
HAL Id: hal-01393608
https://hal.science/hal-01393608

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Redistribution et Plasticité pour les Interfaces
Utilisateurs 3D : un Modèle Illustré

Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan

To cite this version:
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan. Redistribution et Plastic-
ité pour les Interfaces Utilisateurs 3D : un Modèle Illustré. Journées de l’AFRV, Oct 2015, Bordeaux,
France. �hal-01393608�

https://hal.science/hal-01393608
https://hal.archives-ouvertes.fr

Redistribution et Plasticité pour les Interfaces Utilisateurs 3D:
un Modèle Illustré

Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel and Jérôme Royan

Abstract—In this paper we propose a model to handle redistribution for 3D user interfaces. Redistribution consists in changing
the components distribution of an interactive system across different dimensions such as platform, display and user. Our work is
based on previous models that ease the creation of 3D plastic user interfaces, interactive systems that can handle context of use
modifications while preserving usability. We extended these models in order to include redistribution capabilities. The final solution
lets developers create applications where 3D content and interaction tasks can be automatically redistributed across the different
dimensions at runtime. The proposed redistribution process includes an automatic detection of these platforms and a meta-user
interface to control the redistribution granularity. In order to illustrate this model, we describe three different scenarios of redistribution
between a tablet and a CAVE for a 3D application. We show how redistribution can be used at runtime to combine these platforms, to
switch seamlessly from one platform to another one and last how redistribution can be used to create a collaborative context of use.

Index Terms—Plasticity, Redistribution, 3D User Interfaces

1 INTRODUCTION

Today, users have access to a wide variety of platforms such as mo-
bile devices, desktop computers and immersive systems. Therefore,
users are more frequently confronted with situations where they have
to move from one platform to another [8] or to combine them. These
possibilities directly refer to ”distributed user interfaces” (DUI) and
redistribution. A DUI is a user interface whose components are dis-
tributed across different dimensions such as platforms, displays and
users [9] [18]. For instance, these components can be widgets, in-
teractors, or content. The redistribution capability of an interactive
system refers to its property to change statically or dynamically its
components distribution [4]. It can include migration and replication
mechanisms. Redistribution is directly linked to the plasticity concept
which comes from 2D user interfaces. Indeed, plasticity is defined as
the capacity of an interactive system to withstand variations of both the
system physical characteristics and the environment while preserving
its usability [22]. In 3D, some solutions exist for the creation of re-
configurable applications [10], adaptive ones [16] and some recent ap-
proaches tend to bring plasticity to 3D [12] [15]. Code interoperability
and usability continuity whatever the context of use has to be guaran-
teed to be considered as plastic. The plasticity property is needed to
handle redistribution, indeed, as the input and output capacities may
vary from a platform to another one the components migration or repli-
cation implies adaptations of these components.

Redistribution and plasticity have already been well explored for
2D user interfaces but less for 3D. However, in the last few years inter-
est for 3D user interfaces has grown. This kind of interactive systems
includes Virtual Reality (VR) and Augmented Reality (AR) applica-
tions. This new trend is possible thanks to the improvement in graphics
performance of devices such as PCs or smartphones and also thanks

• Jérémy Lacoche is with IRT b<>com/IRISA/INRIA
e-mail: jeremy.lacoche@b-com.com

• Thierry Duval is with Lab-STICC/Telecom Bretagne/IRT b<>com
e-mail: thierry.duval@telecom-bretagne.eu

• Bruno Arnaldi is with IRISA/INRIA/INSA Rennes/IRT b<>com
e-mail: bruno.arnaldi@irisa.fr

• Eric Maisel is with Lab-STICC/ENIB/IRT b<>com
e-mail: maisel@enib.fr

• Jérôme Royan IRT is with b<>com
e-mail: jerome.royan@b-com.com

Manuscript received 18 Sept. 2014; accepted 10 Jan. 2015. Date of
Publication 20 Jan. 2015; date of current version 23 Mar. 2015.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.

to the generalization of VR and AR devices. In order to ease the im-
plementation of such applications, our approach proposes to consider
redistribution for 3D user interfaces.

