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Abstract: This paper presents a learning model for obtaining global inverse statics solutions for redundant soft robots. 

Our motivation begins with the opinion that the inverse statics problem is analogous to the inverse 

kinematics problem in the case of soft continuum manipulators. A unique inverse statics formulation and 

data sampling method enables the learning system to circumvent the main roadblocks of the inverting 

problem. Distinct from previous researches, we have addressed static control of both position and 

orientation of soft robots. Preliminary tests were conducted on the simulated model of a soft manipulator. 

The results indicate that learning based approaches could be an effective method for modelling and control 

of complex soft robots, especially for high dimensional redundant robots.  

1 INTRODUCTION 

Continuum soft robots are a class of robots made of 

soft materials that exhibit highly dexterous and 

adaptive behaviour. Not a lot is known about the 

dynamic behaviour of continuum robots. They are 

inherently difficult to control, due to their 

compliance. However, they have some 

characteristics which make certain tasks easier for 

them. Their compliant nature makes them 

frontrunners for applications involving interactions 

with delicate or unstructured environment (Rus et al., 

2015).  

As a growing field in robotics, there are 

numerous challenges restricting the application of 

soft robots. One of them is the construction of 

inverse models for their kinematic and dynamic 

behaviour. IK models have the advantage that their 

solutions are load independent. However, our 

interest lies on modelling the inverse steady state 

dynamics (statics) of these robots, specifically for 

redundant soft manipulators. We believe that hybrid 

controllers with coupled inverse kinematic solvers 

and inverse statics (IS) solvers would be exciting for 

soft robotics applications. They can be used in 

tandem for position control and force/stiffness 

estimation.  

Theoretically, due to their continuous nature, soft 

robots have an infinite number of degrees of 

freedom, making them under-actuated. Assuming 

that there are no external forces, we can still develop 

a mapping between the applied internal forces and 

the configuration of the robot very much like the 

case of kinematics. However, developing an inverse 

model poses more difficulties. Similar to the inverse 

kinematic formulation of rigid redundant robots, the 

inverse statics solution is not unique and the solution 

set forms a non-convex set (D’Souza at al., 2001). 

Furthermore, analytical or numerical methods 

appear to be very complex unless developed with 

simplified models (Marchese e al. 2014). We are, 

therefore, adopting a method based on machine 

learning for estimating these models. 

Inverse statics models are meaningful only for 

soft manipulators and parallel robots because of the 

existence of a stable zero velocity fixed point. 

Essentially, the IS model is analogous to the IK 

model for rigid robots. Therefore, numerous 

approaches developed for IK problem of redundant 

rigid robots can be directly used for our case. 

Among the learning based approaches, a common 

theme is the use of locally linear models and 

stitching them together to form a global estimate. 

This can be done in the velocity level and has been 

widely used (D’Souza et al., 2001; Susumu et al., 

2001; DeMers et al., 1992). However, differential IK 

methods involve integration over time to obtain 

position estimates which can lead to accumulation of 



errors. Alternatively, a position level IK solution 

was proposed using goal babbling (Rolf et al., 

2013a). However, this method generates only a 

particular global solution and requires lot of sample 

data. Inverting a learned forward model was carried 

out by distal supervised learning by few researchers 

(Jordan et al., 1992; Melingui et al., 2014). However, 

these methods have not scaled well for higher 

dimensional systems. Position level IK solution has 

been proposed using modular learning architectures 

by few other researchers (Vannucci et al., 2014; 

2015), but it involves very complex constructions.   

