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Abstract

The plastic behavior of silicate glasses has emerged as a central concept for

the understanding of glass strength. Here we address the issue of shear-

hardening in amorphous silica. Using in situ SEM mechanical testing with

a high stiffness device, we have been able to compress silica pillars to large

strains while directly monitoring radial strain. The sizeable increase of pillar

cross-section during compression directly demonstrates the significant role of

homogeneous shear flow. From the direct evaluation of the cross section, we

have also measured true stress-strain curves. The results demonstrate that

silica predominantly experiences plastic shear flow but that there is no shear-

induced hardening. The consequence of this finding for our understanding of

glass strength is discussed.

Keywords: Amorphous silica, Micropillars, Densification, Shear flow,

Fracture, In Situ testing, Finite Element Analysis

Preprint submitted to Acta Materialia May 28, 2016



1. Introduction

Strength is an issue as old as silicate glasses. Even after thousands of

years, novel compositions for stronger glasses are still actively being sought [1,

2] as a clear understanding of intrinsic glass strength is still missing. Ordinary

levels (tens of MPa) of glass brittleness result from large surface defects that

enable crack initiation and subsequent propagation, while carefully prepared

samples exhibit intrinsic strengths of several GPa [3]. Simultaneously, it is

now well-known that below a given lengthscale, of the order of micrometers,

silicate glasses undergo plastic deformation [4, 5, 6]. An intriguing question

is the connection between plastic strain and the formation of crack-initiating

defects [7, 3, 8]. Another puzzling issue is the discrepancy between surface

energy [9] and fracture energy [10], which for silicate glasses differ by one

order of magnitude. Finally, recent observations show that the elastic sin-

gular field near the crack tip extends to about 10 nm from the crack tip.

These results suggest a contribution of plasticity near the fracture tip. To

better assess this contribution, a better understanding of plasticity in silicate

glasses is required.

In the standard model of plasticity, plastic deformation conserves volume

and plastic deformation proceeds by homogeneous shear flow. This picture

applies to many polycrystalline metals, semiconductors, and ceramics. The

plastic deformation mechanisms in amorphous materials like silicate glasses

are rather different from the dislocation-based plastic flow of crystalline ma-

terials. One difficulty with glassy materials is that shear flow often induces

localization of shear. A very strong shear strain appears in very thin shear

bands, while there is virtually no shear in the blocks delimited by the bands.
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Besides this strong heterogeneity, another difficulty comes from the role of

densification. Silicate glasses with a very open structure can exhibit a sig-

nificant irreversible volumetric strain in addition to the more standard shear

flow. Vitreous silica, for instance, can reach up to 20 % permanent densifi-

cation above a hydrostatic pressure of 20 GPa [11, 12, 13].

Ever since densification has been identified, a major issue has been the

respective contributions of plastic shear flow and densification in indenta-

tion [14]. Peter [15] demonstrated significant pile-up in soda-lime glass, which

was interpreted as clear evidence of shear flow mediated by shear bands. In

fact, he used a very sharp tip to enhance the formation of pile-up. Arguments

for densification often rely upon Mackenzie’s observation that densification

in silica is at least partly reversible, even at temperatures significantly below

the glass transition [16]. As a result, elaborate experiments have been car-

ried out to evaluate the respective contributions of densification and shear

flow by monitoring the relaxation of the compaction. These experiments are

mostly based on the analysis of indent shape (indented volume and pile up

size), both before and after relaxation at temperatures close to Tg.

As a result of numerous experiments, the accepted picture is that densifi-

cation is largely dominant in anomalous glasses such as vitreous silica [1] as in

recent compression tests carried out on micro-sized silica balls which suggest

that plasticity can be fully accommodated by densification [17]. Shear flow,

on the other hand, rules the plastic deformation of soda-lime glasses [18], and

is usually present in the form of shear bands. Normal glasses predominantly

exhibit shear flow [12, 19, 20]. A transition from anomalous to normal is

thought to take place as free volume decreases, as recently evidenced by ex-
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tensive experimental investigation on soda-lime glasses [21] and a wide-range

comparison of various glasses [22]. In this latter study, pile-up is absent in

pristine fused silica, but emerges if silica is pre-densified.

