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Abstract: A tandem cold rolling mill permits to reduce the thickness of a steel strip while ensuring
the required mechanical properties. The tandem cold rolling could be modeled as a strongly non-
linear differential-algebraic system including state-dependent delays. In order to reach the new products
specifications, be inline with new challenges and also to optimize the process, advanced multi-variable
control strategies are investigated. This paper will establish, as a main contribution, a model reaching a
compromise between a good approximation of the process and its simplicity to control. A linearized
model of the cold rolling process including state-dependent delays will be provided and validated
numerically. A simulation with a simplistic multi-variable controller will illustrate the use of this model.
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1. INTRODUCTION

Metal rolling is a metallurgic process in which the thickness of
a metallic strip is reduced. This process is important since the
manufacturing of a wide types of products requires various thin
and smooth metal sheets. Tandem Cold Mill (TCM) (Roberts,
1978) consists of consecutive stands where each one is usually a
two high mill stand, which means that the stand contains a pair
of work rolls. Writing down the mathematical formulation of all
the subparts of TCM, we end up with a system having a large
dimension consisting of non-linear differential equations and
non-linear algebraic constraints. Moreover, the transportation
of the strip with variable speed from one stand to the consecu-
tive one implies the presence of state-dependent delays.

Due to the evolution of the technology, the specifications re-
quired for the steel sheets continuously change asking for thin-
ner sheets with an increased performance assessment (mainly
hardness, but also flatness...) (Jelali, 2007). In order to accom-
plish this objective one needs a grasp understanding of the
process allowing the use of advanced control techniques, that
can take into account the forthcoming introduction of possi-
ble new actuators. Moreover ArcelorMittal produces annually
around 90 millions tonnes of crude steel. Any improvement
of the global production cost by control theory, that is without
changing the device, will induce significantly positive fallouts
and will be at the heart of international competitiveness.

Due to its wide applications, the rolling process attracted the
interest of many researchers and different mathematical models
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have been proposed (Orowan, 1943; Bland and Ford, 1948,
1952; Bryant, 1973; Roberts, 1978). As detailed in the next
section the modeling of complex systems occurring in the
rolling process received also a lot of attention (see for instance
(Pietrzyk and Lenard, 1991) for the hardness variation model
or (Sims, 1954) for the force-mill characteristics).

Even if the control theory presents for industrial applications
important evolutions during the last decades, as reported in
the literature (O’Dwyer, 2000; Silva et al., 2005) more than
95% of the control-loop in the industry are controlled by (a
set of) single input single output (SISO) Proportional–Integral–
Derivative (PID) controllers. That can be explained by their
ease of implementation and tuning. This observation holds true
for the rolling process. Nevertheless, the evolution of the re-
quired steel sheet specifications asks for performances beyond
the capacities of such a controller. It is thus necessary to adopt
new control strategies aiming at: reaching the required speci-
fications of the steel sheets; taking into account the complex
interactions inside the system; reducing the energy cost of the
rolling process and finally being ready for the further introduc-
tion of new actuators such as flexible lubrication (Laugier et al.,
2011, 2015).We are entering together this way by developing
new multivariable controllers for TCM.

Even if several techniques are dedicated to complex non-linear
systems and have been applied on TCM (see (Pittner and
Simaan, 2011)), a larger class of flexible tools is related to mul-
tivariable linear systems (Skogestad and Postlethwaite, 2005).
In this paper, we propose to provide a rigorous linearization
methodology taking into account the interstands transport de-
lays to obtain an appropriate model for the design of multivari-



able controllers. The proposed methodology being generic can
be adapted to TCM with new additional actuators.

Our main motivation is given by the closed-loop performance
improvements in presence of variable friction due to the flexible
lubrication added in the process. The main contributions of this
paper are thus the following:

(1) we establish and linearize a Multi Input Multi Output
(MIMO) model that takes in consideration a variable
friction for the overall TCM system;

(2) we validate the linearized model on appropriate variation
intervals of various quantities occurring into dynamics;

(3) we propose a preliminary multi-variable controller in ab-
sence of a priori fixed performance objectives.

