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Coccoliths contribute significantly to pelagic sediments formed over the last 200 million years, yet their
geochemistry has been largely overlooked as a potential record of palaeoenvironmental information.
Recently developed techniques have enabled successful extraction of coccolith-dominated sediment frac-
tions. However, the reliability of palaeoenvironmental interpretations that can be drawn from coccolith
analyses is still confounded by a poor understanding of the ‘‘vital effect’’ – the physiological component of
the isotopic composition of biominerals. Here we demonstrate that oxygen isotope composition in
core-top coccoliths is not only set by the temperature and isotopic composition of seawater, but appears
to be controlled to first order by the environmental factors regulating algal growth rate. Partial
registration of the isotopic signature of assimilated CO2 (with a heavy isotopic composition relative to
other dissolved inorganic carbon species) is confirmed to be the dominant mechanism behind the vital
effect recorded in the Noelaerhabdaceae coccoliths. Our data point towards a strong role of growth irra-
diance on expression of the 18O and 13C vital effects, ranging from limited (near equilibrium composition)
in low light regimes to 3‰ offset in oxygen isotopes at higher growth irradiances, such as those
found under light-saturated conditions typically imposed in laboratory cultures. This highlights the
importance of considering environmental controls when translating oxygen isotope composition of
coccoliths into temperature estimates. Furthermore, our calibration suggests that the alkenone-based
CO2 palaeobarometer proxy may be refined by combining paired organic/calcite measurements during
the Cenozoic.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Studies in the 1980s demonstrated substantial isotopic offset of
fine sediment fraction (assigned to coccolith signals) from
species-specific foraminifera analyses during the Late Pleistocene
[1,2]. This discrepancy, and the difficulty in attaining
species-specific assemblages of coccoliths, have led to very few
attempts to utilise coccolith signals in palaeoceanography relative
to foraminifera-based studies. New separation methods mean it is
now possible to extract coccolith-dominated assemblages from
pelagic sediments [3,4]; thus it is now necessary to determine
whether their geochemistry, and in particular their oxygen isotope
composition can be used in palaeoceanographic studies or if
primary (seawater) signals, such as sea surface temperatures
(SSTs), are partially or completely overwritten by the vital effect.

Culture studies of coccolithophores indicate that the magnitude
of the interspecific vital effect for the oxygen isotopes (d18O) can
reach 5‰[5–10] (Fig. 1). In contrast with other marine biomineralis-
ers such as the foraminifera, coccolithophores exhibit a particularly
large vital effect because biomineralisation occurs intracellularly
[11]. Recent work by Bolton and Stoll [12] has provided insightful
constraints on the vital effect recorded in coccoliths for the carbon
isotope system. They suggested an evolutionary control of the vital
effect in coccolithophores resulting from decreased pCO2 over the
Cenozoic and the consequent emergence of CO2-concentrating
mechanisms (CCMs) operating to maintain a sufficient intracellular
carbon pool [13]. The behaviour of oxygen isotopes within coccolith
calcite remains, however, largely unexplained. Only empirical
calibrations between external (environmental) forcing and the oxy-
gen isotopic composition of phytoplanktonic calcite have been
attempted [8,14]. A quantitative comprehension of the 18O vital
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Fig. 1. Compilation of published oxygen isotope composition of coccolith calcite (d18Oc in ‰ V-PDB) grown in the laboratory at different temperatures. Lines represent the
ordinary least squares fit for calibrations. The composition of the inorganic calcite (sensu [25]) was calculated using Eq. (3) for an isotopic composition of seawater (d18Ow) of
+0.5‰ in ‰ V-SMOW, and is denoted by the bold dotted line. Coccoliths studied in this work, with oxygen isotope composition above the inorganic line, are assigned to an
isotopic ‘‘heavy group’’ [5]. The offset from inorganic calcite (� equilibrium) towards positive d18Oc values can be considerable (up to 3‰). Source of data are specified in the
legend inset; otherwise for individual temperature measurements: 15 �C: [9]; 17 �C: [6]; 18 �C: [7]. Figure simplified from [24].
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effect has not been addressed in the recent cellular models devel-
oped by Bolton and Stoll [12] and Holtz et al. [15]. A geochemical
characteristic of the coccoliths of the Noelaerhabdaceae family
(including the present-day dominant species Emiliania huxleyi and
Gephyrocapsa oceanica) in culture is that they precipitate calcite with
positive d18O with respect to inorganic calcite (up to +3‰), and as
such, have been attributed to an isotopically ‘‘heavy group’’ [5]
(Fig. 1). In contrast, downcore investigation of oxygen isotope signa-
tures measured from Noelaerhabdaceae-dominated coccoliths indi-
cates that the representatives of the family in the Neogene (the
reticulofenestrids) are relatively close to equilibrium [16]. This
divergence between culture and field approaches represents a
potential 3‰ offset in d18O (equating to �12 �C), and therefore jus-
tifies the need to better constrain the vital effect in coccoliths and
the underlying cause of this significant discrepancy.

