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Abstract

Eyes are one of the most salient features of the human
face, and the location of the pupil allows access to impor-
tant information which can be used in several computer vi-
sion applications. Several commercial eye-trackers can es-
timate with good accuracy the pupil location, but need com-
plex hardware specifications and a controlled user environ-
ment (high eye image resolution, good illumination, small
head pose variations) making these solutions difficult to use
in an arbitrary environment. In this paper, we present an
approach based on Hough randomized regression trees. We
demonstrate, by several evaluations on challenging public
datasets that our approach is very robust to illumination,
scale, eye movements and high head pose variations and
vields a significant improvement compared to a wide range
of state-of-the-art methods..

1. Introduction

Pupil location plays a key role in several computer vision
applications especially in face analysis. In facial expression
recognition fields, it allows access to important information
such as the cognitive and expressive state of the person. In
biometric applications, face identification and recognition
are closely linked to the pupil. Typically, HCI applications
principally use this characteristic.

Several industrial solutions are commercialized. They
provide good accuracy on pupil location. Some of these
solutions use complex hardware specifications (embedded
camera on a head-mounted system) making them inappro-
priate for large scale public use. Other solutions use a range
of infrared cameras to detect corneal reflection and estimate
the pupil position, but they remain very sensitive to illu-
mination conditions. Hansen et al give a detailed survey
of pupil location methods from a single monocular camera
in[11].
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Figure 1. Real-time 2D eye-pupil estimation by our approach.

In this paper, we present a non-intrusive robust pupil
localization from a simple uncalibrated monocular cam-
era. Based on an ensemble of randomized regression trees
grouped in a single forest, our method detects 2D pupil
location in real-time as illustrated in Figure 1. The for-
est learns the spatial relations between images patches and
pupil 2D location from a training set. The training set is
chosen so as to cover all possible variations relative to the
pupil appearances. We derive a function that estimates the
final 2D pupil location in the image space from the pro-
jected forest outputs on Hough space in a pyramidal way by
merging.

In our experiments, we evaluate the robustness and accu-
racy of our method on challenging databases. We demon-
strate that the obtained results are comparable and some-
times superior to a wide range the state-of-the-art methods.

2. Related work

Our work relates to a large set of existing methods trying
to detect the pupil location from monocular camera with
sufficient accuracy. [17, 21, 22] present the most relevant
methods where the main principle is to detect the face using



the Viola Jones method [24], extract rough regions around
the eyes using anthropomorphic relations then estimate the
spatial position of the pupil on the image space.

Timm and Barth [21] use the geometric aspect of the
pupil by defining an objective function based on an image
gradient that takes its maximum at the intersection of the
gradient vectors. This method is very robust under illumi-
nation and scale variations. Nevertheless, with significant
head pose variations, circularity of the pupil is not guaran-
teed giving bad estimates.

Valenti et al. [22] use an isophote curvature which repre-
sents a set of curves that connects points of equal intensity.
They extract a SIFT [15] vector for each candidate location
and compare it to a given template in a defined database to
get the final decision. Like the method used by Timm et al.,
this solution suffers significantly from head pose variations
since vectors pointing to the isophotes centers give a wrong
estimate.

Markus et al. [17] ignore geometric assumptions, they
use a machine-learning approach by training a cascaded en-
sembles of trees to learn the mapping between eyes images
appearances and 2D pupil locations. Each ensemble pro-
cesses a given scale ¢ and represents the input of the follow-
ing ensemble relative to the scale ¢ — 1 up to the final output
(the number of scales defines the number of ensembles).
Their final learning includes one hundred trees organized in
five ensembles trained with six million images.

The latter method seems the most robust and accurate ap-
proach under different constraints such as low resolution, il-
lumination conditions and head pose variations but it needs
a strong initialization assumption due to the designing of
their processing model and it suffers from some intra-user
variations.

Our approach is relatively close to this method as we
use the same learning approach, except that we integrate a
generalized Hough space in the final estimation.To handle
scale variations without introducing prior information,
we introduce a new voting space to better estimate the
global maximum of the eye-pupil location by merging
the Hough spaces resulting from each scale. In addition,
we show that with a smaller set of trees than [17] we can
obtain similar, or even better results. We also show that
this method can be extended to different regression prob-
lems. To the best of our knowledge, our proposal is the first
approach that uses Hough regression forest for pupil local-
ization.

3. Our method

We use randomized regression trees to estimate the 2D
pupil locations from 2D images on detected faces. In sec-
tion 3.1, we provide some background on regression trees,
then we detail the training step of the trees in section 3.2.
In 3.3, we explain the mapping from the trees outputs to the

2D pupil location using the whole ensemble of the trees.
Finally, in 3.4, we focus on the training data.

