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Abstract. — We investigate the p-adic properties of higher coherent cohomology of auto-
morphic vector bundles of singular weight on the Siegel threefolds.
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2 Higher coherent cohomology and p-adic modular forms of singular weight

1. Introduction

In this paper we investigate the theory of p-adic families of automorphic forms for the
group GSp,/Q whose component at infinity has singular Harish-Chandra parameter and
is a non-degenerate limit of discrete series. The automorphic forms we consider can be
realized in the coherent cohomology of an appropriate automorphic vector bundle over a
Siegel threefold ([26]). The Siegel threefolds are finite unions of arithmetic quotients of the
three dimensional Siegel upper half space. They have a modular interpretation as moduli
spaces of abelian surfaces with polarization and level structure and they have canonical
models over number fields. Using this coherent realization one can prove that the Hecke
parameters of these automorphic forms are defined over number fields and construct, using
congruences, compatible systems of 4-dimensional Galois representations ([70], [59]).

For the group GLa(R) there is (up to twist by a character) one non-degenerate limit
of discrete series. Automorphic forms with this component at infinity realize in the weight
1 coherent cohomology of the modular curves and correspond to weight 1 modular forms
in the classical terminology. We recall certain special features of weight 1 modular forms
compared to modular forms of weight k > 2 : they don’t occur in the étale cohomology
of a local system of the modular curve; there is no dimension formula for the space of
weight 1 modular forms; they occur in degree 0 and degree 1 coherent cohomology of the
same weight 1 automorphic locally free sheaf; the Galois representations attached to an
eigenform has finite image (and has irregular Hodge-Tate weights (0,0))...

For the group GSp,(R) there are lots of non degenerate limits of discrete series (even
modulo twist by a character). Their Harish-Chandra parameter lies on certain walls
of the character space of a maximal torus of the derived group Sp,, and these walls
are 1 dimensional ! If 7 is an automorphic form on GSp, with component at infinity
one of these non degenerate limits of discrete series, the associated compatible system
of Galois representations has (conjectural) Hodge-Tate weights of the form (k + 1,k +
1,0,0) or (k4 1,0,0,—k — 1) for k € Z>o, up to twist. In this paper we will only
consider Harish-Chandra parameters which yield Hodge-Tate weights of the form (k +
1,k+1,0,0). The corresponding automorphic forms realize in the degree 0 and the degree
1 coherent cohomology of a vector bundle that we denote by Q®*:2) (and is attached to the
representation Sym”*St ® det?St of the group GLy which is the Levi of the Siegel parabolic
of Spy).

We construct p-adic families of (cuspidal) cohomology classes for the sheaves
{Q(k’Q)}kZO in degree 0 and 1. To state precisely the theorems, we need some more
terminology. We denote by Xx — Spec Z, a toroidal compactification of the Siegel
threefold of level some open subgroup K = [[ Ky C GSpy(A¢) such that K, = GSpy(Z,).
We let Xk1:(p)xk — Xk be the Klingen moduli space associated to the Klingen parahoric
Kkii(p) € Kp. We denote by D the relative Cartier divisor of the boundary in Xg or
Xkii(p)k (no confusion should arise). There is an Hecke operator U at p associated to
the double classe K g;(p)diag(L, p, p, p*) Kx1i(p). Let A = Z,[[ZX]] be the one dimensional
Iwasawa algebra. For each integer £, there is a map k£ : A — Z, extending the character
2 2F of Ly -

Our main theorem is :

Theorem 1.1. — There is a perfect complex M of A-modules of amplitude [0, 1] such that
forallk € Z>q :

M @5 ), Qp = RU(Xguii(p) . Q"2 (-D))™ @F Q,
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where the exponant ord means the ordinary part for U. For allk € Z, k >p+1 :
HO(M ®k,k Qp/Zp) = HO(XKa Q(k’z)(_D) ® Qp/Zp)Ord-

The perfect complex M carries an action of the Hecke algebra and the isomorphisms above
are Hecke equivariant.

We also develop a theory of finite slope families.

Remark 1.1. — In [30], Hida initiated the study of ordinary Betti Cohomology on locally
symmetric spaces associated to GL,, over arbitrary number fields F. Whenn > 3 (orn > 2
and F is not totally real), the non-eisenstein cohomology is concentrated in more than one
degree. To some extent, what we present here is the beginning of a coherent analogue of
this theory. The analogy is that in both situations the interesting cohomology is naturally
supported in several consecutive degree. See the introduction of [9].

The perfect complex M carries an action of the Hecke algebra. For a maximal ideal m
of the Hecke algebra we can consider the direct factor My, of M obtained by localization.
Our second theorem is :

Theorem 1.2. — If m is a non-eisenstein maximal ideal, the complex My has trivial
Euler-Characteristic.

The perfect complex M is obtained as the U-ordinary part of the cohomology of a
huge sheaf of A-modules which “interpolates” the sheaves {Q(k’Q)(—D)}kezzo. This sheaf

is defined on the open formal subscheme %IZ(Z (p) i of the p-adic formal scheme Xk;(p) K
attached to Xky;(p)x where the p-rank of the semi-abelian scheme is at least 1 (and the
universal rank p group scheme is multiplicative). This formal scheme contains strictly the
ordinary locus. Its image in the minimal compactification is covered by two affines, this
explains why the complex M is supported in two degrees.

The interpolation property rests on the special shape of the universal p-divisible group
which contains at least a one dimensional multiplicative group.

Before taking the ordinary part, the cohomology is enormous. The U-ordinary part
cuts the perfect complex inside this enormous cohomology. There is a heuristic explanation
for this. Over the complement of %%}z (p)k (the supersingular locus), one can prove that
the U-operator acts topologically nilpotently on the sheaf Q%2 when k is large enough.
This comes form the following observation. Let A : A — A’ be an isogeny of “type” U
between two abelian surfaces defined over a discrete valuation ring Og. If A and A’ have
supersingular reduction, one showes that the isogeny on the reduction factors through the
Frobenius map of A. As a result, the differential of the isogeny d\ : war — w4 has to
vanish modulo the maximal mg of Ok . This property is special to the supersingular locus.

Making this heuristic argument work requires some efforts. One of the difficulties is
to make sense of the Hecke operator U on the integral cohomology. We first need to define
the correspondence underlying the U operator integrally. The formulation of the moduli
problem is difficult because it involves the p? torsion of the universal abelian variety (the
co-character of the torus of GSp, underlying the double class is not minuscule). Our
approach is to use the factorization diag(1,p,p,p?) = diag(1,p,p,p).diag(1,1,1,p) and
factor accordingly the correspondence into two correspondences U; and Us. The moduli
problems underlying U; and Us can be defined integrally, and the moduli spaces can
even be described locally using the local model theory. There is another difficulty. The
correspondences are not finite flat over the Siegel threefold. Defining the necessary trace
maps in cohomology requires some results from Grothendieck-Serre duality in coherent
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cohomology. There is also a subtle normalization issue. But luckily, all this can be
resolved.

Having defined the Hecke operator U, we are able to prove an integral control theorem
for k >>0:

HO(M @f . Zy) = H*(Xi, Q2 (= D))"

and to show that M is a prefect complex.

It seems very hard to obtain an integral control theorem for all £ > 0. We will
nevertheless be able to obtain a control theorem after inverting p by an indirect method.
Over Qp, we can construct an overconvergent version M t of M, obtained by taking the
ordinary part for U of some overconvergent cohomology of the analytic fiber Xf%lll (p) K
of %%Z(p) k with value in a huge Banach sheaf. We observe that U is compact on this
cohomology. We can actually develop a theory of finite slope families.

By construction, there is a map MT — M ®£p Qp which is easily seen to be injective

on H° and surjective on H'. This is a “degeneration” of the classical statement that all
ordinary p-adic modular forms are overconvergent.

With finite slope overconvergent cohomology classes, we can adapt the argument of
analytic continuation and gluing of [35] and prove that small slope cohomology classes are
classical. In the ordinary case, we obtain that for all kK > 0 :

M|y = R (X gii(p) i, Q52 (—D))°rd ®7, Qp.

Combining everything, we deduces that the map Mt — M ®£p Qp is a quasi-
isomorphism at weights k >> 0 and then at all weight £ > 0 by some elementary dimension
argument.

The cohomology M ®/L\,k Zy is thus an integral modification of the cohomology

RT(Xkii(p) K,Q(k’Q)(—D))O’"d. There is a quasi-isomorphism after inverting p but the
torsion may be different. A very important feature is that M ®/]§,k Z,, is concentrated in
degree 0 and 1.

In [31] and [3] a theory of p-adic modular forms in coherent cohomology is developped
for all weights. This means that we consider all possible automorphic vector bundles
QW) (—D) for (k,7) € Zso x Z coming from the representations Sym*St @ det”St of the
group GLs. In this theory, only the degree 0 cohomology is interpolated. Let Ao be the two
dimensional Iwasawa algebra. For each pair (k,r) € Z>o X Z we can define a specialization
morphism (k,7) : A — Z,. The main theorem of [31] for the group GSp, (using also the
results of [58]), states that there exists a finite free Ag-module M’ such that :

1. for all (k,7) € Zso x Z we have M’ @y, 4.y Zp = HO(X73,(p) i, QB (=D))ord’,

2. for all (k,r) € Z>¢ X Z>u, HO(XIZ(%Z.(]))K,Q(k”")(—D))O’"d/ is a space of classical
modular forms of Iwahori level at p.

In this theorem, .’{IZ(%Z(p)K is the ordinary locus in %%l(p)K and ord means
the ordinary part for the usual ordinary idempotent attached to the diagonal matrix
diag(1,p, p?,p*) € GSp,(Q,). The control theorem holds for weights (k,r) with r > 4.
One can sometimes (after making some localization) improve the control theorem to r > 3
which is exactly the condition under which the corresponding automorphic forms are
discrete series at infinity.

When we specialize M’ at singular weights we cannot expect to have a good classic-
ity theorem : we can attach p-adic Galois representations to eigenforms in M’ ](kQ) but
these Galois representations may not be de Rham at p. It should be true that classical
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eigenforms in M’ ’(k,2) are exactly those with de Rham associated Galois representation
but unfortunately we don’t know how to establish this directly.

On the other hand, eigenforms in H°(M|;) correspond to classical automorphic forms
and one often knows that their associated Galois representation is de Rham ([50], prop.
4.16). There is a natural injective map H°(M|y) — M| 9). It should actually be true
that the sub-space of M’ |(k,2) spanned by eigenforms with de Rham associated Galois
representations is “generated” by the image of HO(M|y).

It is conjectured that for every simple abelian surface A over Q, there should ex-
ist a cuspidal automorphic form 7= on GSp,/Q such that the spin L-function of 7 and
the L-function of H'(A) coincide. When End(A4) # Z this is known ([78], [39]). See
[8] for a precise conjecture in the case End(A) = Z. These automorphic forms are of
the type we have considered so far as there component at infinity should be a limit of
discrete series and they should realize in the cuspidal coherent cohomology of the sheaf
Q2) In [57] we were able to prove a modular lifting theorem saying, under many tech-
nical assumptions, that an abelian surface whose associated p-adic Galois representation
is residually modular arises from a p-adic modular form. In that paper, our Taylor-Wiles
system was constructed by letting Galois deformation rings act on the module of ordinary
p-adic modular forms H° (%zi (p)x, Q0D (—D))? . Congruences are unobstructed for or-
dinary p-adic modular forms, while they are for classical modular forms in weight (0, 2)
because of the non vanishing of H!. The classical Taylor-Wiles method requires unob-
structed congruences. The draw back is that we don’t know how to characterize classical
modular forms among ordinary p-adic modular forms in weight (0,2). In [9] and [10],
Calegari-Gergaghty explained how to modify the Taylor-Wiles method in order to apply it
in obstructed situations. They could prove a better (but conditional) modular lifting the-
orem saying, under technical conditions, that an abelian surface whose associated p-adic
Galois representation is residually modular arises from a weight (0, 2) modular form by let-
ting the Galois deformation ring act on some localization of H( X, Q2 (—D) ® Q,/Z,)
provided one could show that the localized cohomology vanishes in degree greater or equal
than 2. Unfortunately, nobody has been able to establish this vanishing for the moment.
As a replacement of HO(Xx, Q%2 (~D) ® Q,/Z,), we suggest to use HO(M ®/L\72 Qp/Zy)
where M is the complex provided by theorem 1.1. The point is that p-divisible classes
in HO(M ®k72 Qp/Z,) do come from cohomology classes in HO(X ;(p) i, 2%?) (D)) and
thus from classical automorphic forms. This strategy will be employed in a future joint
work with G. Boxer, F. Calegari and T. Gee.