2. Methods

The present study used Noelaerhabdaceae coccolith assem-
blages comprising G. oceanica and E. huxleyi microseparated
from core top sediments to attempt a calibration of oxygen
isotope composition in coccoliths with oceanic temperatures
and ancillary oceanic parameters that may influence d18O of
calcite.

2.1. Core top sediments and microseparation

We attempted to process 23 core top sediments from the
Atlantic and Indian Oceans (Fig. 2). Sediment samples were pro-
cessed using the protocol described in [4] based on cascade
microseparation steps through screen membranes with
well-calibrated apertures. Noelaerhabdaceae coccoliths were con-
centrated in fractions smaller than 3 lm (Figs. 3 and 4).
However, the finest fraction of sediments also contained fragments
of larger coccoliths, specimens of Florisphaera profunda and the
so-called ‘‘micarbs’’ [4]. As none of the originally obtained assem-
blages were sufficiently concentrated in Noelaerhabdaceae coccol-
iths, we added a purification step based on short centrifugation
runs (4000 rpm for 45 s). The supernatant containing the micarbs
and fragments were discarded and the pelleted fraction was
repeatedly processed in the same way until sufficient
Noelaerhabdaceae purity (>90 wt%) was obtained (Fig. 4). Pellets
were eventually re-filtered onto a 2 lm screen membrane. Final
fractions were quantified for their calcite particle content under
a Zeiss AxioImager M1 light microscope (1575� magnification)
using circular polarisation of light [17] (Table S1).

2.2. Physical and chemical parameters of the mixed-layer

Annual and monthly-averaged modern day temperatures, oxy-
gen composition of seawater (d18Ow), and pH for each core top site
were extracted from the World Ocean Atlas 2009 gridded 1� � 1�
dataset (http://odv.awi.de/en/data/ocean/world_ocean_atlas_
2009/) [18,19] (Table S2). Annual average mixed-layer depth at
each site was extracted from the gridded 2� resolution
mixed-layer depth climatology of [20]. The mixed layer depth cri-
terion in this data product is the depth of the 0.03 kg m�3 density
increase relative to that at a 10 m reference depth (derived from
ARGO float profiles). To assess for any seasonal bias, we calculated
‘‘productivity-weighted’’ sea surface temperatures using the
approach of Müller et al. [21], where the productivity proxy used
was either monthly-averaged surface chlorophyll (SSTPROD_ORG) or
calcite (SSTPROD_PIC) retrieved from remote sensing data products
(Eq. (1)):

SSTPROD ¼
Pi¼12

i¼1 PðiÞTðiÞ
Pi¼12

i¼1 PðiÞ
ð1Þ

where P is either chlorophyll a concentration (mg m�3), or particu-
late inorganic carbon concentration (mol m�3), T is temperature
(�C), and i is calendar month.

Annual average above sea surface photosynthetically available
radiation (PAR, moles photons m�2 day�1) and the vertical diffuse
attenuation coefficient at 490 nm (Kd(490), m�1) at each site were
retrieved from the respective MODIS annual average climatologies
available from NASA (http://oceancolor.gsfc.nasa.gov/). MODIS
satellite remote sensing data products were averages for 2003–2013

http://odv.awi.de/en/data/ocean/world_ocean_atlas_2009/
http://odv.awi.de/en/data/ocean/world_ocean_atlas_2009/
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Fig. 2. Map showing mean annual sea surface temperatures and the locations of attempted core top sediments. From the 23 sites processed with the microseparation, only
seven (denoted by the larger and white circles and bold text) have successfully provided near (>90 wt%) monotaxic Noelaerhabdaceae fractions (see Table S1 for purities). The
map was generated using Ocean Data View (http://odv.awi.de).

