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Moving Object Detection in Real-Time using Stereo from a Mobile
Platform

Maxime Derome, Aurelien Plyer, Martial Sanfourche, Guy Le Besnerais
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Chemin de la Huniere, Palaiseau, 91123, France
E-mails: firstname.name@onera.fr

This paper presents a mobile object detection algorithm which performs with two consecutive stereo images. Like most motion
detection methods, the proposed one is based on dense stereo matching and optical flow estimation. Noting that the main computa-
tional cost of existing methods is related to the estimation of optical flow, we propose to use a fast algorithm based on Lucas-Kanade
paradigm. We then derive a comprehensive uncertainty model by taking into account all the estimation errors occurring during
the process. In contrast with most previous works, we rigorously expand the error related to vision based ego-motion estimation.
Finally we present a comparative study of performance on the challenging KITTI dataset which demonstrates the effectiveness of

the proposed approach.
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1. Introduction
1.1. Context and Problem Statement

Understanding complex environment in presence of dy-
namic objects is crucial for autonomous robotics. Such sit-
uation awareness could benefit to Advanced Driver Assis-
tance Systems (ADAS) as well as Search And Rescue (SAR)
missions. One may also be contemplating, in a near future,
autonomous assistant robots moving around during an ex-
hibition to inform visitors (cf. Fig 1). Vision sensors are par-
ticularly suited for this task as they are cheap, lightweight,
and can provide, through dedicated fast algorithms, both
scene perception and ego-motion estimation. Besides, us-
ing a stereo rig enables 3D reconstruction of the scene at
each frames, which can be used for mobile object detection.
In the design of an embedded mobile object detection pro-
cess, three main constraints have to be accounted for: real-
time processing, high reactivity, and precise management
of measurement and estimation errors to assess the relia-
bility of the decisions. We address these three constraints
in our work. We propose a new detection system which
uses very fast algorithms for the low-level operations (stereo
matching and optical flow (OF) estimation). The decision
is based on the processing of two consecutive stereo images
only. This features allows to maximize the reactivity of the
system and also eases the modelling of error propagation.
This last issue is rigorously addressed here thanks to a first
order model based on the Implicit Function Theorem.

1.2. Related Works

Different approaches have been proposed to address the
understanding of dynamic scenes from stereo-vision data.
Algorithms based on sparse sets of feature points have been
used in temporally integrated framework [1], or in graphical
approaches to segment stereo-images according to 3D mo-
tion consistency [2]. However, because of their sparseness,
these methods provide limited coverage of the scene.

A great deal of work has also been done using dense
stereo-vision algorithms. Dense stereo provides the instan-
taneous 3D structure of the scene. It can be coupled with
visual odometry (VO) that computes the camera rotation
and translation [R,T] between two frames. From these in-
formations, the scene geometry in a new camera frame can
be predicted under the hypothesis of a static world. The
discrepancies between the new observation and this pre-
diction reveal the independent motions and are cues for
the detection of moving objects. Detection then stems from
thresholding some residual field.

Depending on the residual value which is used, or
equivalently on the quantity which is predicted, two ap-
proaches can be distinguished. One can either synthesize
a predicted image using previous image intensity (an ap-
proach which will be denoted by image prediction methods
in the following) or directly predict geometrical quantities
such as 3D points coordinates, optical flow (OF) and dis-
parity (direct methods).

Direct methods have been applied with different resid-
ual values in the literature. For instance, [4],[5] and [6] con-
sider the differences between observed and predicted 3D
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Fig. 1.

Possible scenario: an autonomous assistant robot informing the visitors of an exhibition. Such a system would rely on an

online ego-localisation and environment mapping system like 3SDSCAN [3] (top left) enriched by the proposed detection algorithm
(top right) and runs on a mobile robot equipped with a stereorig and a compter with a GPU. These results were obtained from
data acquired during an exhibition with the robot shown in the bottom right corner.

points — a vector field which is called Scene Flow. In [5]
the authors reduce Scene Flow noise using a Kalman filter
for each pixel, with a state vector made of 3D position and
velocity. Unfortunately, such temporal filtering reduce the
system reactivity, since multiple frames are required for the
Kalman filters to converge. Furthermore, this model may
encounter difficulties with non-uniformly moving objects.
In [6] the authors include disparity changes estimation in
a variational minimization framework that also computes
OF. Variational minimization methods are well known in
the field of OF estimation, as they provide smooth and ac-
curate solutions. But they require several solver iterations
to converge to a good solution. Hence, in practice they are
not real-time for an embedded system using high resolution
stereo images. Other direct methods consider residual val-
ues expressed in the image space: OF and disparity in [7],
OF alone in [8].