In this paper we propose an approach for 

learning the global inverse statics model for a 

continuum robot. Our method is also based on the 

locally linear and convex properties of the IS 

solution. However, we further utilize the fact that 

these local models can be scaled and used as a 

decent approximation of the global solution. This 

can be achieved by appropriate biasing and selection 

of the input/output representation of the learning 

system. We are using neural networks to 

approximate the proposed IS mapping. Giorelli et al., 

(2015), were one of the first researchers to propose 

the learning of the inverse statics of soft arm. They 

were successfully able to learn the inverse statics for 

the position control of a soft robot. However, their 

study was limited to the case of a non-redundant 

manipulator and further restricted to only position 

control (three Degrees of Freedom). Therefore, this 

paper proposes a method for obtaining the global 

solutions for both position and orientation of a soft 

redundant robot. We have tested and validated the 

proposed method on a simulated steady state model 

of a 12 Degrees of Freedom (DoF) soft manipulator. 

We have tried to show by simulations that the 

proposed method performs soundly even with the 

issues of redundancy and high dimensionality. 

Further, we try to investigate the underlying form of 

the learned system and compare it with the 

commonly used inverse Jacobian based method. 

2 PROPOSED METHOD 

The forward static model or steady state model can 

be represented by: 
 

𝒙 = 𝑓(𝒒)                                      (1)  
  

Where, 𝒙 ∈  ℜ𝑚  is the position and orientation 

vector; 𝒒 ∈  ℜ𝑛 is the vector containing the actuator 

tensions; and 𝑓  is some surjective function. This 

particular representation is not invertible when m <

n (redundant). As mentioned before, we can develop 

local representations by linearizing the function at a 

point (𝒒𝒐), thereby obtaining; 
 

𝛿𝒙 = 𝐽(𝒒𝒐)𝛿𝒒                             (2) 

Here, 𝐽(𝒒𝒐)  is the Jacobian matrix at the 

point  𝒒𝒐 ; 𝛿𝒙  and 𝛿𝒒 are infinitesimally small 

changes in 𝒙 and 𝒒 respectively. The differential IK 

method involves generating samples of (𝛿𝒙, 𝛿𝒒, 𝒒) 

and learning the mapping ( 𝛿𝒙 ,  𝒒𝒐 ) →𝛿𝒒 . The 
learning is feasible since the differential IK 
solutions form a convex set and therefore 
averaging multiple solutions still results in a valid 
solution (D’Souza et al., 2001). The method we 
have proposed involves expanding Eq. 2 and 
expressing it in terms of absolute positions, as 
shown below: 
 
         𝐽(𝒒𝒊)𝒒𝑖+1 = 𝒙𝑖+1 − 𝑓(𝒒𝒊) + 𝐽(𝒒𝒊)𝒒𝒊          (3) 

Here, 𝒒𝑖+1 is the next actuator configuration for 

reaching a point  𝒙𝑖+1  from the present 

configuration 𝒒𝒊. Note that Eq. 3 is only valid when 

the configurations are infinitesimally close. 

However, for practical purposes this can be a good 

approximation for larger regions. The analytical 

solution for Eq. 3 can be written as: 
 

𝒒𝑖+1 =  𝐺(𝒙𝑖+1 − 𝑓(𝒒𝒊) + 𝐽𝒒𝒊) + (𝐼𝑛 − 𝐺𝐽)𝒛   (4) 

Where,𝐺, is a generalized inverse of 𝐽(𝒒𝒊) and 𝐼𝑛 

is the identity matrix and 𝒛  is an arbitrary n-

dimensional vector. The first component represents 

the particular solution to the non-homogenous 

problem prescribed in Eq. 3 and the second 

component represents the infinite homogenous 

solutions. It can be proved that the solution space 

still forms a convex set. Therefore, any universal 

function approximator can be used for learning the 

mapping (𝒒𝒊, 𝒙𝑖+1)→ (𝒒𝑖+1). Setting the vector 𝒛 to 

zero and using the Moore-Penrose pseudoinverse 

provides us with the minimum norm ( ∥ 𝒒𝑖+1 ∥ ) 

solution to the linear eq. 3.      

The samples (𝒒𝒊,𝒒𝑖+1, 𝒙𝑖+1) generated are such 

that  ∣ 𝒒𝑖+1 − 𝒒𝒊 ∣ < ϵ. An appropriate value of ϵ is 

between 10% − 5% of the maximum actuator range. 