3.1. Regression forest

Random forest-based techniques are increasingly used
for computer vision-based applications. Introduced by
Breiman [2], randomized trees deal with different tasks,
in classification [8, 14, 16, 20], in regression [4, 5, 12, 17],
in density estimation [1, 19] and in manifold learning [10].

Regression forest is an ensemble of tree predictors. Each
tree splits the initial problem in two low complexity prob-
lems in a recursive way. This subdivision is performed by a
simple test at each node of the tree. The tests are selected in
order to achieve an optimal clustering. The terminal nodes
of the tree called leaves, store the models that approximate
the best desired output. To achieve a high generalization,
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Figure 2. Overview of a regression forest. For a given input im-
age, each tree applies at each node a simple binary test until reach-
ing the leaf which stores the output models. By combining all
the trees, the forest returns the aggregation of all the informations
stored in the leaves.

two randomness are introduced during the training of the
trees, first, in the set of training data provided for each tree,
second, in the set of tests computed for optimization for
each node. A simple illustration of a regression forest used
in our work is represented in Figure 2.

3.2. Training

Each tree t in the forest 7;—1.7 (T defines the forest size)
is built separately from a set of annotated patches {w; =
fi, ¢i, yi } randomly selected from all the training examples,
where:

e f; is the extracted features vector from a given patch.
e ¢; represents the class of a given patch.
e y; represents the output variable to regress.

In our work, the extracted feature vector f; relates to the
intensities values of the patches. ¢; € {0, 1}, all the patches
extracted from the pupil images are assigned to class 1 for



positive patches and class O represents all the patches ex-
tracted from arbitrary examples as negatives patches. y;
represents the offset vector stretching from the patch center
to the pupil center in the image from which it was extracted
(y; = 0 for the negative patches.)

During training, we define a simple test at each node
starting from the root, randomly selected from a large set
of possible tests. Similar to [17] which finds its origin in
[14], the test is defined as :

{ Loif fi(z) = fiz2) <7

0, otherwise

where {f;(x1) — fi(x2)} represents the difference in pixel
intensities between two locations (x1,x2) in the patch and
7 is a random threshold. Consider an ensemble of training
data for a given node S, if the test is verified, the training
data is sent to the right child node ST otherwise, it is sent
to the left child node S”. Figure 3 shows a patch extracted
from a positive image with 2D offset vector and two ran-
dom pixel locations 21,2 for the binary test. The building
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Figure 3. An example of a positive patch (represented by a red rect-

angle) and the associated 2D offset vector. The green rectangles
represent the two selected pixel locations for the binary test.

of each tree is supervised. It consists of finding for each
node during training the optimal binary test {z}, 25, 7*}
that maximizes the training data clustering defined by the
purity of the two child nodes. To build trees able to capture
both classification and regression information, two objec-
tive functions are evaluated such as in [6]:

e C(lassification
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with

H(S)=— Y p(c/)n(p(c/S) @

ce{0,1}

Qo represents the information gain equal to the entropy
H of the parent node S minus the weighted sum of the
entropy of the left child S and the right child S*.

e Regression
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(21 represents the sum of all the distances from each
offset vector to the mean in each child node.

Maximizing ()¢ and minimizing ()1 aims to fix the opti-
mal binary test for each node until reaching the leaves.
Each leaf [ stores the following information :

e p(c/{w;}ier) captures the probability of each class in
the reached leaf [.

o N(yi,41,%]) represents the Gaussian distribution of
all the offset vectors reaching the leaf {. §; and X} rep-
resent the mean and the covariance of the offset vectors
respectively .

e {y;}ic; represents the set of all the offset vectors
reaching the leaf [.

3.3. Testing

Given an unseen image, we build an image pyramid to
model the scale variation. For each scale of the image
pyramid, we extract a number of fixed size patches. Each
patch is passed through all the trees of the forest. Each
tree tests the patch using all binary tests fixed at each node
until reaching the leaf which gives the stored informations
{ple = 1w), N (y, 5 =), {yi bier}-

Using all the leaves returned by the forest for all the
patches, we build the Hough image H ; for each scale from
the pyramid. We project the set of pupil location candidates
by adding all the offset vectors {y; };¢; to the patch center c.
For a single tree, the candidates are represented as the sum
of a Dirac weighted by the probability of belonging to the
eye p(c = 1) in the reached leaf. Then, we average all the
outputs over the forest. For a given number €2 of patches
extracted from a given image from the pyramid, the Hough
image H is represented as follows :

6(yi + C))) “)

B pec= 1|l
=3 (X (S M
teT
All the non-informative leaves presenting a high variance

we i€l
defined as trace(X}) and a low probability p(c = 1|w) are
discarded.