Alternatively, image prediction methods have been in-
vestigated. Dense comparison between observed and pre-
dicted image can be done by computing OF [9], or by evalu-
ation of some similarity index within a small neighbourhood
of the current pixel: [10] uses Sum of Absolute Differences
(SAD) while a Zero-mean version (ZSAD) appears in [11].

Except for [10] and [11], all previous approaches rely
on the computation of some 2D or 3D residual field (which
we denote by M in the following), and the thresholding of
a pixelwise motion likelihood written as a weighted norm

of M:
E(M) =/ MTS /M. (1)

If the covariance matrix ¥ 5; models accurately the uncer-
tainty about the residual field M, criterion (1) is called a
Mahalanobis distance, and leads to optimal decision. The
main issue is that the residual M depends on several vari-
ables (disparity fields, OF, [R,T]) which stem from complex
estimation processes. Estimating the resulting uncertainty
on M is very difficult and requires some simplification. First
attempts [7,10] simply considered ¥, = Id, which leads to
poor results. A formulation of ¥, depending on disparity
and optical flow is proposed in [6], based on residual mini-
mization energy. However, the authors disregard the rota-
tion R that is assumed equal to the identity matrix Ids,
and model only camera translation uncertainty, which is a
rather crude hypothesis, even in the context of urban navi-
gation. A Bayesian formulation of OF error covariance Yo g



is used in [8] to model ¥,;. The authors also consider [R,T]
uncertainty, but assume independent rotational and trans-
lational errors without explicit mention of the ego-motion
estimation process. In [9], the approach relies on first order
expansion of the image displacement field with respect to
the angular and translational velocity vectors [€2, V]. Both
Yq and X are chosen as constant diagonal matrices which
are evaluated a priori using a synthetic video. The first or-
der expansion puts limits on the dynamic of the vehicle or
on the framerate. Besides, the authors of [9] do not fully
account for the [, V] uncertainty but use 30 bounds on the
errors in the subsequent expressions. Finally, reference [4]
suggests an heuristic to derive an approximate covariance
matrix from the least-squares criterion (16) but does not
explicitly include the error budget for disparity and tem-
poral matching estimation. As a conclusion, to our knowl-
edge, there is no previous paper presenting a comprehensive
analysis of errors, especially regarding the uncertainty over
ego-motion parameters [R,T].

1.3. Contribution and Outline of the Paper

Our contribution is threefold. We present a moving ob-
ject detection system based on eFOLKI, a newly proposed
fast OF method [12] which allows real-time processing of
large images. We present a comprehensive analytical for-
mulation of the uncertainty model of both direct and im-
age prediction methods. In particular, we account for the
fact that [R,T] parameters derive from the optimization of
an ego-motion criterion where image measurements (point
matches) are also involved. This indirect relationship is
rigourously handled thanks to the Implicit Function Theo-
rem. Finally, we conduct a comparison of various methods
and error models through an evaluation protocol based on
challenging KITTI datasets [13]. This experimental study
demonstrates the efficiency of the proposed image predic-
tion method and the benefit of the presented error model.

This work has been partly published in [14]. This pa-
per presents in more details, the different residual fields
that can be considered for the motion detection, as well
as their uncertainty error model. The detection stage is
slightly modified, and a deeper quantitative analysis of the
behaviours of the methods is carried on KITTI datasets.

The paper is organized as follows. Section 2 describes
the detection process and discuss low level operations and
choice of the residual value. The uncertainty model is de-
tailed in Sec. 3. The evaluation protocol and experimental
results are presented in Sec. 4.

2. System Description
2.1. Overview
Fig. 2 presents a global overview of the moving object de-

tection pipeline whose stages are illustrated in Fig. 3. In-
dependently moving objects are detected by analysing two
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consecutive stereo images. Dense stereo is computed for
each stereo acquisition time and dense optical flow is com-
puted between successive times: these costly low-level op-
erations are discussed in the following. We use the pose es-
timation algorithm presented in [15] which can run at 20Hz
on a single core of an embedded CPU: some details on this
estimation process will be reviewed in Sec. 3. With these in-
formations we compute a residual field M that is null under
static scene assumption. Given the error covariance matrix
Yy derived according to some model of uncertainty, see
Sec. 3, the Mahalanobis distance £(M) of Eq. (1) is com-
puted and thresholded. Bounding boxes are then fitted to
the detected areas. In this section, we focus on low-level
operations and choice of the residual value.

Stereo+24 Observed image Optical Flow + Yo
===
Ego Motion +>2 © Predicted image + X g X2 residual values
1

Motion detection
(Bounding Boxes)

Fig. 2.
text).