The advantage of this reformulation is in the simple 

detail that the input/ output domain of the learning 

system is now same as the actuator space and task 

space configuration and not a subset of it, unlike the 

differential IK method. We predict that this way our 

proposed method will behave exactly like the 

differential IK method at local regions and at farther 



points they will automatically provide approximate 

configurations that will bring the end effector 

configuration closer to the target. Therefore if we 

repeat the process for a fixed target, we can expect 

the process to converge near the target position. 

Therefore, by our method we can get global 

solutions for the IS problem. We can further add 

constraints during the iteration process to develop 

particular solutions for the IS problem according to 

our requirement.  

2.1 Reachability and Workspace 
Considerations 

Since, the IS solution will provide the actuator 

configuration to take the end effector to a particular 

position and orientation, it is important to know if 

the input arguments (𝒙𝑖+1) given to the system is 

reachable. For the case of end effector position, the 

reachable workspace will describe the volume in 

which the end effector position can reach. The 

reachable workspace can be estimated easily either 

by analytical, numerical or experimental methods. 

However, the dexterous workspace, which describes 

the volume in which the end effector can reach with 

all orientations, is much more difficult to find. 

Nonetheless, the calculation of the dextrous 

workspace is not of significance for soft robots. 

Dextrous workspace is a property introduced 

primarily for rigid robots with spherical joints. For 

soft robots, the manifold of reachable orientation 

varies according to the end effector position.  

Interestingly, there exists a single unique 

manifold for each position, unlike the case of rigid 

robots which can have multiple disjoint manifolds 

(Kapadia et al. 2013). This is attributed to the fact 

that for soft continuum robots, singular 

configurations arise only when the manipulator has 

zero curvature. Singularities at boundaries can be 

ignored since the manipulator can, theoretically, 

extend or contract to any length. Furthermore, in our 

formulations, we are neglecting rotations along the 

backbone of the robot (roll). So, our robot can be 

visualized as a ‘pointing’ robots (rotations in 

 𝑆𝑂(3) are replaced by directions in  𝑆2 ). By this 

process our formulation is theoretically devoid of 

singularities. This implies that given a current 

positon and orientation ( 𝒙0
𝑝
, 𝒙0
𝑜 ), there exists a 

continuous path in the actuator space, which can 

bring the end effector to a different orientation 

(𝒙0
𝑝
, 𝒙1
𝑜), without affecting the position. Learning the 

null space solution for each end effector 

configuration will help us in implementing this. 

However, learning the null space from just 

experimental data is very difficult. Therefore, in this 

paper we have developed two solvers for the IS 

problem; one for both position and orientation and 

the other for just the orientation. These two solvers 

can be combined appropriately to attain the required 

accuracies in position and orientation. For instance, 

if the network output for coupled (position + 

orientation) IS solver is 𝒒𝑖+1
𝑐  and the output for 

Inverse Orientation Statics (IOS) solver is  𝒒𝑖+1
𝑜  , 

then, they can be combined to give actuator 

configuration 𝒒𝑖+1
𝑎 , where; 

 

𝒒𝑖+1
𝑎 = 𝑘 ∗ 𝒒𝑖+1

𝑐 + (1 − 𝑘) ∗ 𝒒𝑖+1
𝑜           (5)  

 

By regulating the value of the constant 𝑘 (𝑘 ≤ 1), 
we can accordingly vary the orientation accuracy. In 

further sections we will be referring to this 

formulation as the appended IS solver and the 

complete IS solver will be just referred to as the IS 

solver. 

3 STEADY STATE MODEL 

The constant curvature model is the most widely 

used construction technique for soft robots due to 

their simplicity and computational ease (Walker, 

2013). Non- constant curvature models based on 

cosserat beam dynamics promises to be a better 

alternative (Renda et al., 2014). For our application, 

we have used a steady state model of a tendon 

driven soft continuum robot (Renda et al., 2012). 