Beyond qualitative evaluation, attempts have been made to provide a

more quantitative description of the plastic response of silicate glasses. With

such a constitutive equation, mechanical response for all types of loadings

can be calculated. In indentation experiments [23, 24, 22], the stress state is a

complex spatial distribution of combinations of high hydrostatic pressure and

shear present in roughly equal proportions [25, 26]. It appears that inden-

tation experiments can be reproduced using either yield rules coupling shear

flow and densification [27, 24, 28], or a yield rule that only accounts for densi-

fication [29]. More data is needed beyond the indentation force-displacement

curves to conclude which rule is more applicable. Many investigations deal-

ing with silica micro-plasticity have been carried out with high hydrostatic

pressure experiments [30, 13]; they are very useful, but lack the necessary

shear contribution. It has also been proposed to use the indentation-induced

densification field, which can be measured by Raman scattering [23, 31], or

by silica dissolution experiments [32], but there are discrepancies between

these data.

Recently quasi-uniaxial compression experiments of silica disks have been

carried out inside a diamond anvil cell [35]. The axial compression was

applied by direct contact with the diamond flats. It was found that this

quasi-uniaxial compression induces a large radial expansion, which can only

be explained by a dominant shear flow. In fact the authors demonstrated

that silica can deform up to very large uniaxial strain (close to 1.0). They
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concluded that the level of plastic shear-based deformation can be very high

for silica, even at room temperature. These results confirmed our micro-pillar

compression tests where we demonstrated stable plastic flow up to 20% by

post-mortem SEM pillar observations with significant contribution of radial

flow during straining [26]. These quasi-uniaxial compression experiments

differ from indentation in that the ratio of hydrostatic pressure to shear

stress is much lower in the absence of radial confinement.

Interestingly Wakabayashi et al. [35] also reported a significant level

of strain hardening. Indeed, hardening is also an important issue. First,

hardening is intrinsically related to the way the plastic flow modifies the

material, and as a result impacts its mechanical response. In crystalline

materials, shear-hardening is a consequence of dislocation interactions [36],

with strong impact on the macroscopic response. For instance, hardening

is known to prevent pile-up formation in indentation experiments [37] on

standard metallic systems. In contrast, strain softening is known to generate

the instability which results in shear bands. In fact, shear hardening has

never been explicitly addressed in silicate glasses, although it would affect

the residual stress field [40], damage evolution, and crack propagation [41].

Therefore the claim that there is shear hardening in the plastic deformation of

amorphous silica is remarkable as it would: 1) pave the way to strong glasses

2) challenge our understanding of the plastic deformation mechanisms of

silicate glasses.

In fact we have previously introduced some form of hardening in the

constitutive relation for silica, but this specific form of hardening was coupled

only to the densification process [11, 24] and not to shear flow. In an atomistic
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picture, this hardening is mainly driven by the reduction of free volume [38,

39], as observed in porous materials. A simple state variable such as porosity

was defined to account for this form of hardening [31]. Implicitly, however,

we assumed in this constitutive relation that there is no hardening for plastic

shear flow.

In this paper, we address issues of shear flow and shear-hardening of amor-

phous silica. For that purpose, we have performed uniaxial compression of

silica pillars in an in situ SEM compression set-up with high stiffness. With

this device we can drive the material into a state of large uniaxial plastic de-

formation while monitoring the cross section for an accurate true stress-strain

curves. The results are analyzed in terms of competition between densifica-

tion and plastic shear flow. They demonstrate that in uniaxial compression

silica predominantly experiences shear flow and that there is no shear hard-

ening.

2. Materials and methods

2.1. Pillars fabrication and geometry

The pillars were fabricated on amorphous silica wafers (3 inches, one-side

polished, 1 mm thick, GE124, Won Ik Quartz Europe GmbH) by deposition

of an electroplated Ni mask (REF [B])followed by plasma-based reactive ion

etching (RIE) (REF A). The C4F8/He mixture exploits both chemical and

physical processes to remove solid material locally. The residual nickel layer

is removed using Nichrome Etchant TFN (Transene Company). Compared

to the focused ion beam (FIB) process commonly used for metal pillars, RIE

allows for large series of micrometric pillars to be fabricated over areas of the
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order of one centimeter in a single run.

The final dimensions of the pillars were measured by scanning electron

microscopy (SEM-FEG, Fig. 1). Pillars have a truncated cone shape charac-

terized by an semi-angle of 96± 0.5, an upper diameter of 4,8±0.1 µm, and

a height of about 4±0.005 µm. Overall the pillars are very homogeneous in

dimension with an aspect ratio slightly larger than 1:1. Let us pay attention

that lines are visible in the pillar geometry. These lines are consecutive to

the fabrication, either resulting from mask irregularities or from RIE.

