Measuring Reversible and Irreversible Capacity Losses on Lithium-ion Batteries
Eduardo Redondo-Iglesias, Pascal Venet, Serge Pelissier

To cite this version:
Eduardo Redondo-Iglesias, Pascal Venet, Serge Pelissier. Measuring Reversible and Irreversible Capacity Losses on Lithium-ion Batteries. VPPC, Oct 2016, Hangzhou, China. 10.1109/VPPC.2016.7791723 . hal-01393614v2

HAL Id: hal-01393614
https://hal.science/hal-01393614v2
Submitted on 22 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

https://dx.doi.org/10.1109/VPPC.2016.7791723

© Copyright 2016 IEEE - All rights reserved
Measuring Reversible and Irreversible Capacity Losses on Lithium-ion Batteries

Eduardo Redondo-Iglesias\textsuperscript{1,2,*}, Pascal Venet\textsuperscript{2} and Serge Pelissier\textsuperscript{1}

\textsuperscript{1}Univ Lyon, IFSTTAR, AME, LTE, 69500 Bron, France
\textsuperscript{2}Univ Lyon, Université Lyon 1, AMPERE UMR CNRS 5005, 69100 Villeurbanne, France
\*eduardo.redondo-iglesias@ifsttar.fr

Abstract — In this paper we present an innovative and precise way to calculate the available capacity in a battery. This quantity is essential to assess the ageing process during real use or ageing tests. The most common way to measure the battery capacity consists on a constant current discharge. It is quite simple to implement but very dependent of impedance and relaxation state of the battery. Consequently, this method is not suitable to quantify reversible and irreversible capacity losses occurring on batteries. We propose an indirect measure of available capacity that reduces the distortion caused by battery relaxation and impedance changes.

Keywords — Lithium-ion batteries, capacity losses, capacity fade, self-discharge.

NOMENCLATURE

| CC       | Constant Current |
| CE       | Coulombic Efficiency |
| CP       | Constant Power |
| CV       | Constant Voltage |
| EoC      | End of Charge |
| EoD      | End of Discharge |
| RPT      | Reference Performance Test |
| SoC      | State of Charge |

I. INTRODUCTION

Battery is probably the most sensitive element in the Battery Electric Vehicle powertrain system because of their cost and lifespan. To study its lifespan, accelerated ageing tests are necessary in order to understand the ageing mechanisms in batteries and the performance evolution within this Energy Storage System.

Battery performances change due to parasitic reactions even during rest periods: internal impedance will grow and capacity decay. Capacity losses can be reversible or irreversible. Reversible capacity loss is known as self-discharge whereas irreversible losses are known as capacity fade.

The aim of this paper is to provide an accurate way to measure capacity losses to be able to distinguish self-discharge and capacity fade of batteries.

When a battery is stored at a determined SoC, after a period of time, this value of SoC decreases for two reasons: self-discharge and capacity fade. The issue is to separate the contribution of each phenomenon. When the reversible and irreversible losses are coupled, data collected in ageing tests could be largely inaccurate.

A direct way to measure self-discharge of batteries consists on a full discharge to know the current quantity of charge in the battery. The problem lies on the definition of full discharge. Several standards \cite{1–4} defined full discharge as a CC or CP discharge to the lower voltage limit of the cell ($U_{\text{min}}$). When using $U_{\text{min}}$ as the stop criteria of a discharge, the quantity of charge taken off the battery will depend of impedance: if a battery is fresh a CC discharge will be deeper compared to an aged cell. This measure is also dependent of the relaxation state of the battery.

Figure 1 shows the influence of impedance and relaxation on available capacity measurement. In this example, three cells at the same initial SoC are discharged according to a CC with $U_{\text{min}}$ stop criteria. Cell (2) has a higher impedance than cell (1). Cell (3) is more relaxed than cell (1), for example cell (1) was used then discharged and cell (3) was used then disconnected one day and then discharged. The
discharge is deeper for cell (3) than cell (1) and than cell (2): $Q_{d,3} > Q_{d,1} > Q_{d,2}$. This effect is visible when looking at the voltage after a rest period: $U_{r,3} < U_{r,1} < U_{r,2}$. From this simple example it could be seen that the measure of the actual capacity of a battery depends on impedance of the cell and on duration of eventual relaxation phase.