The remaining part of the paper is organized as follows. Sec-
tion 2 provides a detailed presentation of the subsystems con-
sisting the dynamics of each stand of the TCM. The mathe-
matical description of the overall TCM model as well as its
linearization is presented in Section 3. This section also pro-
vides a numerical validation of the linearized system on ap-
propriate variation intervals of the physical quantities occurring
in the process. A preliminary multi-variable control scheme is
designed and illustrated in Section 3. The paper finishes with
some concluding remarks and perspectives.

2. TANDEM COLD MILL MODELING

The cold rolling tandem mill is typically made up of five
stands, associated in cascade, traversed by the product steel
strip which passes through their independent driven work rolls.
The objective of such process is to reduce strip thickness and
to obtain a desired product having certain thickness, rigidity
and flatness. The structure of these stands is similar, thus
the description of only one of them will be given in this
section. The whole model concatenates the models of each
part of the stand and the actuators, among them, several are
phenomenological approximations and then not unique. First
of all, let us present a block diagram representing the different
functions and components of the chosen model representing the
behavior of one mill stand in Figure 1.

Fig. 1. Mill Stand Block Diagram

In the following, each block is briefly presented.

Stand Motor: Most of the literature (see (Geddes, 1998; Pit-
tner and Simaan, 2010, 2011; Alves et al., 2011, 2012)) on
the modeling of TCM assumes that the stand motor is a first
order system. In this work, the motor is modeled as a second
order to reflect the presence of an internal pre-controller.

Stand Actuator: This block is a high order non-linear system
describing typically two main parts of the actuator: the servo
valve and the hydraulic cylinder. An identified second order
model was used to approximate and describe mathematically
this actuator.

Yield Stress – SMATCH Model: Yield stress (flow stress, de-
formation resistance) model reveals the hardness variation
of material during rolling process. The reduction of strip
thickness after each stand increases the yield stress quantity.
The relation describing the yield stress with the strain and the
strain rate is complex and non-linear. It may be algebraic or
dynamic. Several approximations more or less sophisticated
are available in the literature. Among them, several models
are obtained via implemented statistical methods interpolat-
ing the flow stress in function of the strain.

In this paper, SMATCH law (Ferreira et al., 2008; Dbouk
et al., 2013, 2014) is considered in the process modeling and
could be described as follows:

k(εp) = λ0 + (λ1 + λ2εp)
(
1− λ3e−λ4εp

)
, (1)

where λ0, λ1, λ2, λ3 and λ4 are constants determined sta-
tistically for each specific steel, k(·) is the equivalent yield
stress and εp is the equivalent plastic strain.

Mass Flow Conservation: This law is simply conserving ma-
terial volume (mass flow) between the input and output of
each mill stand. Assuming that the strip width does not
change, the product of strip thickness and speed is conserved
during the rolling process.

Forward Slip: The rolled strip undergoes backward and for-
ward slips respectively at the entry and exit of each roll bite.
The backward slip is neglected while the forward slip at
the exit is taken into consideration. The forward slip is the
difference between the strip exit speed and work roll speed
divided by the work roll speed.

Sims’ Gauge Model: Based on the experimental curve of
force-mill stretch characteristics exhibiting a non-linear part
for low forces and a linear one for high forces, an affine
approximation is given to estimate the strip exit thickness in
function of the work roll gap variation and the total rolling
force (Roberts, 1978; Sims, 1954). Notice that the slope
depends on the mill modulus.

Inter-stand Tension Stress: The passage of strip from one
stand to another, accompanied by the variation of strip speeds
at the entry and exit of each stand leads to the variation of
the tension stress between each two consecutive stands. The
tension stress is given by Hook’s law applied to the strip.
The elasticity of the strip depends on Young’s Modulus for
steel. Note that the non-linearity of both entry and exit speed
models leads to strongly non-linear model of tension stress.

Rolling Mathematical Model – (Roll-Gap): Through the var-
ious research in the domain of cold rolling during the past
few decades, several models where given and developed for
expressing the required rolling force and torque in certain
analytical models. Many physical quantities (tension stress,
flow stress, strip speed, thickness,· · · ) at the entry and the
exit of each stand intervene in this model as seen in Figure 2.

Several studies tried to reduce the complexity of Orowan
model (Orowan, 1943; Pietrzyk and Lenard, 1991) by in-
troducing some assumptions for cold rolling process. As a
result, more tractable models such as Bland and Ford (Bland
and Ford, 1948, 1952; Bland and Sims, 1953), Bryant and
Osborn (Bryant, 1973), W. Roberts (Roberts, 1978), A. Tse-
likov (Pietrzyk and Lenard, 1991) were proposed.