This paper is organized in four parts. The first part is preliminary. We study the
existence of projectors on complexes of modules. This will be used to define ordinary
projector on cohomology. We present certain technical results on the cohomology of the
sheaf @5+ on an adic space. These are only used in section 14. We also develop a formalism
of cohomological correspondences that is adapted to our situation. Finally we recall some
results concerning automorphic forms and Siegel threefolds over C.

The second part of the this work is dedicated to the construction of the perfect
complex M of theorem 1.1. The definition of the complex itself is not so difficult, but
establishing that it is a perfect complex involves a delicate study of the correspondences
in characteristic p.

The third part is dedicated to complete the proof of theorem 1.1 and establishing
the control theorem in weight k¥ > 0. The argument is indirect as we have to use over-
convergent cohomology. Most of this part is dedicated to develop a theory of finite slope
overconvergent cohomology. In some sense this is easier than the integral slope zero theory:
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we can prove that U is compact and the finiteness of the finite slope cohomology follows
easily. There is nevertheless the delicate problem of proving that the cuspidal cohomology
is concentrated in degree 0 and 1. Finally we show that small slope cohomology classes
are classical. We use the method of [35], but need to rephrase it at the sheaf level (one
cannot glue higher cohomology classes).

In the fourth part we prove that the Euler-Characteristic of a non-eisenstein localiza-
tion of our perfect complex is zero by using results of Arthur in the theory of automorphic
forms.

I thank G. Boxer for suggesting that there should exist a theory of p-adic modular
forms for singular weights. The author attended a workshop in McGill Bellairs research
institute in 2014 where F.Calegari and D. Geraghty explained their modified Taylor-Wiles
method (now available in [10]). This was a motivation for developing a theory of p-
adic modular forms on higher cohomology. We are pleased to thank the organizers and
speakers of this workshop. I thank N. Fakhruddin for inviting me to the Tata institute and
for helping me to define Hecke operators. In a forthcoming joint work, we will study the
problem of defining Hecke operators on the integral coherent cohomology of more general
PEL Shimura varieties. I thank G. Chenevier for his help with section 15.2.4. I thank G.
Boxer, F. Calegari, T. Gee, B. Stroh, A. Weiss and L. Xiao for interesting discussions and
feedback. I thank J. Tilouine who introduced me to the modularity conjecture of abelian
surfaces. This research is supported by the ANR-14-CE25-0002-01.

PART 1
PRELIMINARIES

2. Some algebra

In this section, R is a complete local noetherian ring with maximal ideal mgr. We
assume moreover that R/mp is a finite field.

2.1. Locally finite endomorphisms. — Let Mod“™”(R) be the category of mp-
adically separated and complete R-modules. Let M be an object of Mod“"™"(R). Let
T € Endg(M).

Definition 2.1.1. — The action of T on M is locally finite if for all n € N and all
v € M/mp, the elements {T*v}ren generate a finite R/m%, sub-module of M /m'.

Thus, the action of T"on M is locally finite if for all n € N, M/m% can be written as
an inductive limit of finite and T-stable R-modules.

Lemma 2.1.1. — Let 0 — My — My — M3 — 0 be an ezact sequence in Mod“"P(R).
Let T be a R-linear homomorphism acting equivariantly on My, My and Ms.

1. If the action of T is locally finite on Mg and My, it is locally finite on Ms.

2. If the action of T is locally finite on Ms, it is locally finite on Ms.

3. If there exists n € N such that m'y.Ma = 0 and if T is locally finite on Mo, then it
is locally finite on M.
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Proof. Point 2 and 3 are obvious. We check 1. For all n € N, we have an exact sequence:
Ml/mﬁ — Mg/mﬁ — Mg/m% — 0

Let M be the image of M;/m’, in My/m},. The action of 7' on M is locally finite by 2.
Let v € Ms. Since T is locally finite on M3, there is N € N, w € M, ag, - ,an—-1 € R
such that TNv = w + Zfi_ol a;T"v. Since T is locally finite on M, there is N’ € N,
bo,- -+ ,by—1 € R such that TN w = ij:lal bjTjw. The sub-module of Ms/m?% generated
by {T?v, T’w, 0 <i< N —1, 0 <j < N’ —1} is stable under the action of T. O
Lemma 2.1.2. — Let M be an object of Mod“™(R) and let T' be an endomorphism of
M. The action of T on M is locally finite if and only if it is on M /mpg.

Proof. We prove it by induction on n. Consider the exact sequence :

m%/mh @p M — M/mp — M/m ! — 0

By assumption, the action is locally finite on M/ m%fl and on m?{l Jmi @ M. It is also
on m% ' M/m% and finally on M /m% by the above lemma. O

Lemma 2.1.3. — Assume that T acts locally finitely on an object M of Mod“"P(R).
Then there is a unique projector e € Endr(M) such that :

1. For allv € M, ev = limy_, TN where the limit is computed for the mg-adic
topology.

2. e and T commute, we have a T-stable decomposition M = eM @ (1 — e)M where
T is bijective on eM and topologically nilpotent on (1 —e)M.

Proof. We reduce to the situation where M is a finite R/m%-module for some n. Then
M is a finite set and we claim that the sequence {TV'v} is constant for N large enough.
Indeed, the decreasing sequence of modules T™V'M is stationnary for N > Ny. On TNo' M,
T acts bijectively, hence has finite order. As a result the projector e is well defined and
all the properties are easily deduced. ]

2.2. Perfect complexes. — The category Mod“"?(R) is not abelian but it is exact
(see [42], def. 1.0.2). Let D™P(R) be the associated derived category ([42], p. 259). Let
c’/ l“t(R) be the category of bounded complexes of mg-adically complete and separated,
flat R-modules with morphisms the morphisms of complexes of degree 0. Let K/'(R) be
the associated homotopy category. Its objects are the same as Cf!%(R) but morphisms
are homotopy classes of morphisms in C/'(R). Let D/!(R) be the full subcategory
of D®™P(R) generated by bounded complexes of flat, complete R-modules. There is a
canonical functor K/ (R) — D/ (R) and this functor is an equivalence of category (see
[42], cor. 2.2.3). We denote by CP*"/(R) the full sub-category of C/!(R) of complexes
of finite free R-modules, by KP¢"f(R) the homotopy category. Let DP¢"f(R) be the full
subcategory of D"P(R) generated by bounded complexes of finite free R-modules. The
functor KP*"/(R) — DPf(R) is an equivalence of category. The following propostion
gives a caracterisation of DP"f(R) inside D™ (R).

Proposition 2.2.1. — Let M* be an object of C/'(R), concentrated in degree [a,b].
Assume that M® @ R/mp has finite cohomology groups. Then M® is quasi-isomorphic to
a perfect complex concentrated in degree [a,b].

Proof. We have short exact sequences of complexes

0 — mp/mpyt @p M® — M®/mp — M®/myt =0
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and by induction, we deduce easily that the cohomology groups H?(M*® /m%) are finite
R/m’%-modules. As a result, the system {H'(M®/m’,)} satisfies the Mittag-Leffler condi-
tion. By [EGA], III, chap. 0, prop. 13.2.3, we deduce that H'(M*®) = lim,, H/(M®/m7},).
It follows that H(M®) is complete and separated. The map H'(M*®) — lim,, H'(M®)/m%
is an isomorphism. In order to show that H'(M*®) is a finite R-module, it is enough to
prove that H*(M*®)/mp is a finite R-module by topological Nakayama’s lemma.

Recall that there is a spectral sequence

EYY = Tor® (HY(M?®), R/mg) = HPTY(M* @ R/mp)

with dy : EP? — EYT2e

We prove by descending induction on i that H!(M®) is a finite R module. As-
sume this holds for ¢ > n + 1 and let us prove it for i = n. The map H"(M*®)/mp —
H"(M?®/mpg) has a kernel which admits a surjective map from subquotients of the modules
Tor,+1 (H"""(M*®), R/mp) for r > 1. There are only finitely many values of r for which
these modules are non-zero and all are finite dimensional by the induction hypothesis. It
follows that the kernel is finite dimensional and thus H"(M*®)/mp, is also finite dimensional
and H"(M?*) is a finite R-module by Nakayama’s lemma. By [51], lem. 1, p. 44, we deduce
that M*® is quasi-isomorphic to a perfect complex concentrated in degree [a, b]. O

The following is a version of Nakayama’s lemma for complexes.

Proposition 2.2.2. — Let f : M* — N*® be a map in C/'*(R). We assume that f ®1 :
M®* ®r R/mp — N°®* ®@p R/mp is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. Consider the cone C(f) of the map f. We need to prove that C(f) is acyclic. C(f)
is an object of Cf1%(R) and C(f) ®r R/mp is the cone of f ® 1 and is acyclic. It follows
from the previous proposition that C(f) is quasi-isomorphic to a perfect complex and
thus, the groups H(C(f)) are finite R-modules. We now prove by descending induction
on i that H(C(f)) = 0. Assume this holds for i > n + 1. Using the spectral sequence
EPT = Torﬁp(Hq(M‘),R/mR) = HPTI(M*® @r R/mpg) we see that H*(C(f))/mg <
H™"(C(f)/mgr) = 0. By Nakayama’s lemma, we deduce that H*(C(f)) = 0. O

2.3. Projectors. — We now consider projectors on complexes.

Definition 2.3.1. — Let M* € Cfl(R). Let T € Endcyiat gy (M*®). We say that T is
locally finite on M*® if T acts locally finitely on each M.

By lemma 2.1.3, we can attach to T' a projector e € Endcflat(R)(M.). In general,
an endomorphism homotopic to a locally finite endomorphism is not locally finite. Let
Ty and T} be two homotopic locally finite endomorphisms of a complex M*® € C/(R).
Let eg and e be the associated projectors. We don’t know if the projectors ey and e; are
homotopic.

Lemma 2.3.1. — In the above situation, the canonical map egM® — e1M*® is a quasi-
isomorphism.

Proof. Consider the identity maps : egH!(M®/mg) @ (1 — eo)H!(M®/mp) —
erHY (M*®/mpg) @ (1 — e1)H (M*®/mpg). We show that the associated map egH!(M®/mp) —
(1 —e1)HY(M®/mpg) is 0. The operator T on egH!(M®/mp) is locally finite and bijective.
The operator T on (1—e1)H(M*® /mpg) is locally finite and locally nilpotent. The associated
map has to be 0. Similarly, one proves that the map (1—eg)H!(M®/mg) — e;H (M*®/mpg)
is 0. It follows that the map egH'(M*®/mp) — e H(M*®/mp) is bijective. By proposition
2.2.2 we see that the map egM*® — e; M*® is a quasi-isomorphism. ]
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Definition 2.3.2. — Let M* € DJ/(R). Let T € Endp i) (M®).  We say

that T s locally finite if there exists M3 € C/(R) a representative of M*® and
1o € Endgia gy (Mg) a representative of T' which is locally finite.

The following is a characterization of locally finite morphisms.

Proposition 2.83.1. — Let M* € D/Y(R). Let T € Endpiar(g)(M®). Then T is locally
finite if and only if T is locally finite on the cohomology groups H*(M® ®f€ R/mp).