Consequently, the self-discharge tests defined in [1–4] do not give an accurate measure of self-discharge. It is necessary to find a measurement protocol that is free of the influence of impedance or relaxation and suitable to separate self-discharge from capacity fade. The innovative method exposed in this work is a solution to such problem.

II. DESCRIPTION OF USUAL PROTOCOLS FOR CAPACITY MEASUREMENT

In fact, self-discharge tests cannot be performed separately from calendar ageing tests, because ageing and self-discharge phenomena act in the same timespan.

A. Accelerated ageing tests

In calendar ageing tests, mainly two factors -T (Temperature) and SoC- affect the degradation of battery performances (capacity fade and impedance increase). Usually these tests consist in a test matrix $(m \times n)$ of $m$ values of $T$ and $n$ values of SoC. Every cell is stored in open circuit conditions at a couple of values (T, SoC) during a relatively long period, usually several weeks to months.

Periodically, a RPT (Reference Performance Test) is performed to know the current value of capacity and impedance. RPT is normally carried out at the same temperature independently of ageing conditions, e.g.: 25 °C, to be able to compare the performance evolution between every cell in the test matrix.

Basically the RPT is composed of four steps:

(i) Available capacity measurement $Q_a$.
(ii) Capacity measurement $Q$.
(iii) Impedance measurements at several SoC levels.
(iv) Reset SoC for ageing.

Step (iii) is not in the scope of this paper and will not be considered thereafter.

Capacity ($Q$) will decay over time because of irreversible capacity loss. However available capacity ($Q_a$) evolution is influenced by both: irreversible and reversible capacity losses.

B. Definitions and base equations

For better understanding, in this section some useful definitions are included:

- Capacity ($Q$) is the quantity of electric charge that can be stored (and then delivered) in a battery cell. This characteristic is affected by irreversible loss.
- Coulombic Efficiency (CE) is the relation between $Q_{cha}$ and $Q_{dis}$. Due to parasitic reactions, discharged capacity ($Q_{dis}$) is lower than charged capacity ($Q_{cha}$). For lithium-ion batteries $CE > 0.99$ after several initial cycles [5]. In this paper, we will consider $CE \approx 1$ thus $Q = Q_{dis} = Q_{cha}$.

- Available capacity ($Q_a$) is the quantity of electric charge that is currently stored in a battery cell. This characteristic is affected by reversible and irreversible losses.
- Discharged capacity ($Q_d$) is the quantity of electric charge that has been delivered by a battery cell since the last full charge.
- Self-discharged capacity ($Q_{sd}$) is the reversible loss of electric charge.
- Capacity loss is the irreversible capacity loss. In this paper, we will use $Q_l$ for the losses occurring between two successive RPTs and $Q_L$ for the cumulative capacity loss from initial capacity ($Q_0$).

![Figure 2: Capacity losses after long rest periods during the $k^{th}$ RPT.](image)

Equations 1 to 3 show the relations between these quantities. In these equations the index $k$ refers to the values of the variables measured during the $k^{th}$ RPT as illustrated in figure 2.

\[ Q(k) = Q_a(k) + Q_d(k - 1) + Q_{sd}(k) \]  
(1)

\[ Q_l(k) = Q(k - 1) - Q(k) \]  
(2)

\[ Q_L(k) = Q_0 - Q(k) \]  
(3)

C. Charging protocol

Full charge of lithium-ion cells is performed by a CCCV charge consisting in two phases (figure 3):

(i) CC phase: Charge at a given current rate to the maximum voltage $U_{max}$.
(ii) CV phase: Keep the cell on floating condition at $U_{max}$ until the current drops to $I_{end}$ (typically C/20). This phase ensures that the cell is completely charged regardless of impedance value of the cell.