Fig. 3. Scanning electron micrograph of core top MD95-2038 (bulk sediment) in the North Atlantic Ocean. Coccoliths (and fragments) of the Noelaerhabdaceae family are
coloured in pink with Gephyrocapsa oceanica characterised by a bridge over the central area, and the relatively small Emiliania huxleyi with slits between elements of the distal
shield. Other calcareous nannofossils comprise Calcidiscus leptoporus coccoliths and laths of Florisphaera profunda. Scale bar is inset. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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(MODIS lifetime), downloaded from the NASA ocean color website.
A mean average mixed-layer PAR (PARmixed-layer in Eq. (2)) was esti-
mated using these estimates of PAR and Kd(490), alongside the mod-
elled mixed-layer depths described previously (e.g., [22]):

PARmixed-layer ¼
PAR

Kdð490Þ�MLD
1� e�Kdð490Þ�MLD� �

ð2Þ
2.3. Isotopic measurements, inorganic reference and quantification of
the vital effect

Bulk sample and Noelaerhabdaceae coccoliths fractions were
measured for their carbon and oxygen isotope ratios using a
Delta V Advantage isotope mass spectrometer fitted with a Kiel
IV carbonate device at UPMC, Paris. Around 20 lg of homogenised

http://odv.awi.de


Fig. 4. Micrograph of smear slide showing purified Noelaerhabdaceae coccoliths site VM04-08 in the North Atlantic. The image was taken using a circular polariser [17] at a
magnification of 1575�. Scale bar is inset.
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samples were purified with orthophosphoric acid at 70 �C.
Calibration to V-PDB standard via NBS-19 was made using the
in-house Carrara marble standard (Marceau). Reproducibility of
replicated standards was better than 0.1‰ for d13C and d18O.

The offset between oxygen isotope composition of
Noelaerhabdaceae coccoliths (d18ONoel) and seawater (d18Ow) is
commonly used in biogeochemical and palaeoceanographic studies
to estimate the magnitude of fractionation between the fluid and
the mineral [5,23], but this offset does not integrate the tempera-
ture control on the magnitude of oxygen isotope fractionation.
Conversely, the isotopic departure of coccolith calcite from inor-
ganic calcite can be used to quantify the vital effect [6,24]. The
composition of the inorganic calcite (expressed in ‰ V-PDB) was
calculated using the equation given in [25] accounting for a pH
effect of 1.1‰ in d18Oc per pH unit [26]:

d18Oinorganic ¼ ð0:0009� T2Þ � ð0:2468� TÞ þ 3:7434� ð1:1
� ½pH — 7:8�Þ þ ðd18Ow � 0:27Þ ð3Þ

where T is the sea surface temperature (�C) and d18Ow the isotopic
composition of seawater (in ‰ V-SMOW), both retrieved from ocea-
nic databases. The d18Oinorganic is expressed as ‰ in the V-PDB scale
via the �0.27 coefficient to account for the V-SMOW into the V-PDB
scale conversion [27].

Subsequently, the magnitude of the vital effect for the oxygen
isotopes (V-PDB) was calculated as:

18O Vital effect ¼ d18ONoel � d18Oinorganic ð4Þ

where all parameters are expressed in ‰ V-PDB. The composition of
d18Oinorganic is given in Eq. (3). The oxygen isotope composition of
Noelaerhabdaceae coccoliths (d18ONoel) was measured from purified
coccolith core top assemblages.

3. Core-top calibration of oxygen isotope composition in
coccolith calcite

3.1. Oxygen isotope composition and sea surface temperature

Only 7 assemblages were successfully processed to final
Gephyrocapsa spp. and E. huxleyi contents of >90 wt% of total calcite
particles (see composition of fractions in Table S1). This result may
appear surprising given the substantial abundance of these species,
yet was a result of the presence of other calcite components in the
finest sediment fractions.

The raw isotopic composition of Noelaerhabdaceae assemblages
(d18ONoel) was compared to anticipated physical and chemical sea-
water parameters retrieved from modern-day records (Table S2).
Using these data, we first estimated the magnitude of fractionation
by considering the isotopic offset between coccolith and seawater
oxygen composition (d18ONoel�d18Ow). Using mean annual
mixed-layer temperatures above each core site we found that the
‘‘d18ONoel�d18Ow’’ values did not appear to record any temperature
dependence (Fig. 5a). In fact, the oxygen isotope compositions of
Noelaerhabdaceae from core tops are actually more negative and
overall closer to the inorganic reference relative to culture data.

