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COHOMOLOGICAL DIMENSIONS OF UNIVERSAL

COSOVEREIGN HOPF ALGEBRAS

JULIEN BICHON

Abstract. We compute the Hochschild and Gerstenhaber-Schack cohomological dimensions of
the universal cosovereign Hopf algebras, when the matrix of parameters is a generic asymmetry.
Our main tools are considerations on the cohomologies of free product of Hopf algebras, and on
the invariance of the cohomological dimensions under graded twisting by a finite abelian group.

1. Introduction

Given an algebra A, a well-known and important homological invariant of A is its Hochschild
cohomological dimension, which serves as a noncommutative analogue of the dimension of an
algebraic variety, and is defined by

cd(A) = sup{n : Hn(A,M) 6= 0 for some A− bimodule M} ∈ N ∪ {∞}

= min{n : Hn+1(A,M) = 0 for any A− bimodule M}

= pd
AMA

(A)

where H∗(A,−) denotes Hochschild cohomology and pd
AMA

(A) is the projective dimension of
A in the category of A-bimodules.

In this paper we will be interested in the case when A is a Hopf algebra, in which case we
have as well

cd(A) = pdA(Cε)

where pdA(Cε) is the projective dimension of the trivial object Cε in the category of (say right)
A-modules (we work throughout the paper over the field of complex numbers). Hopf algebras
simultaneously generalize, among other things, discrete groups and linear algebraic groups, and
in the classical situations of of Hopf algebras associated to algebraic and discrete groups, the
Hochschild cohomological dimensions are as follows.

(1) If A = O(G), the coordinate algebra on a linear algebraic group G, it is well-known that
cd(O(G)) = dimG, the usual dimension of G.

(2) If A = CΓ, the group algebra of a discrete group Γ, then cd(CΓ) = cdC(Γ), the co-
homological dimension of Γ with coefficients C. This dimension of high importance in
geometric group theory, see [13, 21]. We have cd(CΓ) = 0 if and only if Γ is finite, and if
Γ is finitely generated, then cd(CΓ) = 1 if and only if Γ contains a free normal subgroup
of finite index, see [23, 20, 21].

There is also another cohomology theory specific to Hopf algebras, Gerstenhaber-Schack co-
homology [28, 29] (the coefficients are Hopf bimodules or Yetter-Drinfeld modules), which has
been useful in proving some fundamental results in Hopf algebra theory [41, 24], and serves,
similarly as above, to define another cohomological dimension, denoted cdGS(A). In [7, 8] we
proposed to study Gerstenhaber-Schack cohomology in order to get informations on Hochschild
cohomology itself. For example it is proved in [8] that cd(A) ≤ cdGS(A) for any Hopf alge-
bra, and it is asked there (Question 1.2) whether the equality always holds, at least in the
cosemisimple case (a positive answer is provided in the cosemisimple Kac type case, i.e. when
S2 = id). A positive answer would lead to the interesting fact that two Hopf algebras having
equivalent monoidal categories of comodules have the same Hochschild cohomological dimension
(the Gerstenhaber-Schack cohomological dimension being an invariant in such a situation).
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The aim of this paper is to discuss the cohomological dimensions of a class of Hopf algebras
that we believe to be of particular interest, the universal cosovereign Hopf algebras H(F ),
F ∈ GLn(C), [5] (see Section 2 for the precise definition). The universal property of these Hopf
algebras make them play, in Hopf algebra theory, a role similar to that of the general linear
groups in algebraic group theory, and to that of the free groups in discrete group theory. In
particular any finitely generated cosemisimple Hopf algebra is a quotient of one H(F ).

The Hopf algebras H(F ) are the algebraic counterparts of the universal compact quantum
groups of Van Daele and Wang [46], which have been widely studied in the operator algebraic
context of quantum group theory, starting with [2], see e.g. [12, 18, 19, 45, 48]. However, so far,
the algebraic properties of the general H(F ) have only been analyzed through the study of its
category of comodules [2, 6, 16, 11]. We provide here a full computation of the cohomological
dimensions of H(F ), when the matrix F is a generic asymmetry (see Section 2 for the definition
of these notions): in that case we show that cd(H(F )) = 3 = cdGS(H(F )). To prove this
result, our starting point is the recent observation [9] that for F = EtE−1, then H(F ) is a
graded twisting of the free product B(E) ∗ B(E), where B(E) is the universal Hopf algebra of
the bilinear form associated to E, introduced by Dubois-Violette and Launer [22]. Since the
cohomological dimensions of B(E) are known [7, 8], the computation is then achieved thanks to
the two main general contributions of this paper: on one hand the invariance (for cosemisimple
Hopf algebras) of the cohomological dimensions under graded twisting by a finite abelian group,
and on the other hand the description of the cohomologies of a free product in terms of the
cohomologies of the factors.

Note that for F = In, we have H(In) = O(U+
n ), the coordinate algebra on the free unitary

quantum group U+
n [49]. Thus, similarly to the case of the free orthogonal quantum group O+

n

studied in [17, 7] and of the quantum permutation group S+
n studied in [8], we get that all the

cohomological dimensions for U+
n equal 3. Therefore the “free” quantum groups O+

n , S
+
n , U

+
n

(see e.g. [3, 26] for the meaning of free) all have dimension 3. It would be interesting to know
is there is a conceptual reason (maybe representation theoretic, in the spirit of [27]) for that.

The paper is organized as follows. In Section 2 we recall some basic facts on the universal
cosovereign Hopf algebras, and we state our main result on the computation of their cohomo-
logical dimensions. Section 3 provides the necessary material on Yetter-Drinfeld modules and
Gerstenhaber-Schack cohomology. In Section 4, we recall, after some considerations on cocen-
tral exact sequences of Hopf algebras and Yetter-Drinfeld modules over them, the construction
of the graded twisting of a Hopf algebra, and prove the invariance of the cohomological di-
mensions under this construction (under suitable assumptions). Section 5 is devoted to the
description of Hochschild and Gerstenhaber-Schack cohomologies of free products in terms of
the cohomologies of the factors, and finishes the proof of Theorem 2.1. In the final Section 6,
we come back to the problem of comparing the two cohomological dimensions for cosemisimple
Hopf algebras, and provide a slight extension to the positive result in [8], proving that equality
holds if S4 = id.

Notations and conventions. We work over C (or over any algebraically closed field of
characteristic zero). We assume that the reader is familiar with the theory of Hopf algebras
and their tensor categories of comodules, as e.g. in [31, 32, 35]. If A is a Hopf algebra, as
usual, ∆, ε and S stand respectively for the comultiplication, counit and antipode of A. We use
Sweedler’s notations in the standard way. The category of right A-comodules is denoted MA,
the category of right A-modules is denoted MA, etc... The trivial (right) A-module is denoted
Cε. The set of A-module morphisms (resp. A-comodule morphisms) between two A-modules
(resp. two A-comodules) V and W is denoted HomA(V,W ) (resp. HomA(V,W )).

2. Universal cosovereign Hopf algebras

We fix n ≥ 2, and let F ∈ GLn(C). Recall [5] that the algebra H(F ) is the algebra generated
by (uij)1≤i,j≤n and (vij)1≤i,j≤n, with relations:

uvt = vtu = In; vFutF−1 = FutF−1v = In,
2



where u = (uij), v = (vij) and In is the identity n × n matrix. The algebra H(F ) has a Hopf
algebra structure defined by

∆(uij) =
∑

k

uik ⊗ ukj, ∆(vij) =
∑

k

vik ⊗ vkj,

ε(uij) = ε(vij) = δij , S(u) = vt, S(v) = FutF−1.