Proof. The implication that if T is locally finite it is locally finite on H'(M*® ®% R/mp)
follows from lemma 2.1.1. We do the other implication. We first claim that M® has a
representative N* € C/%(R) such that all the differentials d : N* — N**! are 0 modulo
mp. The argument is a straightforward generalization of lemma 3.2 of [38]. Let L*® be a
representative of M®. Fix some index i. We can find decompositions L' = J* @ K* and
Lt = Ji+l @ KL such that d : LP — L' preserves these decompositions and induces
isomorphisms J¢ — J*1 and the zero map K*/mgr — K1 /mg. It is easy to check that
we get a sub-complex S® of L® by setting S7 = L7 if j #i,i+1and S/ = K7 if j € {i,i+1}.
This sub-complex is quasi-isomorphic to L® and the differential d : S* — S**! vanishes
modulo mg. Repeating the process for all indices will produce a complex N°® with the
expected property. The map T can be represented by an endomorphism Ty of N®. Since
Tp is locally finite on HY(M*® @k R/mp) = N*/mp, we deduce from lemma 2.1.2 that Ty is
locally finite. O

Let M* € D/ (R) and T € Endp et gy (M*®) be a locally finite endomorphism. For
each locally finite representative MJ € C/1%(R) of M*®, and Ty € Endcriat () (Mg) of
T, we get a projector ey € Endcflat(R)(MO.) and a direct factor egMy of eg. We can
consider ¢y the image of ey in Enchomp( R)(M *) and the associated direct factor egM*® of
M* in D™P(R), which is represented with egMJ. We don’t know if €y is independant
of the choices, but the direct factor egM*® of M*® is. Indeed, if €7 is another projector
obtained by taking other representatives, it follows from lemma 2.3.1 that the canonical
map egM® — €1 M* is a quasi-isomorphism. In the sequel of the paper we will sometimes
speak of the projector associated to a locally finite endomorphism, but one should keep in
mind this non-uniqueness issue.

Remark 2.3.1. — In [38], lem. 2.12, there is a definition of the ordinary projector
attached to an element 7' € Endpcoms(g)(M®) in the case where M*® is an object of
Drerf(R). In this setting, the condition of being locally finite is automatically satisfied.
Our definition in a more general setting is compatible with the definition of op. cit.. It is
proven in op. cit. that the projector is unique. This rests on the property that the algebra
Endpeoms(g)(M?®) is finite over R when M* is a perfect complex.

3. Cohomological preliminaries

3.1. Cohomology of ﬁ;. — Let k£ be a complete non-archimedean field with ring of
integers O, and maximal ideal mp,. In this section, we will only consider adic spaces
X over Spa(k,Oy) which are of finite type (in particular quasi-compact), and separated.
The structural sheaf of X is denoted by &x. There are a subsheaves 6"; and ﬁ’;ﬁ of Ox
defined by

ﬁ;\,t(U) = {f € ﬁX(U)v Ve eU |f’:c < 1} and ﬁjY_+(U) = {f € ﬁX(U)v Ve eU ’f‘x < 1}

for all open subsets U of X. If U = Spa(A, A™) for a complete Tate algebra topologically of
finite type, and A° denotes the subring of A of power bounded elements, and A% the ideal
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of AY of topologically nilpotent elements, then @’;\t(U ) = AT = A% and ﬁ;ﬂU ) = A
([32], lem. 4.4).

Let X be a formal scheme which is topologically of finite type over Spf 0. Let X
be its special fiber over Spec Oy/mp, and X7 the reduced special fiber. There is a
surjective map of coherent sheaves over X : Oy — Oxrea and we denote by Jx its kernel.
If X has reduced special fiber then Jx = mo, Ox.

Proposition 3.1.1. — Let X be a separated adic space of finite type. The natural maps
and

ZC’h(‘x" ﬁjc‘Jr) — HZ(Xa ﬁ:VrJr)
from Chech cohomology to cohomology are isomorphisms.

Proof. There is an isomorphism in the category of locally ringed spaces (X,07%) =
limy (X, Ox) where X runs over all formal models of X' (see [65], thm. 2.22). By [17],
prop. 3.1.10, we deduce that H* (X, ﬁ;) = limy HY(X, O%). Since X is quasi-compact, one
can compute Chech cohomology using only finite coverings (see [24], p. 224). It follows
that H"Ch(./l’, ﬁ;{) = limg th(fﬁ, Ox). Sincg X is separated, the formal models X are
separated ([7], prop. 4.7) and H*(X, Ox) = Hi, (X, O%). The second isomorphism follows
along similar lines. O

We now recall a result of Bartenwerfer.

Theorem 3.1.1 ([2]). — Let X be a smooth affinoid adic space of finite type. For all
i >0, H(X, 0F) is annihilated by a non-zero element ¢(X) € O. If X admits a smooth
affine formal model, then H' (X, ﬁ;ﬂ =0 for alli> 0.

Remark 3.1.1. — We do not known whether H'(X, 63) = 0 for affinoids which admit
a smooth affine formal models. For some results in dimension 1, see [76] sect. 3.

Corollary 3.1.1. — Let X be an admissible smooth and separated formal scheme. Let X
be its generic fiber. Then the canonical map H (X, mo, Ox) — HY(X,0%T) is an isomor-
phism.

Proof. Take an affine covering Y of X. The cohomology of me, 0% is computed by Chech
cohomology with respect to this covering : HY(X, mo, Ox) = HQ(%, mo, Ox). Let U be
the generic fiber of 4. Let U be an open in X with generic fiber V. Since X is smooth,
mo, Ox (V) = 637 (V). We deduce that H (X, me, Ox) = Hj,(X, 63 "). By [24] corollaire
on page 213 and theorem 3.1.1, we have HZ{(X, ﬁ’;*‘) = H(X, ﬁ;ﬂ. O

3.2. Cohomology of projective limits of sheaves. — We denote by p a topologically
nilpotent unit in k.

Lemma 3.2.1. — Let X be a smooth affinoid adic space. The map HY(X,O0y) —
lim, H (X, Ox /p"O5) is an isomorphism.

Proof. First assume that i > 0. We need to prove that lim, H/(X, Ox/p"0%) = 0.
Using the exact sequence 0 — p”ﬁ} — Oy — ﬁ/y/p"ﬁ;g — 0 and theorem 3.1.1, we
deduce that H'(X, Ox/p"07%) is annihilated by some constant ¢ € Oy \ {0} if i > 0. It
follows that lim,, H (X, O /p" ﬁ;) is annihilated by ¢. On the other hand, this group is p-
divisible. It follows that it vanishes. The cokernel of the map H(X, Ox)/p"H(X, OF) —
H(X, Ox/p"07) is killed by c. It follows that the map lim, HO(X, Ox)/p"H(X, 07%) —
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lim,, HO(X, Oy /p"€7) is surjective : its cokernel is killed by ¢ and both sides are p-
divisible. On the other hand, HY(X, Oy) is a Banach space and, since X is reduced,
H°(Xx, 07) is bounded inside this Banach space. It follows that N,p"H%(X, 03) = {0}.
O
Let .Z be a locally free sheaf of &y-modules. We assume that there exists # T C .%
a locally free sheaf of ﬁ;—modules such that . # = .# T Vgt Ox.

Lemma 3.2.2. — Assume that X is a smooth and separated adic space. Let U be a finite
affinoide covering of X, such that F ™|y is trivial. There is a non-zero element ¢ € O
depending on U such that :
— the map H} (X, F [p"FT) — H(X, F /p"F ) from Chech cohomology relative to
U to cohomology has kernel and cokernel annhiliated by c,
— the map H (X, Z 1) — H'(X, Z ") has kernel and cokernel killed by c,
— the map lim, H} (X, Z /p".F ) — lim, H'(X, .Z /p".F ) has kernel killed by ¢ and
1S surjective.

Proof. Considering the spectral sequence associated to the covering Huieu U; - X, we
deduce that the kernel and cokernel of the maps H} (X, # /p"F*) — HY(X,Z /p"FT)
are sub-quotients of H*(U;,.Z /p".ZT) for k > 0 and U, some intersection of the affinoids
in U. As a result, both the kernel and cokernel are killed by some non-zero constant
c. The same applies to the map H} (X, #7) — HY(X,Z7T). It follows that the map
lim,, H (X, F /p"F+) — lim, H(X, Z /p".FT) has kernel killed by c. Let us prove that
the cokernel is killed by ¢2. Since both modules are p-divisible, this will show the surjectiv-
ity. Let (f,) € lim, H'(X,.# /p".# ). Then for all n, there exists g, in Hj,(X,.Z /p".FT)
such that the image of g, is ¢f,. One sees that (cg,) € lim, H},(X,.Z /p".# ") has image
(C2f n)- [

Proposition 3.2.1. — Let X be a smooth and separated adic space. The map
H(X,.Z) — limH (X, .Z /p".FT)
n
1s surjective. If X is proper, the map is an isomorphism.

Proof. Let U be a finite affinoide covering of X, such that .Z 1|y is trivial. The map
lim, H}, (X, Z /p"FT) — lim, H' (X, % /p".Z 1) is surjective. To prove the surjectivity of
the map of the proposition, it suffices to show that the map H'(X,.#) = Hj,(X,.#) —
lim,, HL(X , F [p".F ) is surjective. Since all groups are p-divisible it is enough to prove
that the cokernel is killed by some non-zero element ¢ € O . This follows from the lemma
below where K*® is the Chech complex which computes H},(X,.#) and K2 is the complex
that computes Hj,(X,.Z /p*.Z ). The fact that K* is the limit of the K¢ is a consequence
of lemma 3.2.1.
We now prove injectivity in case X is proper. The kernel of the map is

Np"Im(H' (X, FT) — H'(X,.7)).
Since H'(X,.7) is a finite dimensional Q,-vector space, we need to show that
Im(H(X, ZT) - H (X, F))

is a lattice. This will follow if we can show that that H'(X,.# 1) is the sum of a finite
type Op-module and a torsion group. This can be proved as follows. Take a normal
proper formal model X of X such that the sheaf .#* comes from a sheaf F on X. We
can obtain such a model as follows. By Raynaud’s theory, we can find a model X’ of X
which admits an affinoid covering {4 whose generic fiber refines &. The sheaf .Z 1 comes
from a sheaf F on X’. We can then replace X’ by its normalisation X in X'. This is still
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a formal model. By [48], lemma 2.6, this model is automatically proper. Let U be an
affine covering of X and V be its generic fiber. We have a map from Cech cohomology to
cohomology Hi,(X, . Z 1) — H'(X, ) whose kernel and cokernel are killed by a non-zero
constant ¢. The cohomology HY,(X,.Z ) is identified with the cohomology H'(X, F) and
it is a finite Og-module since X is proper.

O

Lemma 3.2.3. — Let (K2)aen be a projective system of complexes of Op-modules. Let
K*® = lim, K. Assume that there is an element ¢ € Oy such that the cokernel of the
map K" — K" is killed by c for all n and o. Then the cokernel of the map H(K®) —
lim,, HY(K?2) is killed by c.

Proof. For all : we have exact sequences :

0— BYK?) — ZY(K2) — H(K2) =0
Clearly Zi(K*) = lim, Z(K3) < K'. Let () € lim, H (K3). Let 2, € Z/(K2) be a
lift of 2. Let Ima(zqﬂ) be the image of zo+1 in Z*(K2). Then Imy(za+1) — 2o = d(wy) €
BY(K?). Let t, € K~ be alift of cw,. The sequence (czq, cz1 +d(to), cza +d(to+t1),- )

converges in Z'(K*) to a lift of c(z4).
O

3.3. Base change. — Let f : X — ) be a quasi-compact map of finite type adic spaces
over Spa(k,Ok). Let i : Z — Y be a map of adic spaces over Spa(k, Q) inducing an
homeomorphism from Z to i(Z) and for all z € Z a bijective map (k(i(z)), k(i(z))") —
(k(2),k(2z)"). We can form the following cartesian diagram :

Xz s x

n

z—'sy

Lemma 8.3.1. — For all n € N, the canonical map (i)' /p" — ﬁ;\;/p” is an
isomorphism.

Proof. The stalk of these sheaves at a point # € Xz is k(z)%/p" (compare with [65],
prop. 2.25). O

Proposition 3.3.1. — We have the base change formula :
iREOLT " = RO D"

Proof. The sheaf R'f, 011 /p™ is sheaf associated to the presheaf U — Hi(f~1(U), 0% /p™).
Thus, i 'R f, 04 /p™ is the sheaf associated to the presheaf V' + colimy g H!(f~1(U), 657 /p")
where U runs over the neighborhoods of V in ). Using the lemma above, we de-
duce that Rifiﬁ}j/p” = R’ ii'_lﬁ;+/p” is the sheaf associated to the presheaf
V + colimy, cwH! (W, 0% /p™) where W runs along the neighborhoods of Xy in X.

