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The Hermite random field has been introduced as a limit of some weighted Hermite variations of the fractional Brownian sheet. In this work we define it as a multiple integral with respect to the standard Brownian sheet and introduce Wiener integrals with respect to it. As an application we study the wave equation driven by the Hermite sheet. We prove the existence of the solution and we study the regularity of its sample paths, the existence of the density and of its local times.

Introduction

The random fields or multiparameter stochastic processes have focused a significant amount of attention among scientists due to the wide range of applications that they have.

Particularly, self-similar random fields find some of their applications in various kind of phenomena, going from hydrology and surface modeling to network traffic analysis and mathematical finance, to name a few. From other side, this type of processes are also quite interesting when they appear as solutions to Stochastic Partial Differential Equations (SPDE's) in several dimensions, such as the wave or heat equations.

A class of processes that lies in the family described above are the Hermite random fields or Hermite sheets (from now on). Inside this class we can find the well-studied fractional Brownian sheet and the Rosenblatt processes, among others.

The Hermite processes of order q ≥ 1 are self-similar with stationary increments and live in the qth Wiener chaos, that is, they can be expressed as q times iterated integrals with respect to the Wiener process. The class of Hermite processes includes the fractional Brownian motion (fBm) which is the only Gaussian process in this family. Their practical aspects are striking: they provide a wide class of processes that allow to model long memory, self-similarity and Hölder-regularity, enabling a significant deviation from the fBm and other Gaussian processes. Since they are non-Gaussian and self-similar with stationary increments, the Hermite processes can also be an input in models where self-similarity is observed in empirical data which appears to be non-Gaussian.

The Hermite sheet of order q is only known in his representation as a non-central limit of a particularly normalized Hermite variations of the fractional Brownian sheet, see [START_REF] Réveillac | Hermite variations of the fractional Brownian sheet[END_REF] for the two-parameter case and [START_REF] Breton | On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet[END_REF] for the general d-parametric case. In both cases the authors also prove self-similarity, stationary increments and Hölder continuity.

In the present work we deal directly with the multi-parametric case building the Hermite sheet as a natural extension of the expression for the Hermite process studied as a non-central limit in [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] and [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF].

Fix d ∈ N\ {0}, define t = (t 1 , t 2 , . . . , t d ) ∈ R d and let H = (H 1 , H 2 , . . . , H d ) ∈ ( 1 2 , 1) d a Hurst multi-index

Z q H (t) = c(H, q) R d•q t 1 0 . . . t d 0   q j=1
(s 1 -y 1,j ) - 1 2 +

1-H 1 q + . . . (s d -y d,j )

-1 2 + 1-H d q +   ds d . . . ds 1 dW (y 1,1 , . . . , y d,1 ) . . . dW (y 1,q , . . . , y d,q ) = c(H, q) R d•q t 0 q j=1 (s -y j ) -1 2 + 1-H q + ds dW (y 1 ) . . . dW (y q ), (1) 
the bold characters are for multidimensional quantities as indicated below in Section 2.

The above integrals are Wiener-Itô multiple integrals of order q with respect to the d-parametric standard Brownian sheet (W (y)) y∈R d (see [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] for the definition) and c(H, q) is a positive normalization constant depending only on H and q. We designate the process Z q H (t) t∈R d as the Hermite sheet or Hermite random field.

From expression (1) it is possible to note that for d = 1 we recover the Hermite process which represents a family that has been recently studied in [START_REF] Chronopoulou | Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes[END_REF], [START_REF] Maejima | Wiener Integrals with respect to the Hermite process and a Non-Central Limit Theorem[END_REF] and [START_REF] Pipiras | Regularization and integral representations of Hermite processes[END_REF]. As a particular case (q = 1) we recover the most known element of this family, the fractional Brownian motion, which has been largely studied due to its various applications. Recently, a rich theory of stochastic integration with respect to this process has been introduced and stochastic differential equations driven by the fractional Brownian motion have been considered for several purposes. The process obtained in (4) for d = 1, q = 2 is known as the Rosenblatt process, it was introduced by Rosenblatt in [START_REF] Rosenblatt | Independence and dependence[END_REF] and it has been called in this way by Taqqu in [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF]. Lately, this process has been increasingly studied by his different interesting aspects like wavelet type expansion or extremal properties, parameter estimations, discrete approximations and others potential applications (see [START_REF] Albin | A note on the Rosenblatt distributions[END_REF], [START_REF] Albin | On extremal theory for self similar processes[END_REF], [START_REF] Bardet | A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter[END_REF], [START_REF] Chronopoulou | Variations and Hurst index estimation for a Rosenblatt process using longer filters[END_REF], [START_REF] Tudor | Analysis of the Rosenblatt process[END_REF]).