2.2. Experimental set-up

Compression experiments were performed using an in-situ SEM indenter

(Alemnis Gmbh), first developed by Rabe et al [42]. It is installed in a Zeiss

DSM 962 SEM. Indentation in SEM allows real time visualization of the de-

formation of material under loading as well as easy positioning of the pillars

beyond optical imaging resolution. The apparatus is displacement-controlled

(piezo actuator) with a feedback loop control. Displacement-controlled de-

vices allow load jumps to be avoided during micropillar compression of brittle

materials, which can occur during load-controlled tests. A more detailed de-

scription of the SEM indenter can be found in [42]. A 10um diameter flat

punch was used. The acceleration voltage applied was between 5 and 10kV.

All the experimental compressions were performed with a displacement speed

of 100nm/s at loading and unloading, with a maximum displacement of 6um.

More than 8 micro-compression tests were performed with excellent repro-

ducibility, as shown in Fig 2.

The first question arising with in situ SEM micro-compression testing on

materials like silica is the effect of electron beam on mechanical properties.
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Mackovic et al [43] reported e-beam-induced densification as well as pro-

nounced plasticity during beam-on mechanical testing on silica nanospheres

with a diameter of 200 nm. Their experiments were performed in a TEM for

which beam current density is significantly higher than with the SEM used

in this paper. Moreover, their samples were submicrometric, whereas silica

pillars studied here are 5 µm in diameter. It can thus be expected that the

electron beam has a negligible impact on the global mechanical properties

of silica. Any possible effects would be localized to the pillar surface. The

good reproducibility of experiments performed using different irradiation ex-

posure times (from 1 min to more than 20 min in a given case) supports this

assertion. Moreover, SEM in-situ beam-off compressions performed on the

same samples yield similar results.

2.3. Finite Element Modelling

Compression tests are modelled using the elliptic constitutive model [24],

which makes possible to reproduce densifification-induced hardening. This

constitutive model has been extensively detailed in our previous papers [31,

44], thus only the most important details are given here. The yield criterion

is written :

f(σij) =

(
q

qc

)2

+

(
p

pc

)2

− 1 (1)

where p is hydrostatic pressure, pc is the hydrostatic pressure limit, q is

von Mises stress and qc the von Mises shear stress limit. With this yield

criterion we use an associative flow rule. The densification-induced hardening

is modelled by taking into account an increase of the hydrostatic limit pc with

permanent densification (i.e. a decrease of the void volume fraction φ). With
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this void volume fraction the saturation process can be taken into account

when φ→ 0.

Calculations have been performed with the Finite Element Software Abaqus

[45] using 2D axisymmetric elements and a finite transformation formulation

based on the multiplicative decomposition of the deformation gradient into

an elastic and a plastic part and the Jauman objective stress rate. An im-

plicit FE scheme is used. The flat punch is a rigid body. The compression

process is modelled by prescribing a vertical displacement to the flat punch.

The friction coefficient acting betwen the punch and the pillar is assumed

to be 0.1 (using the augmented Lagrangian method). Note that tests have

been run with friction coefficient of 0.2 and also assuming a frictionless con-

tact, but there was no differences observed on the force-displacement curve.

The mesh is shown in figure 3. Note that the silica substrate is explicitly

meshed to avoid any errors in the evaluation of its compliance, but the device

compliance is not taken into account. Hence, in order to compare experimen-

tal and FE-computed force-displacement curves, the device compliance has

been identified using the elastic part of the load-displacement curve (Fig

4) assuming a Young’s moudulus of 70 GPa. Note that the pressure- and

density-dependence of fused silica elastic properties [46, 47, 48] has not been

taken into account in FE calculations as we have already observed that it only

slightly affects the load-displacement curve [44]. Finally it has to be noticed

that pillar geometrical imperfections as shown in Fig 1 - lines at the pillar

periphery and slight defects at the basis of the pillar - are not considered in

the FE model.
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3. Results

Typical raw results of compression tests are shown in Fig 4. We labelled

single run the direct compression to maximum load. The first part is linear

and corresponds to the expected elastic regime. Then the slope decreases

suddenly, indicating the onset of plastic yielding. In this second part, de-

limited by points (b) and (d), the slope remains constant. The third part,

which is the last loading part, corresponds to a continuously increasing slope

until the chosen unloading point is reached. The second curve in this graph,

entitled multiple, has been run to investigate potential unloading hysteresis.