D. Capacity measurement protocols

Generally the cell capacity ($Q$) is measured with a full discharge. Previously, the cell must be fully charged by using the charging protocol given above. Capacity can be measured by a CC or a CCCV discharge.
1) **Constant Current (CC):** The most common way is by a CC discharge with stop condition of $U_{\text{min}}$. The quantity of electric charge delivered by the battery in this manner ($Q_{\text{CC}}$) depends on the voltage drop due to the internal impedance of the battery. For example, $Q_{\text{CC}}$ is higher in fresh cells or when discharged at low current rates or at high temperatures. Inversely, $Q_{\text{CC}}$ is lower in aged cells or when discharged at high current rates or at low temperatures. Peukert law and other empirical laws [6] express capacity as a function of $T$ and discharge rate ($C$). Other authors discussed about the influence of this dependence on SoC definition [7].

2) **Constant Current - Constant Voltage (CCCV):** In the same way as for the charging protocol, a CCCV discharge consist in two phases:

(i) **CC phase:** Discharge at a given current rate to the minimum voltage $U_{\text{min}}$
(ii) **CV phase:** Keep the cell on floating condition at $U_{\text{min}}$ until the current drops to $I_{\text{end}}$ (typically $C/20$).

The quantity of charge in this way ($Q_{\text{CCCV}}$) is less impedance-dependent than preceding one ($Q_{\text{CC}}$).

### III. INFLUENCE OF RELAXATION ON AVAILABLE CAPACITY MEASUREMENT

Available capacity measurement is the first step of a RPT. This measure can be performed by CC or CCCV discharge as indicated in the previous section. The direct way of measuring available capacity consists on simply integrate the current value over time during this initial discharge. An uncertainty of measure appears when CC discharge method is chosen because this measure depends on relaxation time and impedance.

To illustrate the relaxation effect, take for example one battery cell on which we perform three RPTs: $RPT_0$, $RPT_{1h}$ et $RPT_{1d}$ (table I). The three RPTs have the same final $Q_d$. Between $RPT_0$ et $RPT_{1h}$, the cell must be disconnected (rest) during 1 hour. Between $RPT_{1h}$ et $RPT_{1d}$ the cell must be disconnected (rest) during 1 day.

Figure 4 shows the voltage and capacity evolutions for $RPT_{1h}$ and $RPT_{1d}$ during the firsts steps of the RPT:

(i) Available capacity measurement $Q_a$.
(ii) Rest.
(iii) Full CCCV charge ($Q_{\text{cha}}$).
(iv) Rest.
(v) Full CC discharge ($Q_{\text{dis}}$).
(vi) Rest.

**Table I: Chronogram.**

<table>
<thead>
<tr>
<th>RPT</th>
<th>1 hour rest</th>
<th>$RPT_{1h}$</th>
<th>1 day rest</th>
<th>$RPT_{1d}$</th>
</tr>
</thead>
</table>

Because of the short period of time between these three RPTs, we can assume that no capacity losses occurred ($Q_{sd} = Q_l = 0$). According to this hypothesis and from equations 1–3, available capacity ($Q_a$) and total capacity ($Q$) must remain the same in each RPT independently of the rest time (1 hour and 1 day).

However, cell is more relaxed in $RPT_{1d}$ because of the difference in the rest time. Then, the initial voltage is higher (figure 4) and the stop criteria $U_{\text{min}}$ arrives later than in $RPT_{1h}$. Hence, relaxation effect makes a greater $Q_a$ in $RPT_{1d}$ than in $RPT_{1h}$ (step (i)). This is in contradiction with the preceding equations (1–3) and highlights the relaxation distortion in the CC discharge method. This distortion is quantifiable in figure 4 by taking a look on EoD (End-of-Discharge) states: $EoD_{1d} < EoD_{1h}$, i.e. discharge is deeper when relaxation is higher.