As far as we know, the only well-known multiparameter process that can be obtained from ( 1) is the fractional Brownian sheet (d > 1 and q = 1). This process has been recently studied as a driving noise for stochastic differential equations and stochastic calculus with respect to it has been developed. We refer to [START_REF] Ayache | Drap brownien fractionnaire[END_REF], [START_REF] Kim | Stratonovich calculus with respect to fractional Brownian sheet[END_REF], [START_REF] Tudor | Itô Formula and Local Time for the Fractional Brownian Sheet[END_REF] for only a few works on various aspects of the fractional Brownian sheet.

In one hand the purpose of this article is to study the basic properties of the multiparameter Hermite process and then to introduce Wiener integrals with respect to the Hermite sheet in order to generalize and continue the line introduced in [START_REF] Maejima | Wiener Integrals with respect to the Hermite process and a Non-Central Limit Theorem[END_REF] putting a new brick in the construction of stochastic calculus driven by this class of processes in several dimensions. As in [START_REF] Breton | On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet[END_REF] the covariance structure of the Hermite sheet is like the one of the fractional Brownian sheet, enabling the use of the same classes of deterministic integrands as in the fractional Brownian sheet profiting its well-known properties.

Also in the aim of this work lives the idea of making an approach to the study of stochastic partial differential equations in several dimensions driven by non-Gaussian noises, giving a specific expression for the driving noise allowing to use in a better way the properties of the equations by taking advantage of the results already existing in the literature. It is in this sense that, inspired by the works [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF], [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF] or [START_REF] Dalang | Criteria for hitting probabilities with applications to systems of stochastic wave equations[END_REF] and exploiting these, we present a stochastic wave equation with respect to the Hermite sheet in spatial dimension d ≥ 1 and we study the existence, regularity, and other properties of the solution, including the existence of local times and of the joint density.

We organize our paper as follows. Section 2 presents the necessary notations and prove several properties of the Hermite sheet. In Section 3, we construct Wiener integrals with respect to this process. Section 4 is devoted to present the wave equation and discuss the existence and regularity of the solution and other properties.

Notation and the Hermite sheet

Throughout the work we use the notation introduced in [START_REF] Breton | On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet[END_REF]. Fix d ∈ N\ {0} and consider multi-parametric processes indexed in R d . We shall use bold notation for multi-indexed quantities, i.e., a = (a 1 , a 2 , . . . , a d ), ab = (a

1 b 1 , a 2 b 2 , . . . , a d b d ), a/b = (a 1 /b 1 , a 2 /b 2 , . . . , a d /b d ), [a, b] = d i=1 [a i , b i ], (a, b) = d i=1 (a i , b i ), i∈[0,N] a i = N 1 i 1 =0 N 2 i 2 =0 . . . N d i d =0 a i 1 ,i 2 ,...,i d , a b = d i=1 a b i
i , and 

a < b iff a 1 < b 1 , a 2 < b 2 , . . . ,
R H (s, t) = E[B H s B H t ] = d i=1 R H i (s i , t i ) = d i=1 s 2H i i + t 2H i i -|t i -s i | 2H i 2 . ( 2 
)
The d-parametric standard Brownian sheet is the Gaussian process {W t : t = (t 1 , . . . , t d ) ∈ R d } equal to zero on the hyperplanes {t :

t i = 0}, 1 ≤ i ≤ d,
and its covariance function is given by

R(s, t) = E[W s W t ] = d i=1 R(s i , t i ) = d i=1 s i ∧ t i . (3) 
Let q ∈ N, and the Hurst multi-index

H = (H 1 , H 2 , . . . , H d ) ∈ ( 1 2 , 1) d .
The Hermite sheet of order q is given by

Z q H (t) = c(H, q) R d•q t 1 0 . . . t d 0   q j=1 (s 1 -y 1,j ) -1 2 + 1-H 1 q + . . . (s d -y d,j ) -1 2 + 1-H d q +   ds d . . . ds 1 dW (y 1,1 , . . . , y d,1 ) . . . dW (y 1,q , . . . , y d,q ) = c(H, q) R d•q t 0 q j=1 (s -y j ) -1 2 + 1-H q + ds dW (y 1 ) . . . dW (y q ) (4) 
where x + = max(x, 0). For a better understanding about multiple stochastic integrals we refer to [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]. As pointed out before, when q = 1, ( 4) is the fractional Brownian sheet with Hurst multi-index

H = (H 1 , H 2 , . . . , H d ) ∈ ( 1 2 , 1) d .
For q ≥ 2 the process Z q H (t) is not Gaussian and for q = 2 we denominate it as the Rosenblatt sheet. Now let us calculate the covariance R q H (s, t) of the Hermite sheet. Using the isometry of multiple Wiener-Itô integrals and Fubini theorem one gets