Unlike previous works as [6] where the global maxi-
mum is estimated using the best scale in the performed
image pyramid, in our work, we consider all the votes
casted by all the scales in the pyramid. By performing
a weighted merge of the different Hough space 7, we
build a global voting space H as follow: H

H= Za% 5)
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Figure 4. Hough forest voting strategy. (a) some patches extracted from the test image. (b) for each patch, the forest casts a number of
votes (the color indicates the contribution of each patch). (c) aggregation of votes from all the extracted patches. (d) mapping the pick

location from the Hough space into the image space.

where:
max(Hs)

757 >° maz(Hs)

seSC

(6)

Figure 4 gives an overview of the building of the Hough
image for a given image of the pyramid.

3.4. Training data

To build our forest, we use annotated datasets [23]
and [25]. We perform face detection through all the images
and extract rough regions around the eyes using anthropo-
morphic relations.

To enhance the generalization of our trees, we intro-
duce some perturbations in the extracted regions as [17]
in scale with [+30%, —30%] and in 2D pupil location by
[—25%, +25%] from the original.

We collect 10k perturbed eye region samples from which
we extract 50 patches of a fixed size (16 x 16) per sample.
Thus, we obtain 500k positive images.

According to our problem, we extract a set of negative
patches from regions belonging to the face but different to
the eyes regions. Figure 5 shows some examples from the
training data.
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Figure 5. Training data generation. (a) 2D pupil location perturba-
tions. (b) Scale perturbations. (¢) Some example of final extracted
patches for the forest training.

4. Experimental results

In our experiments, we build a forest of 30 trees, the last
10 trees are trained from the misclassified patches used for
the training of the first 20 trees. The depth of trees is fixed
at 15. As in [6], the regression and classification objective
functions are selected with equal probability at each node,
if the number of negative patches is reduced by more than
90%, the regression function is performed. For optimization
of binary tests at each node, 10000 tests are evaluated.

During the test, the number of scales used for the pyra-
mid images is fixed to five. We use the Viola Jones face
detector [24] to extract the face, then we extract two rough
regions around the eyes.

4.1. Quantitative results on still images

To compare our method to the state-of-the-art, the
database BioID! is used. It contains 1521 annotated gray-
scale images. BiolD is considered among the most chal-
lenging databases for pupil localization due to its signifi-
cant variations in terms of head pose variations, scale and
illumination conditions. Like the majority of pupil localiza-
tion algorithms, the metric introduced by [13] is used. It is
defined by :

max{Dy,Dr}

e= el @)

where Dy, and Dpg, represent the Euclidean distances from
the estimated pupil locations to those in the ground truth.
D is the Euclidean distance between the ground truth pupil
locations.

Table. 1 shows the comparison of our method with the
state-of- the-art according to equation 7. It represents the
percentage of correct estimations for the given threshold(we
use the same values provided by [17, 21, 22]).

e ¢ < 0.25: Usually used for face matching, it corre-
sponds to the distances between the pupil center and
the eye corner. It indicates that the estimation belongs
to the eye region which represents a low level of pre-

Thttps://www.bioid.com/About/BiolD-Face-Database
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Figure 6. Some pupil estimations on the BiolD database using our method. First row: good estimations on images with favorable conditions.
Second and third rows: robust estimations under some unfavorable conditions (dark illumination, head pose variations and presence of

glasses). Last row: some typical bad estimations using our method.

\ Methods | e<0.05] e<0.10 | e<0.15 | ¢<0.25 |
Jesorsky et al [13] 38.0 78.8 84.7 91.8
Timm et al [21] 82.5 93.4 95.2 98.0
Valenti et al. [22] 84.1 91.0 94.0 96.6
Markus et al [17] 89.9 97.1 — 99.7
Our method 91.3 97.9 98.5 99.6

Table 1. Comparison of pupil 2D localization on the BiolD
database. The authors of [17] do not provide the result for e <
0.15 but we point it out as an empty case.

cision. The majority of methods gives approximately
the same results.

e ¢ < (.15 and e < 0.10: Our method yields better
results compared to [22] and [21]. The circularity of
the pupil which represents a strong assumption of the
last two methods is not guaranteed due to significant
changes in the head pose. The presence of eye images
under head pose variations in our training data makes
our method robust to this kind of constraint.

e ¢ < 0.05: Corresponds to a high level of precision in

estimation. It indicates a very low distances from the
pupil center. Compared to [17] our method gives bet-
ter results. The projection on Hough space implies an
extension in the regression space of the forest. In ad-
dition, the absence of some typical examples like the
presence of glasses in the training data in [17] para-
lyzes this method in some scenarios.

Figure 6 shows visual a illustration of 2D pupil estimation.
The failures represented in the last row can be justified by
the following:

e The failure of the face detector as shown in the first ex-

ample of the last row which distorts the research area.

e The eyes appearance distorted by highlights on the

glasses, dark illumination or eye closure.
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Figure 7. (a) Comparison of the accuracy curve between our method and [17] for the talking video database. (b) The distribution of the
normalized error over 1000 frames. (c) Some pupil estimations (the ground truth is represented by circles and the estimation by crosses),
the first row representing some good estimations, the second row illustrating some failures of our method.