Motion detection pipeline (see explanations in the

2.2. Low-level Operations

Several papers present algorithmic choices to reduce stereo
computation time. A major breakthrough here is the publi-
cation of Semi Global Matching (SGM) [16], a dense stereo
algorithm that can be implemented on FPGA [17] and run
at 25Hz on images of 740x480 pixels for a disparity range of
128. However, for larger images and wider disparity range,
the real-time capability of SGM can be questioned. Alter-
natively, one may consider a simple Block Matching (BM)
algorithm that exhaustively searches stereo matches along
the epipolar line. BM runs in real-time without needing a
FPGA. The choice between SGM and BM is discussed in
[9], and their relative performances evaluated. The incon-
venient of BM is that not only the disparity map is less
accurate, but it is also often unavailable on large regions
(cf Fig. 5). This calls into question the benefit of dense
methods, which is maximal coverage of the scene. As an in-
between solution, we may finally consider ELAS (Efficient
LArge-scale Stereo) described in [18]. This stereo algorithm
relies on a set of support points robustly matched from the
left to the right image, that build a disparity prior which
is embedded in a graphical model used for the dense stereo
estimation. ELAS can perform really fast for small images,
on a single CPU.

Perhaps surprisingly, in previous works there are few
discussions about the choice of the optical flow estima-
tion algorithm. To our knowledge, all references use varia-
tional methods based on the framework originally presented
by Horn and Schunck [19]. For instance, Combined Local-
Global Method [20] is used in [8], while TV-L1 approaches
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close to the one presented in [21] are considered in [5] and
[6]. However, these algorithms are not only computation-
ally demanding, but also their robustness on real images is
questionable. Indeed, TV-L1 approach requires expensive
image pre-processing to deal with intensity changes in real
world images, see for instance the computation of TV-L2
residual images discussed in [6].

One can conclude that the main point which precludes
real-time operation of these methods is the use of such
costly variational OF methods. Here we propose to use
eFOLKI [12], a very fast OF algorithm based on Lucas-
Kanade (LK) approach. Compared on the same GPU hard-
ware, the runtime of eFOLKI is between one or two order of
magnitude lower than variational methods such as TV-L1
[21] and Brox et al. [22]. Actually, looking at the OF bench-
mark of KITTI’s website, eFOLKI appears among the very
few methods able of real-time operation on 2 megapixels
images. LK methods are generally considered as inaccu-
rate in the computer vision community. However, Ref. [12]
shows that it compares favourably with variational meth-
ods on the training dataset of KITTI, and that it provides
useful solutions for various vision problems based on OF es-
timation. In the same line, we will show here that it leads
to results of sufficient quality for our detection purpose.

Illustration of the different stages of the mobile object detection process.

2.3. Choice of the residual field

Here we present in more details several direct and im-
age prediction methods, in order to introduce our original
framework and compare various approaches in the experi-
ments.

2.3.1. Convention and Notations

In the following, we consider the pinhole camera model and
take the left camera as reference. We use these notations:

e [;, left camera image at time instant ¢

e f, the camera focal in pixel (we suppose without loss
of generality, that the horizontal and vertical focal are
equal)

e b, the stereorig baseline

e (z,y), the discrete grid corresponding to the pixels’ co-
ordinates in image frame

e (z0,Y0), the image coordinates of the projection of the
optical center

e d;, disparity map at time instant ¢

e (u,v), the optical flow between I; and I;_4

e U, the 2D coordinates in I;



e X, the 3D coordinates in the camera frame at time in-
stant ¢
e X,(z,y,d;), the triangulation function at time instant ¢:

Xi(x,y,dy) = —dt(iy) (y :ché)) (2)

e II the projection operator which maps a 3D point to the
image plan

e R and T, the rotation and translation of the camera be-
tweend ¢t — 1 and ¢ such that X; 1 = RX; + T

For a minimal lag in the detection process, we compute
the detection in current image frame, by combining previ-
ous and current stereo images. For that purpose, for direct
method, we need to match pixels from I; to I;_1 (using op-
tical flow) and we need to map 3D points from the current
to the previous camera frame (using X;1 = RX; + 7).
Thus, we don’t estimate the optical flow as usually done
—forward in time—: OF(I;—1 — I;). We estimate it back-
ward in time: OF(l; — I;_1), so that the estimation is
done in the current pixel grid (z,y). As for the image pre-

diction method, we estimate OF (I, — IP™%).

2.3.2.  Direct methods

Direct methods have been applied either to Scene Flow,
or to image quantities such as residual OF and disparity.
These approaches differ essentially by the way they encode
the depth information. We adopt the latter which eases the
error modeling step. Recall that we proceed backward in
time by considering the changes between time instants ¢
and ¢t — 1 —and not between t and ¢ + 1 as usually done.
Here the pixel grid (x,y) corresponds to I;.