Our contribution is a new model for developers to help them in the
creation of 3D user interfaces that can be dynamically redistributed
across different platforms, users and displays. The solution is based
on the models presented by Lacoche et al. [15] that let developers cre-
ate 3D applications independently from concrete interaction devices.
At runtime, based on a client-server architecture, new platforms are
automatically detected and a synchronization is performed between
the different application instances. Furthermore, a meta-user interface
is provided to the end user to enable him to control the redistribution
process. To illustrate our solution, we present three different scenar-
ios of redistribution between a tablet and a CAVE [7] for a furniture
planning application. In these examples, we show how the virtual en-
vironment and the interaction tasks can be distributed across the two
platforms in order to combine them, to switch seamlessly from one
platform to the other one and also to create a collaborative context of
use.

This paper is structured as follows: first we review the details of the
redistribution concept and we present some related work. To continue,
we describe our models for the creation of plastic 3D user interfaces
and then how these models have been extended to support redistribu-
tion. Next, we present the three examples of redistribution between a
tablet and a CAVE for a furniture planning application developed with
our models. Last, we conclude and give some directions for future
work.

2 RELATED WORK

As said, a DUI is a user interface whose components are distributed
across different dimensions [9]. For 3D user interfaces we consider
three dimensions of distribution from the ones described in [9] and
[18]:

• Display. The application content is displayed on one or multiple
devices. Common examples in 3D for this kind of distribution
are multiple display systems such as CAVEs [7].

• Platforms. The application runs on a single computing plat-
form or is distributed across multiple ones. These platforms
may be heterogeneous (operating system, computing power, de-
vices plugged). For 3D applications, in that category we can
talk about cluster approaches which combine connected homo-
geneous computers to run a VR application with high perfor-
mances. It can also concern interactive systems where the in-
teractors of a same application are distributed across different
platforms.

• Users. In that case the application is shared by multiple users.
This dimension is directly linked to the two other ones as the
different participants can use different displays and platforms.
In 3D, this dimension directly refers to Collaborative Virtual
Environments (CVE). CVE include concepts for sharing virtual
worlds between different platforms and users.

Redistribution consists in changing the distribution of an interac-
tive system on these different dimensions. According to Demeure et
al. [8], redistribution can be system-initiated (the system performs
automatically the redistribution), user-initiated (the user initiates and
parametrizes the redistribution), or mixed-initiated (the user and the
system collaborate to perform the redistribution). According to Cal-
vary et al. [5], redistribution can be performed on the fly (at runtime)
or between sessions and the granularity for distribution may vary from
application to pixel level:

• At application level, on the platform or user dimension, the ap-
plication is fully replicated or fully migrated on a distant plat-
form. The application may be adapted to its new context of use
which can include platform capabilities and user preferences.
Full replication implies state synchronization to maintain con-
sistency between the different instances of the application. On
the contrary, for a full migration, each platform runs its own in-
dependent version and no synchronization is performed. For in-
stance, Bandelloni and Paterno [2] present a bank 2D application
which can fully migrate from a PDA to a PC while keeping the
application runtime state during the process.

• At workspace level, workspaces can be redistributed on the plat-
form, display and user dimension. A workspace is an interaction
space that groups together interactors that support the execution
of a set of logically connected tasks. For instance, the painter
metaphor [20] includes two workspaces: the palettes of tools on a
mobile device and the drawing area on an electronic white board.

• At domain concept level, physical interactors can be redis-
tributed on the different dimensions. In 3D, it corresponds to
the interaction techniques and widgets. For instance, BUILD IT
[19] is a tool dedicated to the design of factories. It is com-
posed of two projective displays. A horizontal one allows the
users to have a 2D view of the factory and provides them 2D in-
teraction for object manipulation. A vertical display provides a
perspective view of the result. In the same way, in [17], phys-
ical interactors for navigation, pointing and application control
are distributed on a tablet in order to interact with content in an
immersive system. In these two cases the system distribution is
not performed automatically as it has only been designed to work
with these two platforms.

• At pixel level, view continuity is ensured across different dis-
plays thanks to a distribution on the display and the platform
dimensions. In 3D, this kind of distribution is performed for
multiple display systems such as CAVEs [7]. In this case, an ap-
plication can be distributed on a cluster of PCs and rendered on
multiple displays with view continuity.

In order to handle redistribution on the different dimensions and at
the different levels of granularity, solutions designed for 2D user in-
terfaces can be found. For instance, VIGO [14] is an architecture that
supports ubiquitous instrumental interaction among multiple devices
and computers. The 4C reference framework [8], introduced by De-
meure et al., is divided in four dimensions: computation, communica-
tion, coordination, and configuration that capture the what, when, who,
and how aspects of the distribution. It provides a meta-user interface
in order to control the redistribution process. To continue, Melchior et
al. [18] propose a peer-to-peer architecture for the creation of DUIs.
It includes mechanisms for widgets migrations and for the adaptations
of the widgets representations and interactions according to the con-
text of use. Moreover, ZOIL [23] is a software framework for the

developement of post-WIMP (”Windows Icons Menus Pointer”) dis-
tributed user interfaces. It proposes a client server architecture with a
transparent persistent mechanism for the synchronization between the
different platforms.