R q H (s, t) = E[Z q H (s)Z q H (t)] = E    c(H, q) 2 R d•q s 0 q j=1 (u -y j ) -1 2 + 1-H q + du dW (y 1 ) . . . dW (y q ) • R d•q t 0 q j=1 (v -y j ) -1 2 + 1-H q + dv dW (y 1 ) . . . dW (y q )    = c(H, q) 2 R d•q    s 1 0 . . . s d 0 q j=1 d i=1 (u i -y i,j ) -1 2 + 1-H i q + du d . . . du 1 • t 1 0 . . . t d 0 q j=1 d i=1 (v i -y i,j ) -1 2 + 1-H i q + dv d . . . dv 1    dy 1,1 . . . dy d,1 . . . dy 1,q . . . dy d,q = c(H, q) 2 t 1 0 s 1 0 R q q j=1 (u 1 -y 1,j ) -1 2 + 1-H 1 q + (v 1 -y 1,j ) -1 2 + 1-H 1 q + dy 1,1 . . . dy 1,q du 1 dv 1 . . . t d 0 s d 0 R q q j=1 (u d -y d,j ) -1 2 + 1-H d q + (v d -y d,j ) -1 2 + 1-H d q + dy d,1 . . . dy d,q du d dv d but R q q j=1 (u -x j ) -1 2 + 1-H q + (v -x j ) -1 2 + 1-H q + dx 1 . . . dx q = R (u -x) -1 2 + 1-H q + (v -x) -1 2 + 1-H q + dx q , (5) 
so

R q H (s, t) = c(H, q) 2 t 1 0 s 1 0 R (u 1 -y 1 ) -1 2 + 1-H 1 q + (v 1 -y 1 ) -1 2 + 1-H 1 q + dy 1 q du 1 dv 1 . . . t d 0 s d 0 R (u d -y d ) -1 2 + 1-H d q + (v d -y d ) -1 2 + 1-H d q + dy d q du d dv d .
Recalling that the Beta function β(p, q) = 1 0 z p-1 (1 -z) q-1 dz, p, q > 0, satisfies the following identity

R (u -y) a-1 + (v -y) a-1 + dy = β(a, 1 -2a)|u -v| 2a-1 (6) if a ∈ (0, 1 2 ), we see that, since H k ≥ 1 2 for every k = 1, .., d, R q H (s, t) = c(H, q) 2 t 1 0 s 1 0 β 1 2 - 1 -H 1 q , 2(1 -H 1 ) q q • |u 1 -v 1 | 2(H 1 -1) du 1 dv 1 . . . t d 0 s d 0 β 1 2 - 1 -H d q , 2(1 -H d ) q q • |u d -v d | 2(H d -1) du d dv d = c(H, q) 2 β 1 2 - 1 -H 1 q , 2(1 -H 1 ) q q 1 2H 1 (2H 1 -1) s 2H 1 1 + t 2H 1 1 -|t 1 -s 1 | 2H 1 . . . β 1 2 - 1 -H d q , 2(1 -H d ) q q 1 2H d (1 -2H d ) s 2H d d + t 2H d d -|t d -s d | 2H d .
So now we choose

c(H, q) 2 =   β 1 2 -1-H 1 q , 2(1-H 1 ) q q H 1 (2H 1 -1)   -1 . . .   β 1 2 -1-H d q , 2(1-H d ) q q H d (2H d -1)   -1 (7) 
in this way we get

E Z q H (t) 2 = t 2H = t 2H 1 1 . . . t 2H d d , and finally R q H (s, t) = 1 2 s 2H 1 1 + t 2H 1 1 -|t 1 -s 1 | 2H 1 . . . s 2H d d + t 2H d d -|t d -s d | 2H d = d i=1 s 2H i i + t 2H i i -|t i -s i | 2H i 2 = d i=1 R H i (s i , t i ) = R H (s, t). ( 8 
)
Remark 1 From the previous development we see that:

• The covariance structure is the same for all q ≥ 1, so it coincides with the covariance of the fractional Brownian sheet.

• In order to all the quantities are well defined, the condition H k ∈ ( 1 2 , 1), k = 1, . . . , d must be satisfied.

We will next prove the basic properties of the Hermite sheet: self-similarity, stationarity of the increments and Hölder continuity.

Let us first recall the concept of self-similarity for multiparameter stochastic processes.

Definition 1 A stochastic process (X t ) t∈T , where T ⊂ R d is called self-similar with self- similarity order α = (α 1 , . . . , α d ) > 0 if for any h = (h 1 , . . . , h d ) > 0 the stochastic process ( Xt ) t∈T given by Xt = h α X t h = h α 1 1 ...h α d d X t 1 h 1 ,..., t d h d
has the same finite dimensional distributions as the process X.

Proposition 1 The Hermite sheet is self-similar of order H = (H 1 , . . . , H d ).