We assume that disparity maps d;_1 and d;, and the optical
flow (u,v) from I; to I;_; are available. Given the camera
motion obtained from the visual odometry, the scene can
be transferred into the coordinate frame at ¢ — 1:

XPred(z,y,d;) = RXy(z,y,d;) + T, (3)

under a static scene hypothesis. Then the predicted dispar-
ity writes

—bf
(00 1) Xp"5" (2, y, dr)’

red
df—l ($7y) =

(4)
and the predicted OF:

(upmd> (z,y) = U5, y. de) — <x) ; ()

Upred Y
where

Uy, de) = T ( X5 . dy) ) (6)

is the predicted image coordinates in previous frame.
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The residual M is then:

U(Zv y) - upred(xa y)
M(J?,y) = v(:c,y) - Upred(xyyzi (7)
dt—l(m + u,y + ’l)) - d{fﬂ—el (l’, y)
Note that instead of considering M = {du, dv,dd}, some
authors® use M = {6u, dv} only.

2.3.3.  Image and disparity prediction method of [9]

The predicted image in [10] and [9] is computed from pre-
vious grayscale image intensity and from the predicted 3D
structure of Eq. (3):

1 (U7, y,dp o)) = Lioa(a,) ®)
where

U @y, dims) = T (XP 9. d,))

re (9)
Xf d($> Y, dtfl) =R! (thl(lﬁ Y, dtfl) - T)

Note that in this case, the pixel grid (x,y) corresponds to
previous frame I;_;. In [10], image correlation techniques
are used to check the consistency of the predicted image
with respect to the observed one. In [9], the residual opti-
cal flow (du,d0v) is computed between the observed image
I; and the synthetized one IP"*. As mentionned in [9],
issues due to occlusion can also occur and need to be dealt
with. Indeed two distinct points (z,y) and (2’,y’) may be
mapped at the same pixel location UP"*(z,y, d;_1). In this
case, the disparity is used to keep only the closest point.

Note that pixel quantization, occlusions, etc., may lead
to unallocated pixels in the predicted image: intensities
taken from the observed image are used to fill these empty
regions. Thanks to the robustness of OF codes, these prob-
lems affect the estimation only locally.

As well as they synthesize I7"*?, the authors in [9] compute
the predicted disparity map, which requires to map d;_1 in
current camera frame:

—bf
(0 0 1)Xfred($ay7dt—1)

dirred (Ug)red(x’y,dtil)) _ (10)

Finally, the residual OF (du,dv) is also used to compare
AP with dy:

8d = dy(x,y) — A" (2 + u, y + ov) (11)

and the resulting residual field is: M = {du, dv, dd}
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2.3.4.  Proposed method

Our method is close to the one of Bak et al. [9], in the sense
that we also compute a predicted image and then estimate
a residual flow on it. However, unlike [9], we proceed back-
ward by interpolating image intensities at ¢ — 1 from the
reference frame coordinate at t.

We use Eq. (6) to compute UP"¢? then we synthesized
IP"% (2, y) by interpolating image intensity I;_; at the po-
sitions UP™$%(x, y, d;). We have to deal also with occlusions
and we fill empty regions with current image intensity.
Finally, we compute the residual OF (du,dv) from I; to
Ifred.

The main benefit of this approach is to simplify image
interpolation. Indeed, in our formulation we need to inter-
polate irregular data from data located on a regular grid,
while the approach of Bak et al. requires the opposite, ie.
to interpolate regular data from irregularly arranged ones,
which is more computationally demanding and may lead
to local artifacts.

Furthermore, considering UP™$*(z,y,d;) instead of

UP™(z,y,ds—1) (as done in [9] and [10]), make the com-
putation of ¢2(M) = MTX M easier since M(z,y) and
Y M(z,y) are then expressed in current image pixel grid
(z,y). On the contrary, when using UP"“*(x,y,d,_1), the
resulting error covariance matrix sz, is expressed in
previous image pixel grid, and further processing has to
be done to associate ¥j; with M which is computed in
current image pixel grid.

As previously done, we can add to the residual the dif-
ference between the observed and the predicted disparity
given by Eq. 4:

od = di (Ufjid(x,y) - (gﬁgg;)) —d" 5 (z,) (12)

Then the residual writes M = {du, dv, dd}.

However in our case we only consider M = {du, dv}, as it
leads to better results for the detection task as show in the
experimental study (see Fig. 12).