In the field of 3D user interfaces, solutions to create DUIs also ex-
ist but they mainly focus on specific cases and do not let the end-user
control the redistribution process at runtime. One specific case han-
dled in 3D and cited before is the case of clusters of computers that
manage multiple display systems such as CAVEs [7], Holostages, or
Workbenches. In that case the system distribution is performed on the
platform and display dimensions. The VR Juggler [3] framework and
MiddleVR 1 propose such solutions. The second specific case handled
in 3D is the field of CVE which need a distribution at the platform and
user levels. It implies a state synchronization between the different
users platforms in order to maintain a consistent application. Some
architectures for CVE are reported in [11].

In this paper, we propose a solution that can handle distribution on
the platform, display and user dimensions that consider the 3D speci-
ficities. In our case, the redistribution is user-initiated and controlled
with an integrated user interface. We focus on redistribution for 3D
user interfaces at application, workspace, and domain concept levels.
Pixel level is not covered. Indeed, we consider that handling redistri-
bution at the pixel level with high performances expectations is already
a mature field of research while the other levels are less explored in
3D. The proposed solution can be interfaced with modern 3D frame-
works, especially game engines in order to be easily integrated in the
3D developers and designers work-flow. One of the advantages of our
approach is that any application developed with our models automati-
cally benefit from redistribution capabilities.

3 APPLICATION MODEL FOR PLASTICITY

The link between redistribution and plasticity can be considered as
bidirectional. Indeed, a modification of the context of use may im-
ply a modification of the system distribution triggered by a plasticity
mechanism. As well, a modification of the system distribution may
also imply the need for adapting the application in order to fit the ca-
pacities of a new platform or the preferences of a new user. Most
approaches to handle redistribution and plasticity are dedicated to 2D
user interfaces and do not address new issues introduced by 3D user
interfaces. Indeed, in 3D the user is interacting with more complex
content, including 3D meshes with complex materials and behaviors.
Furthermore, it includes a wider range of possible interaction devices
and interaction techniques. Our approach aims to target these different
issues.

That is why, in order to design 3D applications that handle redis-
tribution, our application model represented in Figure 1 is based on
the plasticity models for 3D user interfaces presented by Lacoche et
al. [15]. First, an application is described with a set of high level in-
teraction tasks. For 3D user interfaces, according to Hand [13], these
tasks belong to three categories: selection and manipulation, applica-
tion control, and navigation. The different tasks represents at a high
level the application behavior and possibilities independently from the
concrete implementation of the application. Dependencies between
the tasks can be described by the developer. For instance, an applica-
tion control task with a menu needs a selection task, therefore the two
tasks are defined as dependent. These needed tasks and the depen-
dencies must be provided by the application developer or the designer.
The tasks can define different functions (the task events) that constitute
the application logic such as adding an object into the scene or loading
a new scene configuration, etc. Second, the application is described
with its virtual environment. The virtual environment is composed of
visual (3D content) and sound assets. Its edition is separated from
the tasks. It can be edited separately, for instance in a game engine
editor, or loaded with an X3D file depending on the implementation
of the models used. In our case, we use an implementation based on
Unity3D 2.

1http://www.middlevr.com/middlevr-sdk/
2https://www.unity3d.com/

http://www.middlevr.com/middlevr-sdk/
https://www.unity3d.com/

In order to represent the device context of use, Lacoche et al. [15]
also describe a device model for the description of any platform. They
define a platform as a hardware environment composed of input and
output devices and computing units. The goal of this device model is
to describe precisely all the devices that can be used for interaction
purposes at runtime. The model includes device capabilities, limita-
tions and representations in the real world.