The partial unloading cycles appear purely elastic and no such hysteresis is

observed. After the partial unload-load cycle has been completed, further

loading proceeds on the same load-displacement curve.

Consequently shapes of post-mortem pillars can be investigated as a func-

tion of the prescribed strain level (Fig 5). The results show that when pushed

into large axial strain amorphous silica experiences large radial strain as well.

They confirm the radial expansion already observed by Lacroix et al [26] and

Wakabayashi et al [35].

The apparent simplicity of micro-compression experiments should allow

measurement of the true stress-strain curve and should give some new insights

on shear-hardening [49]. Unfortunately, determining true stress-strain curves

with pillar compression experiments is a difficult issue in the case of silica.

A first issue is the contribution of the substrate. With silicate glasses, it

is necessary to take into account the elastic deformation of the substrate,

which is often negligible in the case of crystalline metals. Here we have

extracted substrate stiffness from FE results. A second issue is the variation
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of pillar section during straining. For crystalline metals plastic deformation

is a volume conservative process and elastic deformation is negligible, so

that pillar expansion is easy to calculate. For silica it is rather different

as significant plastic densification can occur and elastic deformation is not

negligible.

As first approximate analysis, in a purely kinematic picture, we can con-

sider the usual additive decomposition of the deformation into elastic and

plastic parts. The radial strain rate during compression obeys :

ε̇r = − (νε̇ez + κε̇pz) (2)

where εr is the radial deformation, εez is the elastic axial deformation, εpz is

the plastic axial deformation, ν is the Poisson ratio and κ is the ratio of the

plastic radial expansion over axial plastic deformation. For metals plastic

deformation is isochoric (constant volume) so that κ = 0.5. For silica, due to

densification, one expects κ < 0.5. In the extreme case of pure densification,

i.e. in complete absence of shear flow κ, the plastic deformation tensor is

spherical, so that κ = −1 (Fig 7). True stress-strain curves derived from raw

data using values of κ ranging from 0.5 (isochoric) to −1 (pure densification)

are plotted in Fig 8. Depending on κ, a significant apparent strain-hardening

could be deduced.

To ascertain the value of κ, we have developed a method based on the

analysis of the in situ SEM images during straining for a direct evaluation of

pillar section at large strains. Series of snapshots of the pillars during strain-

ing have been recorded. A video is available as supplementary materials and

some snapshot are presented in Fig 6. The snapshots were taken as marked

on the load-displacement curve. The conical shape of the pillars plays a ma-
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jor role during compression because it contributes to some heterogeneity of

the strain field [26]. The upper half of the pillar enters the plastic regime

when the lower half still behaves elastically. Combining that with the inter-

action between the pillar bottom and the substrate, a heterogeneous radial

expansion is observed along the height. More precisely, the pillar taper angle

gradually disappears, making the pillars more cylindrical as shown on Fig

6 (SEM-image c). At very large uniaxial strains, the taper angle can even

become slightly negative (SEM-image d).

The pillar contours were measured using a contrast-based image segmen-

tation algorithm. Because of the view angle, the pillar is partly hidden by

the flat punch so that it was not possible to measure the top section. Based

on the SEM recording, we assumed that the pillar keeps a truncated cone

shape during straining. Under this assumption, the mean pillar section was

evaluated at each strain value. Results are presented in Fig 8. It appears

that the yield stress is around 7 GPa, in agreement with our previous eval-

uations [24, 26]. Moreover, our results demonstrate experimentally that the

yield stress is independent of strain at least up to a strain of 0.4. This means

that there is neither shear hardening nor softening.

Finally we note that some radial cracks can be observed in image (3) of

Fig 5. Similar radial cracks have been already found by Lacroix et al [26],

in post-mortem observations and for a much lower strain level. The video

provided as a supplementary material clearly shows that this incipient radial

cracking occurs during straining and that these cracks do not propagate

during unloading. From the video, it is possible to determine the point of

the loading curve for which the first crack event is observed. It roughly
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corresponds to point (e) of Fig 4.

4. Discussion

The results confirm that at the scale of a few microns, amorphous sil-

ica can undergo large uniaxial plastic strain up to 0.5 and more [26, 35].