2.4. Detection of mobile objects

Knowing the residual field and an estimation of its covari-
ance, we can compute the Mahalanobis distance (M) of
Eq. (1). As done in [8], we add a geometric constraint by
only considering objects that are lower than H,,,, = 2.5m.
Since we use KITTI datasets [13] in our experiments, we
assume the camera horizontally oriented and positioned at
H.um = 1.65m from the floor. Under these assumptions,
valid pixels satisfy:

— 90
byy

Heom + < Hpaz (13)

For a fast segmentation of mobile objects, we a use the sim-
ple and computationally effective approach describe below.

After applying a threshold to £2(M), we extract the con-
nected components so as to form detected blobs. For each
blob, we compute the median disparity that is used to cal-
culate its depth attribute. To ease the following processes,
blobs are considered as fronto-parallel planar regions. The
surface area is measured for each blob given its depth at-
tribute, and blobs of small size (e.g. below 0.01m?) are sup-
pressed. The remaining blobs are merged with one another
if they are close enough (e.g. closer than 30cm) in 3D. When
all neighboring blobs have been merged, small blobs aggre-
gates are suppressed. To do so, we estimate the total sur-
face of an aggregate by summing the surface associated to
each pixel belonging the aggregate’s blobs. We threshold
this value (e.g. by 0.16m?) and estimate bounding boxes
for the remaining blobs aggregates, as well as their depth
attributes. To prevent from the effect of a possible stereo
failure for the furthest points, we only take into account
blobs whose estimated depth is below a certain range Z,, 4
(e.g. 40m).

Figure 4 shows an example of such estimated bounding
boxes (in red) compared to ground truth bounding boxes
(in blue), manually annotated using Vatic [23]. Let us recall
that detections are made at each time independently.

Fig. 4. Bounding boxes estimated by the proposed framework
(in red) compared to the BB annotated using Vatic (in blue).

3. Error Model

In this section, an error model for the residual field M,
is studied. The objective is to model the error covariance
matrix Xjp;. In the following, the analysis is carried on
M = {éu,dév,dd} and can be transposed to M = {du, v}
by ignoring the third dimension.

Whatever the method employed, the computation of M in-
volves an estimation stage —e.g. estimating {u, v, d;—1(z +
u,y + v)}— and a prediction stage —e.g. predicting
{upred7vpred7dffeld}— that are subject to uncertainty. As-
suming the estimation and the prediction error uncorre-
lated, we obtain:

EM = EE‘stim + ZPred (14)

Concerning the prediction stage, the methods described
in 2.3.2 (direct approach) and 2.3.4 (image prediction ap-

proach) both rely on the computation of X?"¢* (3) to cal-
culate UP™S* (6) and d?™" (4). Since X% depends on
X; and [R,T], its estimation can be perturbed by an error



occurring during the triangulation process but also dur-
ing the ego-motion estimation. The impact of the trian-
gulation error has been considered in many articles. How-
ever, to the authors knowledge, only Alcantarilla et al. [4]
have proposed an ego-motion uncertainty model directly
related to the visual odometry without considering param-
eters learned a priori.

Assuming that the triangulation and the odometry er-
ror are uncorrelated, we first study separately Xx, and
Ypr 71, as well as their respective contribution to Xpyeq.
Then we describe X pggtim, modeling, and finally come to
the expression of Y.

3.1. Xi(z,y,d) Estimation Error

Each point observed in I; and for which the disparity has
been estimated by dense stereo, is triangulated according to
(2). Because of pixel quantization, image coordinates (x, y)
are prone to error. We model this by considering standard
deviations o, and o, (e.g. equal to 0.2 pixel). We also rep-
resent the error of the disparity obtained with a dense al-
gorithm, by o4 (e.g. 1 pixel).

Y X, (x,y,d) 18 approximated by first order propagation
of the error on (z,y,d):

20 0
SXand) = I, @y | 0 0 0O J§t(z,y,d) (15)
0 0 03
where Jx, (5,y,4) is the Jacobian of X;(z,y,d)

3.2. (R,T) Estimation Error

To model ¥ g 7, we must know the energy minimized dur-
ing the visual odometry (VO). In our case, we choose the
same odometry as the one used in [15], i.e. we minimize in
a RANSAC plrocedulre24 the reprojection error

NZHUt -

where {XF}; is a set of trlangulated feature points that
have been extracted in I;, and {UF ;}; their location in
I;_1 obtained by temporal matching.

This  energy is minimized over © =
(02,0y,0.,T,,T,,T,), with the three first parameter be-
ing Euler’s angles of R.