The sample data for learning the IS model is 

obtained from this steady state model.   

The soft continuum robot is modelled as a 

cosserat beam. A cosserat beam can be visualized as 

a continuum body which is composed of 

infinitesimally small rigid bodies that can rotate 

independently from the neighbouring element. The 

position and orientation of each material element is 

represented by four vectors:  𝒖, 𝒕, 𝒏, 𝒃 . The unit 

vector 𝒕 is tangential to the manipulator backbone at 

that section and the vectors 𝒏 and 𝒃 lie on the cross 

sectional area of the element. These three unit 

vectors form the local reference frame for each 

element. Therefore, the relation 𝒃 =  𝒕 × 𝒏  holds 

true everywhere. 𝒖  is the position vector of the 

centre of mass of an element (Fig. 1). We are 

ignoring the effects of shear stresses in our 

formulation (Euler-Bernoulli hypothesis). This 

restricts the DoF of each element to four. The total 

length of our manipulator is 31 centimetres, divided 

into a section per centimetre. 



 

Figure 1: Kinematic representation of the cosserat beam 

model. 

The complete configuration of the robot can be 

calculated by obtaining the four vectors for each 

element. The elements are related to each other in 

space by the below equations (Renda et al. 2012): 

𝑑𝒕

𝑑𝑠
= 𝑘(𝑠)(1 + 𝑞(𝑠))𝒏(𝑠) − 𝜉(𝑠)(1 + 𝑞(𝑠))𝒃(𝑠)  

𝑑𝒏

𝑑𝑠
= −𝑘(𝑠)(1 + 𝑞(𝑠))𝒕(𝑠) − 𝜏(𝑠)(1 + 𝑞(𝑠))𝒃(𝑠) 

𝑑𝒏

𝑑𝑠
= 𝜉(𝑠)(1 + 𝑞(𝑠))𝒕(𝑠) − 𝜏(𝑠)(1 + 𝑞(𝑠))𝒏(𝑠) 

𝑑𝒖

𝑑𝑠
= (1 + 𝑞(𝑠))𝒕(𝑠) 

(6) 

(7) 

(8) 

(9) 

Here the functions 𝑘(𝑠)  and 𝜉(𝑠)  are the 

curvatures with respect to 𝒃(𝑠) and 𝒏(𝑠), 𝜏(𝑠) is the 

torsion with respect to 𝒕(𝑠) , and 𝑞(𝑠)  is the 

longitudinal strain along the arm.  𝑠 , is the 

parametrization variable which represents an 

element. 

The variables 𝑘(𝑠) , 𝜉(𝑠) , 𝜏(𝑠)  and 𝑞(𝑠)  are 

related by the following equations:  

(
𝐺𝐼 0 0
0 𝐸𝐽𝑛 0
0 0 𝐸𝐽𝑏

)

(

 
 
 
 
𝑑𝜏

𝑑𝑠

 
𝑑𝜉

𝑑𝑠

 
𝑑𝑘

𝑑𝑠

 

)

 
 
 

+(

𝐺𝐼̇ 0 0
0 𝐸𝐽𝑛̇ 0

0 0 𝐸𝐽𝑏̇

)(

 𝜏
 𝜉
 𝑘
 ) 

                    =     𝑴̇(𝑠) 

(10) 

 

EA𝑞(𝑠) = 𝑁(s) (11) 

Where, 𝑁(s) is the 𝒕 component of the internal 

contact forces and 𝑴(𝑠) is the vector of the internal 

torque forces (The dot symbol is the derivative with 

respect to s). 𝐸  is the Young’s modulus, 𝐺  is the 

shear modulus, 𝐼, 𝐽𝑛 and 𝐽𝑏 are the moment of inertia 

of the section with respect to 𝒕, 𝒏 and 𝒃, in that order. 