Proof: The scaling property of the Wiener sheet implies that for every 0 < c = (c 1 , . . . , c d ) ∈ R d the processes (W (ct) t≥0 ) and √ cW (t) t≥0 have the same finite dimensional distributions. Therefore, if 1 = (1, . . . , 1) ∈ R d , using obvious changes of variables in the integrals with respect to ds and dW , Ẑq

H (t) = h H Z q t h = c(H, q)h H R d•q t h 0 q j=1 (s -y j ) -1 2 + 1-H q + ds dW (y 1 ) . . . dW (y q ) = c(H, q)h H-1 R d•q t 0 q j=1 ( s h -y j ) -1 2 + 1-H q + ds dW (y 1 ) . . . dW (y q ) = c(H, q)h H-1 R d•q t 0 q j=1 ( s h - y j h ) -1 2 + 1-H q + ds dW (h -1 y 1 ) . . . dW (h -1 y q ) = c(H, q)h H-1 h q 1 2 + 1-H q R d•q t 0 q j=1 (s -y j ) -1 2 + 1-H q + ds dW (h -1 y 1 ) . . . dW (h -1 y q ) = (d) c(H, q)h H-1 h q 1 2 + 1-H q h -q 2 R d•q t 0 q j=1 (s -y j ) -1 2 + 1-H q +
ds dW (y 1 ) . . . dW (y q ) = Z q H (t) where = (d) means equivalence of finite dimensional distributions.

Let us recall the notion of the increment of a d-parameter process X on a rectangle [s, t] ⊂ R d , s = (s 1 , . . . , s d ), t = (t 1 , . . . , t d ), with s ≤ t. This increment is denoted by ∆X [s,t] and it is given by ∆X

[s,t] = r∈{0,1} d (-1) d-d i=1 r i X s+r•(t-s) . (9) 
When

d = 1 one obtains ∆X [s,t] = X t -X s while for d = 2 one gets ∆X [s,t] = X t 1 ,t 2 -X t 1 ,s 2 - X s 1 ,t 2 + X s 1 ,s 2 . Definition 2 A process (X t , t ∈ R d ) has stationary increments if for every h > 0, h ∈ R d the stochastic processes (∆X [0,t] , t ∈ R d ) and (∆X [h,h+t] , t ∈ R d ) have the same finite dimensional distributions.
Proposition 2 The Hermite sheet (Z q (t)) t≥0 has stationary increments.

Proof: Developing the increments of the process using the definition of the Hermite sheet and proceding as in the proof of Proposition 1 using the change of variables

s ′ = s -h, it is immediate to see that for every h > 0, h ∈ R d , ∆Z q [h,h+t] = (d) ∆Z q [0,t]
for every t.

Proposition 3 The trajectories of the Hermite sheet (Z q (t), t ≥ 0) are Hölder continuous of any order δ = (δ 1 , . . . , δ d ) ∈ [0, H) in the following sense: for every ω ∈ Ω, there exists a constant C ω > 0 such that for every s, t ∈ R d , s, t ≥ 0,

|∆Z q [s,t] | ≤ C ω |t 1 -s 1 | δ 1 • • • |t d -s d | δ d = C ω |t -s| δ .
Proof: Using the Cencov's criteria (see [START_REF] Cencov | Wiener random fields depending on several parameters[END_REF]) and the fact that the process Z q is almost surely equal to 0 when t i = 0, it suffices to check that

E ∆Z q [s,t] p ≤ C (|t 1 -s 1 | • • • |t d -s d |) 1+γ (10) 
for some p ≥ 2 and γ > 0. From the self-similarity and the stationarity of the increments of the process Z q , we have for every p ≥ 2

E ∆Z q [s,t] p = E |Z 1 | p (|t 1 s 1 | • • • |t d -s d |) pH
and this obviously implies (10) by taking p arbitrary large.

Remark 2 In the one-parameter case, there exists several representations of the Hermite process (spectral domain representation, finite interval representation, positive half-axis representation, time domain representation, see [START_REF] Pipiras | Regularization and integral representations of Hermite processes[END_REF]). It has been shown in [START_REF] Pipiras | Regularization and integral representations of Hermite processes[END_REF] that all these representations of the (one-parameter) Hermite process have the same finite dimensional distributions. It would be interesting to generalize this study to the multi-parameter case.