3.2. Sensitivity study: Effect of seasonality and calcification depth on
the calibration

We investigated for possible bias arising from the use of mean
annual temperatures, which as a result of seasonality in coccol-
ithophore productivity, may not accurately reflect the temperature
the phytoplankton grew and calcified at. Seasonal variability in the
production of E. huxleyi has been reported for in situ studies in the
North Atlantic (e.g., [28]). However, this limited number of studies
did not report the same seasonal patterns over the course of a year,
meaning there was no clear indication of exactly which season (if
any) calcite production was dominated in. As an alternative means
to account for seasonality, we calculated a mean annual tempera-
ture weighted towards months where either remotely sensed
chlorophyll or particulate inorganic carbon (PIC) was more domi-
nant (‘‘SSTPROD’’, Eq. (1); Table S3). Neither correcting for seasonal-
ity in coccolith production using PIC- and ORG-SSTPROD estimates
reconciles the isotopic fractionation found in our core top calibra-
tion (all p-values > 0.65) (Fig. 5a). Similarly choosing parameters
for either surface waters, the entire integrated mixed-layer depth,
or the base of the mixed-layer for the calibration did not improve
the correlation of d18ONoel–d18Ow values with temperature (Fig. S1).

This lack of correlation challenges the use of the d18O proxy to
record past sea surface temperatures using Noelaerhabdaceae coc-
coliths. Successful culture and core top calibration has been
achieved for the cosmopolitan coccolithophore species Calcidiscus
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leptoporus with a good agreement between temperature and coc-
colith d18O [14]. This would suggest that, in our study case, an
additional component of the vital effect other than temperature
is present in the coccoliths of the isotopic ‘‘heavy group’’ being
examined here.

3.3. Seeking a connection between the vital effect and environmental
parameters

The offset between d18ONoel and d18Oinorganic represents the
physiological imprint (vital effect) on the oxygen isotopes in coc-
colith calcite (Eq. (4)) that may obscure the temperature control
on oxygen isotope fractionation. Calculating and removing the
thermodynamic effect from core top coccoliths, we observe a pos-
itive correlation between temperature and the residual d18O that
corresponds to the vital effect (p-value < 0.05) (Fig. 5b). This corre-
lation suggests that the magnitude of the vital effect itself is corre-
lated with temperature, with more positive d18O values at higher
temperatures. All culture data generated in previous studies con-
flict with this observation, with each individual calibration line
paralleling that of inorganic calcite, implying a constant magnitude
of the 18O vital effect across the examined temperature ranges
(Fig. 1). This leads us to suggest that the vital effect is perhaps
not strongly temperature dependent, being regulated instead by
another environmental parameter. We found no significant
correlation between d18ONoel and d18Ow values and salinity, alkalin-
ity, dissolved inorganic carbon (DIC) concentration, pH or
macronutrients concentrations (Table S2). The ‘‘carbonate ion
effect’’ found in culture on C. leptoporus [29] can be ruled out as
a primary driving mechanism for oxygen isotope composition of
coccolith calcite in the natural environment because [CO3

2�] and
the magnitude of the 18O vital effect are not correlated. However,
we do see a striking correlation between the magnitude of 18O vital
effect and (i) the mean annual mixed-layer light intensity
(r2 = 0.91; Fig. 6a), and (ii) raw d13CNoel values (r2 = 0.62; Fig. 6b).

4. Divergence from laboratory culture data: the effect of growth
rate

One may argue whether or not culture data can be confidently
transferred to sedimentary coccolith assemblages (e.g., [24,30]).
Previously reported magnitudes of the vital effect have typically
originated from laboratory experiments conducted under
irradiance-saturated, nutrient-replete conditions, with no ecologi-
cal competition with other species or phytoplanktonic groups for
DIC and light resources. Hence, culture-based isotopic fractiona-
tion factors likely correspond to measurements obtained under
maximum growth rates. In these culture studies oxygen isotope
compositions consistently have a substantial offset towards posi-
tive d18O values (Fig. 1). The few culture studies that have been
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conducted below light saturation levels have shown the significant
influence of light availability on the growth rate of E. huxleyi
[31,32]. A similar observation has been made for G. oceanica, where
a �1‰ modulation of d18O was reported [6].