The universal property of the Hopf algebras H(F ) [5] shows that they play, in the category
of Hopf algebras, a role that is similar to the one of O(GLn(C)) in the category of commutative
Hopf algebras: any finitely generated Hopf algebra having all its finite-dimensional comodules
isomorphic to their bidual (in particular any finitely generated cosemisimple Hopf algebra) is
a quotient of H(F ) for some F . Hence one might say that they correspond to “universal”
quantum groups.

When F is a positive matrix, the Hopf algebraH(F ) is the canonical Hopf ∗-algebra associated
to Van Daele and Wang’s universal compact quantum groups [46].

The category of comodules over H(F ) has been studied in [2, 6, 16, 11]. In order to recall
the characterization of the cosemisimplicity of H(F ), we need some vocabulary. A matrix
F ∈ GLn(C) is said to be

• normalizable if tr(F ) 6= 0 and tr(F−1) 6= 0 or tr(F ) = 0 = tr(F−1);

• generic if it is normalizable and the solutions of the equation q2 −
√

tr(F )tr(F−1)q+1 = 0
are generic, i.e. are not roots of unity of order ≥ 3 (this property does not depend on the choice
of the square root);

• an asymmetry if there exists E ∈ GLn(C) such that F = EtE−1 (the terminology comes
from the theory of bilinear forms, see [37]).

For q ∈ C∗, we denote by Fq the matrix

Fq =

(
q−1 0
0 q

)

and by H(q) the Hopf algebra H(Fq). The matrix Fq is an asymmetry.
The following results are shown in [6].
• If F is normalizable, we have an equivalence between the tensor categories of comodules

MH(F ) ≃⊗ MH(q)

where q is any solution of the equation q2 −
√

tr(F )tr(F−1)q + 1 = 0.
• The Hopf algebra H(F ) is cosemisimple if and only if F is generic.
Moreover, the simple comodules can be naturally labeled by the free monoid N ∗N [2, 6, 16],

with an explicit model for these comodules given in [11].
The aim of this paper is to prove the following result.

Theorem 2.1. Let F ∈ GLn(C), n ≥ 2.

(1) If F is an asymmetry, then cd(H(F )) = 3.
(2) If F is generic, then cdGS(H(F )) = 3.

In particular, if F is a generic asymmetry, we have cd(H(F )) = 3 = cdGS(H(F )).

See the next section for the definition of cdGS. We will proceed by using the fact, from [9],
that when F is an asymmetry, it is a graded twisting of a free product of Hopf algebras whose
cohomological dimension are known. We therefore have two main tasks:

(1) relate the cohomological dimensions of (cosemisimple) Hopf algebras that are graded
twisting of each other (this is done in Section 4);

(2) describe the cohomological dimensions of a free product of Hopf algebras in terms of the
cohomological dimensions of the factors (this is done in Section 5).
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3. Yetter-Drinfeld modules and Gerstenhaber-Schack cohomology

In this section we recollect the basic facts on Yetter-Drinfeld modules and Gerstenhaber-
Schack cohomology, and discuss restriction and induction for Yetter-Drinfeld modules. Let A
be a Hopf algebra.

3.1. Yetter-Drinfeld modules. Recall that a (right-right) Yetter-Drinfeld module over A is
a right A-comodule and right A-module V satisfying the condition, ∀v ∈ V , ∀a ∈ A,

(v · a)(0) ⊗ (v · a)(1) = v(0) · a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDA
A: the morphisms are the A-

linear A-colinear maps. Endowed with the usual tensor product of modules and comodules, it
is a tensor category, with unit the trivial Yetter-Drinfeld module, denoted C.

We now discuss some important constructions of Yetter-Drinfeld modules (left-right versions
of these constructions were first given in [14], see [40] as well, in the context of Hopf bimodules).

Let V be a right A-comodule. The Yetter-Drinfeld module V ⊠ A is defined as follows [7].
As a vector space V ⊠A = V ⊗A, the right module structure is given by multiplication on the
right, and the right coaction αV ⊠A is defined by

αV ⊠A(v ⊗ a) = v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

The coadjoint Yetter-Drinfeld module is Acoad = C⊠A.
A Yetter-Drinfeld module is said to be free if it is isomorphic to V ⊠ A for some comodule

V , and is said to be relative projective if it is a direct summand of a free Yetter-Drinfeld
module. If A is cosemisimple, then the projective objects in the category YDA

A are precisely
the relative projective Yetter-Drinfeld modules, see [8, Proposition 4.2], the abelian category
YDA

A has enough projectives, each object having a resolution by free Yetter-Drinfeld modules
[7, Corollary 3.4].

3.2. Gerstenhaber-Schack cohomology. Let V be a Yetter-Drinfeld module over A. The
Gerstenhaber-Schack cohomology of A with coefficients in V , that we denote H∗

GS(A,V ), was
introduced in [28, 29] by using an explicit bicomplex. In fact Gerstenhaber-Schack used Hopf
bimodules instead of Yetter-Drinfeld modules to define their cohomology, but in view of the
equivalence between Hopf bimodules and Yetter-Drinfeld modules [38], we work with the simpler
framework of Yetter-Drinfeld modules. A special instance of Gerstenhaber-Schack cohomology
is bialgebra cohomology, given by H∗

b (A) = H∗
GS(A,C).

As examples, the bialgebra cohomologies of CΓ (for a discrete group Γ) and of O(G) (for a
connected reductive algebraic group G) are described in [36]. Some finite-dimensional examples
are also computed in [43].

A key result, due to Taillefer [42], characterizes Gerstenhaber-Schack cohomology as an Ext-
functor:

H∗
GS(A,V ) ≃ Ext∗

YDA
A

(C, V )

We will use this description as a definition. Note that the category YDA
A has enough injective

objects [14, 42], so the above Ext spaces can be studied using injective resolutions of V .
The Gerstenhaber-Schack cohomological dimension of a Hopf algebra A is defined to be

cdGS(A) = sup{n : Hn
GS(A,V ) 6= 0 for some V ∈ YDA

A} ∈ N ∪ {∞}

The following facts were established in [7, 8].
• cd(A) ≤ cdGS(A), with equality if A is cosemisimple of Kac type (i.e. S2 = id).
• If A, B are Hopf algebras with MA ≃⊗ MB (the tensor categories of comodules are

equivalent), then max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B).
• If A is co-Frobenius (in particular if A is cosemisimple), so that YDA

A has enough projective
objects, then cdGS(A) = pdYDA

A
(C).
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3.3. Restriction and induction for Yetter-Drinfeld modules. We now discuss the re-
striction and induction process for Yetter-Drinfeld modules, having in mind applications to
Gerstenhaber-Schack cohomology. The considerations in this subsection (construction of a pair
of adjoint functors) are special instances of those in [15, Section 2.5], but we give the detailed
construction, on one hand for the sake of completeness, and on the other hand because it is
probably quicker to write them down directly than to translate from the language of entwined
modules of [15].

Let B ⊂ A be a Hopf subalgebra. For an A-comodule X, we put

X(B) = {x ∈ X | x(0) ⊗ x(1) ∈ X ⊗B}

It is clear that the A-comodule structure on X induces a B-comodule structure on X(B), and
that this construction produces a functor

MA −→ MB

X 7−→ X(B)

This functor is left exact, and we will say that B ⊂ A is a coflat if this functor is exact
(this agrees with the usual terminology, since the above functor is isomorphic with the functor
−�AB). For example B ⊂ A is coflat when A is cosemisimple.