Wiener integrals with respect to the Hermite sheet

Now we are well positioned to present Wiener integrals with respect to the d-parametric Hermite sheet. Let us consider a Hermite sheet Z q H (t) t∈R d . Denote E the family of elementary functions on R d of the form

f (u) = n l=1 a l 1 (t l ,t l+1 ] (u) (11) = n l=1 a l 1 (t 1,l ,t 1,l+1 ]×...×(t d,l ,t d,l+1 ] (u 1 , . . . , u d ), t l < t l+1 , a l ∈ R, l = 1, . . . , n.
For functions like f above we can naturally define its Wiener integral with respect to the Hermite sheet Z q H as

R d f (u)dZ q H (u) = n l=1 a l (∆Z q H ) [t l ,t l+1 ] (12) 
where (∆Z q H ) [t l ,t l+1 ] (see ( 9)) stands for the generalized increments of Z q H on the rectangle

∆ t l := [t l , t l+1 ] = d i=1 [t i,l , t i,l+1 ] .
In the case d = 1, we simply have

(∆Z q H ) [t l ,t l+1 ] = Z q H (t 1,l+1 -t 1,l ) while for d = 2 (∆Z q H ) [t l ,t l+1 ] = Z q H (t 1,l+1 , t 2,l+1 ) -Z q H (t 1,l , t 2,l+1 ) -Z q H (t 1,l+1 , t 2,l ) + Z q H (t 1,l , t 2,l
). With the purpose of extending the definition [START_REF] Chronopoulou | Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes[END_REF] to a larger family of integrands, we will point out some observations before. Let us consider the mapping J on the set of functions f : R d → R to the set of functions f : R d•q → R such that

J(f )(y 1 , . . . , y q ) = c(H, q) R d f (u) q j=1 (u -y j ) -1 2 + 1-H q + du (13) = c(H, q) R d f (u 1 , . . . , u d ) q j=1 d i=1 (u i -u i,j ) -1 2 + 1-H i q + du 1 . . . du d .
Using the mapping J we see that definition (4) can be re-expressed as follows

Z q H (t) = R d•q
J(1 [0,t 1 ]×...×[0,t d ] )(y 1 , . . . , y q )dW (y 1 ) . . . dW (y q ). (

) 14 
Since J is clearly linear, definition [START_REF] Chronopoulou | Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes[END_REF] can be tailored to

R d f (u)dZ q H (u) = n l=1 a l ∆Z q H [t l ,t l+1 ] = n l=1 a l   ξ∈{0,1} d (-1) d-d i=1 ξ i Z q H (t 1,l+ξ 1 , . . . , t d,l+ξ d )   = n l=1 a l ξ∈{0,1} d (-1) d-d i=1 ξ i R d•q J(1 [0,t 1,l+ξ 1 ]×...×[0,t d,l+ξ d ] )(y 1 , . . . , y q )dW (y 1 ) . . . dW (y q ) = n l=1 a l R d•q J(1 [t 1,l ,t 1,l+1 ]×...×[t d,l ,t d,l+1 ] )(y 1 , . . . , y q )dW (y 1 ) . . . dW (y q ) = R d•q
J(f )(y 1 , . . . , y q )dW (y 1 ) . . . dW (y q ). ( 15)

In this way we introduce the space

H = f : R d → R : R d•q (J(f )(y 1 , . . . , y q )) 2 dy 1 . . . dy q < ∞ ( 16 
)
equipped with the norm

f 2 H = R d•q
(J(f )(y 1 , . . . , y q )) 2 dy 1 . . . dy q .

(17

)
Working the expression for the norm we see that

f 2 H = c(H, q) 2 R d•q      R d f (u) q j=1
(uy j )

-1 2 + 1-H q + du   •   R d f (v) q j=1 (v -y j ) -1 2 + 1-H q + dv      dy 1 . . . dy q .
Using ( 5), ( 6) and ( 7) we get that

f 2 H = c(H, q) 2 R d R d f (u 1 , . . . , u d )f (v 1 , . . . , v d )    d i=1 R q q j=1 (u i -y i,j ) -1 2 + 1-H i q + (v i -y i,j ) -1 2 + 1-H i q + dy i,1 . . . dy i,q    du 1 . . . du d dv 1 . . . dv d = c(H, q) 2 R d R d f (u 1 , . . . , u d )f (v 1 , . . . , v d ) • d i=1 R (u i -y) -1 2 + 1-H i q + (v i -y) -1 2 + 1-H i q + dy q du 1 . . . du d dv 1 . . . dv d = R d R d f (u 1 , . . . , u d )f (v 1 , . . . , v d ) d i=1 H i (2H i -1)|u -v| 2H i -2 du 1 . . . du d dv 1 . . . dv d = H(2H -1) R d R d f (u)f (v)|u -v| 2H-2 dudv, (18) 
hence

H = f : R d → R : R d R d f (u)f (v)|u -v| 2H-2 dudv < +∞ ( 19 
)
and

f 2 H = H(2H -1) R d R d f (u)f (v)|u -v| 2H-2 dudv.
The mapping

f → R d f (u)dZ q H (u) ( 20 
)
provides an isometry from E to L 2 (Ω). Indeed, for f like in [START_REF] Chronopoulou | Variations and Hurst index estimation for a Rosenblatt process using longer filters[END_REF] it holds that