(RXF +1))? (16)

3.2.1. Pseudo-hessian based model

A widespread approach to model the covariance matrix of
parameters obtained by non-linear least square minimiza-
tion, is to consider the inverse of the approximated Hessian
matrix of criterion (16):

—1
Yo o (JfT<@>Jf(<~>>) (17)
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{f(G)T =
fx(©) =

As shown in [25], the proportionality factor in Eq. 17
can be fixed to o2 if the error on {U}_; } follows a gaussian
law N(0,021ds). Thus by using this pseudo-hessian to ap-
proximate g, Alcantarilla et al.[4] only take into account
the error related to the estimation of {UF}; and its influ-
ence on the error on ©. On the contrary, the comprehensive

error model presented below includes the contribution of all
the input data {UF 1, X}F}x.

with:

fl(G)Tﬂ e af (G)T
I(ngl H(RXE T ) (18)

3.2.2.  Comprehensive error model

The relation between © and input data {zF};, =
{UF |, XF}, is implicit but can be recovered by apply-
ing the well-known Implicit Function Theorem (cf. [26],

chap 5). Considering the implicit function ¢ : (0,z) —
2£(0, z)T, we then obtain the error covariance matrix be-
low:
Yo =H ! 9¢ p) ¢ TH*T (19)
© 0z ) "7\ 0z

where H = a@a@ (O, z) € R%*6 s supposed invertible. As-
suming the error independent for each feature k, Eq. (19)
becomes:

Yo = ZH (8zk) Y., (SZ)THT (20)

As UF | and X[ are computed separately during the
sparse temporal matching and the triangulation steps, we
assume that they are not correlated, which leads to:

a2 0
ZZ = 0 0—3

k

O2x3 (21)
03x2 ‘JX}éE(w,y,d*)JX{sT

where the upper left diagonal matrix is the error model of
the sparse temporal matching (o, = 0, = 0.5 pixel), and
d* the disparity of the feature point whose error is modelled
by 04+ — we choose o4+ = 0.5 pixel, i.e. a value lower than
ad-

3.3. X predq modelling

Xffid is a function of triangulated point X; and the ego-
motion parameters ©:

XXy, 0) = R(©)X, + T(O) (22)

Thus we may approximated at the first order ¥ yprea by:
t—1

_ Xx, |03x6 \ ;7
Exfj;d = foi‘;”’(xt,e) (m‘ﬂ Ix xrred(x,.0) (23)
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Similarly, regarding (6) and (4) as functions of X*™? we

can calculate:

2 - T
Ogprea = Jgprea (xpreayDprea S gpreagpreay  (24)

_ T
Buprgt = Jupre ey Exprse T ey (29)
In the case of the direct method, the predicted OF (5) is
compared to the estimated one. We consider that the OF
estimation compensates the error due to pixel quantization,
so the error covariance matrix of (Upred, Vpred) is equal to
ZUtheid.
For the proposed method, I7"*? is obtained by interpolat-

Upred

ing I;_1 the location U,_7", so the prediction error is also

modelled by EUpIid,

In both cases, the error related to the prediction is:
Yyrred | Ogx1
Y Pred = 0
1x2 |0 jpred
t—1

3.4. X Epstim and Xp; modelling

(26)

As seen in 2.3.2 and 2.3.4, the disparity maps d;_; and
d; must be estimated (d; suffices if we only take the OF
component M). The OF also have to be computed: either
between I; and I;_; (noted (u,v) in the direct approach)

or between I and 17" (noted (8u, dv) in the proposed ap-
proach). We take into account these sources of uncertainty
via the error covariances 03 and Yop = o% plds, that we
suppose constant (e.g. 1 pixel for o4 and 0.5 pixel for o).

For the third dimension of M, the predicted dispar-
ity d?"*(z,y) needs to be compared to dy_1 (w(z,y)), with
w(z,y) = (x + u(z,y),y + v(z,y)) (direct approach) or

_ pored ou(z,y)
wlean) = UF5 )+ (Gu )
In the following we ignore the uncertainty on w(x,y), and
model the error on d;—1(w(x,y)) via o2 only.

Finally, the estimation error covariance is modelled for
both methods as:

) (proposed approach).

o4r 0 0
2Esti7n = 0 UQOF 0 (27)
0 0 03

And then X/ (z,y) is given by (14).

4. Experimental Results

In this section, experimental results obtained on two stereo
sequences (09/28-0037 and 09/29-0071) of the publicly

& Available from http://sourceforge.net/projects/opencvlibrary/.

available KITTI datasets [13], are presented. These results
are evaluated qualitatively by displaying residual images
€2(M), but also quantitatively via Precision/Recall curves
resulting from the evaluation protocol explained below.