Fig. 2. Rolling Bite

ArcelorMittal Maizières with the help of academic part-
ners has developed the so called Roll-Gap Model for cold
rolling of steel which computes numerically the rolling force,
torque and forward slip for a given rolling situation (Dbouk
et al., 2013). Moreover it expresses high complexity and non-
linearity. It is based on Slab method considering sever elastic
deformation of work rolls. As a contribution in (Hitchcock,
1935), the flattened work roll radius was assumed to be
elliptical. In Roll-Gap model, influence function technique
is used to calculate the radial deformation of work roll radius
due to rectangular compressive stresses. Inside the rolling
zone, Roll-Gap model decomposes the rolled strip and work
roll cylinder into finite elements and study the group of
stresses exerted on each element. This permits to calculate
precisely the elastic deformation of the work rolls and the
plastic deformation of the strip. This model includes con-
vergence algorithm with relaxation to validate the obtained
values. Roll-Gap has been validated via large number of
simulations and practical experiments. It has been simulated
and compared to basic rolling algorithms.

Inter-stand Delay: The transportation of the rolled strip with
variable speed from one stand to the consecutive one induces
the transport delays, that are state-dependent and vary in
time.

Exit Thickness Integral Action: One of the main variables
to regulate is the exit thickness at the exit of each stand,
because it is very sensitive and a source of perturbation for
the whole system. To better regulate this variable we add
an integral of the exit thickness. That will allow the multi-
variable controller to have an integral action, similar to the
integral term of the PID and to vanish the static position error.

3. TCM MULTIVARIABLE MODEL

3.1 Non-linear Form

As it has been shown, TCM consists of several physical systems
describing all the process. Some of them are strongly non-linear
especially for inter-stand tension stress and Roll-Gap models.
Therefore by collecting all these dynamics, we can derive a
state space non-linear multi-variable representation describing
the whole TCM dynamics. This representation encapsulates all
internal interactions and couplings between sub-systems. The
obtained global model will depend on differential and algebraic
states, input and output vectors as follows.

d

dt
x(t) = F (x(t), u(t), z(t), µ(t), d(t), hen(t)) ,

0 = G (x(t), u(t), z(t), µ(t), d(t), hen(t)) ,

y(t) = L (x(t), u(t), z(t), µ(t), d(t), hen(t)) ,

(2)

where the control vector u(t) ∈ R10, including motor and
actuator inputs. The differential state vector x(t) ∈ R29,
which contains dynamics of inter-stand tension stress, motor
and actuator dynamics, exit thickness integral actions. The
algebraic state vector z(t) ∈ R15 includes the rolling forces,
rolling torques and forward slips. The exogenous vector d(t) ∈
R3 includes the entry annealed thickness, and TCM entry and
exit tension stresses. The output vector y(t) ∈ R50, which
includes all needed physical quantities in the TCM process such
as tension forces, rolling forces, work roll speeds... etc. Entry
thickness vector hen(t) ∈ R4 is the vector representing the
entry thicknesses for all stands except first one, which is an
exogenous input. Friction vector µ(t) ∈ R5, which includes
the frictions between strip and work rolls in all stands.

The non-linear function F in the first equation represents the
evolution of the system differential dynamics, while the non-
linear function G in the second one represents the algebraic
constraints of the model. The last function L represents the
system outputs.

Modeling the TCM process aims at approaching as closely as
possible the behavior of the real tandem. The class of non-
linear multi-variable models has a strong capacity to represent
high order and complex industrial processes. Nevertheless, ded-
icated non-linear control strategy may imply very sophisticated
tools, like State-Dependent Riccati Equations (SDRE) (Pittner
and Simaan, 2011), sliding modes or flatness. Here our ap-
proach is to linearize the TCM non-linear model by taking into
account the presence of state-dependent delays to permit the
use of the wide range of linear control tools. This method will
allow to reach a compromise between good approximation and
availability of tools. Linearization will permit to consider one
of the linear multi-variable control strategies dedicated to such
types of systems containing state and time dependent delays.
Furthermore these strategies are robust and can be adjusted to
certain industrial specifications booklet.