We therefore suggest that the large array of oxygen isotope
compositions of Noelaerhabdaceae coccoliths in culture work
may originate from maximum growth rates promoted by light sat-
uration at a given temperature. Unfortunately, the scarcity of
reported growth rates and light levels along with published iso-
topic data, together with inter-study differences in experimental
set-up prevents us from testing a relationship from existing culture
data. In the natural environment, ecological competition for nutri-
ents, DIC and light probably leads to relatively lower coccol-
ithophore growth rates (e.g., [33]), producing coccolith d18O that
are close to inorganic (equilibrium) conditions. This hypothesis
can potentially reconcile the Neogene record [16], core top and cul-
ture data. However, the underlying mechanistic link between
light-modulated cell division rate and oxygen isotope fractionation
has not yet been identified.

5. Vital effect in coccolith: A palaeo-growth proxy?

5.1. Coccolith carbon isotope composition and implication for alkenone
interpretations

A link between growth rate and carbon isotope composition in
coccolith calcite and phytoplanktonic organic matter has been
demonstrated by numerous studies [7,9,34–36]. At the cellular
level, high temperatures and light levels lead to elevated
photosynthetic rates in E. huxleyi [35,37]. An isotopic consequence
of this is that carbon isotope fractionation by the enzyme
ribulose-1,5-bisphosphate carboxylase (RuBisCO) induces more
13C-enrichement of the remaining intracellular carbon pool and
subsequently an isotopically heavier calcite [9,12,15,24]. In the
present study, the significant correlation between 18O vital effect
and d13CNoel (Fig. 6b) provides compelling evidence for an imprint
of phytoplankton physiology (i.e., growth rate) on the magnitude of
stable carbon and oxygen isotope fractionation in coccolith calcite.
Since the coverage in seawater d13CDIC in oceanic databases is too
sparse to extract data for our sites [38], we were however unable
to calculate d13CNoel–d13CDIC values. Furthermore, it has proved
impossible to obtain pre-industrial d13C of the DIC averaged over
the mixed-layer depth for our core top locations, nor to account
for seasonality. Considering the wide range of d13CNoel that we have
measured (�3‰), differential expression of the ‘‘Suess effect’’
between the studied sites is unable to explain the relatively strong
co-variation between 18O vital effect and d13CNoel [39,40]. In addi-
tion, there is a temperature effect on the d13C of the DIC that needs
to be considered [41,42]. However, over the range of investigated
temperatures in the present study (�9 �C), this thermodynamic
equilibrium effect is less than 1‰ on d13C values [41]. For these
reasons we have not exploited the raw d13CNoel values in further
calculations, but only their co-variation with oxygen isotope data,
making the assumption that the effect of the aforementioned fac-
tors are all similar, at least for subtropical gyre conditions.

A positive correlation between phosphate concentrations and
d13C values has been empirically determined in previous studies
for relatively nutrient rich waters, typically >0.2 lM PO4

3� [34].
This relationship represents the basis of the ‘‘b’’ coefficient widely
used for reconstructing palaeo-growth rate and deriving
d13Calkenone-based pCO2 estimates [43,44]. In our study, most of
the core top sites originate from oligotrophic gyre environments
(<0.15 lM PO4

3�; Table S2), representing a possible explanation
for the lack of a phosphate/d13C/growth rate correlation. This was
also found for the calibration of Bidigare et al. [34] for the relatively
low [PO4

3�] Bahamas time series (i.e., these data points fall off the
correlation found at higher PO4

3� concentrations).
Using combined d13C and Sr/Ca evidence from the sedimentary

record, Rickaby et al. [45] have demonstrated variable coccol-
ithophore productivity between glacial and interglacial cycles in
the Pleistocene. A mechanism suggested by Rickaby et al. [45] as
a possible explanation for this was variability in insolation driven
by eccentricity cycles. If confirmed, this study would represent a
potential source of downcore evidence for a modulation of growth
rate on stable isotope composition of coccolith calcite.
Unfortunately, d18O values were not available alongside d13C and
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Sr/Ca data in this work preventing further investigation of a link
between inferred palaeoproductivity and the magnitude of the
vital effect.