At runtime, the high level tasks are atomically associated with con-
crete application components according to the encountered context of
use. This association is made with a scoring system that takes into ac-
count the platform capabilities and the user preferences. The descrip-
tion of this system is not the topic of this paper. A concrete application
component is a software element that can be deployed in the final ap-
plication in order to accomplish a task. For instance, it can correspond
to the code for a 3D widget or an interaction technique. Tasks have to
expose compatible concrete application components that will be pos-
sibly instantiated in the final application. To implement these concrete
application components a model is also proposed. This model is a
modification of PAC [6] and ARCH [1] models that lets the developer
create application components such as interaction techniques and 3D
widgets independently of concrete devices and of 3D frameworks. An
application component is divided into four facets that decouple its dif-
ferent features:

• The Abstraction: it describes the semantics of the component
and the function it can perform,

• The rendering presentation facet is the only facet depending on
a 3D framework. It handles graphics output and physics. As
said, in our case these components are developed with Unity3D.
For a given application component, this facet can also define its
representation in the virtual world. For instance, the 3D aspect
of a widget will be defined in this facet.

• The logical driver handles input and output devices management.
Its main use is for the development of interaction techniques. It
implements the way the interaction technique is controlled ac-
cording to a set of abstract interaction devices.

• the Control: it ensures the consistency between the rendering
presentation, the logical driver and the abstraction.

An example that is needed in our example application described in
Section 5 is the possibility to select and manipulate 3D objects. Dif-
ferent application components are compatible with this task. First, we
can use a 3D-ray based interaction technique. This technique has mul-
tiple compatible logical drivers in order to be possibly driven by dif-
ferent kind of devices such as a 6-Dof tracker, a mouse or a gamepad.
Second, we can use a 2D cursor for selecting and moving the objects
on the screen plane. Different logical drivers also exist to control this
technique based on devices such as a mouse and a multi-touch screen.

In the next section, we describe how these models have been ex-
tended in order to handle redistribution. These models are used in the
redistribution process when the distribution modifications causes con-
text of use changes.

4 EXTENSION TO REDISTRIBUTION

The previous models let the developer create an application that can
be adapted to the capabilities of a wide variety of platforms but does
not include any mechanism to change the distribution of this applica-
tion. Therefore we propose an extension of these models that makes
the integration of redistribution capacities totally transparent and au-
tomatic for the developer. The process consists of distributing the high
level tasks and the virtual environment across the different dimensions
and can target the different granularity levels. The developer’s work
is to create high level tasks and implement the compatible interaction
techniques that can be driven with a wide variety of interaction de-
vices with the help of the models from [15] described in the previous
section.

We added a built-in high level task and its corresponding applica-
tion component in order to allow any developer to add redistribution

Application description

Tasks Task
1

Task
2

Task
3

Application
Components

Component
1

Component
2

Component
3

Platform
description

Device
1

Device
2

Device
3

- Are chosen
according to
- Work with

Interact with

Virtual
Environment

Virtual
Environment

Are
automatically

associated
with

Runtime on a single platform

Loaded

Fig. 1: An application is described by a virtual environment and high
level tasks. At runtime, the application runs on a specific platform.
Compatible interaction techniques are deployed to achieve the tasks.
They are driven by the available devices.

Virtual
Environment

Platform 1 (Main application)

Virtual
Environment

Platform 2

3- VE Replication

Task
1

Tasks

Task
3

Tasks

Task
2

Task
3

2-High level
tasks

Redistribution
(Task 2 and 3)

4-State Sync

1-Connection 1-Connection

4-State Sync

3- VE Replication

2-High level
tasks

Redistribution
(Task 2 and 3) Task

2 Redistribution
server

Fig. 2: The redistribution process is performed in four steps. First, the
different platforms connect to the redistribution server. Then, the user
initiates a new distribution of the system with the meta-user interface.
Here he chooses to replicate the task 2 and to migrate the task 3 to
a second platform. For these two tasks, compatible application com-
ponents are automatically deployed on the second platform that fit its
capabilities. The third step consists in replicating the VE from the first
platform to the second one. Last, the redistribution server ensures state
synchronization between the two platforms.

capability to his application. The application component for redistri-
bution is also defined with our extension of the PAC and ARCH mod-
els described in Section 3. No logical driver is defined as no specific
interaction device is needed by this component. The abstraction facet
contains the redistribution logic and the rendering presentation facet
contains the parts that are dependent to the target 3D framework. Re-
garding the process, redistribution needs a connection mechanism be-
tween the different platforms. This is needed for platforms discovery
and state synchronization. To do so, we use a client/server architec-
ture where the different platforms can register. For now, this feature
is implemented with the network capabilities of the target 3D frame-
work. Therefore, it is integrated into the rendering presentation facet.
We chose this solution in order to rapidly create prototypes. However,
as future work, this mechanism could become independent of the 3D
framework and implemented in the abstraction facet. As proposed in
the 4C reference framework [8], this component implements a meta-
user interface for platform registration and to control the redistribution
process. In our case, the redistribution is performed at runtime and is
user-initiated. Indeed, the meta-user interface is proposed to the end-
user of the application. The interface can be shown and hidden at
runtime. The redistribution process is then performed in four different
steps as shown in Figure 2.