4.2. Quantitative results on videos

As in [17], we evaluate our method with the public
database Talking Face video?®. It contains 5000 frames of a
person engaged in a conversation. A specific active appear-
ance model [3] is trained to annotate the frames accurately.
The forest trained in section 4.1 and the metric of equation 7
are used for the evaluation of our method.

We average the normalized error over all the frames. We
obtain a mean error equal to 0.190. Because the authors
of [17] not provide numerical results for their method, we
tried to reproduce their accuracy curve at best and compare
it to our approach. Figure 7a illustrates the comparison in-
dicating that both methods give an estimation belonging to
the pupil-radius (e < 0.10) over all the frames. The clo-
sure of eyes and the wrong annotations in some frames as
shown in Figure 7c explain the peaks on the distribution of
the normalized error.

4.3. The effect of forest parameters on the estima-
tion

Our method is controlled by some parameters. The pre-
vious experiments were performed under optimal values of
these parameters.

e The number of trees used for the estimation. Fig-
ure 8a illustrates the variation of the normalized error
defined in equation 7 for 500 images from the BiolD
and talking video databases under different values of
forest size. The error decreases by increasing the num-
ber of trees used for both databases (note the appar-
ent gap between the two curves due to the different
resolution of the images in the two databases). The
normalized error is reduced by approximatively 30%
compared to the initial value (from 0.055 to 0.040 for
BioID and from 0.032 to 0.170 for the talking video)
which is the result of output smoothing by the differ-
ent trees. We noticed that, using more than 25 trees

Zhttp://www-prima.inrialpes.fr/FGnet/data/01-
TalkingFace/talking face.html

does not produce more precision, so we fix the optimal
forest size to 25. Figure 8c shows the time in seconds
needed to process the 500 frames under different sizes
in the forest approach. The use of 25 trees gives an
average fps of 30.

e The number of patches extracted from the testing im-
age. Figure 8b represents the variation of the normal-
ized error under different numbers of patches used for
the estimation. The normalized error is reduced ap-
proximatively by 75% for the talking video database
(from 0.082 to 0.02) and 45% for the BiolD database
(from 0.078 to 0.044). By increasing the number of
patches, the trees get more information about the input
test image which consequently gives more accurate es-
timations. In our experiments, according to the dimen-
sion of the image test (80 x 70), we noticed that 35
patches cover approximatively all the input informa-
tion. Figure 8d shows the time needed to process 500
frames for different numbers of extracted patches.

e The maximum variance which is represented by the
trace of the covariance of the offsets reaching each leaf
is fixed to 800 and the probability p(c/w) is fixed to
0.7. These values seems to provide good estimation
results, a variance of 800 defines a voting area of ap-
proximatively (20 x 20) from the pupil center. The
patch size of (16 x 16) gives an acceptable appearance
which allows a good discrimination and generalization
of the forest during the estimation.

Our real-time system is tested on a Intel Core i7 @
2.70GHz with 8GB of RAM machine which is used for the
training and the testing (the trees are trained sequentially).
According to the low memory occupied by the trees and
their quick response time for the regression, our results can
be reproduced on a machine with lower processing perfor-
mances. Figure (9) shows some successful qualitative esti-
mations of the pupil location on still images with different
scenarios, head pose variations, greater distances from the
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Figure 8. The forest parameters effect on the pupil location estimation on 500 frames from the BiolD database labeled in blue and the
talking video database labeled in red. a) The normalized error behavior under trees number variation with the number of patches extracted
fixed to 30. b) The normalized error variation as a function of the number of patches extracted when the number of trees is fixed to 15.
c¢) and d) represent the time needed to regress the output of all 500 frames under number of trees and the number of patches variations

extracted respectively.

sensor, presence of glasses and multi-users tracking.

5. Conclusions

In this paper, we have proposed an approach for real-
time pupil localization based on Hough regression forest.
By exploiting the regression and classification information
encoded by each tree, we construct a voting space which
is the generalized Hough space. This space represents the
response of each tree in the forest for each patch extracted
from the test image which is extracted from a pyramid im-
age. The maximum intensity is selected from this space
after weighting all the results related to each image on the
pyramid by their local maxima corresponding to 2D pupil
location. By testing our approach on challenging public
datasets, we demonstrate that our method yields a signifi-
cant improvement in terms of robustness and precision com-
pared to the state-of-the-art. These performances are di-
rectly linked to the generalization power of the trees built
from the perturbations introduced in the training data and
the extension of the regression ability by the generalized
Hough space projection. The robustness of our approach
can meet demanding eye-tracking requirements.
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