E R d f (u)dZ q H (u) 2 = n-1 k,l=0 a k a l E ∆Z q H [t k ,t k+1 ] • ∆Z q H [t l ,t l+1 ] (21) = n-1 k,l=0 a k a l ξ∈{0,1} d (-1) d-d i=1 ξ i ρ∈{0,1} d (-1) d-d j=1 ρ j E Z q H (t k+ξ )Z q H (t l+ρ ) = n-1 k,l=0 a k a l ξ∈{0,1} d (-1) d-d i=1 ξ i ρ∈{0,1} d (-1) d-d j=1 ρ j R H (t k+ξ , t l+ρ ) = n-1 k,l=0 a k a l H 1 (2H 1 -1) . . . H d (2H d -1) t 1,k+1 t 1,k . . . t d,k+1 t d,k • t 1,l+1 t 1,l . . . t d,l+1 t d,l |u 1 -v 1 | 2H 1 -2 . . . |u d -v d | 2H d -2 du 1 . . . du d dv 1 . . . dv d = n-1 k,l=0 a k a l < 1 [t 1,k ,t 1,k+1 ]ו••×[t d,k ,t d,k+1 ] , 1 [t 1,l ,t 1,l+1 ]ו••×[t d,l ,t d,l+1 ] > H = < f, f > H , (22) 
where we have made a slight abuse of notation, t k+ξ = (t 1,k+ξ 1 , . . . , t d,k+ξ d ).

On the other hand, from what shown in [START_REF] Pipiras | Integration questions related to the fractional Brownian motion[END_REF] section 4, it follows that the set of elementary functions E is dense in H. As a consequence the mapping (13) can be extended to an isometry from H to L 2 (Ω) and relation [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] still holds.

Remark 3

The elements of H may be not functions but distributions; it is therefore more practical to work with subspaces of H that are sets of functions. Such a subspace is

|H| = f : R d → R R d R d |f (u)||f (v)||u -v| 2H-2 dvdu < ∞ .
Then |H| is a strict subspace of H and we actually have the inclusions

L 2 (R d ) ∩ L 1 (R d ) ⊂ L 1 H (R d ) ⊂ |H| ⊂ H, (23) 
where

L p denotes L p 1 ⊗ . . . ⊗ L p d .
The space |H| is not complete with respect to the norm • H but it is a Banach space with respect to the norm

f 2 |H| = R d R d |f (u)||f (v)||u -v| 2H-2 dvdu
Remark 4 Expression (15) presents a useful interpretation for the Wiener integrals with respect to the Hermite sheet; as elements in the q-th Wiener chaos generated by the d-parametric standard Brownian field.

Application: The Hermite stochastic wave equation

In this section we presents the linear stochastic wave equation as an example of equations driven by a Hermite sheet. We show the existence of the solution and study some properties of it thanks to the definition of the Wiener integrals with respect to the Hermite sheet.

Consider the linear stochastic wave equation driven by an infinite-dimensional Hermite sheet Z q H with Hurst multi-index H ∈ (1/2, 1) (d+1) . That is

∂ 2 u ∂t 2 (t, x) = ∆u(t, x) + Żq H (t, x), t > 0, x ∈ R d (24) 
u(0, x) = 0, x ∈ R d ∂u ∂t (0, x) = 0, x ∈ R d .
Here ∆ is the Laplacian on R d and Z q H = {Z q H (t, x); t ≥ 0, x ∈ R d } is the (d + 1)-parametric Hermite sheet whose covariance is given by

E Z q H (s, x)Z q H (t, y) = R H (t, s)R H 0 (x, y) if H = (H, H 1 , . . . , H d )
and we denoted by H 0 = (H 1 , . . . , H d ) and Żq stands for the formal derivative of Z (q) . Equivalently we can write

E Żq H (s, x) Żq H (t, y) = H(2H -1)|t -s| 2H-2 d i=1 (H i (2H i -1) • |x i -y i | 2H i -2 ). (25) 
Let G 1 be the fundamental solution of ∂ 2 u ∂t 2 -∆u = 0. It is known that G 1 (t, •) is a distribution in S ′ (R d ) with rapid decrease, and

FG 1 (t, •)(ξ) = sin(t|ξ|) |ξ| , (26) 
for any ξ ∈ R d , t > 0 and d ≥ 1, where F denotes the Fourier transform (see e.g. [START_REF] Treves | Basic Linear Partial Differential Equations[END_REF]). In particular,

G 1 (t, x) = 1 2 1 {|x|<t} , if d = 1 G 1 (t, x) = 1 2π 1 t 2 -|x| 2 1 {|x|<t} , if d = 2 G 1 (t, x) = c d 1 t σ t , if d = 3,
where σ t denotes the surface measure on the 3-dimensional sphere of radius t.