The first step consists of connecting to the redistribution server. The
IP address of the server can be given in the meta-user interface or with
an XML configuration file. This step must be performed on the plat-
form where the application is running and on each platform that must

Fig. 3: The part of the meta-user interface that controls the redistri-
bution of high level tasks. In this example, three tasks can be redis-
tributed: navigation, selection/manipulation and application control.
The last two ones are dependent.

be available for redistribution. On these distant platforms, an empty
application runs which contains the framework that handles redistri-
bution and can run an application according to the models presented
in Section 3.

The second step consists of configuring the desired redistribution
with the meta-user interface. First, the user chooses the platform on
which the application will be redistributed from a list of available ones.
In our case, the basis of the redistribution process is made on the plat-
form dimension. However, as each platform may manage another dis-
play and may be used by another person, user and display dimensions
can also be targeted. Then, the user configures the high level tasks
distribution across the two platforms. As shown in Figure 3: multiple
choices are given to the user in the menu:

• Full migration: all tasks migrate. Each platform runs an inde-
pendent version of the application.

• Partial migration: the user chooses which task(s) will migrate to
the distant platform. The application is distributed and so shared
between the two platforms.

• Partial replication: the user replicates some tasks to the distant
platform. He will able to perform these tasks on the two plat-
forms within the same shared application.

• Full replication: all tasks are replicated and can be performed on
different platforms in the same shared application.

Dependent tasks have to be redistributed together. Therefore, they are
grouped into the menu as shown in Figure 3. In this figure the applica-
tion control task is dependent to the selection and manipulation task.
On the other platform, thanks to the plasticity models described in the
previous section, an application component is automatically associated
with each redistributed task. As said, these components are chosen in
order to fit the platform capabilities in terms of device availability.

When the redistribution of tasks has been done, the third step con-
sists in fully copying the virtual environment to the distant platform.
This virtual environment includes 3D meshes, their materials, and
sound assets. To perform this copy, we consider three solutions. For
now, only the first one is implemented in our solution.

• Assets are known in the distant platform. Only the names are
transmitted.

• Assets are not known but can be downloaded from a distant
server. In this case, URLs are provided.

• Assets are not known. For instance in a case of a 3D painting
application, the user is editing a new 3D content. Here, assets
can be streamed over the network.

The last step consists of synchronizing the different platforms. In
case of full migration, no synchronization is performed because each
platform runs an independent version. The synchronization is per-
formed as long as all platforms are connected to the redistribution
server. Two kinds of information are synchronized between the dif-
ferent instances of the application. First, the 3D objects transforms are
synchronized in order to maintain a consistency between the different
3D worlds. Second, the events of high level tasks are also synchro-
nized. The events constitute the logical implementation of the applica-
tion and and have to be synchronously performed on each application
instance. These events are transmitted with their corresponding pa-
rameters through the network as text messages in order to be triggered
distantly. An example of an event given in the example application in
Section 5 is the addition of a 3D object into the scene.

5 EXAMPLES OF REDISTRIBUTION

In order to illustrate the redistribution possibilities offered by our mod-
els, we present different use cases that are based on a furniture plan-
ning application. This application consists in laying-out an empty
room with furniture. Its goal is to help people to plan the use of partic-
ular premises. According to the application model described in Sec-
tion 3, at the task level, the application is composed of three tasks.
First, a navigation task is needed in order to navigate within the room.
Second, we need an application control task for adding furniture into
the room with the help of a menu. Last, we need a selection and ma-
nipulation task for moving furniture and for menu selections. These
two last tasks are defined as dependent: indeed selection possibilities
are needed for interacting with the menu. In these different cases we
use two platforms. First, we use a mobile device which is an An-
droid tablet. Then, we use an immersive system, a CAVE [7] with
dimensions: 9.6m length × 3.1m height × 3.0m width. MiddleVR
is usedTo handle the different screens and clustering. Even if they are
not present in these examples other platforms could also be considered
such as Head-Mounted-Displays (HMD) and desktop environments.