4.1. Ewaluation Protocol

To evaluate the various tested approaches, we have manu-
ally annotated ground truth bounding boxes BBgr using
Vatic [23]. To associate a score to the detected bounding
boxes BB, we choose a discrete criterion based on the over-
lap ratio:

w(BB, BBar) = 71?2 S ?;GT.
GT

(28)

An detected BB is valid when there exists a BBgr
such that w(BB,BBgr) is below some threshold (e.g.
20%). To avoid multiple instances of the same detection, we
count one True Positive for each BBgr whatever the num-
ber of valid BB it is associated to. Other estimated bound-
ing boxes are considered as False Positive, and ground truth
bounding boxes with no associated True Positive detection
are False Negative. Several evaluations were done using dif-
ferent thresholds on £2(M) (e.g. from 1 to 30) to construct
Precision/Recall curves like Fig. 6. Note that because the
evaluation is based on the overlap ratio w(BB, BBgr), de-
creasing the threshold doesn’t always increase the number
of True Positive. Thus a Precision/Recall curve obtained
that way, is not necessarily a monotonously decreasing
function of the threshold (e.g. in Fig. 12, the blue curves).

4.2. Comparison of Stereo Algorithms

For the reasons exposed in 2.2, we have considered the
following dense stereo algorithms: SGM, ELAS and BM.
More precisely, we have used the OpenCV? version of SGM:
Semi-Global Block Matching (SGBM) which mainly differs
from the original version by its matching cost. We set the
boolean parameter fullDP to true, in order to compute the
matching cost along 8 directions as done in SGM. Con-
cerning ELAS setup, we activate the subsampling option to
speed-up the computation and enable real-time processing.
The disparity maps computed by these three algorithms,
are shown in Fig.5. Regarding the image coverage and the
influence on the detection performances (cf. Fig. 6), ELAS
appears to be a good choice for our application. Especially
since it can perform in real-time on a single CPU, with the
chosen settings (45ms on a CPU Intel Core i7, for KITTI
images). In the following, we choose ELAS to compute the
disparity maps.



Fig. 5. Examples of disparity maps computed by using SGBM
(top), ELAS (middle) and BM (bottom).
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Fig. 6. Precision/Recall curves of sequences 09/28-0037(top)
and 09/29-0071(bottom) considering £2(du, dv) obtained with
the proposed method and the comprehensive error model, using
SGBM (blue), ELAS (black) and BM (red).
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4.3. Impact of the Optical Flow Algorithm

We have also compared eFOLKI with the variational op-
tical flow of Brox et al. [22] which is more accurate than
TV-L1 on KITTI dataset, as shown in [12]. Parameters
of eFOLKI are J = 5 resolution levels, K = 5 iterations,
two window radii {8;4} and rank order 4. Opencv default
parameters are used for Brox et al. OF ie. a = 0.197,
~v =50, 10/10/77 solver /inner/outer iterations and a pyra-
mid scale of 0.8. Given these settings, the residual field
obtained with Brox et al. OF is smoother than the one
computed by eFOLKI (cf. Fig. 7 and Fig. 8), but doesn’t
improve the detection. Actually Brox et al. OF not only
performs slower than eFOLKI (cf. Table 1) but also often
leads to poorer results in term of detection as shown in
Fig. 9. Brox et al appears to more precise for the detection
only in sequence 09/29-0071 when considering a threshold
of 1 or 2 (which corresponds to the right-most points of the
Precision/Recall curves).

Obsere image + detected and VATIC BB

Fig. 7. Left image (top) with ground truth (blue) and esti-
mated BBs (red); £2(8u, §v) resulting from the proposed method
and eFOLKI [12] (middle) and Brox et al. OF [22] (bottom).
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Observed image + detected and VATIC BB
5L | NN .

X%(M) using eFOLKI

X?(M) using Brox OF

Fig. 8. Left image (top) with ground truth (blue) and esti-
mated BBs (red); §"2((5u7 0v) resulting from the proposed method
and eFOLKI [12] (middle) and Brox et al. OF [22] (bottom).

Precision / Recall using ELAS - 2011_09_28_drive_0037
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Fig. 9. Precision/Recall curves of sequences 09/28-0037 (top)
and 09/28-0037 (bottom) considering &2 (du, dv) obtained with
the proposed method and the comprehensive error model, using
eFOLKI (black) and Brox et al. OF [22] (purple).

4.4. Residual Fields Comparison

Experiments have shown that the motion likelihood
£%(8u, dv,dd) is more noisy than &2(du, dv), whatever the
chosen approach (cf. Fig. 10 and Fig. 11). Although the
additional consideration of dd improve sometimes the de-
tection (e.g. in Fig. 11 the pedestrians in the center of the
image, that are walking away from the camera), the Preci-
sion/Recall curves in Fig. 12 suggest that it is not worth it.