The mild solution of ( 24) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R d } defined by:

u(t, x) = t 0 R d G 1 (t -s, x -y)Z q H (ds, dy). (27) 
The above integral is a Wiener integral with respect to the Hermite sheet, as introduced in Section 2.

Existence and regularity of the solution

By definition, u(t, x) exists if and only if the stochastic integral above is well-defined, i.e.

g t,x := G 1 (t -•, x -•) ∈ H. In this case, E|u(t, x)| 2 = g t,x 2 
H . We state the result on the existence and the regularity of the solution of [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF].

Proposition 4 Let Z q H (t, x) be the (d + 1)-parametric Hermite sheet of order q. Denote by

β = d - d i=1 (2H i -1). ( 28 
)
Then, the stochastic wave equation ( 24) admits an unique mild solution (u(t, x)) t≥0,x∈R d if and only if

β < 2H + 1. ( 29 
)
If in addition we have that

β ∈ (2H -1, d ∧ 2H + 1) (30) 
then, for fixed 0 < t 0 < T , the following statements are true:

a.-Let x ∈ R d fixed.
Then there exist positive constants c 1 , c 2 such that for every s, t ∈ [t 0 , T ]

c 1 |t -s| 2H+1-β ≤ E |u(t, x) -u(s, x)| 2 ≤ c 2 |t -s| 2H+1-β .
Also for every fixed x ∈ R d the application Fix M > 0 and assume [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields: A minicourse on stochastic partial differential equations[END_REF]. For every t, s ∈ [t 0 , T ] and x, y ∈ [-M, M ] d there exist positive constants C 1 , C 2 such that

t → u(t, x)
C 1 ∆ ((t, x); (s, y)) ≤ E |u(t, x) -u(s, y)| 2 ≤ C 2 ∆ ((t, x); (s, y)) . (32) 
Proof: By the isometry of the Wiener integral with respect to the Hermite sheet, the L 2 norm will be

Eu(t, x) 2 = α H t 0 du t 0 dv|u -v| 2H-2 R d R d dydzG 1 (t -u, x -y)G 1 (t -v, x -z) × d i=1 (H i (2H i -1))|y i -z i | 2H i -2 = α H t 0 du t 0 dv|u -v| 2H-2 R d sin(u|ξ|) sin(v|ξ|) |ξ| 2 µ(dξ)
where

µ(dξ) = c H d i=1 |ξ i | -(2H i -1) (33) 
with ξ = (ξ 1 , . . . , ξ d ), α H = H(2H -1) and c H = H(2H -1). This is, u(t, x) has the same L 2 norm as in the case q = 1, i.e. when the noise of the equation is a fractional Brownian sheet. It therefore follows from [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF], Theorem 3.1 that the above integral is finite if and only if

R d 1 1 + |ξ| 2 H+ 1 2 µ(dξ) < ∞
with µ given by (33). The above condition is equivalent to β < 2H + 1, see Example 3.4 in [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF].

The proof of the other items is strongly held in the covariance structure of the Hermite sheet, which is the same as for the fractional Brownian sheet. By a careful revision of the proofs of Theorem 3.1 in [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF], Propositions 1, 2, 3 and Corollary 1 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF], it is possible to appreciate that the computations are also valid for any process with a covariance structure like the one presented in these articles, in particular in our case.

• The bounds for the increments in time are consequence of Proposition 1 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF], and the Hölder regularity comes from Corollary 1 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF], this proves a.

• The bounds for the increments in the space variable are deduced from Proposition 2 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF], and the space Hölder regularity is direct from Proposition 3 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF], this proves b.

• Point c follows from a and b by following the lines of the proof of Theorem 2 in [START_REF] De | Hitting times for the stochastic wave equation with fractional-colored noise[END_REF].

Existence of local times

We will show that the solution of ( 24), viewed as a process in (t, x), admits a square integrable local time.

Let us define the local time of a stochastic process (X t ) t∈J . Here J denotes a subset of R d . For any Borel set I ⊂ J the occupation measure of X on I is defined as

µ I (A) = λ (t ∈ I, X t ∈ A) , A ∈ B(R)
where λ denotes the Lebesgue measure. If µ I is absolutely continuous with respect to the Lebesgue measure, we say that X has local time on I. The local time is defined as the Radon-Nikodym derivative of µ I L(I, x) = dµ I dλ (x), x ∈ R.

We will use the notation

L(t, x) := L([0, t], x), t ∈ R d + , x ∈ R.
The local time satisfies the occupation time formula

I f (X t )dt = R f (y)L(I, y)dy (34) 
for any Borel set I in T and for any measurable function f : R → R.