As described in section 4, the redistribution process starts with the
connection of the tablet and the CAVE system to the redistribution
server. For all the presented cases, the application is first launched on
a tablet. The point of view is chosen by the navigation task according
to the platform capabilities described in the device model of the ap-
plication [15]. In the navigation task a function checks which are the
properties of the display device used in order to set the first position
of the main camera. Here, a plan view of the scene is chosen for the
tablet as shown in Figure 4a. According to the automatic adaptation
process described in Section 3, one concrete application component
is deployed for each needed task. Each component is chosen in or-
der to fit the platform capabilities. First, for the application control
task, a 2D menu is instantiated with the list of furniture that can be
added. According to its implementation the menu can be hidden if
needed. For the manipulation task, an interaction technique based on
the multi-touch capabilities of the tablet is deployed. With this tech-
nique the user can translate the objects onto the floor with one finger
and rotate them around the up axis with two fingers. For the naviga-
tion task, a pan and zoom navigation technique is deployed. With the
multi-touch capabilities, the user can translate the point of view and
can zoom the scene while keeping the plan view of the room.

5.1 Redistribution for platform switching
Today, users are more frequently confronted with situations where they
have to move from one platform to another [8]. This is one scenario
possible for our furniture planning application. Indeed, the application
may be used on a wide variety of different platforms such as desktop
environments, smartphones, immersive systems, touch tables, etc. All
platforms do not offer the same possibilities and therefore some can be
more adapted to specific needs. Therefore we want to ensure for the
end user seamless transitions between these different platforms. This
example demonstrates how the redistribution capabilities of our solu-
tion can ensure usability continuity during these changes of hardware
environment. In this scenario the redistribution is performed on the
platform and display dimensions and at the application level.

First, the user is interacting on the tablet at his desk. With this tablet
he can also work while mobile. All the tasks are available as corre-
sponding application components are instantiated. However, the tablet
only offers a 2D plan view of the result and the user would like to have
a 3D view at scale one in order to better perceive the volumes. To do
so, an immersive system is available: a CAVE. The meta-user inter-
face allows the user to perform a full migration of his application to
this platform. The application totally migrates to the CAVE, all tasks
and all contents, nothing remains on the tablet. The user can now be
immersed at scale one an continue to fine-tune the layout of the room.
Usability continuity is ensured thanks to our plasticity mechanisms.
The application is adapted to the target platform. Indeed, as described
in Section 3, application components are chosen according to the new
platform capabilities. In that case, a 3D ray-based manipulation tech-
nique is deployed. The position and the rotation of the ray are set with
the tracked flystick and its buttons are used for object selections and
to change the ray length. For the navigation task, a walking navigation
metaphor is deployed. The tracked head position combined with the
flystick joystick are used to move the point of view. For the applica-
tion control task, a 3D movable menu is deployed. The 3D ray is used
to interact with this menu.

When the user has finished his work he may want to continue his
work while mobile. For example, he would go showing the result to
a colleague. Therefore, the meta-user interface is also available in the
CAVE and so the inverse process is also available.

5.2 Redistribution for platforms combination

This example demonstrates how redistribution can be used in order to
combine different platforms. In that case redistribution is performed
on the display and platform dimensions and at the domain concept
level. Our example is based on the World-In-Miniature technique [21]
which provides the user with a handheld model of the virtual environ-
ment at a smaller scale. It can be used for manipulating virtual objects
or for navigation. This miniature representation is directly rendered in
the virtual world; here, we propose to distribute this technique onto a
tablet in order to control the furniture planning application in a CAVE
system. The user will be able to interact with the tablet while being
immersed at scale one in the CAVE. This use case can be useful for
novice users who are not confident with 3D interactions and may pre-
fer more commons multi-touch interactions.

The user chooses a partial migration to the CAVE, only the naviga-
tion task migrates to the distant platform. Other tasks remain on the
tablet. This choice is made with the meta-user-interface as shown in
Figure 3. In the CAVE, the navigation task places the point of view
inside the room in order to immerse the user in it. As described in
Section 5.1, an interaction technique based on a walking metaphor
controlled with head tracking and a joystick is deployed in the CAVE
for this navigation task. At this time the application is distributed on
two platforms and displays. First, as shown in Figure 4a, on the tablet
the redistributed World-In-Miniature. The virtual world is displayed
at a lower scale with a plan view. Moreover, as said before, a 2D
menu for application control and a multi-touch interaction for selec-
tion and manipulation are deployed. Second, as shown in Figure 4b,
at the same time the user is immersed at scale one into the room in the
CAVE and can navigate in it. Our transparent synchronization mecha-
nism ensures the consistency between the two parts of the application.
Indeed, the synchronization of the 6 DoF transforms of the objects be-
tween the two platforms ensures consistency when the user moves an
object on the tablet. As well, the command for adding an object into
the room is also synchronized.