Since the map f is quasi-compact, we deduce that for V' a quasi-compact open in Z,
the set of neighborhoods of &y of the form f~1(U) for U a neighborhood of V in Y is
cofinal in the set of all neighborhoods of Ay in X. O
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3.4. Cohomology of torus embeddings. — Let T be a split torus over Spec Z. We
will denote by T the formal torus over Spf Z, obtained by completion of T" along Spec [F),.
We denote by T*" — Spa(Qy,Z,) the analytification of T' x Spec Q, ( in other words,
T = Spa(Qp, Zp) Xspec @ T's see [32], prop. 3.8). We denote by 7" C T the generic
fiber of T (see [32], prop. 4.2). Let X,(T) denote the group of co-characters of T. Let ¥
be a rational polyhedral cone in X, (7). Let T — Tx, be the associated toroidal embedding
defined over Spec Z ([37]). We define obviously 74", 71" and Ts,. Let ¥’ be a refinement

of ¥. We can similarly define Ty, ng and Tyy.

Proposition 3.4.1. — Let f : T — TE&" be the natural morphism. Assume that ¥ is
smooth. Then we have a quasi-isomorphism :
++ ++
ﬁTgn ~R f*ﬁngl
Proof. We first observe that the result holds true after inverting p by classical results on

toroidal embeddings (see [37], coro. 1 on page 44) and the comparison theorem stated
n [65], thm. 9.1. It follows easily that ﬁ;fgt ~ f.Ofd, and we are left to prove that
E/

R’ f*ﬁ;g; =0 for all i > 0. It suffices to show that R? f*ﬁjfgrﬁ /p =0 for all i > 0 since this

will imply that multiplication by p is surjective on R’ f*ﬁ;f;; for all 7 > 0 and we know
that this sheaf is torsion. i

Let x € T&". Let o € X be the minimal cone such that x € T?". This means that
x belong to the closed stratum in 7¢". Let or C X,(T)r be the R-span of 0. Define
X«(Tp) = Xo(T) Nog. This is a sturated sub Z-module of X, (7). It follows that X, (7%)
is a free Z-module and a direct factor. We choose a direct factor X,(71). We have
Xi(T) = Xu(T1) ® Xy (T2). Let T =Ty x Ty be the associated decomposition of 7.

Then we have T7" ~ T{" x T37. Moreover, since o spans X«(Ty), we deduce that
the closed stratum of T3 for the action of 75" is reduced to a point wich we call 0. Then
x = (2/,0) € T{™ x Tg%. Moreover, f~1(Te") ~ T{" x Ty%, where ¥" is the polyhedral
decomposition (o0 NX') N Xy (T2). Let fa: T35'%, — T3 be the natural projection deduced
from f. Let f;: 2’ x T3, — ' x T3} be the map obtained from f> by base change.

By proposition 3.3.71, we have

Rif*ﬁj—%—;/pkx’,ﬂ) = Ri(fé)*ﬁ;;ij“;%" /p|(a:’,0)-

First assume that = is a maximal point corresponding to a rank 1 valuation on k(x).
Set Uy = 2/ x T;?. Fix an isomorphism 75 ~ G}, for some integer s. Let p = (p,--- ,p) €
T5"(Qp). Then the {Un = p"Up}nen form a fundamental system of neighborhoods of # in
' x Tg%. Tt is enough to prove that H'(f~1(Uy), l7am ) =0for alli > 0and all n > 0.

o' TS,

Using the action of p we are reduced to the case of Uo. There,

H(f~H(U0), OFf pon ) = Hi(a! x T34, 04 ) = BTy 0, k(2) Pz, Ox, )

’ an 11y Tig
T XTQ,Z” 2,5 x’><T2 2

by corollary 3.1.1 applied over the mnon-archimedean field (k(z),k(z)"). By clas-
sical results on toroidal embeddings (see [37], coro. 1 on page 44) we find that
Hi(%,gu,k(az)m@ﬁ% Z”) = Hi(‘zg,g,k(aj)oo(é)ﬁgzo). But Hi(TQJ,kJ(LL“)OO@ﬁQQJ) = 0 for
1 > 0 since %o, is affine.

If z is not a maximal point, let £ be the maximal generisation of . Then

sz*ﬁ%_g—;/p’.T = le*ﬁj—tg—;/p‘i =0
by [76], prop. 1.4.10 and example 1.5.2. O
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4. Correspondences and coherent cohomology

4.1. Preliminaries on residue and duality. — We start by recalling some results
of the duality theory for coherent cohomology. Standard references are [29] and [13].
For a scheme X we let Dycon(Ox) be the subcategory of the derived category D(Ox) of

O'x-modules whose objects have quasi-coherent cohomology sheaves. We let D;rwh(ﬁx)

(resp. D, (0x)) be the full subcategory of Dgcon(Cx) whose objects have 0 cohomology
sheaves in sufficiently negative (resp. positive) degree. We let Dgcoh(ﬁ x) be the full
subcategory of Dgeon(O0x) whose objects have 0 cohomology sheaves for all but finitely
many degrees. We remark that if X is locally notherian D(—;coh(ﬁ x) is also the derived
category of the category of bounded below complexes of quasi-coherent sheaves on X ([29],
coro. 7.19). We let Dgcoh(ﬁX)de be the full subcategory of Dgcoh(ﬁx) whose objects are
quasi-isomorphic to bounded complexes of flat sheaves of &x-modules (see [29], def. 4.3

on p. 97). Let us fix for the rest of this section a noetherian affine scheme S.

4.1.1. Embeddable morphisms. — Let X, Y be two S-schemes and f : X — Y be a
morphism of S-schemes. The mophisme f is embeddable if there exists a smooth S-
scheme P and a finite map 7 : X — P Xg Y such that f is the composition of 7 and the
second projection (see [29], p. 189). A morphism f is projectively embeddable if it is
embeddable and P can be taken to be a projective space over S (see [29], p. 206).

4.1.2. The functor f'. — Let f : X — Y be a morphism of S-schemes. There is a functor
Rfi : Dgeon(Ox) = Dyeon(Oy). By [29], thm. 8.7, if f is embeddable, we can define a

functor f' : D;rcoh(ﬁy) — D;coh(ﬁx). If f is projectively embeddable, by [29] thm. 10.5,

there is a natural transformation (trace map) Rf,f' = Id of endofunctors of D;rc on(OY).

Moreover, by [29], thm. 11. 1, this natural transformation induces a duality isomorphism:
Homp, _, (ox)(F, ['9) 5 Homp__, (o) RfF,9)

for 7 € D;Coh(ﬁx) and ¥ € D;rcoh(ﬁy).
The functor f' for embeddable morphisms enjoys many good properties. Let us record

one that will be crucially used.

Proposition 4.1.2.1 ([29], prop. 8.8). — If.7 € D;rcoh(ﬁy) and 9 € Dgcoh(ﬁY)de ,

we have a functorial isomorphism f'.7% @ Lf*9 = f'(F @ 4).

4.1.8. Dualizing sheaf and cotangent complex. — A morphism f : X — S is called a local

complete intersection (abbreviated lci) if locally on X we have a factorization f : X
Z — S where i is a regular immersion (see [EGA] IV, def. 16.9.2) and Z is a smooth
S-scheme. If f is lci, we can define the cotangent complex of f denoted by Lx/g (see [34],
prop. 3.2.9). This is a perfect complex concentrated in degree —1 and 0. Its determinant
in the sense of [40] is denoted by wx/g.

Proposition 4.1.3.1. — If h : X — S is an embeddable morphism and a local com-
plete intersection of pure relative dimension n, then f'Ox = wX/S[n] where wxg is the
determinant of the cotangent compler Lx/g.

Proof. This follows from the very definition of f' given in thm 8.7 of [29]. O

Corollary 4.1.3.1. — Let h : X — S, g : Y — S be embeddable morphisms of S-
schemes which are lci of pure dimension n. Let f : X — Y be an embeddable morphism
of S-schemes. Then 'Oy = wx/s ® f*w;/ls 18 an invertible sheaf.
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Proof. We have h'0g = wx/s[n]. On the other hand,

Wos = f'(g'0s)
= f(wyssln])
= f(Oy @wysln])
= f(Oy)® frwysn.

O

2. Fundamental class. — Let X, Y be two embeddable S-schemes and let f : X — Y
be an embeddable morphism. Under certain assumptions, we can construct a natural map

O: f*Oy — f'Oy

which we call the “fundamental class”. Our construction of the fundamental class is com-
pletely ad hoc and rather elementary. The interest of this fundamental class is that if f is
projectively embeddable, applying R f, and taking the trace we get a map :

Tr : Rf*f*ﬁy — ﬁy.

4.2.1. Construction 1. — Assume that X and Y are local complete intersections over
S of the same relative dimension. Assume that X is normal and that there is an open
V' C X which is smooth over S, whose complement is of codimension 2 in X and an open
U C Y which is smooth and such that f(V) C U. In this case, it is enough to specify the
fundamental class over V' because, by normality it will extend. Then over V', we define

the fundamental class to be the determinant of the map df : QU /s ® Oy — QV /5

4.2.2. Construction 2. — Here is another important example. Assume simply that f :
X — Y is a finite flat map. In this situation, f'0y = Hom(f.Ox, Oy). We have a trace
morphism try : f,0x — Oy and the fundamental class is defined by ©(1) = try.

4.2.8. Comparison. — We check that the two constructions coincide in the situation
where X,Y are smooth over S and the map X — Y is finite flat. In this situation,
X =Y is lci.

Lemma 4.2.3.1. — The cotangent complex Lyx,y 1is represented by the complex

[Q%//S Rp, Ox % Q%{/S] The determinant det(df) € wx,y = f'Oy is the trace

map try.

Proof. We have a closed embedding i : X < X xXg Y of X into the smooth Y-scheme
X xgY. We have an exact sequence :

0 =TIy = Oyxgy — Oy =0
which gives after tensoring with 0x above Oy
0—=+Ix = Oxxsy =+ Ox =0
where Zx is the ideal sheaf of the immersion 7. It follows that Zx /I)Q( =1y /I%/ ®eo, Ox =
Q%//S Koy Ox.
On the other hand, *Q? XxsY/Y = Qﬁ( /s The cotangent complex is represented by
[Ix/T% — QL Y/Y] which is the same as [Q%,/S ®ey Ox — Qk/s].

The morphism fs det Lx/y = Hom(f,Ox, Oy) — Oy is the residue map which asso-
ciates tow € f*Qﬁ{/S and to (t1,--- ,t,) local generators of the ideal Zx over Y the function
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Res[w, t1, ..., t,]. It follows from [29], property (R6) on page 198 that the determinant of
[Q%,/S ®o, Ox — Q%(/S} maps to the usual trace map.
]

4.2.4. Fundamental class and divisors. — Let Dx — X and Dy — Y be two effective,
reduced Cartier divisors relative to S. We assume that f : X — Y restricts to a map
flpx : Dx — Dy. We moreover assume that the induced map Dy — f~!(Dy) is an
isomorphism of topological spaces. We assume that the fundamental class is defined, so
that we are either in the situation of construction 1 or construction 2.

Lemma 4.2.4.1. — 1. In the setting of construction 1, assume moreover that over
the smooth locus X*™ of X, Dx N X*™ is a normal croosing divisor and that
over the smooth locus Y™ of Y, Dy NY*™ is a normal crossing divisor. Then
the fundamental class © : Ox — f'Oy restricts to a morphism : Ox(—Dx) —
f'Oy(—Dy).