Proposition 5 Let u(t, x), t ≥ 0, x ∈ R d be the solution to [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF] and assume (30) where β is given by ( 28). Then on each set Proof: It is well known from [START_REF] Berman | Local times and sample function properties of stationary Gaussian processes[END_REF] (see also Lemma 8.1 in [START_REF] Xiao | Sample path properties of anisotropic Gaussian random fields: A minicourse on stochastic partial differential equations[END_REF]) that, for a jointly measurable zero-mean stochastic process X = (X(t), t ∈ [0, T]) (T belongs to R d ) with bounded variance, the condition for every x ∈ R.

[a, b] × [A, B] ⊂ [0, ∞) × R d the process u(t, x), t ≥ 0, x ∈ R d

Existence of the joint density for the solution in the Rosenblatt case

It is possible to obtain the existence of the joint density of the random vector (u(t, x), u(s, y)) with s = t or x = y in the case when the wave equation ( 24) is driven by a Hermite sheet of order q = 2 (the Rosenblatt sheet). The result is based on a criterium for the existence of densities for vectors of multiple integrals which has recently been proven in [START_REF] Nourdin | Absolute continuity and convergence of densities for random vectors on Wiener chaos[END_REF].

Let us state our result.

Proposition 6 Let u(t, x), t ≥ 0, x ∈ R d be the mild solution to [START_REF] Taqqu | Weak convergence to the fractional Brownian motion and to the Rosenblatt process[END_REF]. Then for every (t, x) = (s, y), (t, x), (s, y) ∈ (0, ∞) × R d , the random vector (u(t, x), u(s, y)) admits a density.

Proof: Note that for every t ≥ 0 and x ∈ R d , the random variable u(t, x) is a multiple integral of order 2 with respect to the d-parametric Brownian sheet. A result present in [START_REF] Nourdin | Absolute continuity and convergence of densities for random vectors on Wiener chaos[END_REF] states that a two-dimensional vector of multiple integrals of order 2 admits a density if and only if the determinant of the covariance matrix is strictly positive. Denote by C(t, s, x, y) the covariance matrix of (u(t, x), u(s, y)). The determinant of this matrix is the same for every q ≥ 1, from the covariance structure of the Hermite sheet. It is clear that for q = 1 obviously det C(t, s, x, y) is strictly positive, since the vector (u(t, x), u(s, y)) is a Gaussian vector and hence admits a density when (t, x) = (s, y). This implies that det C(t, s, x, y) is also strictly positive for q = 2 and so the vector (u(t, x), u(s, y)) admits a density also for q = 2.

2 . 2 ∧ 1 .

 221 is almost surely Hölder continuous of any order δ ∈ 0, 2H+1-β b.-Fix M > 0 and t ∈ [t 0 , T ]. Then there exist positive constants c 3 , c 4 such that for anyx, y ∈ [-M, M ] d c 3 |x -y| 2H+1-β ≤ E |u(t, x) -u(t, y)| 2 ≤ c 4 |x -y| 2H+1-β .Also, for any t ∈ [t 0 , T ] the applicationx → u(t, x)is almost surely Hölder continuous of any order δ ∈ 0,2H+1-β 

c. -

 - Denote by ∆ the following metric on[0, T ] × R d ∆ ((t, x); (s, y)) = |t -s| 2H+1-β + |x -y| 2H+1-β .(31)

  admits a local time (L([a, b] × [A, B], y), y ∈ R) which is square integrable with respect to y E R L([a, b] × [A, B], y) 2 dy < ∞ a.s.

Remark 5

 5 X(t) -X(s)] 2 ) -1/2 dsdt < ∞ is sufficient for the local time of X to exist on [0, T] almost surely and to be square integrable as a function of y. According to the inequality (32), for allI = [a, b] × [A, B] included in [0, ∞) × R d we have, I I (E [u(t, x) -u(s, y)] 2 ) -1/2 dtdxdsdy < C I I |t -s| 2H+1-β + |x -y| 2H+1-β -1 2 dtdxdsdy and this is finite for β > 2H -1. Thus almost surely the local time of u exists and is square integrable. It follows as a consequence of Lemma 8.1 in [29] that the local time of the solution u admits the following L 2 representation L([a, b] × [A, B], x) = 1 2π R dze -izx [a,b]×[A,B] dsdye iu(s,y)z

  a d < b d (analogously for the other inequalities). Before introducing the Hermite sheet we briefly recall the fractional Brownian sheet and the standard Brownian sheet.The d-parametric anisotropic fractional Brownian sheet is the centered Gaussian process {B H t : t = (t 1 , . . . , t d ) ∈ R d } with Hurst multi-index H = (H 1 , . . . , H d ) ∈ (0, 1) d . It is equal to zero on the hyperplanes {t : t i = 0}, 1 ≤ i ≤ d, and its covariance function is given by
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