This scenario can be useful for novice users not comfortable with
3D interactions. Indeed, the user can interact with the usual and easy-
to-use multi-touch capacities of the tablet while being immersed at the
same time in the 3D world with the CAVE.

5.3 Redistribution for collaboration

In this example, we demonstrate our redistribution process can be used
in order to create a Collaborative Virtual Environment (CVE). Here,

Fig. 5: With a full replication from its tablet the user can start a col-
laboration with a colleague in a CAVE

redistribution is performed on the user, platform and display dimen-
sions and at the application level. Indeed, the replication capabilities
included in our solution lets any user to start at any time a collaboration
with another person using a different platform. With this feature any
application developed with our models including the furniture plan-
ning one automatically benefits from collaboration capacities.

The first user has performed a first configuration of the empty room
with his tablet and now wants to share his result and wants to finish
it with another user. Therefore, as shown in Figure 5, he performs a
full replication from the tablet to the second user platform: the CAVE.
All tasks are replicated, navigation, selection and manipulation, and
application control. Therefore the two users have now the same inter-
action capabilities. The application components instantiated for these
different tasks are the same than for the two scenarios described in the
two previous sections. In this case, the collaboration is asymmetric as
the two persons are using different platforms and different interaction
techniques. However, the plasticity property of the system ensures us-
ability continuity between the two platforms, the interaction capabili-
ties remain the same. A collaboration with two similar systems could
also be performed. Here, the collaboration is co-located, both users
are situated in the same place and can directly communicate about the
result. However, the collaboration could also be distant. Indeed, our
architectures makes possible to have distant connections to the redis-
tribution server. The synchronization performed by the redistribution
process ensures a high consistency between the two instances of the
application. Both users are interacting in the same virtual environ-
ment. In order to provide awareness about the activity of the distant
user, for now only the view frustums of each user is represented in the
virtual environment. Future work could include different awareness
mechanisms, for instance trying to make the distant user perceive his
current context of use.

6 CONCLUSION AND FUTURE WORK

In this paper we introduce a new model to handle redistribution for
3D user interfaces. Based on previous work on plasticity for 3D user
interfaces, our solution eases the development of 3D user interfaces
with redistribution capabilities. Redistribution can be performed on
the display, platform and user dimensions and can target three levels of
granularity: application, workspace, and domain concept levels. Our
approach is based on a client-server architecture. Redistribution can be
performed at runtime by the user with an integrated user interface: the
meta-user interface. Plastic models ensure usability continuity what-
ever the new distribution chosen. The distributed application will fit
each target platform properties. With this approach, any application
developed with our models automatically benefits from redistribution
capabilities.

To illustrate these possibilities, we have presented three examples of
redistribution on different dimensions and at different levels for a fur-
niture planning application. These examples show how redistribution
can be used to switch from a mobile platform to an immersive one,

(a) (b)

Fig. 4: The redistributed World-In-Miniature: an example of redistribution that demonstrates how it can be used for platform combination. Here
the redistribution is performed between a CAVE and a tablet. (a) On the tablet, the user has a plan view of the virtual world at a reduced scale
with 2D interaction capabilities. (b) At the same time, the user is immersed at scale one in the same shared virtual world in a CAVE.

to combine these two platforms, and finally to create a collaborative
context of use between them.

Future work could consist of automating the redistribution process
in order to be in some cases system-initiated or mixed-initiated. In-
deed, for now the process is only user-initiated with the help of the
meta-user interface. For instance, this kind of approach could consist
in finding the right platform or the right user for each task according
to the platforms capabilities and the user preferences.

REFERENCES

[1] A Metamodel for the Runtime Architecture of an Interactive System:
The UIMS Tool Developers Workshop. SIGCHI Bull., 24(1):32–37, Jan.
1992.

[2] R. Bandelloni and F. Paternò. Migratory user interfaces able to adapt to
various interaction platforms. International journal of human-computer
studies, 60(5):621–639, 2004.