3.2 Linearized Form

In this paper, the linearization will be carried out in the neigh-
borhood of a nominal operating point which is the steady
state of the non-linear differential–algebraic system given by
Equation (2). In other words, the nominal operating point is a
solution of the following set of algebraic equations.

0 = F (xeq(t), ueq(t), zeq(t), µeq(t), deq(t), hen,eq(t)) ,

0 = G (xeq(t), ueq(t), zeq(t), µeq(t), deq(t), hen,eq(t)) ,

yeq(t) = L (xeq(t), ueq(t), zeq(t), µeq(t), deq(t), hen,eq(t)) .
(3)

Solving the above equations may have many solutions. The user
in rolling process precises the nominal operating values of some
physical quantities (inter-stand tension stress between stands,
exit thickness in each stand, forward slips and others) for each
rolled product and thus this limits the number of solutions. The
solution depending on the rolling scenario is defined for certain
product.

During rolling process and due to several internal and external
perturbations, the system deviates from its rolling operating
point. In the vicinity of the steady state, the linearized form
of the system governs the evolution of these deviations, which
should be rejected by the controller. The linearization of the set



of Equations (2) consists in obtaining the expansion of Taylor
series of first order at the operating point.

The validation of the linearization answers if the size of the
vicinity where the difference between the non-linear model
and the linearized one is enough small for the application.
The linearization phase of the non-linear Roll-Gap model is
numerically validated by varying quasi-statically one input
of the Roll-Gap algorithm and fixing the others one. It is
then possible to compute the partial derivative by the rate of
differences.

Figure 3 shows the non-linear variation of the non-linear spe-
cific rolling force with respect to the exit thickness (blue curve)
around its nominal value for an arbitrary stand i. The straight
line is the linear approximation of the non-linear model. As
it is clear, for a large variation of the exit thickness (up to
±8% of the nominal value), the linear approximation (black
line) remains acceptable with a small error less than 3% at the
extremities. This means that the Roll-Gap linear model can be
considered as enough correct.
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Fig. 3. Comparison between Specific Force Roll Gap and its
linearized model in function of exit thickness.

To go deeper into the validation, the same method is applying
by varying quasi-statically two inputs of the Roll-Gap algo-
rithm and fixing the others ones. Figure 4 shows the variation of
the specific rolling force with respect to both entries, exit thick-
ness (up to ±8%) and friction (up to ±20%). The non-linear
surface (blue) shows slight curvilinear aspect at the extremities.
Friction varies in a wide range, since in cold rolling there is
no determined variation of friction between work rolls and the
strip. The plane representing the linear surface (green) shows a
very good approximation of the non-linear one (multi-colored).
In order to better evaluate and validate this approximation, it is
important to introduce the gap between both surfaces. Figure 5
shows that the difference is less than ±4% with high friction
variation (up to ±20%). The error is small comparing to the
inputs wide variations.

As it has been precised, the linearized model will be operated
around its steady state operating point, and any variation or
deviation will take place in its neighborhood. So it is better and
easier to express any quantity X which have an equilibrium
value Xeq by its variation value denoted ∆X = X −Xeq . This
variation is due to the external perturbation and variation in the
exogenous components, the model will deviate relative to its
equilibrium point. See Equations (5)–(7).

Fig. 4. Comparison between specific force and its linearized
model in function of exit thickness and friction.

Fig. 5. Error between non-linear and linearized specific force
surfaces.

The entry thickness of the each stand hen,i is the delayed exit
thickness of the previous stand.

∆hen,i+1(t) = ∆hex,i(t− τi,i+1), (4)

where hex(·) is the exit thickness vector containing all exit
thicknesses hex,i(·). τi,i+1 represents the time delay between
stand i and i + 1. The exit thickness is delayed due to the
transportation of the steel over the inter-stand distance and then
enters the next stand. Thus a part of the vector y will be delayed
and looped as an additional input of the TCM system as shown
in Figure 6.