Proposition 3.1. Let B ⊂ A be a Hopf subalgebra, and let X be an object in YDA
A. Then X(B)

is a sub-B-module of X, so that X(B) is an object in YDB
B. The assignment

YDA
A −→ YDB

B

X 7−→ X(B)

defines a linear functor, that we call the restriction functor, which is exact if B ⊂ A is coflat.

Proof. For x ∈ X(B) and b ∈ B, we have

(x · b)(0) ⊗ (x · b)(1) = x(0) · b(2) ⊗ S(b(1))x(1)b(3) ∈ X ⊗B

and hence X(B) is a sub-B-module of X. The other assertions are immediate. �

We have an induction functor as well.

Proposition 3.2. Let B ⊂ A be a Hopf subalgebra. Then for any V ∈ YDB
B, the vector space

V ⊗B A admits a natural Yetter-Drinfeld module structure over A, whose A-module structure

is given by multiplication on the right, and whose A-comodule structure is given by the map

v ⊗B a 7→ v(0) ⊗B a(2) ⊗ S(a(1))v(1)a(3)

This construction defines a linear functor

YDB
B −→ YDA

A

V 7−→ V ⊗B A

that we call the induction functor.

Proof. We have, for v ∈ V , b ∈ B and a ∈ A,

(v · b)(0) ⊗B a(2) ⊗ S(a(1))(v · b)(1)a(3) = v(0) · b(2) ⊗B a(2) ⊗ S(a(1))S(b(1))v(1)b(3)a(3)

= v(0) ⊗B b(2)a(2) ⊗ S(b(1)a(1))v(1)b(3)a(3)

and this shows that above map is well-defined. It is then straightforward to check that this
indeed defines a comodule structure on V ⊗B A, and a Yetter-Drinfeld module structure, and
that we get the announced functor. �

We now observe that the functors of Propositions 3.1 and 3.2 form a pair of adjoint functors,
see [15, Section 2.5].
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Proposition 3.3. Let B ⊂ A be a Hopf subalgebra. We have for any V ∈ YDB
B and any

X ∈ YDA
A, natural isomorphisms

HomYDA
A
(V ⊗B A,X) ≃ HomYDB

B
(V,X(B))

If moreover B ⊂ A is coflat and A is flat as a left B-module, we have, for any n ≥ 0, natural
isomorphisms

Extn
YDA

A

(V ⊗B A,X) ≃ Extn
YDB

B

(V,X(B))

Proof. It is a direct verification to check that for f ∈ HomYDA
A
(V ⊗BA,X), the map f0 : V → X

defined by f0(v) = f(v⊗1) has values into X(B), and is a morphism of Yetter-Drinfeld modules
over B. We get a (natural) map

HomYDA
A
(V ⊗B A,X) −→ HomYDB

B
(V,X(B))

f 7−→ f0, f0(v) = f(v ⊗ 1)

which is easily seen to be an isomorphism, and hence we have a pair of adjoint functors.
The assumptions that B ⊂ A is coflat and that A is flat as a left B-module are precisely

that our pair of adjoint functors is formed by exact functors, and hence the restriction functor
YDA

A → YDB
B preserve injective objects. Starting now from an injective resolution

0 → X → I0 → I1 → · · ·

in YDA
A, we get an injective resolution

0 → X(B) → I
(B)
0 → I

(B)
1 → · · ·

in YDB
B , and the adjunction property gives an isomorphism of complexes

HomYDA
A
(V ⊗B A, I∗) ≃ HomYDB

B
(V, I

(B)
∗ )

The Ext-spaces in the statement are the cohomologies of these complexes. �

We finish the subsection by noticing that, in most cases, there is another description of the
restriction functor (this will be convenient in the next section).

Proposition 3.4. Let B ⊂ A be a Hopf subalgebra. Consider the quotient coalgebra L =
A/B+A, and denote p : A→ L the quotient map. For X ∈ MA, put

XcoL = {x ∈ X | x(0) ⊗ p(x(1)) = x⊗ 1}

If B = AcoL, then we have XcoL = X(B). Hence the assignment X 7→ XcoL defines linear

functors MA → MB, YDA
A → YDB

B, that are exact if B ⊂ A is coflat, or if L is cosemisimple.

Proof. Given x ∈ XcoL, we have x(0) ⊗ x(1) ⊗ p(x(2)) = x(0) ⊗ x(1) ⊗ 1, and this shows that

x(0) ⊗ x(1) ∈ X ⊗ B, since B = AcoL. Conversely, if x(0) ⊗ x(1) ∈ X ⊗ B, then x(0) ⊗ p(x(1)) =

x(0) ⊗ ε(x(1)) = x ⊗ 1, hence x ∈ XcoL. We get the announced description for XcoL, the
other assertions follow from Proposition 3.1, and there just remains to check exactness if L is
cosemisimple. For this, notice that if X is a comodule over A, the coalgebra map p induces a
L-comodule structure on X, and the cosemisimplicity of L provides a decomposition

X = XcoL ⊕X ′

for some sub-L-comodule X ′. A morphism of A-comodules preserves this decomposition, and
from this, exactness of our functor follows easily. �

Remark 3.5. The assumption B = AcoL holds if A is flat as a left B-module, see [39, Corollary
1.8].

4. Graded twisting and cohomological dimensions

In this section we study the invariance of the cohomological dimensions under graded twisting
by a finite abelian group.

6



4.1. Exact sequences of Hopf algebras. We begin by some preliminaries on exact sequences
of Hopf algebras. First recall that a sequence of Hopf algebra maps

C → B
i
→ A

p
→ L→ C

is said to be exact [1] if the following conditions hold:

(1) i is injective and p is surjective,
(2) ker p = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩Ker(ε),
(3) i(B) = AcoL = {a ∈ A : (id⊗p)∆(a) = a⊗1} = coLA = {a ∈ A : (p⊗ id)∆(a) = 1⊗a}.

Note that condition (2) implies pi = ε1.
In an exact sequence as above, we will assume, without loss of generality, that B is Hopf

subalgebra and i is the inclusion map. In what follows we fix an exact sequence of Hopf
algebras

C → B
i
→ A

p
→ L→ C

First we have the following well-known fact.

Proposition 4.1. Let M be a right A-module, and let MB = {x ∈ M | x · b = ε(b)x} be the

space of B-invariants. Then the A-module structure on M induces an L-module structure on

MB with (MB)L =MA.

Proof. For x ∈ MB and b ∈ B+, we have x · b = 0. Moreover, for x ∈ MB, a ∈ A, one easily
sees, using that AB+ = B+A, that x · a ∈ MB. Hence the formula x · p(a) = x · a provides a
well-defined L-module structure on MB. The last equality is immediate. �

Proposition 4.2. Assume that L is semisimple. Let τ ∈ L be a right integral with ε(τ) = 1,
and let t ∈ A be such that p(t) = τ . Let V,W be right A-modules and let f : V → W be a

B-linear map. Then the linear map f̃ : V →W defined by f̃(v) = f(v ·S(t(1))) · t(2) is A-linear.

