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ABSTRACT   

In this paper, we propose an approach for 3D gaze estimation under head pose variation using RGB-D camera. Our 

method uses a 3D eye model to determine the 3D optical axis and infer the 3D visual axis. For this, we estimate robustly 

user head pose parameters and eye pupil locations with an ensembles of randomized trees trained with an important 

annotated training sets. After projecting eye pupil locations in the sensor coordinate system using the sensor intrinsic 

parameters and a one-time simple calibration by gazing a known 3D target under different directions, the 3D eyeball 

centers are determined for a specific user for both eyes yielding the determination of the visual axis. Experimental results 

demonstrate that our method shows a good gaze estimation accuracy even if the environment is highly unconstrained 

namely large user-sensor distances (> 1m50) unlike state-of-the-art methods which deal with relatively small distances 

(< 1m).  
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1. INTRODUCTION  

The point-of-gaze (POG) is the intersection of the two visual axes of the eyes. Many applications use this 

information, typically, in human computer interaction (HCI), driver’s behavior analysis, human cognitive state 

determination and monitoring security. Recent gaze estimation methods can be divided in two global categories: 

appearance-based and feature-based methods. 

Appearance-based methods learn a mapping function 𝑓 (𝑦 = 𝑓 (𝑥)) where 𝑥 represents the input usually defined as the 

eye image appearances, and y is the gaze information output. Many algorithms have been proposed, [1] trained a neural 

network with 2k samples to learn the mapping function. [2] collected 252 training samples to build a manifold of the 

local linearity related to the eye appearances and estimated an unknown sample using a linear interpolation. [3] trained a 

semi-supervised Gaussian Process on 80 samples relatively sparse. [4] proposed a Support Vector Regressor to achieve a 

highly non-linear mapping. However, the extracted eye images appearances exploited by these methods are very variable 

with head pose changes. [5] used a specific head mounted hardware to track gaze in unconstrained environments. [6] 

used an incremental learning and built a specific cluster for each head pose. [7] used l-optimization to adapt the gaze 

manifold. [8] learned a person-specific 3D model which is used to estimate head pose and then normalize the eye images 

to a frontal view for the learning. 

 
Figure 1.   Gaze estimation by our approach. For each eye, a gaze vector is estimated (blue lines), the ground truth is represented by the 

green lines which connect each eye with a tracked target in 3D. 



 

 
 

 

 
Feature-based methods rely on the extraction of some features such as pupil centers, eyes corners, iris contour or 

corneal reflection which are used to build a 3D eye model and determine the visual axis. [9] and [10] used the pupil 

center corneal reflection extracted from IR lights which are used to illuminate the eye regions. [11] and [12] estimated 

iris shape by fitting an ellipse to infer the gaze. [13] and [14] estimated the gaze direction from the 2D pupils and corners 

locations in the eye image. All the above methods simplify the anatomical structure of the eyeball and define the gaze 

direction as the optical axis. [15] proposed an extended 3D eye model based on the pupil and the corners and estimate the 

visual axis but still requiring a high image resolution to detect the corners accurately, in addition, they manually  labeled 

pupils centers.  
The main challenge of the feature-based methods consists in localizing user’s eye key points (pupil and corners) and 

head with high accuracy which are directly involved in the final estimation. In this paper, we propose an approach based 

on robust head pose estimation and accurate pupil localization based on random regression forest with one-time specific-

person calibration to build the 3D eyeball model and estimate visual axis using RGB-D camera. Fig. 1. shows an 

example of gaze estimation performed by our method. 

 The following sections are organized as follows: In Sec.2, we present our gaze estimation algorithm describing head 

pose and pupils locations estimation, then we discuss the eyeball parameters calibration. In Sec.3, we show the results of 

our experiments under different scenarios. Sec.4 concludes our work. 

 

2. GAZE ESTIMATION ALGORITHM 

Fig. 2. shows an overview of our gaze estimation system. Using the RGB-D information grabbed from Kinect sensor 

as input, we estimate both head pose parameters (expressed in the Kinect coordinate system) and the 2D eye pupil 

locations projected in 3D using the sensor intrinsic parameters. After gazing a known target tracked in 3D, we drive a 

calibration equation to calculate the eyeball centers. Finally, knowing eyeball centers, the cornea centers can be 

determined yielding the determination of the optical axis as the connecting line of eyeball and cornea centers. Using a 

predefined relation between optical and visual axis, we estimate the final gaze vector for each eye. Each part of our 

pipeline is discussed and detailed as follows: 

2.1 Input 

We grabbed the RGB and depth map at (1280-960) and (320-240) resolutions respectively at 15 fps (the fps is 

constrained by the RGB sensor resolution of the Kinect sensor). Using the known Kinect intrinsic parameters and a 

predefined rigid transformation between the RGB and depth sensors, each depth value can be projected in 3D using the 

pinhole model as follows: 
 