A full CCCV charge is performed after the initial discharge (step (iii)). The CCCV mode ensures that EoC (End-of-Charge) is independent of relaxation time. As the initial
discharge was deeper in \( RPT_{1d} \) than in \( RPT_{1h} \), the charged capacity is greater in \( RPT_{1d} \) than \( RPT_{1h} \):

\[
\begin{align*}
EoD_{1d} &< EoD_{1h} \\
EoC_{1d} &= EoC_{1h} = EoC
\end{align*}
\]

\( \Rightarrow Q_{cha,1d} > Q_{cha,1h} \) \( (4) \)

For the capacity measurement (full CC discharge, step (v)) the following relations are true:

\[
\begin{align*}
EoC_{1d} &= EoC_{1h} \\
EoD_{dis,1d} &= EoD_{dis,1h} = EoD_{dis}
\end{align*}
\]

\( \Rightarrow Q_{dis,1d} = Q_{dis,1h} \) \( (5) \)

The final part of the RPT is the SoC reset (full CCCV charge and partial CC discharge, \( Q\_d \)) as in figure 2.

With a CC discharge method, it appears that the measurement of available capacity \( Q\_a \) is dependent on the duration of relaxation phase. This makes difficult to use \( Q\_a \) in any attempt to separate reversible and irreversible losses. On the contrary, the discharged capacity \( Q\_dis \) is independent of any relaxation phase. Therefore, in this way, irreversible losses \( (Q\_l) \) are measurable but reversible losses \( (Q\_sd) \) are not.

### IV. New Method to Separate Reversible and Irreversible Losses with No Influence of Relaxation

This new method lies on an indirect way of measuring the real available capacity \( Q\_a' \). This quantity represents the measured available capacity if no relaxation effect had taken place. From figure 5 and with \( CE = 1 \):

\[
Q\_cha(k) - Q\_dis(k) = Q\_a(k) - Q\_a'(k) \quad (6)
\]

Then:

\[
Q\_a'(k) = Q\_a(k) + Q\_dis(k) - Q\_cha(k) \quad (7)
\]

![Figure 5: Indirect available capacity measure (\( Q\_a' \)).](image)

From 5 we also obtain the following identity:

\[
Q\_d(k) + Q\_l(k) + Q\_sd(k) + Q\_a'(k) = Q\_l(k) + Q\_dis(k) \quad (8)
\]

Then:

\[
Q\_sd(k) = Q\_dis(k) - Q\_a'(k) - Q\_d(k) \quad (9)
\]

\( Q\_a' \) is an indirect measure of the available capacity which is independent of relaxation state of the cell and capacity losses \( (Q\_l, \ Q\_sd) \). \( Q\_a' \) can be calculated with the equation 7 where \( Q\_a(k), Q\_cha(k) \) and \( Q\_dis(k) \) are directly measurable by current integration over time. In this way we can decouple the measure of available capacity from relaxation phenomena and separate reversible from irreversible capacity losses by using equations 9 and 2 respectively.

#### A. Experimental validation

In order to validate the new method to calculate the available capacity, some tests were carried out on three fresh cells KOKAM SLPB 283452H. The nominal capacity of this cells is 350 mAh and their chemical composition is NMC / graphite.

The tests consisted on:

- (i) Full CCCV charge
- (ii) Partial CC discharge to a target SoC (\( SoC\_t \))
- (iii) Rest for \( t\_r \)
- (iv) Full CC discharge \( (Q\_a) \)

Three values of \( t\_r \) (5 minutes, 1 hour and 1 day) and three values of target SoC (10, 50 and 90%) have been tested. Discharged capacity measured in step (iv) would be different for each \( t\_r \) according to the relaxation state. The full sequence of tests applied on three different cells is shown in table II. Capacity measurements at the beginning and at the end of the tests allow to check if any irreversible capacity losses occurred during the test.

Table II: Cell and target SoC \( (SoC\_t) \) distribution on validation tests.