Whether or not we use dd, the proposed image predic-
tion methods appears to be the less noisy than the direct
ones, as shown in Fig. 10 and Fig. 11. This is confirmed by
the Precision/Recall curves in Fig. 12 where we notice a
huge gap between the curves of both methods.

This superiority of image prediction methods over the
direct ones may be explained by the fact that it is more suit-
able to compute the OF between I, and I7"** than between
I; and I;_1. Indeed, algorithms that belong to local or
window-based approaches of optical flow —like eFOLKI—
estimate u(x) as the minimizer of a criterion computed over
a local window W (x) centered on pixel x:

Y alx =)L)~ L Fux) * (29)

x'eW (x)

This 2D regularization corresponds to the assumption that
the optical flow constant over a local window. This as-
sumption is unrealistic in the case of OF (I;,I;_1), but suits
to OF(I;,17"*?) since u is supposedly constant (equal to
zero) in the static parts of the image. In other words,

OF (I,,IP"*%) acts like a low-pass filter in the static parts of
the image.

Finally, as shown in Fig. 13, the noise in the motion
likelihood ¢€2(M) can be further reduced by a choosing a
finer uncertainty model which takes into account the ego-
motion uncertainty g, though at the cost of a lower SNR,
on moving objects. Note that the gain resulting from the
comprehensive odometry error model X¢g is more important
in sequence 09/28-0037 during which the camera encoun-
ters a large rotation whose uncertainty introduces a lot of
noise in the estimated residual field M. The camera move-
ment in sequence 09/29-0071 is relatively slow and purely
translational, and in that case experience has shown that
Yo has less impact on the residual field M.
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Observed image [B% ‘ T B predicted image

Fig. 10. Several £2(M) images from sequence 09/28-0037, for M = {éu,dv,dd} (second row) and M = {§u,év} (third row) by
applying direct approach (left column) and the proposed one (right column). First row shows the observed and the predicted image.

Predicted image |
e S T

Direct method Proposed method

Fig. 11. Several £2(M) images from sequence 09/29-0071, for M = {u, dv,dd} (second row) and M = {éu, v} (third row) by
applying direct approach (left column) and the proposed one (right column). First row shows the observed and the predicted image.
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4.5. Processing Time
Fig. 12.  Precision/Recall curves of sequences 09/28-0037 (top)

and 09/29-0071 (bottom) considering £2(du, dv) (plain line) or
£2(u, 6v,0d) (dashed line) obtained with the direct (blue) and
the proposed method (black), with the comprehensive error

model. VO & ELAS Prediction OF: eFOLKI/Brox ¢2(M) CC + BB

Table 1. Processing Time For Each Stage

45ms 2ms 27ms/129ms Tms 5-10ms

Table 1 summarizes processing times with a CPU Intel
Core i7 and a GPU GeForce GTX TITAN. For the dispar-
ity map estimation, we use ELAS which can run in par-
allel with the visual odometry in 45ms. Thus the whole
pipeline performs in less than 100ms for KITTI images of
size 370x1224. The use of the fast algorithm eFOLKI saves
a considerable amount of time and enables the whole pro-
cess to achieve video framerate (i.e. 10Hz). Note that multi-
threading the VO and ELAS would significantly decrease
their runtimes on multicore systems.



Note that each stage required to achieve the computation
of €2(M) is done in a controlled amount of time — either
by deterministic operations or in a random loop with lim-
ited number of iterations. The time required for the last
stage (connected component extraction and merging pro-
cess) may vary according to the number of detected blobs
in the binary image obtained by applying a threshold on
€2(M). In our experiments, this stage has been perform in
few milliseconds (typically 5ms).

From now, the bottleneck appears to be the visual odom-
etry and the dense stereo. One could also use geometrical
informations returned by the system to speed-up stereo —
e.g. the disparity range may be deduced from previous dis-
parity map and camera pose.

5. Conclusion

We have presented a framework for mobile object detec-
tion from a moving stereo rig based on an image prediction
strategy. It is compatible with real-time processing thanks
to a fast dense OF estimation. A new comprehensive error
model has been derived, which allows to handle rigorously
the uncertainty related to visual odometry. We have con-
ducted an experimental study on several real videos from
the KITTI website to compare our approach with various
proposals of the literature. This study first show that the
image prediction strategy improves the SNR of the motion
likelihood. It also show that the fast OF algorithm eFOLKI
is compatible with good detection rates.

We now plan to integrate our framework to an online
ego-localization and environment mapping such as [3] and
add temporal filtering by modelling the dynamics of the
detected mobile objects.
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