Proof. Recall that Hom(V,W ) admits a right A-module structure defined by

f · a(v) = f(v · S(a(1))) · a(2)

and that

HomA(V,W ) = Hom(V,W )A = (Hom(V,W )B)L

Recall also that if M is a right L-module over the semisimple algebra L, then ML = M · τ .
Hence, since f ∈ HomB(V,W ) = Hom(V,W )B , we have f ·τ ∈ (Hom(V,W )B)L = HomA(V,W ).

We now have f · τ = f · p(t) = f · t, and it is clear that f · t is the map f̃ in the statement. �

Remark 4.3. When the above p is an isomorphism, the above result is simply the well-known
fact that a Hopf algebra having a right integral τ with ε(τ) = 1 is semisimple.

4.2. Yetter-Drinfeld modules and cocentral exact sequences. Recall that a Hopf algebra
map p : A → L is said to be cocentral if p(a(1)) ⊗ a(2) = p(a(2)) ⊗ a(1) for any a ∈ A, and we

say that an exact sequence C → B → A
p
→ CΓ → C is cocentral if p is.

In this subsection we fix a cocentral exact sequence of Hopf algebras

C → B → A
p
→ CΓ → C

with Γ a finite abelian group. Our aim is to relate Yetter-Drinfeld modules over A and B, and
then use these considerations to relate the cohomological dimensions of A and B (Theorem 4.8).

We assume that A (and hence B) is cosemisimple (but this will play a true role only in
Lemma 4.6 and Proposition 4.7).

Our first task is to study the action of the functor of Proposition 3.4 (and hence of Proposition
3.1) on relative projective Yetter-Drinfeld modules. We begin with the free ones.

Lemma 4.4. We have, for any V ∈ MA,

(V ⊠A)coCΓ = V coCΓ
⊠A

7



Proof. For v ∈ V coCΓ and a ∈ A, we have, using the cocentrality of p,

(v ⊗ a)(0) ⊗ p((v ⊗ a)(1)) = v(0) ⊗ a(2) ⊗ p(S(a(1))v(1)a(3))

= v ⊗ a(2) ⊗ p(S(a(1))a(3))

= v ⊗ a⊗ 1

Hence V coCΓ
⊠A ⊂ (V ⊠A)coCΓ. Conversely, let

∑
i vi ⊗ ai ∈ (V ⊠A)coCΓ. We have, using the

cocentrality of p and the fact that the algebra CΓ is commutative,
∑

i

vi ⊗ ai ⊗ 1 =
∑

i

vi(0) ⊗ ai(2) ⊗ p(S(ai(1))vi(1)ai(3))

=
∑

i

vi(0) ⊗ ai ⊗ p(vi(1))

Taking the a′is linearly independent, we see that each vi belongs to V
coCΓ, as needed. �

Proposition 4.5. The exact functor

(−)coCΓ : YDA
A −→ YDB

B

V 7−→ V coCΓ

transforms relative projective objects of YDA
A into relative projective objects of YDB

B. Moreover,

if M ∈ YDA
A is free, then the B-module structure on M coCΓ is the restriction of an A-module

structure, so that M coCΓ is an object in YDA
A.

Proof. Let P be a relative projective Yetter-Drinfeld over A: there exists another Yetter-Drinfeld
module Q and an A-comodule V such that P ⊕Q ≃ V ⊠A as Yetter-Drinfeld modules over A.
We then have, using Lemma 4.4,

P coCΓ ⊕QcoCΓ ≃ (P ⊕Q)coCΓ ≃ (V ⊠A)coCΓ ≃ V coCΓ
⊠A

as Yetter-Drinfeld modules over B (recall [8, Proposition 4.5] that if W is B-comodule, then the
free Yetter-Drinfeld moduleW⊠A ∈ YDA

A is in fact a comodule over B, so thatW⊠A is Yetter-
Drinfeld over B). Moreover V coCΓ

⊠ A is a relative projective Yetter-Drinfeld module over B,
by [8, Proposition 4.8], hence there exists T ∈ YDB

B and W ∈ MB such that (V coCΓ
⊠A)⊕T ≃

W ⊠B. Finally

P coCΓ ⊕QcoCΓ ⊕ T ≃W ⊠B

which shows that P coCΓ is indeed a relative projective Yetter-Drinfeld module over B. The last
statement follows immediately from Lemma 4.4. �

Before proving our main technical result in view of the proof of Theorem 4.8, we need a last
ingredient.

Lemma 4.6. There exists an element t ∈ A such that

p(t) =
1

|Γ|

∑

g∈Γ

g and t(2) ⊗ S(t(1))t(3) = t⊗ 1

If M , N are A-modules and f : M → N is a B-linear map, then the linear map f̃ : M → N
defined by f̃(x) = r(x · S(t(1))) · t(2) is A-linear.

Proof. The element τ = 1
|Γ|

∑
g∈Γ g is a right integral in the semisimple Hopf algebra CΓ satis-

fying ε(τ) = 1, so the last statement follows from Proposition 4.2, and it remains to check that
t can be chosen such that t(2) ⊗S(t(1))t(3) = t⊗ 1. To see this, note that CΓ and A both admit
right B ⊗ CΓ-comodule structures given by

CΓ −→ CΓ⊗ (B ⊗ CΓ), A −→ A⊗ (B ⊗ CΓ)

x 7−→ x(1) ⊗ 1⊗ x(2), a 7−→ a(2) ⊗ S(a(1))a(3) ⊗ p(a(4))
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and that p is B⊗CΓ-colinear. Since A is cosemisimple, so is B and hence B⊗CΓ is cosemisimple.
Thus there exists σ, a B ⊗ CΓ-colinear section to p, which thus satisfies, for any x ∈ CΓ,

σ(x)(2) ⊗ S(σ(x)(1))σ(x)(3) ⊗ p(σ(x)(4)) = σ(x(1))⊗ 1⊗ x(2)

and hence in particular
σ(x)(2) ⊗ S(σ(x)(1))σ(x)(3) = σ(x)⊗ 1

Hence we can take t = σ(τ). �

Proposition 4.7. Let V,W ∈ YDA
A, and let i : V → W be an injective morphism of Yetter-

Drinfeld modules over A. Assume that the following conditions hold.

(1) We have αV (V ) ⊂ V ⊗ B and αW (W ) ⊂ W ⊗ B, so that V and W are in fact B-

comodules.

(2) The exists a B-linear and B-colinear map r :W → V such that ri = idV

Then there exists an A-linear and A-colinear map r̃ : W → V such that r̃i = idV .

Proof. Let t ∈ A as in the previous lemma. We define r̃ :W → V by

r̃(w) = r(w · S(t(1))) · t(2)

It is immediate to check that r̃i = idV , and it follows from the previous lemma that r̃ is A-linear.
It thus remains to check that r̃ is A-colinear. Let w ∈W . We have

r̃(w)(0) ⊗ r̃(w)(1) = (r(w · S(t(1))) · t(2))(0) ⊗ (r(w · S(t(1))) · t(2))(1)

= r(w · S(t(1)))(0) · t(3) ⊗ S(t(2))r(w · S(t(1)))(1)t(4)

= r((w · S(t(1)))(0)) · t(3) ⊗ S(t(2))(w · S(t(1)))(1)t(4)

= r(w(0) · S(t(2))) · t(5) ⊗ S(t(4))S
2(t(3))w(1)S(t(1))t(6)

= r(w(0) · S(t(2))) · t(3) ⊗ w(1)S(t(1))t(4)

= r(w(0) · S(t(1))) · t(2) ⊗ w(1)

= r̃(w(0))⊗ w(1)

where we have used the Yetter-Drinfeld condition, the B-colinearity of r and the fact that
t(2) ⊗ S(t(1))t(3) = t⊗ 1 which gives

t(2) ⊗ t(3) ⊗ S(t(1))t(4) = t(1)) ⊗ t(2) ⊗ 1

Hence r̃ is A-colinear, and this concludes the proof. �

Theorem 4.8. Let C → B → A → CΓ → C be a cocentral exact sequence of Hopf algebras,

with Γ a finite abelian group. Then cd(A) = cd(B), and if we assume that A is cosemisimple,

we have cdGS(A) = cdGS(B) as well.