Finally, we note that in cultured symbiont-bearing foraminifera
and corals, the effect of irradiance on the oxygen isotopic compo-
sition of calcite has been reported; however the change in d18O val-
ues is rather small (less than 0.5‰), and the cause elusive [23,46].
5.2. Mechanism for the modulation of the 18O vital effect by growth
rate

Intracellular calcification, as occurs in coccolithophores, is
accompanied by the formation of protons due to the conversion
of bicarbonate to carbonate ions prior to mineralisation [11]. The
consequence of this is that higher growth and calcification rates
may decrease intracellular pH [7]. As a mechanism for increased
d18O at higher growth rates, we first hypothesise the expression
of a pH-dependence on 18O fractionation at higher calcification
rates (Eq. (3)). However, in order to explain a 3‰ change in
d18ONoel, a reduction of 3.5 pH units would be necessary. Such an
acidic environment is very unlikely to be occurring in a calcifying
biological system thus we rule this mechanism out as a potential
control.

A recent hypothesis has been put forward to explain the iso-
topic ‘‘heavy group’’ characterising the Noelaerhabdaceae coccol-
iths [9]. For slow growing coccolithophore algae, regardless of
which carbon substrate is acquired by the cell (i.e., CO2 or HCO3

�)
and subsequently used for calcification, complete isotopic
re-equilibration of the DIC pool and ambient water molecules is
achieved. This is illustrated by the slow growing (i.e., low cellular
division rate rather than PIC production) species Coccolithus pelag-
icus, which precipitates calcite with d18O values near to inorganic
conditions ([10]; see Fig. 1). In contrast fast dividing CO2-utilising
species [47,48], such as E. huxleyi, calcite formation may take place
before complete oxygen isotopic re-equilibration between DIC and
H2O (a thermodynamic process that occurs within a matter of
hours [49]). If calcification occurs prior to loss of the heavy d18O
signature of the internal DIC pool, coccolith calcite thus becomes
enriched in 18O isotopes compared to inorganic calcite. Recent
work has demonstrated that in some strains of E. huxleyi, a small
and variable proportion of the cell’s internal carbon pool may be
derived from assimilation of bicarbonate ions [11,50]. As HCO3

�

assimilation would not induce substantial isotopic disequilibrium
(transient 18O enrichment) of the DIC/H2O system inside the cell,
this effect has to be considered to assess the degree of disequilib-
rium effect imparted to the vital effect, particularly in modelling
studies [15]. We examined a possible link between CO2/HCO3

�

(hence pH) and the magnitude of the vital effect in our samples,
but found no correlation (Tables S1 and S2).

In summary, we suggest that the modulation of the vital effect
observed in sedimentary Noelaerhabdaceae coccoliths operates via
a tight relationship between growth rate and the residence time of
the DIC in the cell. The environmental driver for growth rate, and
thus intracellular DIC residence time, appears from our analyses
to be the light availability in the mixed layer (Fig. 6a), at least for
our core-top sites that mainly originate from subtropical gyre
environments.
6. Geological (downcore) implications and conclusions

The geological implication of the physiological control on the
magnitude of 18O fractionation in coccoliths is that the d18O of pre-
served coccoliths represents some combination of past seawater
temperature and potentially coccolithophore growth rates.
Applying an invariant 18O fractionation coefficient for E. huxleyi
and G. oceanica from cultures (as summarised in [24,51]) to all sed-
imentary Noelaerhabdaceae coccoliths may therefore lead to tem-
perature estimates that are biased significantly low. Using
additional evidence, such as that introduced by Rickaby et al.
[45] concerning the modulation of growth rate via
eccentricity-derived irradiance changes, our hypothesis postulat-
ing that d18O of coccolith calcite increases during period of more
intense productivity could potentially reconcile the discrepancy
between the foraminiferal and coccolith records.

The present study develops our understanding of the d18O and
d13C proxies that have been used extensively over the last 6 dec-
ades. Our findings have implications for palaeoenvironmental
interpretations derived not only from coccolith microseparated
assemblages, but more broadly, from bulk carbonate sample anal-
yses that represent the vast majority of published literature in this
field. The vital effect contains ecological information that, by
adopting a species-specific approach to geochemical analysis of
sediments, could potentially be used to refine our knowledge of
palaeoenvironments. For example as the Noelaerhabdaceae syn-
thesise alkenones [43,44,52], coccoliths of this family represent
an ideal archive for undertaking multiproxy (organic and inor-
ganic) analyses that would fully exploit the predominant
Noelaerhabdaceae record of the Neogene, especially with insight
into a better characterisation of palaeo-d13C of CO2 and cell growth
dynamics.

Future implementation of a comprehensive culture campaign is
needed to develop a quantitative link between the magnitude of
the vital effect for oxygen isotopes and growth rates and to decou-
ple the combined effect of temperature and growth rate on the
modulation of 18O apparent fractionation.
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