2. In the setting of construction 2, the fundamental class © : Ox — f'Oy restricts
to a morphism : Ox(—Dx) — f' Oy(—Dy).

Proof. We first assume that X and Y are smooth, Dx and Dy are relative normal crossing
divisors. In that case, we have a well defined differential map df : f*Q /S(log Dy) —
Qk/s(log Dx). Taking the determinant yields det df : f* det Q%,/S(Dy) — det Qﬁ(/S(DX)
or equivalently det df : @x(—Dx) — f'Oy(—Dy). We work in the setting of construction
1. Let V' be an open subset of X. Let s € Ox(—Dx)(V) be a section. We deduce that
0(s) € f'Oy (V) actually belongs to f'@y(—Dy)(V NU) where U is a smooth open in X
whose complement is of codimension 2. But then f'@y(—Dy)(V) = f'0y(—Dy)(V NU)
and the lemma is proven. We now work in the setting of construction 2. The lemma is
then equivalent to the obvious assertion that the trace of a section which vanishes along
Dx will vanish along Dy (since Dy is reduced). O

4.2.5. Base change. — Assume that we are in the situation of construction 1 or 2. Let
O : f*Oy — f'Oy be the fundamental class. Consider a cartesian diagram :

x' Lo x
]
P
Assume that i is an open immersion. Then, *f' = (f')' (by [29], thm. 8.7, 5) and
the map *© : (f)* Oy — (f')' Oy~ is the fundamental class of the morphism f’.

Assume that i is a closed immersion and that f is finite flat. Then, i*f' = (f’)' and
the map *© : (f)* Oy — (f')' Oy~ is the fundamental class of the morphism f’.

4.3. Cohomological correspondences. — Let X, Y be two S-schemes.

Definition 4.3.1. — A correspondence C over X and Y is a diagram of S-morphisms :

C
RN
X Y
where X, Y, C have the same pure relative dimension over S and the morphisms p1
and p2 are projectively embeddable.

Remark 4.3.1. — In practice, the maps p1, ps will be surjective, generically finite.
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Let . be a coherent sheaf over X and ¢ a coherent sheaf over Y.

Definition 4.3.2. — A cohomological correspondence from F to 4 is the data of a cor-
respondence C over X andY and a map T : R(p1)«p5-F — 9.

The map 7T can be seen, by adjunction, as a map p5.# — pllg . It gives rise to a map
still denoted by T on cohomology :

RT(X, ) 3 RD(C,psF) = RT(Y, R(p1):p57) 5 RO(Y, %),

4.3.1. Construction of cohomological correspondences. — We assume that we are given
a morphism p5.% — pj¥. We also assume that we have a map p;0y — p!1 Oy (typically
a fundamental class). Finally, we assume that ¢ is a locally free sheaf. Tensoring by ¢
the map pjOy — p!1 Oy and using prop. 4.1.2.1, we obtain a morphism pj¥ — p!lg and
composing we obtain T : p5.# — p!lg.

Remark 4.3.2. — In certain cases, one wants to renormalize this morphism. Let O be a
discrete valuation ring with uniformizer w. We assume that S = Spec O, that X, Y, C are
flat over S. We also assume that .# and ¢ are flat &g-modules. We further assume that
the map T : p5.7 — p\¥ factors through T : p5.F — w*p|¥ — pi¥ for some non-negative
integer k. Then we can normalize the map T into a map w *T : p§.F — p|¥4. We will
see many situations where this occurs in the sequel.

5. Automorphic forms and Galois representations

5.1. The group GSp,. — Let V = Z* with canonical basis (e1,---,es). Let J =
_0 A 61 where A is the anti-diagonal matrix with coefficients equal to 1 on the anti-

diagonal. This is the matrix of a symplectic form <. > on V. We let GSp, — Spec Z be
the group scheme GSp(V, < . >).

5.1.1. The dual group of GSpy. — Let T be the diagonal torus
{diag(sty, sta, sty 1, st7 1), 8,t1,t2 € Gy}
of GSpy. Its character group X*(T) is identified with
{(a1,a2;¢),c=a; +az mod 2} C Z*
where (a1, ag; c).diag(sty, sta, sty sty ') = s°t1132. We pick the following basis of X*(T):
e1 = (1,0;1), e = (1,0;1) and e3 = (0,0;2).

For the choice of the upper triangular Borel B, the positive roots are {e; — e2,2e; —
es,e1 + ez —e3,2e2 —e3}. Set a1 = e; — ez and ag = 2e3 — e3. The simple positive roots
are A = {aj,a2}. The compact root is a.

The cocharacter group X, (T) is the dual of X*(T). We identify it with

1
{(bl,bg;d) S 523, bi+deZ, by+de Z}

via (b1, be; d).t = diag(thrFd, tb2+d p=botd 4=bi+d) The following basis of X,(T) is dual to
e1,es and eg :
1 11
fl = (17070)7 f2 = (07 170)7 and f3 = (_57 _ia 5)
The coroot of oy is af = f1 — f2 and the coroot of as is ay = fo. We let AV = {aY, a3 }.
We let (X, (T),AY, X*(T), A) be the based root datum of GSp, corresponding to our
choices of maximal torus T and upper triangular Borel subgroup.
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By [61], lemma 2.3.1 there is an isomorphism of roots datum between
(X4(T),AY, X*(T),A) and (X,(T), A, X*(T),AY).

It is given by a map i : X*(T) — X, (T) whose matrix in the basis ey, e2, e3 and fi, f2, f3
is

—_
— o
(NG

This isomorphism induces an identification of the dual group CTSE; with GSp,(C).

5.1.2. Parabolic subgroups. — If W C V is a totally isotropic direct factor, we let Py
be the parabolic subgroup of GSp, which stabilizes Pyr. We denote by Uy its unipotent
radical and by My its Levi quotient. The group My, decomposes as the product My, x
My, where My, is the linear group of automorphisms of W and My, is the group of
symplectic similitudes of W=+ /W (with the convention that when W = W, this group is
Gm-)

When W = (ey), then Py is denoted by Pgky; and called the Klingen parabolic. Its
Levi quotient is Mgy ~ Mgy < My p. If W = (e1, e2), then Py is denoted by Pg; and
called the Siegel parabolic. Its Levi quotient is Mg; ~ Mg;; X Mg; p.

5.1.8. Spherical Hecke algebra. — Let £ be a prime number. We let H, be the spherical
Hecke algebra

CE(GSp4(Qg)//GSp4(Zg), Z).

This is a commutative algebra isomorphic to Z[Ty, T, [01, Ty.1, Ty 2], generated by the
characteristic functions of the double classes :

T€,2 = GSp4(Zf)dlag(la 11 E, E)Gspél(Zé)a Tﬁ,l = GSp4(Zf)d1ag(17£7 Ea €Q)Gsp4(Zf)

Ty0 = LGSpy(Zy)

The Hecke polynomial is by definition Q¢(X) = 1—Tp2X +£(Ty1 + (2 + 1)Tg70)X2 —
CTyaTyoX? + T X"

Consider the twisted Satake isomorphism H; ® C — C[Y(T)]" where W is the Weyl
group of GSp, (see [23], p. 193). To any homomorphism O, : H; — C we can associate
(using the identification GTSEL ~ GSp,(C) and the standard 4-dimensional representation
of GSp,(C)) a semi-simple conjugacy class cg, € GL4(C). Moreover, ©¢(Q¢(X)) = det(1—
Xco,) ([23], rem. 3 on page 196).

Let N be an integer. We let HY = ®’€,{N’Hg be the restricted tensor product of the
Hecke algebras Hy for all prime numbers £ { N.

5.1.4. Discrete series. — Given XA = (A1, A2;¢) € X(T)+(2,1;0) C X(T)c which satisfies
A1 > A2 > —A; and a Weyl chamber C positive for A we have a (limit of) discrete series
m(A, C) (see [26], 3.3).

Let 3 be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism
(recalled in [16], p. 229 for instance), 3 ~ C[Y(T)]" where W is the Weyl group. The
infinitesimal character of 7(\, C) is the Weyl group orbit of .

If Ao # 0 and Ay # —A1, A determines uniquely C' and 7(A, C) is a discrete series. It
is natural to normalize the central character ¢ by ¢ = —A; — A9 4 3.

If Ay > A2 > 0 and C is the chamber corresponding to the upper triangular Borel,
then 7(\, C) is called a holomorphic (limit of) discrete series.



19 Higher coherent cohomology and p-adic modular forms of singular weight

5.1.5. Galois representations attached to automorphic forms. — The following theorem
is obtained in [71], [43], [77] and [74]. A different proof (for the general type, see below)
is given in [68], completed by [50] using a lift to GL4 and [11].
Theorem 5.1.5.1. — Let m = o @ wp be a cuspidal automorphic form for the group
GSp, such that 1o = w(A\,C) is in the discrete series and A = (A1, A2; —A1 — A\a + 3).
Let N be the product of primes ¢ such that 7, is not spherical. Let O : HY — C be the
homomorphism giving the action of HN on ®gN7T€GSp4(Z‘).

1. The image of ©, generates a number field E.

2. For all finite place X of E there is a semi-simple, continuous Galois representation:

pr: G = GL4(E))

which is unramified away from N and the prime p below A and such that for all
¢t Np, we have

det(1 — X pr a(Froby)) = 0,(Q(X))
3. The representation py y is de Rham at p with Hodge- Tate weights (0, —A2, —A1, —A1—
A2).
4. If pt N, then py x is crystalline at p and det(1 — X ¢|Depys(prr)) = Ox(Qp(X)).

5. Prr 2Pl ® x;’\l_hwm)\ for some finite character wy \ and the cyclotomic char-
acter Xp.

According to Arthur’s classification [1], the representation 7 in the theorem can fall
into three categories : general type, Yoshida type (the endoscopic case), Saito-Kurokawa
type (cuspidal associated to the Siegel parabolic) . We observe that if 7 is of Yoshida or
Saito-Kurokawa type, then p; y is reducible. On the contrary, if 7 is of general type then
it is expected that pr ) is irreducible.

5.2. Complex Siegel threefolds. —

5.2.1. Siegel datum. — We let h : Resg/r — GSpy|r be the map given by h(a + ib) =
aly +bJ. We let Ko, C GSpy(R) be the centralizer of the image of h. The quotient
H = GSp,(R)/ K+ is the Siegel space.

Let K C GSpy(Ay) be a neat compact open subgroup. We let Sx = GSp,(Q)\H X
GSp4(Ay)/K. This is the complex analytic Siegel threefold of level K. It can be interpreted
as a moduli space of abelian surfaces with additional structures. See [43], sect. 3 for
example.

5.2.2. Minimal compactification. — Let S}, be the minimal compactification of Sk (see
[60], sect. 3 for example). There is a stratification

Sk =Sk [ S 5%
Let HM) = C\ R and H© = {1,-1}.

S}? = Pri(Q\HW x G(Ay)/K

is a union of modular curves and

S = Psi(Q\H© x G(Ay)/K
is the union of cusps of these modular curves. The parabolic Pgj;(Q) and Ps;(Q) act
diagonally. They act on H! and H" through their quotient My; ,(Q) and Mg; ,(Q). We

let 5’}(1)’* = Sg) I Sé?). This is a union of compactified modular curves.
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5.2.8. Toroidal compactification. — Depending on certain auxiliary choice of polyehdral
cone decomposition X, one can also construct toroidal compactifications S;?j"z of Sk . There

is a semi-abelian surface G — S, See [27], sect. 2.

5.3. Coherent cohomology and Galois representations. — Over S}‘(’TE, we have a
semi-abelian surface G. We let wg — Sﬁ?f’z be the conormal sheaf of G. This is a locally
free sheaf of rank 2. For all pairs of integers (k,r) € Z>¢ x Z, we define an automorphic
vector bundle Q*") = SymFwe ® det” wg on S}?TZ. We let Dk, v = S}?TE \ Sk . This
is a Cartier divisor. We can consider the cuspidal sub-sheaf Q") (—Dg 5) (or simply
Q1) (—D) if no confusion will arise) of Q*7).

We will be interested in the coherent cohomology groups H"(S}?fz, Qk1)(—D)). These
cohomology groups are independent of the choice of ¥ ([28], prop. 2.4). Our main focus
will be on the case r =2, i € {0,1}.

If 7 = 7o ® ¢ and moe = 7(A, C) is a holomorphic (limit of) discrete series with
A = (A1, A2;¢) (and hence Ay > Ay > 0), then there is a natural embedding 7r§( —
HO(S{g, Q152 (),

It follows from the description of representations having a "lowest weight” given in
[63], p. 12 diagram (44) that for all » > 2 :

HO(S?(),TZ? Q(k’r)(_D)) = @Wfﬂ-;(

where 7y runs through the set of admissible representations of GSp,(Af) such that
(A, C) ® 7y is cuspidal automorphic for A = (k+r —1,r —2; -k — 2r 4+ 6) and w(), C)
the holomorphic (limit) of discrete series.