The internal contact forces and the internal torque 

forces are calculated based on the cable 

configuration and tension on each cable (Refer to 

Renda et al. 2012). Equation 10 is numerically 

integrated from tip to base and solved along with 

equation 11 and appropriate boundary conditions to 

obtain the curvatures and strains in each segment. 

Finally, the kinematic equations 6, 7, 8, 9 are 

integrated to obtain the arm shape.  

There are three anchorage planes along the 

length of the manipulator. Each anchorage plane has 

four cables attached to it; each spaced apart by an 

angle of 90 degrees. Fig. 2 shows the reachable 

workspace of the robot obtained by random 

exploration in the actuator space.  

 

Figure 2: Schematic of the robot end effector workspace. 

4 DATA COLLECTION AND 

TRAINING 

The samples (𝒒𝒊,𝒒𝑖+1, 𝒙𝑖+1) are generated by motor 

babbling. The distance between consecutive samples 

(𝒒𝑖+1 − 𝒒𝒊 ) is decided randomly from a range to 

avoid any bias in the sample. The range of the each 

sampling data is from zero to 8 percent of the 

maximum actuator force. The range is decided by 

trial and error. Learning with a lower range will give 

better accuracy, but requires larger data set and 

performs poorly for farther target points. Therefore a 

continuous path must be planned beforehand, just 

like the case of differential IK. Selecting the distance 

from a range rather than a fixed value keeps the 

continuous nature of the problem intact, at least 

partially. Note that there are 12 actuators which can 

select its actions continuously. Even if we consider 

that the actuator space is discretized into 12 

segments (each segment being roughly 8 percentage 

of the total range), there are still around 9e+12 



possible configurations. Therefore, we cannot 

navigate the whole actuator space, instead we expect 

the generalization ability of neural networks or other 

machine learning process’s to predict accurate 

solutions for unseen data. 

4.1 Training 

As mentioned before, we are using neural networks 

to learn the mapping (𝒒𝒊, 𝒙𝑖+1) → (𝒒𝑖+1). The input 

layer is of size 18 for the IS solver and 15 for the 

IOS solver. The output layer size is 12 for both cases. 

We are using a multilayer perceptron with a single 

hidden layer for this. Tan-sigmoid activation 

function is used in the hidden layer and a linear 

activation function is used at the output layer. Proper 

care must be taken during the training process. 

Bayesian regularization backpropagation method is 

used for training the neural network (Foresee at al. 

1997).  The inputs and outputs are normalized and 

divided randomly in the pre-processing stage. A 

uniformly distributed noise is also added to the 

inputs to imitate realistic scenarios. The magnitude 

of the noise goes up to 3% of the maximum 

sampling range. Since the Bayesian regularization 

backpropagation algorithm is used for training; the 

data set is divided into training and test set in the 

ratio 80:20. No validation set is used. In the 

following subsections we describe the methodology 

adopted for determining the network size and sample 

data size for learning the IS. The parameters of the 

IOS solver are adopted from the IS solver as it can 

be seen as a subset of the IS problem. 

4.1.1 Network Size  

Proper care must be given to decide the hidden layer 

size. It is not enough to get good training or test 

performance, contrary to common intuition. The 

learning task provided to the neural networks is to 

learn a left inverse function. However, our objective 

is to learn the right inverse function (Rolf et al. 

2013b). In other words, the neural network tries to 

reduce the error between the predicted values 

of  𝒒𝑖+1 (𝒒
𝑝) and the sample values of  𝒒𝑖+1(𝒒

𝑠) . 

Whereas, the final aim is to reduce the error between 

𝑓(𝒒𝑝) and 𝒙𝑖+1. There are local minima which can 

provide good training and test performance, and still 

perform poorly as a IS solver. For instance, a 

network that outputs  𝒒𝑖+1 = 𝒒𝒊 , can give good 

training and test performance as both values are 

nearby due to the sampling method. Therefore, the 

appropriate size for the network is decided by 

checking the training error along with the 

performance of the IS solver. Fig.3 shows effect of 

network size on the training performance and the 

corresponding change in the IS performance. IS 

solver performance is measured by testing the 

solutions for fifty points randomly selected from the 

sample data (to ensure that the targets are reachable).    

