Now we
have the partial assignment 〈x1 = v1, x2 = v2〉, which is feasible.

We then continue like this until all variables have been assigned. The winning can-
didate is then {x1 = v1, . . . , xn = vn}.



Since C is a tree, the first application of DAC will tell us if there are feasible can-
didates. If no variable domain is empty after the first DAC, then we know there is at
least one feasible candidate, and the later applications of the DAC procedure will never
generate any empty variable domain.

Example. As an example of the application of the CLA algorithm to a constrained pro-
file, consider again the constrained profile in Figure 1, with ordering O = {A,B,C}
and constraints cAB = {(A = a,B = b), (A = a,B = b)}, cBC = {B = b, C =
c), (B = b, C = c)}. Since we do not have top consistency, nor local and dependency
consistency, for all CP-nets, we cannot use classical sequential voting to select a fea-
sible outcome. We will thus use the CLA procedure. Since the variables are binary, we
use majority voting at each step. CLA first achieves DAC to the constraint set, which
is a tree, rooted at A. This removes the value b from the domain of B, because of the
constraint cBC , and it also removes the value a from the domain of A, because of con-
straint cAB . We now apply majority voting to the profile related to variable A, getting
A = a. We then add the constraint A = a to the initial set of constraints and we pass
on to the second variable, B. We achieve DAC to the tree rooted at B, which does
not remove anything from any domain. We apply majority to the profile for B, getting
B = b, and we add this as a new constraint. Finally, we achieve DAC on the tree rooted
at C, leaving only c in the domain of C, and, by majority voting, we get C = c. Thus
the result of CLA is (A = a,B = b, C = c). This variable assignment satisfies all
constraints. Notice that the outcome of a sequential voting procedure over the same
profiles, without the constraints, would be (A = a,B = b, C = c), which does not
satisfy the constraints.

On the other hand, ifC is not tree-shaped, achieving DAC could leave in the variable
domains also values that do not appear in any feasible candidate. Thus, once a value for
a variable is chosen, it could be that there is no value for the next variable which is
compatible with it. This means that the CLA procedure should backtrack its previous
choices (for example the last one made) and replace it with another value. It could also
be the case that no feasible candidate exists, and this will result in backtracking over the
choices until no more alternative choice is available. Thus the CLA procedure needs to
perform search if achieving DAC (or adaptive consistency) does not leave the domains
minimal, that is, containing only the values that participate in at least a solution.

5.3 Properties of CLA

The most important property to prove is that, in the setting we are considering, CLA
always returns feasible outcomes, in time polynomial in the size of the input. We recall
that our setting assumes that we have a constrained profile 〈(N1, . . . , Nn), C〉, where
C has a tree-like constraint graph, m voting rules r1, . . . , rm, and an ordering O =
〈x1, . . . , xm〉 which makes the profile O-legal.

Theorem 6. The variable assignment 〈x1 = v1, . . . , xm = vm〉 returned by CLA sat-
isfies all constraints in C.



Proof: Consider the output of CLA, say 〈v1, . . . , vm〉. Take any constraint in C, say
c, between variables xi and xj . We need to prove that 〈xi = vi, xj = vj〉 satisfies c. At
step i, CLA applied DAC to the tree rooted at xi, restricting the domain of xi. So, by
definition of DAC, vi is a value for xi such that there is a value in xj (and in any other
variable) which satisfies c. After doing that, CLA has added the constraint xi = vi to
C. Then, at step j, CLA applied DAC again, to the tree rooted at xj , thereby reducing
the domain of xj to only those values that have support in the domains of all variables,
thus also in the domain of xi, which is now containing just the value xi. Since vj is in
the domain of xj , this means that 〈xi = vi, xj = vj〉 satisfies c. �

Theorem 7. CLA works in time O(n × (md2 + n + t)), where m is the number of
variables, d is the size of the largest domain among Di, . . . , Dm, n is the number of
agents, and t = f(n, d) is the time complexity for winner determination in the most
computational expensive of the voting rules r1, . . . , rm.

Proof: CLA performs at most m steps. At each step, it achieves DAC on a tree with
m variables with domain size at most d. This takes O(md2) time. It then reduces the
n orderings over the current variable domain to the new domains computed by DAC.
Finally, it applies the voting rule for that step to such orderings. �

It is worth noting that, in the case of just one voter, we have a single constrained CP-
net, and CLA returns a feasible outcome which is undominated in the CP-net preference
ordering. This is equivalent to what is done in [3]. However, since we consider tree-
shaped constraint sets, we can get this outcome in polynomial time. We therefore get
this useful result out of our aggregation procedure. Observe moreover that if we start
from acyclic CP-nets, an order O that makes the profile O-legal (or the conclusion that
there is no such order) can be found in time polynomial in the number of variables. It is
indeed sufficient to take the union of all dependency graphs and take any linearisation of
it, if there is one. Any such ordering would give the same result of sequential majority,
since preferential dependencies are all taken care of in the union graph.