We let N be the product of primes ¢ such that K, # GSp,(Z;). We let HY = ®'€+N”H€
be the restricted tensor product of all the spherical Hecke algebras.

The Hecke algebra H” acts on Hi(S’ﬁ‘(’fz, Q®m) and Hi(SﬁgTE,Q(k’T)(—D)). Let © :
HY — C be a system of eigenvalues for the action of H~. The following theorem is
deduced from theorem 5.1.5.1 in [70] and [59], using p-adic interpolation :

Theorem 5.3.1. — The image of © generates a number field E. For all finite place A of
E there is a semi-simple, continuous Galois representation :

po.: Gg = GLy(E))

which is unramified away from N and the prime p below A and such that for all 1 Np,
we have

det(1 — X pex(Frobe)) = O(Qe(X))

Proof. If £ > 0 and r > 3, then
HO (S5, Q) (—D)) = enf

where 7; runs through the set of admissible representations of GSpy(Ay) such that
(A, C) ® s is cuspidal automorphic with A = (k+r — 1,7 —2; —k — 2r +6). Thus, when
k > 0,r > 3, we can use theorem 5.1.5.1. The general case follows from the main result of
[59] (but see also [70] for degree 0 cuspidal cohomology) by p-adic interpolation technics.
O
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PART II
HIGHER HIDA THEORY

6. Siegel threefolds over Z,

6.1. Schemes. — We fix a prime p. We introduce several Siegel threefolds defined over
Spec Z, and study their p-adic geometry.

6.1.1. The smooth Siegel threefold. — Let K C GSp,(Ayf) be a neat compact open sub-
group. We assume that K = K?K) and that K, = GSp4(Z,). We let Yk 7z — Spec Zy,
be the moduli space representing the functor which associates to each scheme S over
Spec Z,) the set of isomorphism classes of triples (G, A, ¢) where :
1. GG is an abelian surface,
22.0:G = Glis a Z(Xp)—multiple of a polarization of degree prime to p where G?
stands for the dual abelian scheme of G,
3. 1 is a KP level structure : for a geometric point s of S, ¥ is a KP-orbit of symplectic
similitudes Hl(Gs,A?) ~V ®z A}} that is invariant under the action of IT'(.S, s)
(V' is defined in section 5.1).
The triples (G, A, 1)) are taken up to prime to p quasi-isogenies. See [41]. There is an
isomorphism (YK’Z(p) x Spec C)* ~ Sp. We shall denote by Yx = YK ,2, XSpec
Spec Zy,.

Z(p)

6.1.2. Klingen level. — We denote by p1 : Ygi(p)k — Yx the moduli space which
parametrizes subgroups of order p, H C G[p|. Over Yky;(p)x we have a chain of iso-
genies of abelian surfaces G — G/H — G/H+ — G. Here H* is the orthogonal of H
for the Weil pairing on GJ[p| (obtained by the polarization). The total map G — G is
multiplication by p.

6.1.53. Paramodular level. — We also introduce Y, i — Spec Z,, the moduli space of
isomorphism classes of triples (G', X,1) where X' : G’ — (G')! is a Z(Xp)—multiple of a
polarization of degree p? and 1 is a KP-level structure. We have a natural map po :
Yiii(p)k — Yp i which sends (G, \, H,9) to (G/H*,X,1') where X is the polarization
on G/H* obtained by descending the polarization AP from G to G JH* and ¢/ is induced
by the isomorphism G[N] = G/H*[N] for every integer N prime to p.

6.1.4. Local properties. — We now investigate the local geometry of these schemes.

Proposition 6.1.4.1. — The scheme Y is smooth over Spec Z,. The schemesY), i and
Yrii(p)k are regqular schemes. They are flat, local complete intersections over Spec Zj.
The non smooth locus of Y, i consists of a finite set of characteristic p points.

Proof. The smoothness of Yg over Z, results from the deformation theory of abelian
varieties with a polarization of degree prime to p. For Yiyi(p)k, the local model theory
computation is worked out in [73], sect. 2.2, thm. 3. For Y, i we can again use local
model theory (see [15]). Let V| = pe;Z & @?:2 e;Z C V (V is defined in section 5.1). The
local model for Y), x is the moduli space of totally isotropic direct factors L C V; of rank
2. The only singularity occurs at Lo = (pe1,eq) C V1 @ F),. The formal deformation ring
at this point has equation Z,[[X,Y, W, Z]]/(XY — W Z + p) and the universal deformation
of Ly is the module (pe; + Xeg + Wes, Zea + Yes + e4). O

6.1.5. Integral arithmetic compactifications. — We recall results of Faltings-Chai [16],
Lan [44], [45], [46] and Stroh [69].
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6.1.5.1. Arithmetic groups. — Let I' = G:Sp4(Z(p))Jr be the group of automorphisms of
(V ®Z), < . >) up to a positive similitude factor. Let Vi = pe1Z @ @?:2 e;Z CV. We
let GSp; — Spec Z be the group scheme GSp(V;, < . >). This is the paramodular group.
Let T, = GSpjy(Z,))* be the subgroup of GSp)(Z,)) of elements with positive similitude
factor. Let I'x;(p) be the automorphisms group of (Vi @ Z,) — V ® Z,), <. >) up to a
positive similitude factor. Thus, I'xy;(p) is a subgroup of both I' and I',. All are subgroups
of GSp,(Q).

6.1.5.2. Local charts. — Let € be the set of totally isotropic direct factors W C V.
For all W € &, let C(V/W+) be the cone of positive symmetric bilinear forms V/W+= x
V/W+ — R with radical defined over Q. Let C be the conical complex which is the quotient
of [Tyyee C(V/W) by the equivalence relation induced by the inclusions C(V/W1) C
C(V/Z+) for W C Z. This set carries an action of GSp,(Q).

Let W € €. Recall from section 5.1.2 that Py is the parabolic subgroup which is
the stabilizer of W, that My = My, x My, is its Levi quotient. There is a projection
Py — My and we let Py, be the inverse image of My, € Pyy. Let v € GSp4(AIJ’c)/Kp.
We can attach to W and v moduli spaces of 1-motives (see [69], sect. 1 and [44], sect.
6.2) which only depend on the class of v in Py, (A%)\GSpy(A})/KP

My My Kii(p) Mwyp
BW,«, BW,'y,Kli(p) Bme
Yivy YWy, Kli(p) Y p

The scheme Myy, is a moduli space of polarized 1-motives (for a polarization of
degree prime to p), rigidified by V/W+ ([69], def. 1.4.3) with a K-level structure.

The scheme My, admits the following description : it is a torsor under a torus Ty,
isogenous to Sym?(V/W+) ® Gy, over Byy,. The scheme By, is an abelian scheme over
Yw ~ which is a moduli space of abelian schemes of dimension rankz W with a polarization
of degree prime to p and a level structure away from p.

The scheme My, ki) is @ moduli space of polarized 1-motives (for a polarization
of degree prime to p), rigidified by V/W+ with a Kp-level structure and a Klingen level
structure.

The scheme My ki() admits the following description : it is a torsor under a torus
Ty, Kk1i(p) is0genous to Sym?(V/W+) ® G, over By kii(p)- The scheme Byy ., kii(p) 18
an abelian scheme over Yy ki) Which is a moduli space of abelian schemes of genus
ranky W with a polarization of degree prime to p a level structure away from p and possibly
a Klingen level structure at p.

The scheme My, is a moduli space of one motives with a polarization of degree
Np? (with (IV,p) = 1, the integer N depends on the tame level K?). The character group
of the toric part is isomorphic to V3 /W, It carries a K-level structure.

The scheme My, , admits the following description : it is a torsor under a torus
Ty, isogenous to Sme(V/ WJ-) ® Gy, over Bw,p. The scheme By, is an abelian
scheme over Yy, which is a moduli space of either abelian schemes of genus rankz W with
a polarization of degree prime to p, a level structure away from p or a moduli space of
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abelian schemes of genus rankzW with a polarization of degree a prime to p multiple of
p? and with a level structure away from p.

Let 0 € C(V/W) be a cone. Associated to this cone we have affine toroidal em-
bedding T{/V;y — Twﬁp, TI/V;y,Kli(p) — TW;y,Kli(p),a and TW,%IJ — TW,v,p,a- We can de-
fine MW,'y,o = MW,W xTwe TW,’y,cra MW,v,Kli(p),a = MW,v,Kli(p) x W Kii(w) TW,’Y,Kli(p),O"
Mwrypo = Mwap xTw.p Tw,y po, and we denote by Zw .~ o, Zw,, Kii(p),c a0d Zw 4 p,o the
closed subschemes that correspond to the closed strata of these respective affine toroidal
embeddings.

6.1.5.3. Polyhedral decompositions. — We denote by € x GSp4(A}})/KP the quotient of
¢ x GSp4(A‘;)/Kp by the relations (W,~) ~ (W,~) if vy =4/ in PW’h(A?)\GSp4(A?)/Kp.
We denote by C x GSp,(A%)/KP the quotient of C x GSpy(A%})/KP by the relations
(C(V/WL), ) ~ (C(V,IWL),+) if y =4 in Pwyh(A?)\Gszl(AZ;)/Kp. A non-degenerate
rational polyhedral cone of C x GSp4(A?) /K? is a subset contained in C(V/W+) x {~} for
some (W, ~) which is of the form @leRwsi for elements s; : V/W+ x V/W+ — Q.

Let us fix a Z-lattice Ly C SmeV/ W+ @7z Q. Then the cone is called smooth with
respect to Ly if the s;’s can be taken to be part of a Z-basis of Hom(Ly,Z).

A rational polyhedral cone decomposition ¥ of C x GSp4(AI}) /KP is a partition

C x GSp4(A?) /KP = [],cs 0 by non-degenerate rational polyhedral cones ¢ such that
the closure of each cone is a union of cones.

The set C x GSp4(AI})/Kp carries a diagonal action of GSp,(Q). For any subgroup
H c GSp,(Q) a rational polyhedral cone decomposition ¥ is H-equivariant if for all h € H
and o € ¥, h.o € H. Tt is H-admissible if 3/H is finite. It is projective if there exists a
polarization function (see [46], def. 2.4).

For all (W,~) € € x GSp4(A’})/KP we have integral structures X, (Tw,), Xx(Tw.p)

and X, (Ty .~ r1i(p)) C Sym?V/W+ @7 Q. We say that a rational polyhedral cone decom-
position Y is smooth with respect to one of these integral structures if each cone o € ¥ is
smooth.

Let H be either I', I',, or I'k;(p). The H-admissible rational polyhedral cone decom-
positions exist and are naturally ordered by inclusion ([16], p. 97). Any two H-admissible
rational polyhedral cone decompositions can be refined by a third one.

The H-admissible rational polyhedral cone decompositions which satisfy the following
extra properties form a cofinal subset of the set of all H-admissible rational polyhedral
cone decompositions (see [16], p. 97) :

1. The decomposition is projective.

2. For all cone 0, let W € € be minimal such that o € C(V/W+). Thenif h € HN Py
satisfies ho Na # 0, h acts trivially on C(V/W1).

3. If H is T' (resp. T'p, resp. I'kyi(p))-admissible, the decomposition is smooth
with respect to the integral structure given by X, (Tw,), (resp. X.(Tw,y,p), resp.

Xi(Tw ,k1i(p)))-

In the sequel of the paper we will consider mostly H-admissible rational polyhedral
cone decompositions which satisfy these extra properties unless explicitely stated. We will
call them H-admissible good polyhedral cone decompositions or simply good polyhedral
cone decompositions.