Proof. The identity cd(A) = cd(B) is a particular case of [8, Proposition 3.2] (the above exact
sequence being automatically strict, see [8] for details). Assume that A is cosemisimple, and
consider a resolution of the trivial Yetter-Drinfeld module

· · · → Pn → Pn−1 → · · · → P1 → P0 → C

by (relative) projective Yetter-Drinfeld over A. The exact functor (−)coCΓ : YDA
A −→ YDB

B

from Proposition 3.4 transforms, by Proposition 4.5, this resolution into a resolution of C by
(relative) projective Yetter-Drinfeld modules over B. It follows that cdGS(B) ≤ cdGS(A).

To prove the converse inequality, we can assume that m = cdGS(B) is finite. Consider a
resolution of the trivial Yetter-Drinfeld module

· · · → Fn → Fn−1 → · · · → F1 → F0 → C

by free Yetter-Drinfeld modules over A. The exact functor (−)coCΓ : YDA
A −→ YDB

B from
Proposition 3.4 transforms, by Lemma 4.4 and Proposition 4.5, this resolution into a resolution
of C of type

· · · → Vn ⊠A→ Vn−1 ⊠A→ · · · → V1 ⊠A→ V0 ⊠A→ C

9



where V0, V1, . . . are comodules over B, V0⊠A,V1⊠A, . . . are free Yetter-Drinfeld modules over A
(and projective over B), and the involved linear map are morphisms of Yetter-Drinfeld modules
over A. Since m = cdGS(B), a standard argument yields an exact sequence of Yetter-Drinfeld
modules over B, and hence over A

0 → K
i
→ Vm ⊠A→ Vm−1 ⊠A→ · · · → V1 ⊠A→ V0 ⊠A→ C

together with r : Vm ⊠ A → K, a morphism of Yetter-Drinfeld modules over B such that
ri = idK . Proposition 4.7 gives r̃ : Vm ⊠ A → K, a morphism of Yetter-Drinfeld modules over
A such that r̃i = idK . We thus get, since a direct summand of a projective is projective, a
length m resolution of C by projective Yetter-Drinfeld modules over A, and we conclude that
cdGS(A) ≤ m, as required. �

4.3. Graded twisting. Let A be a Hopf algebra and let Γ be a group. Recall [9] that an
invariant cocentral action of Γ on A is a pair (p, α) where

• p : A→ CΓ is a surjective cocentral Hopf algebra map,
• α : Γ → AutHopf(A) is an action of Γ by Hopf algebra automorphisms on A, with pαg = p
for all g ∈ Γ.

The Hopf algebra map p induces a Γ-grading on A

A =
⊕

g∈Γ

Ag, Ag = {a ∈ A | p(a(1))⊗ a(2) = g ⊗ 1}

and the last condition is equivalent to αg(Ah) = Ah for all g, h ∈ Γ. When (p, α) is such an
action, the graded twisting At,α of A is the Hopf subalgebra

At,α =
∑

g∈Γ

Ag ⊗ g ⊂ A⋊ Γ,

of the crossed product Hopf algebra A⋊Γ. Notice that the coalgebras A and At,α are isomorphic.
With these definitions, we are ready to prove the following result.

Theorem 4.9. Let A, B be Hopf algebras, and assume that B is a graded twisting of A by a

finite abelian group. Then cd(A) = cd(B), and if we assume that A is cosemisimple, we have

cdGS(A) = cdGS(B) as well.

Proof. Let Γ be the twisting group. It pointed out in [10] that A and B fit into cocentral exact
sequences

C → L→ A→ CΓ → C, C → L→ B → CΓ → C

for the Hopf algebra L = A1. We thus have, by Theorem 4.8, cd(A) = cd(L) = cd(B) and
cdGS(A) = cdGS(L) = cdGS(B) if A (and hence B) is cosemisimple. �

See [9] for examples of graded twistings. The example we have in mind is the following one.
Let E ∈ GLn(C) and consider the Hopf algebra B(E) defined by Dubois-Violette and Launer

[22]: B(E) is the algebra generated by aij , 1 ≤ i, j ≤ n, subject to the relations E−1atEa =
In = aE−1atE, where a is the matrix (aij) (for an appropriate matrix Eq, one gets Oq(SL2(C))).

Recall now [49] that if A,B are Hopf algebras, the free product algebra A ∗ B has a unique
Hopf algebra structure such that the canonical morphisms A→ A ∗B and B → A ∗B are Hopf
algebra maps, and consider the free product Hopf algebra B(E) ∗ B(E). We have a cocentral
Hopf algebra map

B(E) ∗ B(E) −→ CZ2, Z2 = 〈g〉

a
(1)
ij , a

(2)
ij 7−→ δijg

where the superscript refers to the numbering of copies inside the free product, and we have an
action of Z2 of B(E)∗B(E), given by the Hopf algebra automorphism that exchanges the copies
inside the free product. We get in this way an invariant cocentral action of Z2 on B(E) ∗ B(E),
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and we form the graded twisting (B(E) ∗ B(E))t. Now for F = EtE−1, we have, by [9], a Hopf
algebra isomorphism

H(F ) −→ (B(E) ∗ B(E))t

u, v 7−→ a(1) ⊗ g, Eta(2)(E−1)t ⊗ g

Using Theorem 4.8, we get:

Corollary 4.10. For F = EtE−1, we have cd(H(F )) = cd(B(E) ∗ B(E)), and if F is generic,

then cdGS(H(F )) = cdGS(B(E) ∗ B(E)).

It thus remains, in order to prove Theorem 2.1, to discuss the cohomological dimensions of a
free product, the cohomological dimensions of B(E) being known [7].

5. Cohomologies of free products of Hopf algebras

In this section we discuss the cohomologies of a free product of Hopf algebras.

5.1. Hochschild cohomology. We begin with Hochschild cohomology. The following result
generalizes the well-known one for group cohomology, see [30], with essentially the same proof.

Theorem 5.1. Let A, B be augmented algebras. We have for any right A ∗B-module M , and

for any n ≥ 2, a natural isomorphism

ExtnA∗B(Cε,M) ≃ ExtnA(Cε,M) ⊕ ExtnB(Cε,M)

where M has the respective restricted A-module and B-module structures.

The result and proof are probably well-known, but in lack of a convenient reference (however
see [44] for the case of trivial coefficients), we will give the details, which also will be useful in
view of the proof of an analogous result for Gerstenhaber-Schack cohomology in a forthcoming
subsection.

At the level of Hochschild cohomology, Theorem 5.1 gives the following result.

Theorem 5.2. Let A, B be Hopf algebras algebras. We have for any A ∗B-bimodule M , and

for any n ≥ 2, a natural isomorphism

Hn(A ∗B,M) ≃ Hn(A,M)⊕Hn(B,M)

where M has the respective restricted A-bimodule and B-bimodule structures.