Figure 2. Overview of our approach. Four principal blocks can be distinguished. Input block describes the data grabbed from the depth sensor used 
in our method. Tracking block illustrates two global components, head pose and eye pupils estimation respectively using RGB-D cues. Using the 

computed information from the previous blocks, Calibration fixes for a specific user some parameters related to the eye geometry (performed  by 

gazing an known target in 3D). Finally, estimation block gives gaze vectors for each eye. 
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Where 𝑑 represents a depth value with its coordinates (𝑢𝑑,𝑣𝑑) and sensor intrinsic parameters (𝑓𝑥,𝑓𝑦,𝑐𝑥,𝑐𝑦). (𝑥𝑑,𝑦𝑑,𝑧𝑑) 
represent the final 3D projections. To produce a textured mesh as illustrated in Fig. 2., a rigid mapping from RGB and 

depth sensors has to be established. 

2.2 Tracking 

According to the high accuracy in estimating head pose and eye pupil locations needed to produce a sufficiently 

accurate gaze  estimation in our method, we decided to use Random Forest algorithm to handle these tasks in hand. 

Introduced by [16], Random Forest is a set of weak tree predictors which splits the initial problem into two low 

complex problems in a recursive way. At each node, a simple binary test is performed, according to the result of the test, 

a data sample is directed towards the left or the right child. The tests are selected to achieve an optimal clustering. The 

terminal nodes of the tree called leaves, store the estimation models approximating the best the desired output. This 

technique is widely used in computer vision problems such as classifications: [17] [18] and regression: [19] [20] [21]. 

We trained for each component a forest 𝒯= {𝜒𝑡} in a supervised way using a set of annotated patches {𝒫𝑖 = (𝒥𝑖
c
,𝑔𝑖)} 

where 𝒥𝑖
c
 represents the appearance of the 𝑖th patch composed of c channel used for the training and 𝑔𝑖 is the output. 

Supervising each tree 𝜒𝑡 consists in finding at each non-leaf node the optimal binary test 𝑡*
 that minimizes the node 

impurity. Minimizing the node impurity is achieved by maximizing the information gain defined as the differential 

entropy of the set of patches at parent node 𝒫 minus the weighted sum of the differential entropies computed at the 

children 𝒫ℒ and 𝒫ℛ defined as: 

 

                                                                                                                                                                                             (2) 

 
The weights 𝜔𝑗∊{ℛ,ℒ} are defined as the ratio of patches reached to the parent and the right or left child respectively, 𝑖.𝑒., 
|𝒫𝑗∊{ℛ,ℒ}| ∕ |𝒫|. Assuming that the output 𝑔 at each node is a random variable with a multivariate Gaussian distribution 

such as 𝑝(𝑔) = 𝒩(𝑔, �̅� ,Ʃ), it allows us to rewrite equation (2) as follows: 

 

                                                                                                                                                                                             (3) 

 

 

 

The learning process finishes when the data reach a predefined maximum depth value of the tree or the number of 

patches let down a threshold value yielding the creation of the leaves. A leaf 𝑙 stores the mean of all the gaze vectors 

which reached it with the corresponding covariance. 
Head pose we trained our head pose forest 𝒯head as done in [22] on a large synthetic data training set rendered using 

a 3D morphable model. 𝒥 is composed of two channels, depth and gray scale information cropped around the face (after 

performing a face detection step). The output 𝑔 encodes head gravity center (𝑥hg,𝑦hg,𝑧hg) (as a translation matrix T) and 

the Euler’s rotation angles (pitch, roll and yaw) converted to a rotation matrix R. According to the sensor coordinate 

system, a global rigid transformation 𝒪 can be formulated as follows: 

 

 

Figure 3. 3D eyeball model. C, Cp and P represent eye, cornea and pupil centers respectively. For human eye, [CCp] and [CP] 

distances are constants. Visual and optical axes are represented in blue connecting Cp-G and Cp -G respectively. The dotted bow 

represents the angular relation between optical and visual axis (only vertical angle θ is illustrated here) 

 

𝐸 = 𝐻(𝒫) − (𝜔ℒ𝐻(𝒫ℒ) − 𝜔ℛ𝐻(𝒫ℛ)) 

𝐸 = log |Ʃ(𝒫)| − ∑ 𝜔𝑗log |Ʃ𝑗(𝒫𝑗)|

𝑗∊{ℒ,ℛ}

 



 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                            (4) 

 

 

The part tracking in Fig. 2 describes head pose component, red cylinder illustrates the final estimation. A total of 20 trees 

are trained on 1M training data. 
Eye pupils we trained our eye pupils forest 𝒯pupils on a large real data training set using the public datasets [23] 

and [24]. Patch appearance 𝒥 is defined with one channel as the gray scale values around eye regions cropped from the 

face. In this case, the output 𝑔 represents the 2D pupils (𝑢p,𝑣p) in the 2D image coordinate system. Using equation (1), 

we calculate the 3D locations P(𝑥P,𝑦P,𝑧P). Fig. 2 illustrates eye pupils localization in the tracking part. A total of 30 trees 

are trained on 500k training data. 