Compared to the initial free volume, this value implies that the deforma-

tion mechanism predominantly involves homogeneous shear flow. Indeed a

purely densifying plasticity would lead to decreasing pillar cross-section dur-

ing uniaxial compression as sketched in Fig 7. We conclude that densification

cannot be the only deformation mode for silica plasticity at room tempera-

ture and that homogeneous shear flow has to be taken into account on an

equal footing.

In the approximate, purely kinematic analysis developed above, we find

good agreement with the data for κ = 0.4. This is close to the 0.5 value

expected for volume conservative plastic deformation and differs starkly from

the −1 value expected for pure densification. In fact, 0.4 is a lower bound

for κ because radial expansion in the lower part of the pillar is constrained

by the substrate, so that Eq. (2) is questionable in this region. Thus κ could

be even somewhat closer to the upper limit 0.5.

For a more accurate analysis, the load-displacement curve was computed

using the constitutive relation we developed earlier [24]. Comparison with

the data (Fig. 9) shows a very good agreement up to large strains. The

discrepancy above 2 µm displacement may result from a modification of the

mechanical behavior at very large strains or from the development of cracks

at the bottom of the pillar, facilitating radial expansion. Indeed, in the sim-
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ulations we find that axial as well as radial strains are not homogeneously

distributed in the pillar (Fig. 10). Due to the slightly asymmetric geome-

try and the boundary conditions at the top and bottom of the pillar, strong

strain gradients are predicted. In view of the small size of the sample, ex-

perimental mapping of these gradients is a presently insuperable challenge

for local characterization methods [23, 32, 20]. The calculated densification

distributions are plotted in 11. Densification becomes significant only once

pillar height has been reduced by more than a half, i.e. when the pillar has

been significantly strained. This suggests that for uniaxial compression a

standard isochoric plasticity model could be used. To check that, FE calcu-

lations have been run using a pure shear flow constitutive model based on

J2 associated plasticity, with the same yield stress (qc) as used in the ellip-

tic constitutive model. The calculated load-displacement curve is plotted in

Fig 9 and we find that it matches the experimental curves reasonably well.

Of course, the J2 model does not account for the various features of plastic

deformation associated with the densifying behavior of silica, especially in

more confined loadings such as indentation or hydrostatic compression.

Radial cracks are observed at large strains (Fig 5 3 and video in supple-

mentary material). From the simulations, we can evaluate that the orthora-

dial stress is approximately 6 GPa in the pillar periphery when the cracks

occur (Fig 11). This high level of tensile stress is not expected in pure uniax-

ial compression. It is a consequence of the truncated cone shape of the pillars

and the substrate constraint that limits radial expansion at the bottom. The

pillar accommodates plastic yielding with a height-dependent radial expan-

sion. In the upper part, the pillar is free to expand and limited tensile stresses
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are created. In the middle section of the pillar however, constraint is pro-

vided by both the upper part of the pillar and the substrate. It is in this

section that cracks open up, but their propagation is stopped very rapidly as

only the periphery is under orthoradial tensile stresses. The crack initiation

conditions are not well defined. For instance, the axial lines are visible on the

pillar flanks (Fig 1) resulting from pillars fabrication may affect initiation of

these radial cracks. We find a high tensile strength of 6 GPa which differs no-

tably from our previous evaluation (1 GPa) [26]. The difference makes sense

in view of the known sensitivity of crack initiation to water vapor and the

strongly reduced water vapor pressure in the SEM. For example, subthresh-

old indents made under dry nitrogen undergo crack pop-in as soon as they

are exposed to the ambient [51]. Alternatively impact of instrument stiffness

or an alignment issue inducing bending or plastically-enhanced buckling [44]

may be involved. This observation opens up for further measurements with

variable vapor pressure, for better insight into crack nucleation in relation to

local plasticity and brittleness.

Our major conclusion is that there is no measurable shear strain hard-

ening, in contrast to the observation by Wakabayashi et al [35]. In fact

quantitative evaluation of the uniaxial stress state in the DAC is difficult

due to the presence of the pressure medium and the friction on the diamond

faces. The consequence of this absence of shear-hardening is that silica can-

not resist any additional shear stress once shear flow has been initiated. This

may lead to localisation, or at least to damage initiation [50, 41]. Interest-

ingly, when in 1964 Marsh suggested that plastic flow is the limiting process

for glass strength [5], he explicitly observed that silicate glasses should be
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non work-hardening because of their random structure. As a result there

is no stabilizing mechanism at the yield point and failure is catastrophic.