Fig. 6. TCM Linearized System looped by delayed Exit Thick-
ness

As shown in Equation (4), the delayed exit thicknesses are the
entry thicknesses. Depending on Sims’ Gauge Model (Roberts,



d

dt
∆x(t) = A∆x(t) +Bz∆z(t) +Bµ∆µ(t) +Bd∆d(t) +Bh∆hen(t) +Bu∆u(t), (5)

0 = Hx∆x(t)+Hz∆z(t) +Hµ∆µ(t)+Hd∆d(t) +Hh∆hen(t), (6)
∆y(t) = C∆x(t) +Dz∆z(t) +Dµ∆µ(t)+Dd∆d(t) +Dh∆hen(t). (7)

1978), the exit thickness is function of work roll position (dif-
ferential dynamic in vector x) and total rolling force (algebraic
dynamic in vector z). So, the entry Thickness vector ∆hen can
be expressed by certain combination of delayed state differen-
tial and algebraic vectors.

∆hen(t) =

4∑
i=1

Λx,ix(t− τi,i+1) + Λz,iz(t− τi,i+1), (8)

where Λx,i and Λz,i are constant matrices of appropriate di-
mensions. Replacing Equation (8) in (5)–(7) and regrouping
all matrices in Equation (5)–(7), the obtained form is given
by Equations (9)–(11), where τ0,1 = 0, Ãi, B̃z,i, B̃d,i, B̃µ,i,
C̃i, D̃d,i, D̃µ,i are matrices of appropriate dimensions. This
form introduces the state dependent delay effect on all physical
quantities. Note that in other studies (Pittner and Simaan, 2010,
2011; Alves et al., 2011, 2012) delays are usually approximated
by transfer functions following the padé approximation or mul-
tiple first order lags, by assuming that the delay is constant to
allow a frequency domain representation. Here such an assump-
tion is not consider to emphasize the fact that the delays are
state-dependent.

3.3 Simplistic Multi-variable Control

In order to highlight the efficiency of the model and also to out-
line the perspectives of our research, a simulation is presented
with a typical variation of the strip entry thickness at the first
stand. To have a sense, it is nevertheless necessary to associate
a control law with the obtained model. A simplistic Linear
Quadratic Regulator (LQR) (Anderson and Moore, 1971) is
chosen for illustration purposes and to show the feasibility of
our method. The LQR strategy leads to a state-feedback con-
troller solution of an optimization problem with a quadratic
cost function (specifying the requirements) under the linear
constraint characterizing the system. It is well known by its
well robustness and performance. The class of controllers and
their tunings will be tackled during the following steps of our
research. In that conditions, the following simplifying assump-
tions are imposed:

• the full state of the system is accessible;
• the weights of quadratic cost function are fixed to very

simple values;
• the linear system is controllable; in fact, this is verified

numerically on the linear system;
• only for the LQR synthesis, the delays are imposed to be

trivial.

The obtained LQR is applied on the linearized system with (non
trivial) state-dependent delays. The exogenous signals vary near
their nominal values, the annealed entry thickness (strip entry
thickness at the first stand) varies about 8%. The TCM entry
traction stress varies around 2% to 3%, while the TCM exit
traction stress varies about 1%. The friction in each stand
varies as a noise around a certain value. Figure (7) shows the
normalized variation of the exit thickness of each stand, with
respect to the steady exit thickness.
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Fig. 7. TCM stands’ exit thicknesses ∆hex,i(t) with a simplistic
LQR

The percentage error at the exit of the first four stands is less
than 2%, while at the tandem exit is less than 1%. The delay
effect is clear in the strip propagation within the presented
figures. This controller synthesis did not take into account
the presence of inter-stand delays, though it shows a good
feasibility when tested on the delayed system. The control of
TCM is going to be the main objective in the future work. It
should consider all system complexities and different aspects.
All delays are variable, same as friction in stands are not
constant. Thus the control method has to be robust enough and
should follow certain specifications. Different MIMO control
methods are available such as robust control (Geddes and
Postlethwaite, 1994; Postlethwaite and Geddes, 1994; Pittner
and Simaan, 2011).

4. CONCLUSION

The present work has proposed a global mathematical modeling
of the TCM process. The elaborated MIMO model is strongly
non-linear with state dependent delays. Moreover this modeling
takes into account stands’ friction variation in the process dur-
ing rolling. It is linearized around an operating point depending
on the rolled product. The linearization was validated for suf-
ficient variation around the steady state. The linearized model
is completed by the presence of state-dependent delays. Future
works will focus on the design of MIMO control strategies that
consider robustness, performance industrial specifications and
also variable frictions.
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