6.1.5.4. Main theorem on compactification. — The following theorem is a special case of
[46], thm. 6.1.
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Theorem 6.1.5.1. — 1. Let X be a good polyhedral cone decomposition which is T’
(resp. T'kii(p), resp. T'p)-admissible. There is a toroidal compactification Xk s, of
Yi (resp. Xkii(p)ks of Yiii(p)k, resp. Xp s of Yp i ). It has a stratification
indexed by /T (resp. £/Tkii(p), resp. £/T'y). For each (0,7) € X, the (0,7)-
stratum is isomorphic to Zyw .~ o (resp. Zw~.op, T€SP. ZW,’y,Kli(p),J)' The comple-
tion of Xk » (resp. Xk1i(p)k,x, resp. Xp k) along Zwyqo (1esp. Zwqy, Kii(p),os
resp. Zwa.pe) 15 isomorphic to the completion of Mw,%g along Zw,o (resp.
My Kiip),o Wong Zy  Kii(p),or 765D Mwypo along Zw,y po.) The boundary is
the reduced complement of Yi in X s (resp. of Ykii(p)k in Xkii(p)k,s, resp. of
Y,k in Xp k). This is a relative Cartier divisor.

2. If ¥ C X is a refinement, then there are projective maps msv s, : Xiosy — Xg»
and (RWZ',E)*ﬁXK’E/ = Oxyy- Let Ix,  and jXK,E’ be the invertible sheaves
of the boundary in Xk and Xk sy. Then WE/EjXKE = JXK’E,. Similar results
hold for Xp kx and Xgqip) k. 5-

3. If ¥ is T'-admissible and X' is a refinement which is T'p-admissible, then the map
p1: Yiii(p)xk — Yk extends to a map Xkii(p)ky — Xk x. If ¥ is T'p-admissible
and X' is a refinement which is T'p-admissible, then the map p2 : Yi1:(p)k — Yp K
extends to a map Xk1i(p) ks — Xp K,5-

4. If ¥ is T' (resp. T'iii(p), resp. T'p)-admissible, then the toroidal compactification

XKy of Y (resp. Xkii(p)kx of Yiii(p)k, resp. Xpryx of Yp i) is normal and
a local complete intersection over Spec Z,.

Proof. All points follow from [46], thm. 6.1 and prop. 7.5, except for the last point which
follows from the description of the local charts, proposition 6.1.4.1 and our knowledge of
modular curves. Let us recall that in the case of Yk, the toroidal compactification is
constructed in the book [16]. In the case of Y}, i, the method of [45] and [46] is to embed
Y, i in a Siegel moduli space of principally polarized abelian varieties of genus 16 (Zarhin’s
trick). The later can be compactified by the methods of [16]. The compactification of Y},
is obtained by normalization. The toroidal compactification of Y ;(p)x is constructed in
[69]. It is also constructed in [45], [46] by first embedding Y (p)x in the product Y, x X
Yk, then considering the toroidal compactification of the product and then normalizing.
O

Notation : If not necessary, we drop the subscript K or ¥ and simply write X, X,
and Xgyi(p) for Xk v, Xkiui(p)rx and X, k.

6.2. Hasse invariants. — Let S be a scheme over Spec F,. If H — S is a group
scheme, we denote by wy the conormal sheaf of H along the unit section.

6.2.1. The classical Hasse invariant. — Let G — S be a truncated Barsotti-Tate group

of level 1 (BT for short). We have a Verschiebung map V : G?) — G with differential
V*rwe — wg ) also called the Hasse-Witt operator. The Hasse invariant is Ha(G) :=

det V* € HO(S, det wg_l)). We let GP be the Cartier dual of G. We recall the following
result of Fargues.

Proposition 6.2.1.1 ([19], 2.2.3, prop. 2). — There is a canonical and functorial iso-
morphism LF : det wg)fl) ~ det wggl) such that LF(Ha(G)) = Ha(GP).

Assume that we have a quasi-polarization A : G = GP.
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Lemma 6.2.1.1. — The composite det WP A et wg)_l) LE det wggl) 1s the identity

G’D
map.

Proof. We first assume that G is ordinary. Thus Ha(G)0s ~ det wgf U and similarly,
Ha(GP)0s ~ detwg),;l). By functoriality, \*Ha(GP) = Ha(G). Since LF(Ha(G)) =
Ha(GP) we deduce the claim. The algebraic stack of quasi-polarized truncated Barsotti-

Tate group schemes of level 1 is smooth with dense ordinary locus by [33]. We can thus
deduce the lemma in general. O

6.2.2. Another Hasse invariant. We assume that S is reduced, that G is a BT} of height
4 and dimension 2 and that the étale rank and multiplicative rank of G are constant, both
equal to 1. In this setting, the classical Hasse invariant vanishes identically on S. We
recall the construction of an other Hasse invariant in this situation (this is a very special
case of more general constructions of Boxer [5] and Goldring-Koskivirta [25]). We have a
multiplicative-connected filtration over S :

G"cG°caG
We set G° = G°/G™. This is a BTy of height 2 and dimension 1. Let & =
Eaxtl . (G, Os)speck,)s- 1t carries the Hodge filtration:

cris

-1

0= wgeo — & — W ooy

»—0

There is a map V* : £ — & (P), The map V*|wgoeo : wgoo — wgoo is zero (because it

is zero pointwise and S is reduced). The map V*|w(_G100) b w(_Gloo) p = w(_é’oo) p is always
zero. Passing to the quotient, we get an isomorphism V* : w(_Gloo) p — wgoo. We set

Ha'(Go°) = (V*)P~1 € HY(S, prQOZl). We are using here the isomorphism LF to identify
wfg_olo)D and wgzol.

We define the following invertible section (which we call the second Hasse invariant):
Ha/(G) = Ha(G™)P! @ Ha/(G°) € HO(S, det w? ).
Let GP be the Cartier dual of G. It satisfies the same assumptions as G.

Lemma 6.2.2.1. — Under the isomorphism LE®®tD) . det wgtl ~ det wg,;l we have
Ha/(G) = Ha/(GP).

Proof. Since S is reduced, we need only to check the equality on points. Thus, we can
reduce to the case where S is the spectrum of an algebraically closed field. In this case,
there exists a quasi-polarization A : G — GP. The composite

* ®(p+1)
det wg,;l N detw’(’;*l EEZE det ng*l.
is the identity map by lemma 6.2.1.1. On the other hand, \*(Ha'(GP)) = Ha/(G) be
functoriality. It follows that LFP*!(Ha'(G)) = Ha/(GP). O
6.2.5. Extension of the second Hasse invariant. — We are going to prove that the second

Hasse invariant can be extended under some hypothesis. This is again a very special case
of extensions considered by Boxer and Goldring-Koskivirta. We now assume that S is a
normal reduced scheme and that G is a BT} of height 4, dimension 2. We assume that
over a dense open subscheme S’ of S, G has étale rank one and multiplicative rank one.
We moreover assume that over S, the Hasse-Witt map V* : wg — wg ) has rank 1. The
next lemma shoes that GP satisfies the same hypothesis as G.
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(p)

o has rank one.

Lemma 6.2.3.1. — The map V* : wgp — w

Proof. Let & = Euxt!l (G, Osyr,)s- As in [19], p. 9, one proves that there is a short

cris
exact sequence of perfect complexes (the complexes are the horizontal ones) :

V> (p)

we —= Wg

|

F* V*
(p) £ wg))

The map F* : (wéD)(p) — w/p is the dual of the map V* : wgp — ng)a- Taking the

long exact sequence in cohomology shoes that this last map has rank one. O

Over S’, we have a multiplicative subgroup H = G™ C G[F] := Ker F.

Lemma 6.2.3.2. — The group H extends to a finite flat group scheme H C G[F| over
S.

Proof. Consider the map V : G[F]®) — G[F]. We prove that the kernel K of this map
is a finite flat rank p group scheme (locally isomorphic to cy,). Note that K is also the
kernel of F : GP[V] — G®")[V]. The Hodge-Tate map provides a long exact sequence
(see [19], sect. 2.1.2) :

0= KerF — GP wa =y wg’)
Moreover, GP /KerF =~ GP)[V]. Tt follows that K ~ Ker(wg ® ay N Wap ® ap) is a
rank p group. We now set H = G[F|®) /K < G[F]. This is the extension we are looking

for.
O

Applying the lemma to G”, we also get a subgroup L C GP[F]. We now consider
the chain of maps G 5aw Y q. Applying the functor Extl . (—, Osr,)s and setting
& = Ext!

cris

(G, Os/r,)s yields the following diagram :

(6.2.A) wg’) 0 wa wg))
e " o V" el

(wéD)(p) ——wlp _ 0 (wéD)(p)

The map V* : wg — wg) fits in the diagram :
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0
v (»)

weg ———>wg

|

V
wWH —> wl([?)

We retain from this diagram the two maps : V} : wg — wg)) and W : w(Gp[)F} 1
(P)/V*(WG)

Lemma 6.2.8.3. — The maps V}; and W vanish on the complement of S’. Moreover,
they have the same order of vanishing.

Proof. Let x be a generic point of one component of S\ S’. We work over the discrete

valuation ring Os,. We take a basis e, ez for wg, and fi, fo for wé) such that e

generates wy and f; generates wl(g) The matrix of V* in this basis has the form

b 0)

where b € mg, and a € O g ., since V7 vanishes at  and V* has rank one. The claim is
now obvious. O

The map V* of diagram 6.2.A induces, after passing to the quotient, a map
Z: wéD/F*(wéD)(p) — wgf,))/V*wg.

Lemma 6.2.3.4. — There is a canonical isomorphism wéD/F*(wéD)(p) = (weppyL)”
Proof. The map F* : (w)p)® — wlp is dual to V* : wep — wg,)j and the kernel of V*
Is wgp(p)/r by the analogue of diagram 6.2.B for GP. O

We can define a rational section (V)P @ (W10 Z)P~! of the sheaf wH ®wG([p Vl}[®

GP[F]/L
Lemma 6.2.3.5. — This section is reqular and vanishes precisely over S\ S'.
Proof. This follows from lemma 6.2.3.3 since p+1 > p — 1. O

We can finally prove :

Proposition 6.2.3.1. — The Hasse invariant Ha/(G) € HO(S’,w’g_l) extends to S.
Moreover, it vanishes precisely on S\ S’.

Proof. It is enough to prove the claim for (Ha'(G))? = Ha/(G) ® Ha/(GP) (see lemma

6.2.2.1). Call A = (V)P @ (W=t o Z)P~! the section of the sheaf w’;_l ® wgﬁ;]}l)g ®

wg_Dl[ Fy Ve just constructed. Exchanging the roles of G and GP, we obtain a section B
of wf_l ® G(E[;])/L ® wG[F]/H The product A ® B extends (Ha'(G))?. O
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6.2.4. Functoriality. — Let S be a scheme over Spec Fp. Let G, G’ — Spec S be Barsotti-
Tate groups. We recall that if A : G — G’ is an étale isogeny, then \* : wy — wg is an
isomorphism and moreover A*Ha(G’) = Ha(G). If we are in a situation where the second
Hasse invariant is defined, we also have A*Ha'(G’) = Ha/(G). We want to obtain similar
results in the case of non-étale isogeny.

Lemma 6.2.4.1. — Assume that G and G' are Barsotti-Tate groups of multiplicative
type. Let X : G — G’ be an isogeny. Then we can define a canonical isomorphism. :

N detwe — detwg
Moreover, N*Ha(G') = Ha(G).

Proof. Let p” be the degree of \. We have G = T ®z, ppeo and G' = T' @z, ppe for
two smooth pro-étale sheaves T' and 7. The map X provides a map \g : T — T which
induces an isomorphism p~"det A\g : det T — detT’. Since detwg = detT ® Wyyeo and
detwey = detT' ® Wy,eo We get a canonical isomorphism M\* between these two. There
are canonical trivialisations F, ~ (detT/pT)P~! and F, ~ (det7’/pT")?~1. In these
trivalisations we have Ha(G) = 1®Ha(pp~ ) and Ha(G') = 1®@Ha(pupe~ ) which are identified
via the map \*. O

Lemma 6.2.4.2. — Let G and G’ be Barsotti-Tate groups. We assume that they have
constant multiplicative rank over S. Let X : G — G’ be an isogeny with kernel L C G|p].
Assume that for all geometric points x — S, there exists a multiplicative group Hy C Gy[p]
such that Hy ® Ly = Gz[p]. Then there is a canonical isomorphism

N detwg — detwg.
Moreover, MHa(G') = Ha(G). If the second Hasse invariant is defined, we also have
AMHa'(G') = Ha/(G).