2.3 Calibration 

To compute the eyeball center C, we assume a known target gaze point G(𝑥G,𝑦G,𝑧G) as illustrated in the calibration 

part of Fig. 2. When the user is focusing at G, the angle between the optical axis 𝐶𝑃𝑃⃗⃗⃗⃗ ⃗⃗  ⃗ and the visual axis 𝐶𝑃𝐺⃗⃗⃗⃗ ⃗⃗  ⃗ would be 

θ which is a constant value. [7] describes an additional relation between the two axis as follows: 

 

 
   



As the distances K0 and K are constant, a relation between C and CP (Fig. 3 illustrates the existing relationships between 

these points) can be established as follows: 


  

𝐶𝑝𝐺⃗⃗⃗⃗ ⃗⃗  ⃗. 𝐶𝑝𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝐶𝑝𝐺‖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖𝐶𝑝𝑃‖

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
= cos(𝜃) 

Figure 4. Gaze estimation error at 75 cm. (a) and (c) describe gaze estimation errors for upward and rightward moving 

of the target for right eye. (b) and (d) illustrate errors for left eye under the same scenario. 
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Using Levenberg-Marquardt optimization, the non-linear equation (2) can be solved. By using the equation (3), the 

eyeball center can be initialized at C0 and transformed to the Kinect coordinate system as follows:  


       

2.4 Estimation 

Knowing eyeball center C and the pupil P at each frame, cornea center CP can be calculated. Thus, the optical axis 

can be estimated, by adding the constant angles values, the visual axis can calculated and the gaze vectors can be 

expressed as vertical and horizontal angles (α,β) for each eye. 

 

3. EXPERIMENT RESULT 

In our experiments some parameters related to eyeball geometry are fixed beforehand. The constants K0 and K inside 

the eyeball are fixed as the average human values to 5.3 cm and 13.1 cm respectively. The horizontal and vertical angles 

between visual axis and optical axis are fixed to 5° and 1.5° respectively as done in [9]. We calibrate the eyeball for a 

specific user by solving the non-linear equation (5) with 5 gaze samples recorded under different directions. 
To evaluate our method, we design a target point represented by a green marker cap which can be easily tracked in 

3D (based on color segmentation as done for the calibration step) moving in front of the user. We tested gaze estimation 

accuracy when the target is moving upward and rightward with two user-sensor distances (75 cm and 150 cm). Fig. 4. 

shows the comparison diagram between ground truth and our estimation, for the upward scenario, only α is changing 

while the β is changing for the rightward one for both eyes. As we can see, our estimation is close to ground truth, 

comparing to [8], our method gives better results and the average error remains below 5.5°. For 150 cm distance, RGB 

and depth image resolutions decrease significantly giving a less accurate head and pupils tracking producing higher gaze 

estimation errors. Fig. 5. shows the gap between estimation and ground truth, however errors still acceptable (less than 

7.5°). Despite robustness of our tracking component, the difference in RGB and depth resolution (which is a hardware 

𝐶 = 𝑅 ∗ 𝐶0 + 𝑇 

Figure 5. Gaze estimation error at 150 cm. (a) and (c) describe gaze estimation errors for upward and rightward moving of 

the target for right eye. (b) and (d) illustrate errors for left eye under the same scenario. 

 



 

 
 

 

limitation) makes projection of the 2D pupil locations in the sensor coordinate system very sensitive giving sometimes 

instable gaze vectors. 

Tab. I. quantifies the gaze estimation errors for both 75 cm and 150 cm scenarios in upward and rightward 

configurations.  

  

Table I. Gaze estimation error under two user-sensor distances, 75 cm and 150 cm respectively.   

   

 

 

 

 

 

 

4. CONCLUSION 

In this paper, we described an algorithm for 3D gaze estimation based on robust head pose estimation and eye pupils 

localization using an ensemble of tree predictors learned on important annotated training data. To set up the 3D eye 

model, we fixed some constants relative to eye geometry to average human values and calibrated eyeball centers which 

allowed us to determine the visual axis and the point of regard as the intersection of the two axes for both eyes. Our 

experiments showed that our method can achieve good accuracy and handle important head movements and large user-

sensor distances. 
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