Proof. This follows directly from Theorem 5.1, since for a Hopf algebra A and an A-bimodule
M , we have H∗(A,M) ≃ Ext∗A(Cε,M

′), where M ′ has the right A-module structure given by
m · a = S(a(1)) ·m · a(2). See e.g. [7] for this well-known fact. �

Corollary 5.3. Let A, B be non trivial Hopf algebras. We have

cd(A ∗B) =

{
1 if cd(A) = 0 = cd(B)

max(cd(A), cd(B)) if max(cd(A), cd(B)) ≥ 1

Proof. If cd(A) = 0 = cd(B), Theorem 5.1 yields that cd(A ∗ B) ≤ 1. If cd(A ∗ B) = 0, then
A ∗B is a semisimple Hopf algebra, hence is finite-dimensional. But if A and B are non trivial,
the free product algebra A ∗B is necessarily infinite-dimensional, so cd(A ∗B) = 1.

Since A ∗ B is free both as a left A-module and as a left B-module, we have cd(A ∗ B) ≥
max(cd(A), cd(B)) (see e.g. [8]). If m = max(cd(A), cd(B)) ≥ 1, we get from Theorem 5.1 that
Hm+1(A ∗B,M) = (0) for any A-bimodule M , and hence cd(A ∗B) ≤ m, as needed. �

Remark 5.4. The above result also can be obtained as a direct consequence of [4, Corollary
2.5], as well. Indeed, the Hochschild cohomological dimension of a Hopf algebra coincides with
its (right or left) global dimension (this is pointed out in [50]), hence the result follows from
Corollary 2.5 in [4], having in mind that since A and B are non trivial, the free product algebra
A ∗B is necessarily infinite-dimensional, so is not semisimple, and hence cd(A ∗B) ≥ 1.
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We prefer the proof obtained as a corollary of Theorem 5.2, since it gives more information
on Hochschild cohomology, and it will be better for adaptation to the Gerstenhaber-Schack
cohomology case.

Our aim now is to prove Theorem 5.1. We begin with the following classical shifting lemma.

Lemma 5.5. Let (A, ε) be an augmented algebra. We have, for any n ≥ 2 and any right

A-module M ,

ExtnA(Cε,M) ≃ Extn−1
A (A+,M)

Proof. One gets the result by applying the Ext long exact sequence to the exact sequence of
right A-modules

0 → A+ → A
ε
→ Cε → 0

with A a free A-module, hence projective. �

We thus have to study the augmentation ideal in a free product of augmented algebras. For
this, recall that if (A, ε) is an augmented algebra and M is a right A-module, a derivation
d : A → M is a linear map such that d(ab) = ε(a)d(b) + d(a)b for any a, b ∈ A. The space of
such derivations is denoted Der(A,M).

The following result relates derivations and the augmentation ideal.

Lemma 5.6. Let A = (A, ε) be an augmented algebra. We have, for any right A-module M , a

natural isomorphism

Der(A,M) ≃ HomA(A
+,M)

Proof. It follows from the definition of a derivation that we have a linear map

Der(A,M) −→ HomA(A
+,M)

d 7−→ d|A+

which is easily seen to be an isomorphism. �

Lemma 5.7. We have, for any augmented algebras A, B and for any right (A ∗B)-module M ,

natural isomorphisms

Der(A ∗B,M) ≃ Der(A,M) ⊕Der(B,M)

Proof. We have a linear map

Der(A ∗B,M) −→ Der(A,M) ⊕Der(B,M)

d 7−→ (d|A, d|B)

which is clearly injective by the derivation property and the fact that A ∗B is generated, as an
algebra, by A and B. To prove surjectivity, first recall that in general, ifM is a right A-module,
a derivation d : A→M corresponds precisely to an algebra map

A −→

(
A M
0 A

)
, a 7−→

(
a d(a)
0 a

)

where

(
A M
0 A

)
is the usual triangular matrix algebra, with M having the left A-module

structure induced by ε. Now given (d, d′) ∈ Der(A,M) ⊕ Der(B,M), consider the algebra
maps

A −→

(
A ∗B M

0 A ∗B

)
, a 7−→

(
a d(a)
0 a

)
, B −→

(
A ∗B M

0 A ∗B

)
, b 7−→

(
b d′(b)
0 b

)

The universal property of the free product yields an algebra map

A ∗B −→

(
A ∗B M

0 A ∗B

)

which extends the above maps, and hence a derivation δ : A ∗ B → M , which clearly satisfies
δ|A = d and δ|B = d′. �
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Lemma 5.8. Let A,B be augmented algebras. We have

(A ∗B)+ ≃
(
A+ ⊗A (A ∗B)

)
⊕

(
B+ ⊗B (A ∗B)

)

as right (A ∗B)-modules

Proof. We have, for any right (A ∗B)-module M , using lemmas 5.6 and 5.7,

HomA∗B((A ∗B)+,M) ≃ Der(A ∗B,M)

≃ Der(A,M)⊕Der(B,M)

≃ HomA(A
+,M)⊕HomB(B

+,M)

≃ HomA∗B

(
A+ ⊗A (A ∗B),M

)
⊕HomA∗B

(
B+ ⊗B (A ∗B),M

)

≃ HomA∗B

(
(A+ ⊗A (A ∗B))⊕ (B+ ⊗B (A ∗B)),M

)

We conclude by the Yoneda Lemma. �

Proof of Theorem 5.1. Let n ≥ 2 and let M be a right A ∗ B-module. We have, using lemmas
5.5 and 5.8,

ExtnA∗B(Cε,M) ≃ Extn−1
A∗B((A ∗B)+,M)

≃ Extn−1
A∗B

(
(A+ ⊗A A ∗B)⊕ (B+ ⊗B A ∗B),M

)

≃ Extn−1
A∗B(A

+ ⊗A (A ∗B),M)⊕ Extn−1
A∗B(B

+ ⊗B (A ∗B),M)

Now since A ∗B is flat as an A-module (it is even free as an A-module), [30, Proposition 12.2,
IV] gives

Extn−1
A∗B(A

+ ⊗A (A ∗B),M) ≃ Extn−1
A (A+,M)

and similarly for B. We thus have, using again Lemma 5.5,

ExtnA∗B(Cε,M) ≃ Extn−1
A (A+,M)⊕ Extn−1

B (B+,M)

≃ ExtnA(Cε,M)⊕ ExtnB(Cε,M)

which is the expected result. �

5.2. Gerstenhaber-Schack cohomology. We can now formulate the Gerstenhaber-Schack
cohomology analogue of Theorem 5.2, using the restriction functor from Subsection 3.3.

Theorem 5.9. Let A, B be cosemisimple Hopf algebras algebras. We have, for any Yetter-

Drinfeld module M over A ∗B, and for any n ≥ 2, a natural isomorphism

Hn
GS(A ∗B,M) ≃ Hn

GS(A,M
(A))⊕Hn

GS(B,M
(B))

Corollary 5.10. Let A, B be non trivial cosemisimple Hopf algebras. We have

cdGS(A ∗B) =

{
1 if cdGS(A) = 0 = cdGS(B)

max(cdGS(A), cdGS(B)) if max(cdGS(A), cdGS(B)) ≥ 1

Proof. This is similar to the proof of Corollary 5.3. �

The scheme of the proof of Theorem 5.9 will be similar to that of Theorem 5.1. First we have
a shifting lemma.