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Cell no.</th>
<th>SoC_t (%)</th>
<th>t_r (min)</th>
<th>t_r (h)</th>
<th>t_r (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>50</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>90</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>50</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>90</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
</tr>
</tbody>
</table>

Table III: Results of validation tests. \( Q\_a \) and \( Q\_a' \) are expressed in % of the nominal capacity.

<table>
<thead>
<tr>
<th>Test no.</th>
<th>Cell no.</th>
<th>SoC_t (%)</th>
<th>t_r (min)</th>
<th>t_r (h)</th>
<th>t_r (d)</th>
<th>( \Delta Q_a )</th>
<th>( \Delta Q_a' )</th>
<th>( P_0 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.25</td>
<td>0.02</td>
<td>4.9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>50</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.12</td>
<td>0.11</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>90</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.01</td>
<td>0.11</td>
<td>4.9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>50</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.01</td>
<td>0.02</td>
<td>4.9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>90</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.05</td>
<td>0.06</td>
<td>4.9</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5m</td>
<td>1h</td>
<td>1d</td>
<td>0.05</td>
<td>0.06</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table III summarizes the results of the validation tests. For every test, \( Q\_a \) as well as \( Q\_a' \) are reported in this table. \( Q\_a \) is computed by integrating the current value over time during step (iv). \( Q\_a' \) is computed following the equation 7. The uncertainty of each measure \( \Delta Q\_a \) and \( \Delta Q\_a' \) are computed as the difference between the maximum and the minimum value.
obtained in one single test ($t_r = 5\text{m}, 1\text{h}, 1\text{d}$). Finally, the precision gain ($P_g$) is the relation between $\Delta Q_a$ and $\Delta Q'_a$:

$$P_g = \frac{\Delta Q_a}{\Delta Q'_a}$$

Precision gain is around 2.1 for SoC 50%, 4.9 in SoC 10% and 4.3 to 6.3 in SoC 90% (table III). This validate the new method as a more precise way to measure the available capacity.

\section*{B. Case study: Calendar ageing tests}

In this work reversible and irreversible losses of several cells of SIMCAL project have been calculated. In SIMCAL project [8], 6 different technologies of lithium-ion battery cells have been tested in calendar ageing at three temperatures (30, 45 and 60°C) and three SoC (30, 65 and 100%).

The cell technology considered in this paper is KOKAM SLPB 70205130P. The nominal capacity for this type of cell is 12 Ah and the chemical composition is NMC / graphite.

As an illustration of our method, we applied it to the measured results of one SIMCAL test (ageing at 60°C and SoC 65%) for which the loss of capacity was 20% after 500 days of test. Figure 6 shows the result of self-discharge calculated by the classic method ($Q_a$), and by the new method ($Q'_a$). When using $Q_a$, relaxation and impedance increase distort self-discharge calculation giving more spread out results. In particular, "negative" self-discharge (meaning "self-charge") could appear when using the classic method which has no physical signification.

V. CONCLUSION

The common way for measuring available capacity consists on counting the electric charge during a full CC discharge with a stop condition of $U_{\text{min}}$. The voltage limit strongly depends of the voltage drop caused by the cell’s internal impedance and relaxation state. We propose in this work an indirect way to measure available capacity without changing the RPT protocol, by taking into account the full charge and full discharge following the first discharge.

The method has been validated by 6 tests on three different cells, three SoC levels and three relaxation times. From these experimental results, the new method is 2 to 6 times more precise than the classic way, especially at high and low SoC levels (90 and 10%). This precision improvement allows a better assessment of self-discharge as illustrated by an application of the method on results of ageing tests from the SIMCAL project.

\textbf{ACKNOWLEDGMENTS}

This work uses data from the SIMCAL project. SIMCAL was funded by the French National Research Agency (ANR) under the SIMCAL research program. SIMCAL network partners are CEA, EDF, EIGSI, IFPEN, IFSTTAR, IMS, LEC, LMS-Imagine, LRCS, PSA, RENAULT, SAFT and VALEO.

\textbf{REFERENCES}