 

Figure 3: Network size determination. The errors in 

position and angle are normalized for easier comparison. 

4.1.2 Sample Size  

The length of the sample data required would be 

directly proportional to the number of DoF’s of the 

system. Fig. 4 shows how the number of samples 

determine the performances of the network and the 

IS solver.  

 

Figure 4: Sample data size determination. The network 

size is forty for all tests. 

For all the ensuing experiments we have selected 

14000 samples for training a neural network of size 

40 units. Note that the proposed method needs to 

explore only a miniscule percentage of the actuator 

space. The same analysis cannot be done 

independently for IOS solver since the performance 

of the IOS solver is heavily dependent on the 

position of the manipulator (Reachability of a 

particular orientation depends on the corresponding 

position). Therefore, the performance of the IOS 



solver can only be inspected with the help of the IS 

solver. However, since we are using Bayesian 

regularization backpropagation algorithm for 

training the network, an exaggerated network size 

and sample data will not harm the learning process. 

Therefore, the same parameters of the IS solver was 

adopted for the IOS solver.  

5 RESULTS AND ANALYSIS  

This section is divided into three subsections; the 

first subsection shows the test results for the 

developed IS solver on the simulated steady state 

model; the second subsection discusses the results 

with the appended IS solver (Sec. 2.1); the final 

subsection makes a comparative analysis of the 

proposed method with the inverse Jacobian method. 

There are two reasons for this; the first one is to 

compare the performance of the two methods; 

secondly, the comparison can help us understand the 

underlying form of the learned network. 

5.1 Simulations 

The main advantage of the proposed method is its 

ability to provide global solutions to the IS problem 

without the need to pre-plan a path from the starting 

point. So, the first tests were to evaluate if the IS 

solver can provide accurate actuator configuration 

for random target points in the workspace. Fifty 

points ( x ∈ (−0.05,0.35), y ∈ (−0.25,0.25), z ∈
(−0.2,0.2)) were randomly selected from the sample 

data along with their corresponding orientation. 

Since the target points are not close to the home 

position (0.31[m], 0[m], 0[m]), the solver needs 

more than one iteration for converging to the right 

solution. Fig. 5 shows the test results for this 

experiment. The proposed method is able to generate 

results with a mean positional error of 0.012 meters 

and mean orientation error of 7.4 degrees. The 

method converges with an average of 3.56 steps for 

convergence within a range of 1mm. The same fifty 

target points were again used in the IS solver for a 

starting point at one of the extreme boundary points 

(-0.02[m],-0.16[m],-0.01[m]). The corresponding 

results are shown in Fig. 6. The average errors 

increase in this case. The average positional error 

goes to 0.015 meters and the average orientation 

error goes to 9.92 degrees. The convergence speed 

remains the same with each target taking an average 

of 3.68 iterations for convergence. Note that even 

though the magnitude of error increases, the error 

pattern remains relatively similar. We suggest that 

these points are under-represented in the sample data 

and therefore the learning system does not have an 

adequate representation around that region. One 

possible work-around is to develop algorithms that 

perform motor babbling initially and then later 

switch to a more goal oriented exploration strategy.      

 

Figure 5: Simulation results for the fifty points experiment 

at the natural starting point. The thick lines represent the 

mean of the data and the dotted lines on either side of the 

mean represent the standard deviation. 

 

 

Figure 6: Simulation results for the fifty points experiment 

for a starting point at one of the boundary extrema. 