Lemma 5.11. Let A be a cosemisimple Hopf algebra algebra. We have, for any n ≥ 2 and any

Yetter-Drinfeld module M over A,

Extn
YDA

A

(C,M) ≃ Extn−1
YDA

A

(A+,M)

Proof. Similarly to Lemma 5.5, the result is obtained by applying the Ext long exact sequence
to the exact sequence of Yetter-Drinfeld modules

0 → A+ → Acoad
ε
→ C → 0

with Acoad a free Yetter-Drinfeld module, hence projective since A is cosemisimple. �

13



Given a Yetter-Drinfeld module M over A, we note by DerYD(A,M) the derivations d ∈
Der(A,M) such that d : Acoad → M is a morphism of A-comodules. With this notation, we
have the following analogue of Lemma 5.6, whose proof is immediate.

Lemma 5.12. Let A be a Hopf algebra. We have, for any M ∈ YDA
A, a natural isomorphism

DerYD(A,M) ≃ HomYDA
A
(A+,M)

Lemma 5.13. We have, for any Hopf algebras A, B and for any M ∈ YDA∗B
A∗B, natural iso-

morphisms

DerYD(A ∗B,M) ≃ DerYD(A,M
(A))⊕DerYD(B,M

(B))

Proof. Given d ∈ DerYD(A ∗B,M), it is immediate that d|A ∈ DerYD(A,M
(A)), hence we have

an injective linear map

DerYD(A ∗B,M) −→ DerYD(A,M
(A))⊕DerYD(B,M

(B))

d 7−→ (d|A, d|B)

The proof of Lemma 5.7 provides, for (d, d′) ∈ DerYD(A,M
(A))⊕DerYD(B,M

(B)), an element
δ ∈ Der(A ∗ B,M) such that (δ|A, δ|B) = (d, d′), with δ ∈ DerYD(A ∗ B,M), so our map is
surjective, and the proof is complete. �

We now describe the augmentation ideal of a free product, as a Yetter-Drinfeld module, using
the induction functor from Subsection 3.3.

Lemma 5.14. Let A,B be Hopf algebras. We have

(A ∗B)+ ≃
(
A+ ⊗A (A ∗B)

)
⊕

(
B+ ⊗B (A ∗B)

)

as Yetter-Drinfeld modules over A ∗B.

Proof. We have, for any M ∈ YDA∗B
A∗B , using lemmas 5.12, 5.13, and Proposition 3.3,

HomYDA∗B
A∗B

((A ∗B)+,M) ≃ DerYD(A ∗B,M)

≃ DerYD(A,M
(A))⊕DerYD(B,M

(B))

≃ HomYDA
A
(A+,M (A))⊕HomYDB

B
(B+,M (B))

≃ HomYDA∗B
A∗B

(
A+ ⊗A (A ∗B),M

)
⊕HomYDA∗B

A∗B

(
B+ ⊗B (A ∗B),M

)

≃ HomYDA∗B
A∗B

(
(A+ ⊗A (A ∗B))⊕ (B+ ⊗B (A ∗B)),M

)

We conclude by the Yoneda Lemma. �

Proof of Theorem 5.9. Let n ≥ 2 and let M be a Yetter-Drinfeld module over A ∗B. We have,
using Lemma 5.11, Lemma 5.14 and Proposition 3.3 (using that A,B ⊂ A∗B is flat and coflat),

Extn
YDA∗B

A∗B

(C,M) ≃ Extn−1
YDA∗B

A∗B

((A ∗B)+,M)

≃ Extn−1
YDA∗B

A∗B

(
(A+ ⊗A A ∗B)⊕ (B+ ⊗B A ∗B),M

)

≃ Extn−1
YDA∗B

A∗B

(A+ ⊗A (A ∗B),M)⊕ Extn−1
YDA∗B

A∗B

(B+ ⊗B (A ∗B),M)

≃ Extn−1
YDA

A

(A+,M (A))⊕ Extn−1
YDB

B

(B+,M (B))

≃ Extn
YDA

A

(C,M (A))⊕ Extn
YDB

B

(C,M (B))

The result then follows from the Ext-description of Gerstenhaber-Schack cohomology. �
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5.3. Application to H(F ): proof of Theorem 2.1. Let F ∈ GLn(C)be an asymmetry
(n ≥ 2), so that F = EtE−1 for some E ∈ GLn(C). By Corollary 4.10, we have cd(H(F )) =
cd(B(E)∗B(E)). We have cd(B(E)) = 3 by [7], hence we get cd(H(F )) = 3 from Corollary 5.3.

Assume now that F is generic, so that H(F ) and B(E) are cosemisimple. Then Corollary
4.10 yields cdGS(H(F )) = cdGS(B(E) ∗ B(E)). We have cdGS(B(E)) = 3, by [7, 8], hence by
Corollary 5.10, we obtain cdGS(H(F )) = 3.

Assume finally that F is generic, but not necessarily an asymmetry. Then there exists a
generic asymmetry F ′ such that the tensor categories of comodules over H(F ) and H(F ′) are
equivalent (see Section 2), hence the monoidal invariance of cdGS (see [8]) and the previous
discussion ensure that cdGS(H(F )) = cdGS(H(F ′)) = 3, as required

Remark 5.15. Suppose again that F is generic, but not an asymmetry. Since cdGS(H(F )) ≥
cd(H(F )) ([8]), we get cd(H(F )) ≤ 3. We conjecture that this is an equality.

Remark 5.16. Consider the case F = In, so that H(In) = O(U+
n ), the coordinate algebra on the

free unitary quantum group U+
n . It follows immediately from Theorem 2.1 that β

(2)
k (Û+

n ) = 0

for k ≥ 4, where β
(2)
k stands for the k-th L2-Betti number [33] of the dual discrete quantum

group Û+
n . It was shown in [47] that β

(2)
1 (Û+

n ) 6= 0, and this result has been made more precise

in the recent preprint [34], where it is shown that β
(2)
1 (Û+

n ) = 1.

6. Relations between cohomological dimensions

In this last section we come back to the problem of comparing the two cohomological dimen-
sions. We prove the following slight generalization of [8, Corollary 5.10].

Theorem 6.1. If A is a cosemisimple Hopf algebra with S4 = id, we have cd(A) = cdGS(A).

Of course, a generalization of this theorem to the arbitrary cosemisimple case would make
trivial the proof of the second part of Theorem 2.1.

Before proving this result, we need to recall some facts on the structure of cosemisimple Hopf
algebras, see [32, Chapter 11] for example. Let A be a cosemisimple Hopf algebra with Haar
integral h : A→ C. There exists a convolution invertible linear map ψ : A→ C such that

(1) S2 = ψ ∗ idA ∗ ψ−1,
(2) ψ ◦ S = ψ−1,
(3) σ = ψ ∗ idA ∗ψ is an algebra endomorphism of A, and h(ab) = h(bσ(a)) for any a, b ∈ A.

In all the known examples, the map ψ above can be chosen to be an algebra map, so that
the second condition is automatic, but it is always unknown whether this can always be done
(this is a particular case of Question 4.8.3 in [25]). We call such a map ψ a modular functional
on A.