Therefore micro-scale investigations based on shear loading are very promis-

ing candidates for progress in our understanding of the actual crack initiation

mechanisms in silicate glasses.

5. Conclusions

Based on displacement-controlled in situ SEM uniaxial compression tests,

we have been able to deform silica pillars to large strains without unstable

crack propagation. A true stress-strain curve is obtained from the direct

measurement of the cross section. In situ testing also makes it possible to

identify events leading to crack nucleation during straining or unloading.

It is shown here that cracks nucleate in the pillar periphery where tensile

stresses reach very high values. The 6 GPa strength reached here considerably

exceeds the 1 GPa value measured in a different set-up [26]. It is likely due

to the low water vapor pressure in the SEM environment but could also be

impacted by the different instrument stiffness. Further work is needed.

The radial expansion of the pillar during compression, backed by the

FEM results, directly demonstrate that plastic deformation of silica under

uniaxial compression is mainly due to homogeneous shear flow, even if some

densification does occur. Of course, more densification is expected in more

confined geometries such as with indentation. This result highlights the need

for an accurate constitutive equation. The elliptic constitutive model makes

it possible to reproduce uniaxial compression load-displacement curves, but

a simpler model using a shear-based perfectly plastic behavior yields similar
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results regarding the force-displacement curve. To go further in constitutive

modeling of silica plasticity, further inputs from advanced micromechanics

experiments [53, 17] and atomistic simulations [52] are required.

The yield stress is found around 7 GPa, in good agreement with our

previous results. The absence of shear-hardening, even at large strains, is

consistent with the expected plastic deformation processes in glasses. Inter-

estingly, this means that through plastic flow silica can dissipate a great deal

of external energy under compressive loading: this property could be useful

in nanoscale structural engineering. Macroscopic brittleness is avoided at

this scale as very high tensile stresses (greater than 6 GPa) are required to

nucleate cracks. However, as pointed out by Marsh [5], the absence of shear

hardening means that silica (and silicate glasses) are devoid of stabilization

mechanisms at the yield point which leads to catastrophic failure under pure

tensile loading – hence brittleness.
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Figure 1: Micro-pillar geometry before compression
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Figure 2: Load-displacement curves : a very good repeatability can be noticed.
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Figure 3: Finite Element Model
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Figure 4: Load-displacement curves : single run and multiple loading-unloading yield sim-

ilar results. No significant hysteresis is observed when using multiple loading-unloading,

whatever the displacement value.

Figure 5: Micropillar residual shape for different load values. Inset numbers refer to the

load-displacement curve in Fig 4
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Figure 6: Pillars deformation during straining. Inset letters (a),(b), (c) and (d) are related

to some points of the load-displacement curve in Fig 4.
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Figure 7: Sketch of the side-view of a unaxially loaded cylinder of initial radius a0 and

initial height h0. Left-side : pure shear flow is an isochoric transformation and is char-

acterized by κ = 0.5. In this case a significant radial expansion is expected. Right-side

: pure densification is a transformation leading to the same contraction in all directions.

Pure densification is a spherical deformation state and is thus characterized by κ = −1.

In this case, plastic flow will lead to a decrase of the cylinder radius during straining
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Figure 8: True stress-strain curves. κ is the coefficient that relates pillars’ radial defor-

mation to axial plastic deformation. Black dots are stress-strain points computed using

the actual average pillar section from in-situ SEM observations. Letters under these black

dots refer to Fig 6.

Figure 9: Micro-compression testing - FEM vs Experiments. A good agreement is observed

using the elliptic constitutive model, but also with a basic shear-driven plasticity model.
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Figure 10: Computed pillar’s deformation during straining using the elliptic constitutive

model [24]. Left side of each image is the axial strain distribution and righ-side is the radial

strain distribution. Strain field are rather heterogeneous. The radial strain distribution is

in good agreement with the radial expansion observed experimentally. Inset letters (b),

(c), (d) and (e) are related to some points of the load-displacement curve in Fig 4
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Figure 11: Left side of each image is densification distribution upon and right-side is

maximum principal stress distribution as calculated by FEM. Inset letters (c) and (e)

are related to a point of the load-displacement curve 4. The densification field is rather

heterogeneous but can reach large values at large strains. it is observed that high tensile

stress (up to 6 GPa) are located at the pillar’s periphery that might promote radial cracks

nucleation and subsequent propagation during straining (see supplementary-materials)
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