Theorem 8. Given a constrained CP-net 〈N,C〉, whereN is acyclic and the constraint
graph of C is a tree, finding an undominated feasible outcome is in P .

Proof: By Theorem 6, the variable assignment returned by CLA is feasible, that is, it
satisfies all constraints in C.

We have just one CP-net N and a set of constraints C. Thus, every time we use a
voting rule ri, this voting rule acts as the identity, thus returning the top choice in the
preference ordering it gets in input. We will prove by induction on i that, after step i,
〈x1 = v1, . . . , xi = vi〉 is undominated by feasible outcome (in the outcome ordering
of N restricted to x1, . . . , xi) and it satisfies all constraints in C. It is trivial for step 1,
since v1 is the top choice in the restricted domain of x1, obtained after applying DAC
to the tree C rooted at x1. Assume the statement is true at step i and let us now consider
step i+ 1. CLA returns vi+1, which is the top element of the preference ordering in the
restricted domain of xi+1. Since 〈x1 = v1, . . . , xi = vi〉 is an undominated outcome
over variables x1, . . . , xi, and since xi+1 is the top element in the feasible domain of



xi+1, there is no other extension of 〈x1 = v1, . . . , xi = vi〉 to variable xi+1 which can
be more preferred to 〈x1 = v1, . . . , xi = vi, xi+1 = vi+1〉. �

Sequential voting with CP-nets has been studied also from the point of view of the
properties which can, or cannot, be transferred from the ”local” voting rules r1, . . . , rn
to the ”global” sequential voting rule LA [5]. It is easy to see that, if a property transfers
from local to global in the LA procedure, then it also transfers for CLA. In fact, CLA
is just LA but on possibly smaller variable domains. So we are performing a domain
restriction on the set of possible profiles. If a property is true of a sequential voting pro-
cedure when considering a larger set of profiles, it will remain true when we consider a
smaller set. This is true for properties like anonymity, consistency, strong monotonicity,
and monotonicity (of rm), as shown in [5].

If instead a property does not transfer from local to global, then by passing from
LA to CLA the same examples showing this still hold. Examples of properties that do
not transfer from local to global LA are neutrality, efficiency, and participation (see
again [5]). However, it could be that the domain restriction imposed by the constraints
removes those profiles which are problematic for that property. We plan to study specific
constraint classes that could allow some properties to transfer from local to global for
CLA, even though they do not do so for LA.

Theorem 9. If all voting rules r1, . . . , rm are anonymous (resp., consistent, strong
monotone), then so is CLA. If rm is monotone, then so is CLA. If r1, . . . , rm satisfy
neutrality (resp., efficiency, participation), it could be that CLA does not satisfy it.

Proof: It follows directly from the analogous results in [5] for LA.�

6 Conclusions

Often we need to aggregate preferences of several agents over a set of candidates which
satisfy certain requirements. Agents may express preferences over a superset of the fea-
sible candidates, with a combinatorial structure, thus being able to use compact pref-
erence modeling frameworks such as CP-nets. But the result of preference aggregation
can only be a feasible candidate.

We modeled these settings by defining constrained profiles consisting of a collection
of CP-nets and a set of constraints, and by proposing a procedure to return a feasible
candidate by interleaving constraint solving and voting. If the CP-nets are acyclic and
the constraint set has a tree shape, the procedure, called CLA, requires polynomial time
if all the voting rules work in polynomial time. Other properties, but not all, transfer
from the voting rules to the CLA procedure.

We also identified conditions on the compliance of the CP-nets to the constraints
that allow us to forget about the constraints when aggregating the preferences, and thus
using standard sequential voting to get a feasible outcome.

We plan to study several other properties of the CLA procedure, among which the
complexity of manipulation, bribery, and control. We also plan to test it experimentally
on real life profiles from the preflib.org website, where we will add some constraints.



Acknowledgements

The work of Umberto Grandi and Francesca Rossi was partially supported by the strate-
gic project “KIDNEY - Incorporating patients’ preferences in kidney transplant deci-
sion protocols” funded by the University of Padova.

References

1. K. J. Arrow and A. K. S. amd K. Suzumura. Handbook of Social Choice and Welfare. North-
Holland, Elsevier, 2002.

2. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

3. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Preference-based con-
strained optimization with cp-nets. Computational Intelligence, 20:137–157, 2004.

4. U. Grandi and U. Endriss. Lifting integrity constraints in binary aggregation. Artificial Intel-
ligence, 199-200:45–66, 2013.

5. J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains. Mathe-
matical social sciences, 57:304–324, 2009.

6. C. List and C. Puppe. Judgment aggregation: A survey. In Handbook of Rational and Social
Choice. Oxford University Press, 2009.

7. N. Maudet, M. S. Pini, F. Rossi, and K. B. Venable. Influence and aggregation of prefer-
ences over combinatorial domains. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2012), pages 1313–1314, 2012.

8. F. Rossi, P. V. Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier, 2006.