[3] A. Bierbaum, P. Hartling, P. Morillo, and C. Cruz-Neira. Implementing
Immersive Clustering with VR Juggler. In ICCSA 2005, pages 1119–
1128, Berlin, Heidelberg. Springer-Verlag.

[4] G. Calvary, J. Coutaz, O. Daassi, L. Balme, and A. Demeure. Towards a
new generation of widgets for supporting software plasticity: the comet.
In Engineering Human Computer Interaction and Interactive Systems,
pages 306–324. Springer, 2005.

[5] G. Calvary, J. Coutaz, D. B. Thevenin, L., M. Florins, Q. Limbourg,
N. Souchon, J. Vanderdonckt, L. Marucci, F. Paterno, and C. Santoro.
The CAMELEON Reference Framework. Deliverable D1.1, 2002.

[6] J. Coutaz. PAC, on object oriented model for dialog design. In Inter-
act’87, 1987. 6 pages.

[7] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart.
The CAVE: Audio Visual Experience Automatic Virtual Environment.
Commun. ACM, 35(6):64–72, June 1992.

[8] A. Demeure, J.-S. Sottet, G. Calvary, J. Coutaz, V. Ganneau, and J. Van-
derdonckt. The 4C Reference Model for Distributed User Interfaces. In
ICAS 2008, pages 61–69, March.

[9] N. Elmqvist. Distributed user interfaces: State of the art. In Distributed
User Interfaces, pages 1–12. Springer, 2011.

[10] P. Figueroa, M. Green, and H. J. Hoover. InTml: A description language
for VR applications. In Proceedings of the Seventh International Con-
ference on 3D Web Technology, Web3D ’02, page 5358, New York, NY,
USA, 2002. ACM.

[11] C. Fleury, T. Duval, and V. Gouranton. Architectures and Mechanisms to
Maintain efficiently Consistency in Collaborative Virtual Environments.
In SEARIS 2010, Mar.

[12] J. Gonzalez-Calleros, J. Vanderdonckt, and J. Muoz-Arteaga. A struc-
tured approach to support 3d user interface development. In ACHI 2009,
pages 75–81, Feb.

[13] C. Hand. A survey of 3D interaction techniques. In Computer graphics
forum, volume 16, pages 269–281, 1997.

[14] C. N. Klokmose and M. Beaudouin-Lafon. VIGO: Instrumental Inter-
action in Multi-surface Environments. CHI 2009, pages 869–878, New
York, NY, USA, 2009. ACM.

[15] J. Lacoche, T. Duval, B. Arnaldi, E. Maisel, and J. Royan. Plasticity for
3D User Interfaces: new Models for Devices and Interaction Techniques.
In EICS 2015. ACM.

[16] I. Lindt. Adaptive 3D-User-Interfaces. PhD thesis, 2009.
[17] D. Medeiros, F. Carvalho, L. Teixeira, P. Braz, A. Raposo, and I. San-

tos. Proposal and evaluation of a tablet-based tool for 3D virtual environ-
ments. SBC, 4(2):31, 2013.

[18] J. Melchior, D. Grolaux, J. Vanderdonckt, and P. Van Roy. A toolkit for
peer-to-peer distributed user interfaces: concepts, implementation, and
applications. In EICS 2009, pages 69–78. ACM.

[19] M. Rauterberg, M. Fjeld, H. Krueger, M. Bichsel, U. Leonhardt, and
M. Meier. BUILD-IT: a planning tool for construction and design. In
CHI 1998, pages 177–178. ACM.

[20] J. Rekimoto. Pick-and-drop: A Direct Manipulation Technique for Mul-
tiple Computer Environments. UIST 1997, pages 31–39, New York, NY,
USA. ACM.

[21] R. Stoakley, M. J. Conway, and R. Pausch. Virtual reality on a WIM:
interactive worlds in miniature. In CHI 1995, pages 265–272. ACM.

[22] D. Thevenin and J. Coutaz. Plasticity of user interfaces: Framework and
research agenda. In Proceedings of INTERACT, volume 99, page 110117,
1999.

[23] M. Zöllner, H.-C. Jetter, and H. Reiterer. ZOIL: A design paradigm and
software framework for post-WIMP distributed user interfaces. Springer,
2011.

	Introduction
	Related Work
	Application Model for Plasticity
	Extension to Redistribution
	Examples of redistribution
	Redistribution for platform switching
	Redistribution for platforms combination
	Redistribution for collaboration

	Conclusion and Future Work