Lemma 6.2. Let A be cosemisimple Hopf algebra with Haar integral h and modular functional

ψ. We have for any a, x ∈ A

h(S(a(1))xa(2)) = ψ−1(a(2))ψ
−1(a(3))h

(
xa(4)S

−1(a(1))
)

h(S(a(2))xS
2(a(1))) = ψ−1(a(2))ψ

−1(a(3))h
(
a(1)S(a(4))x

)

In particular, if S4 = id, we have ψ ∗ ψ = ε and

h(S(a(1))xa(2)) = h(x)ε(a) = h(S(a(2))xS
2(a(2)))
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Proof. We have, using that S = ψ ∗ S−1 ∗ ψ−1,

h(S(a(1))x(a(2))) = h(xa(2)σS(a(1)))

= h
(
xa(4)ψ

−1(a(3))S(a(2))ψ
−1(a(1))

)

= h
(
xa(6)ψ

−1(a(5))ψ(a(2))S
−1(a(3))ψ

−1(a(4))ψ
−1(a(1))

)

= h
(
xa(4)ψ

−1(a(3))ψ
−1(a(2))S

−1(a(1))
)

= ψ−1(a(2))ψ
−1(a(3))h

(
xa(4)S

−1(a(1))
)

The second identity is obtained from the first one using that hS = h. At x = 1, we get in
particular

ε(a) = ψ−1(a(2))ψ
−1(a(3))h

(
a(4)S

−1(a(1))
)

If S4 = id, then ψ ∗ ψ convolution commutes with idA, hence we indeed see from the previous
identity that that ψ ∗ ψ = ε, and the last identities follow directly. �

Remark 6.3. The last condition in the lemma does not hold in general. For example it does not
hold for Oq(SL2(C)) if q 6= ±1.

Proposition 6.4. Let V,W be Yetter-Drinfeld modules over the cosemisimple Hopf algebra A
satisfying S4 = id, let i : W → V be an injective morphism of Yetter-Drinfeld modules, and

let r : V → W be an A-linear map such that ri = idW . Then there exists a morphism of

Yetter-Drinfeld modules r̃ : V →W such that r̃i = idW .

Proof. Let h be the Haar integral on A. Recall that for any A-comodules V and W , we have a
surjective averaging operator

M : Hom(V,W ) −→ HomA(V,W )

f 7−→M(f), M(f)(v) = h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0)

with f ∈ HomA(V,W ) if and only if M(f) = f . We put r̃ =M(r), and it is straightforward to
check that r̃i = idW . It remains to check that r̃ is A-linear. We have, using the Yetter-Drinfeld
condition and the A-linearity of r,

r̃(v · a) = h
(
r((v · a)(0))(1)S((v · a)(1))

)
r((v · a)(0))(0)

= h
(
r(v(0) · a(2))(1)S(S(a(1))v(1)a(3))

)
r(v(0) · a(2))(0)

= h
(
(r(v(0)) · a(2))(1)S(S(a(1))v(1)a(3))

)
(r(v(0)) · a(2))(0)

= h
(
S(a(2))r(v(0))(1)a(4)S(S(a(1))v(1)a(5))

)
r(v(0))(0) · a(3)

= h
(
S(a(2))r(v(0))(1)a(4)S(a(5))S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

= h
(
S(a(2))r(v(0))(1)S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

Thus, if S4 = id, Lemma 6.2 ensures that

r̃(v · a) = h
(
S(a(2))r(v(0))(1)S(v(1))S

2(a(1))
)
r(v(0))(0) · a(3)

= h
(
r(v(0))(1)S(v(1))

)
r(v(0))(0) · a

= r̃(v) · a

and hence r̃ is A-linear. �

Proof of Theorem 6.1. We already know that cd(A) ≤ cdGS(A), and to prove the equality we
can assume that m = cd(A) is finite. Consider a resolution of the trivial Yetter-Drinfeld module

· · · → Pn → Pn−1 → · · · → P1 → P0 → C

by projective Yetter-Drinfeld modules over A. These are in particular projective as A-modules,
so since m = cd(A), a standard argument, once again, yields an exact sequence of Yetter-
Drinfeld modules over A

0 → K
i
→ Pm → Pm−1 → · · · → P1 → P0 → C
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together with r : Pm → K, an A-linear map such that ri = idK . The previous proposition
yields a morphism of Yetter-Drinfeld module r̃ : Pm → K such that r̃i = idK . We thus obtain,
since a direct summand of a projective is projective, a length m resolution of C by projective
Yetter-Drinfeld modules over A, and we conclude that cdGS(A) ≤ m, as required. �

We get the following generalization of [8, Corollary 5.11], with the same proof.

Corollary 6.5. Let A and B be cosemisimple Hopf algebras such that there exists an equivalence

of linear tensor categories MA ≃⊗ MB. If the antipode of A satisfies S4 = id, then we have

cd(A) ≥ cd(B), and if the antipodes of A and B both satisfy S4 = id, then cd(A) = cd(B).

Example 6.6. As an application of Theorem 6.1, consider, for m,n ≥ 1, the (m+ n)× (m+ n)
matrix

Im,n =

(
Im 0
0 −In

)

We have S4 = id for the Hopf algebra H(Im,n), since I2m,n = Im+n, and S2 6= id. For q

satisfying q2 − (m−n)q+1 = 0, we have MH(Im,n) ≃⊗ MH(q). Hence H(Im,n) is cosemisimple
if |m− n| ≥ 2, and in this case we have

cd(H(Im,n)) = cdGS(H(Im,n)) = cdGS(H(q)) = 3

while Im,n is not an asymmetry if n is odd.

To conclude, it is interesting to note that the question of a generalization of Corollary 6.5
(positive answer to Question 1.1 in [8]) is studied as well in the recent preprint [50], in the setting
of Hopf algebras having an homological duality, with interesting partial positive answers.
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[17] B. Collins, J. Härtel, A. Thom, Homology of free quantum groups. C. R. Math. Acad. Sci. Paris 347 (2009),

no. 5-6, 271-276.
[18] K. De Commer, A note on the von Neumann algebra underlying some universal compact quantum groups,

Banach J. Math. Anal. 3 (2009), no. 2, 103-108.
[19] K. De Commer, A. Freslon, M. Yamashita, CCAP for universal discrete quantum groups, with an appendix

by Stefaan Vaes, Comm. Math. Phys. 331 (2014), no. 2, 677-701.
[20] W. Dicks, Groups, trees and projective modules, Lecture Notes in Mathematics 790, Springer, 1980.

17



[21] W. Dicks, M.J. Dunwoody, Groups acting on graphs. Cambridge Studies in Advanced Mathematics 17,
Cambridge University Press, 1989.

[22] M. Dubois-Violette, G. Launer, The quantum group of a non-degenerate bilinear form, Phys. Lett. B 245,
no.2 (1990), 175-177.

[23] M.J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. 38

(1979), no. 2, 193-215.
[24] P. Etingof, S. Gelaki, On finite-dimensional semisimple and cosemisimple Hopf algebras in positive charac-

teristic, Internat. Math. Res. Notices 1998, no. 16, 851-864.
[25] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories. Mathematical Surveys and Monographs

205, American Mathematical Society, 2015.
[26] A. Freslon, On the partition approach to Schur-Weyl duality and free quantum groups, Transform. Groups,

to appear, arXiv:1409.1346.
[27] A. Freslon, M. Weber, On the representation theory of partition (easy) quantum groups, J. Reine Angew.

Math. 720 (2016), 155-197.
[28] M. Gerstenhaber, S. Schack, Bialgebra cohomology, deformations and quantum groups, Proc. Nat. Acad.

Sci. USA 87 (1990), no. 1, 78-81.
[29] M. Gerstenhaber, S. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp.

Math. 134 (1992), 51-92.
[30] P. Hilton, U. Stammbach, A course in homological algebra, Graduate Texts in Mathematics 4. Springer,

1971.
[31] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, 1995.
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