The next set of simulations were conducted for 

continuous targets, i.e. the target points are locally 

adjacent and therefore forms a continuous path. As 

the target points are close by, the IS solver can 

output a solution in one iteration. Two such paths 

were used for evaluation. The first one is a circular 

path of radius 0.1 meters, centered at (0.25[m], 0[m], 

0[m]), with a fixed orientation parallel to the X axis 

(Fig. 7). The other path is a fixed point with a 

continuous change in elevation (0→90→0 degrees) 

and azimuth (0→180 degrees). Fig. 8 shows the 

target orientation vectors for this simulation and the 

corresponding solutions from the IS solver. For both 

tests, the manipulator starts from the home position 

(Zero force position). The results of both tests are 

encapsulated in Table 1.     



 

Figure 7: Continuous positional path following with fixed 

orientation. The target orientation is a vector perpendicular 

to the YZ plane. 

 

Figure 8: Continuous angular path following. 

Table 1: Continuous path results. 

Test Position Error 

(Mean ± Standard 

Deviation) [m] 

Orientation Error 

(Mean ± Standard 

Deviation) [degrees] 

Circular 

Path 
0.0085 ± 0.0028 7.33 ± 3.98 

Angular 

Path 
0.0118 ± 0.0059 3.21 ± 1.71 

 

Figure 9: Appended IS solver. 

5.2 Appended IS Solver 

As mentioned in the subsection 2.1, redundant soft 

manipulators have certain geometrical properties 

that could allow smooth motions in the self-motion 

manifold. The continuous positional path experiment 

(Fig.7) was again used to test the appended IS solver. 

Fig. 9 depicts how the modified solver can allow us 

to trade-off between positional accuracy and 

orientation accuracy, leading to an improvement in 

orientation accuracy by 0.95 degrees and reduction 

of positional accuracy by 1.3 mm. 

5.3 Analysis      

The proposed methodology for learning the IS of a 

redundant soft manipulator is an adaptation of the 

differential IK/IS method. Therefore, we try to make 

a comparison to the differential IK/IS method. The 

Jacobian at a point (Equation 2) can be obtained 

numerically by making infinitesimally small changes 

in the actuator configuration and observing the 

corresponding changes in the end effector 

configuration. Once the Jacobian matrix is obtained, 

it is inverted to obtain a particular solution to the 

IK/IS problem. For a redundant manipulator, the 

Moore-Penrose pseudo inverse will achieve the 

same. We ignore the null space solutions in this 

analysis.  

 

Figure 10: Correlation between the proposed method and 

JI method for a starting point at the home position. 

 

Figure 11: Correlation between the proposed method and 

Jacobian inverse method starting at a boundary extremum. 

We compare the correlation between the 

solutions provided by a Jacobian pseudo inverse (JI) 

based method and our proposed method at two 

points. One is the natural home position and the 



other is a boundary extremum. The correlation 

between the Inverse Jacobian method and the 

proposed method for varying target distance is 

shown in Fig. 10. We can observe that the 

correlation between the Jacobian pseudo inverse 

method and the learned system is high at the home 

position. This implies that the system tends to learn 

the ‘shortest path’ solution. It is low at lower 

distances possibly because of the added noise. The 

trend is similar for other points well within the 

boundary. However for a starting position that lies at 

one of the extremum of the workspace, the 

correlation value is less (Fig. 11). The proposed 

method also performs better than the Inverse 

Jacobian method.  

6 CONCLUSIONS 

This paper presents a data driven method for 

learning the inverse statics mapping of a redundant 

soft manipulator. The novelty in our methodology 

arises from our linearized IS problem reformulation 

and sampling approach while implicitly feeding the 

learning system with information about the system 

boundaries. We have demonstrated through 

simulations that the proposed approach is suitable 

for static control of high dimensional redundant soft 

manipulators. We have also tried to address the 

possibility of utilizing the distinct self-motion 

manifolds of soft robots and its probable 

implications. Finally, comparison of the proposed 

method with commonly used inverse Jacobian 

method indicates that the learning system 

generalizes to the ‘shortest path’ solution. 
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