Proof. We have filtrations by multiplicative Barsotti-Tate subgroups G™ C G and
(G"Y™ C G'. Let L™ = LN G™. Then we have a commutative diagram :

Gm G G/Gm
l,\m lA |
()" ——= G —= /()"

Where the right vertical map has kernel L™. The isogeny G/G™ — G'/(G')™ can be
uniquely written in the form py where p is an isomorphism inducing p* : det wgr /(grym =

detwg/gm. The above lemma provides an isomorphism (A™)* ¢ det wignm — detwgm.
The tensor product of these two maps is the isomorphism we are looking for. The other
properties are obvious. ]

6.3. Stratification of the special fiber. — We will now stratify the special fibers of
the Siegel threefolds. We denote by G the semi-abelian scheme over X and by G’ the
semi-abelian scheme over X,,. For all n € Z>1, we let X,, — Spec Z/p"Z be the mod p"
reduction of X and X, ,, the reduction modulo p™ of X,.

For r € {0,1,2}, we set :

— X, the locally closed subset of X,, where the multiplicative rank of G is exactly

T?
— X=" the closed subset of X,, where the multiplicative rank of G is less than r,
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— XZ7 the open subscheme of X,, where the multiplicative rank of i is greater than
r

We define similarly X -7, ngﬁ and szj;. We recall that X" is dense open in X=",

that X7 is dense open in XPS;; and they are of dimension 3 — r (see [53]).

We now specify the schematic structure. We let w denote the invertible sheaf det wg
over X or detwg over X, 1 (no confusion should arise). We have two Hasse invariants
Ha(G) € HO(X1,w® D) and Ha(G') € HO(X,1,w® 1)) . Their definition was recalled in
section 6.2.1 in the context of abelian schemes. The extension to semi-abelian schemes is
straightforward. Alternatively, we can use Koecher’s principle. We let X 1§1 = V(Ha(G))
and X~ = V(Ha(G")).

Lemma 6.3.1. — X1§1 and ng’ll carry the reduced schematic structure.

Proof. The scheme X; is smooth, hence normal. The scheme X, 1 is smooth up to a
dimension 0 set and is Cohen-Macaulay by proposition 6.1.4.1. By Serre’s criterion, it is
also normal. It follows that it suffices to prove that Ha(G) and Ha(G’) vanish at order
one at each generic point of the non-ordinary locus. Let k& be an algebraically closed field
of characteristic p and let = : Spec k — X7 ! or = : Spec k — X;ll. Let H — Spec k
be the p-divisible group associated to x. The contravariant Dieudonné module D of H is
isomorphic to the 4-dimensional free W (k)-module with canonical basis (e1, €2, e3, €4) and
with Frobenius matrix given by :

oo
o8 O o
SO = O
o o O

It is the sum of three direct factors W(k)e1 @ (W (k)ea @ W (k)es) @ W (k)ea, corre-
sponding to the multiplicative-biconnected-étale decomposition. We find that the Hodge
filtration is given by Ker(F') = (e1,é2) C D/pD.

By [33], the universal first order deformation of H is represented by

R=k[X,Y,W,Z|/(X,Y,Z,W)?

where the universal Hodge filtration Fil inside D ®yy(r) R is generated by the columns of
the matrix

~—

1 0
0 1
X Y
w Z

The Hasse-invariant of the universal deformation is the determinant of F' : D ®
R/Fil = D ® R/Fil. The matrix of F' in the basis e3,é4 of D ® R/Fil is

(o )

To find the universal deformation of x we need to incorporate the polarization (.) :
D/pD x D/pD — k. The tangent space at z is given by the subspace where the filtration
is isotropic. We need to see that this subspace is not contained in Y = 0. This will prove
that the Hasse invariant defines a non-zero linear form on the tangent space. Concerning
the polarization, we necessarily have (€1, é2) = 0, (é1,€3) = 0, (€2, €4) = 0 and (€3, e4) = 0.
The isotropy condition is then (€1, €4)Z — (€2,€3)X = 0. O

In section 6.2.2 we have defined a second Hasse invariant. The construction applies to
the open subscheme of X! and X;ll where the semi-abelian scheme is an abelian scheme.
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The extension to the case of semi-abelian schemes is straightforward. As a result, we have

two Hasse invariants Ha'(G) € HO(XT!,wP*~1) and Ha/(G') € HO(X ] 1wP’ 1,

Lemma 6. 3 2. — The second Hasse invariants Ha!(G) € HO(Xlzl,wp 1) and Ha/(G") €

HO(Xp l,wp 1Y extend to XlSl and Xp%. Moreover, they vanish on X1§0 and Xp%).

Proof. Recall that an abelian surface is called superspecial if it is isomorphic to the
product of two supersingular elliptic curves. There are only finitely many superspecial
points on X, 1 and X; by [52]. Call this finite set S.S. Since ng’ll and X=" are Cohen-
Macaulay, it suffices to construct the extension over the complement of SS. Moreover,
since we removed the superspecial points, the Hasse-Witt matrix has rank 1. We now prove
the smoothness for X='\ SS. Over X='\ SS, we have a canonical filtration H C KerF
where the group H is constructed in lemma 6.2.3.2 . As a result, XlSl \ SS embeds in
the moduli space of abelian surfaces with a polarization of degree prime to p and with
Iwahori level. The local model is computed in detail in [58], page 186 to 189. We find that
X 1§1 \ S is exactly the union of the strata denoted X" and XY ¥ in that reference. We
see that this union of strata is smooth. We compute that the closure of X" is locally
isomorphic to

Spec Fplz, y,a,b, c]/(xy, ax + by + abe, a,y, z + be) ~ Fpy[b, c]

where X" is corresponds to the stratum be # 0 and ng’F corresponds to the stratum
c¢=0,b# 0. The extension of Ha'(G) over XlSl \ SS follows from proposition 6.2.3.1.
We now prove that X;ll \ S is locally isomorphic to Spec Fpla, b, ¢|/(ab) with a # 0
or b # 0 corresponding to X, ~1. By proposition 6.2.3.1 we deduce that Ha/(G’) extends
on each irreducible components of X \SS Moreover, to check that it glues to a section
over Xp71 \ SS we need to prove that the values of Ha/(G’) agree on the intersections of

the irreducible components. Since this value is zero, this is true. Over lell \ §S we have
a chain G’ — G — (G')Y - G” — G’ — G. This chain is constructed as follows. Let
K()) be the kernel of the polarization G’ — (G')! and K (A\!) the kernel of the polarization
A (G — G. Set H= K(A\)NKer F and set H' = K(\') N Ker F. These are groups of
order p because K()\) and K(\!) are BT} of height 2 and dimension 1. We set G = G'/H
and G” = (G')'/H’. This chain provides an embedding of X<1 \ SS in the moduli of
space of abelian surfaces with a polarization of degree prime to p and Iwahori level. More
precisely, it identifies X;ll \ SS with an open subscheme of the union of the closure of

the stratum denoted by Xg"™ and X§"° in [58]. We compute that the closure of XJ™
corresponds on the local model to the ring quotient

F,lx,y,a,b,cl/(xy, ax + by + abc) — F,[b, c]

given * = y = a = 0. The closure of X§"°

quotient

corresponds on the local model to the ring

Fplz,y,a,b,c]/(xy, ax + by + abe) — Fpla, c]
given x = b =0 and y — —ac. Both rings are quotients of
Fylz,y,a,b,c]/(zy, ax + by + abe,y + ac,x) ~ Fpla, b, ]

given by the respective equations a = 0 and b = 0. Finally, the open stratum corresponding
to X lis given by a # 0 or b # 0.
O

We define the schematic structure X=" = V(Ha/(G)) and Xp—1 = V(Ha'(G")).
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Remark 6.3.1. — Tt is possible to check that the modular form Ha'(G) vanishes at order
2 along the rank 0 locus. When p > 3, the modular form Ha/(G) has a square root which
vanishes at order 1. When p = 2, it doesn’t have a square root.

6.4. Sheaves. — We recall the definition of the classical automorphic sheaves as well
as the vanishing theorem for the projection to the minimal compactification.

6.4.1. Definition. — We now define several sheaves of modular forms. Over X we have

a rank 2 locally free sheaf Q! := e*Q};/X. For all pairs (k,r) € Z>¢ X Z we set Qlkr) —

SymFQ! @ det” Q. For simplicity, we sometimes write w” instead of Q") and QF instead
of Q%9 Similarly, over X, we have a rank 2 locally free sheaf e*QE, /X" If no confusion

arises, we still denote this sheaf by Q'. We define similarly Q*7).

6.4.2. Vanishing theorems. — According to [16], [45] and [46], we can construct minimal
compactifications X* and X for Yx and Y), k. They are defined as the Proj of the graded
algebras @;>oH%(X,w") and ®p>oH?(X,,w¥). The sheaves w descend to ample sheaves
on X* and X7. We have canonical morphisms 7 : X — X* and m, : X}, = X.

Theorem 6.4.2.1 ([46], thm. 8.6). — For all (k,r) € Z>o X Z and i > 0, we have

Rim QF)(—Dx) =0
and

R ()% (~Dx,) = 0.

7. The T operator

7.1. Definition of the T-operator. — Consider the schemes X, Xg;;(p) and X, for
choices of good polyhedral decompositions X, ¥ and X" (see section 6.1). We also assume
that Y’ refines both ¥ and ¥”. As a result we have maps p1 : Xgi(p) — X and py :
Xkii(p) = X,. By theorem 6.1.5.1, these schemes are normal and Ici over Spec Zj,. Their
non-smooth locus is included in the non-ordinary locus of the special fiber. As a result, it
is of codimension 2. We recall that G’ denotes the semi-abelian scheme over X and G’ the
semi-abelian scheme over X,. Over Xg;;(p) we have the chain of isogenies G — G’ — G.

We apply the formalism developed in section 4 to construct cohomological corre-
spondences. Let (k,r) € ZQ>0- The differential of the isogeny G — G’ provides a map
pgﬁ(k”") — p{Q(’”). Moreover, we have by construction 1 (see section 4.2.1), a fundamen-
tal class pjOx — p’l Cx and p!l O'x is an invertible sheaf. We thus obtain by tensor product
with Q%) and proposition 4.1.2.1 a map p{Q(k”) — p!IQ(k”’). Finally, if we compose with
the map pEQ(k’T) — p{Q(k’r), we obtain a cohomological correspondence

that we need to normalize.
Lemma 7.1.1. — The map T} factors through p2+’”pllﬂ(k””) ifk+2r>2+r.

Proof. It is enough to prove the divisibility over the complement of the non-ordinary
locus. This is sufficient because X ;(p) is normal and the closed subscheme non-ordinary
locus is of codimension 2. We are thus left to prove the divisibility over the completion of
Xkii(p) along the ordinary locus. There are two types of components. We first consider the
components where G — G’ has kernel a group of étale rank two. Over these components,
the map piw” — pjw” factors through p"pjw” because the multiplicative rank of the
kernel of the isogeny G — G’ is exactly 1. As a result, the map p’ﬁQ(k”) — p’fQ(k’T)
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factors through p’"p{Q(k’r). On the other hand, we claim that the map p’{Q(k’T) — p!lQ(’”)

factors through p?piQ*7). Let G € X (Fp) be an ordinary point. Let T be the Tate

module of this point. We fix an isomorphism T ~ ZZ. The deformation space of this

point is Hom(Sym?T, @;) by Serre-Tate theory ([36]). This space has underlying ring

W (F,)[[X,Y, Z]] where the Serre-Tate parameter is the map Z2 — Z2 ® Gy given by the

X 7

ZY

union (parametrized by ker(G — G') N G[p|™) of spaces with associated rings
W(EX, Y, Z XY 2]/ (1+ XY -1-X,1+ 2P —-1-2Y —Y)

symmetric matrix . The fiber of this deformation space under p; is a disjoint

which parametrize the following diagram of Serre-Tate parameters :

(X,Z:2,Y) —
2 2
Z Zy® G,
l(p,O;OJD) l(l,O;O,p)
(X' p.2"2' Y") —
2 2
Z Z5® Gm

The trace
W(E)[[X.Y, 2, XY, 2| /(1+ X"} -1-X,(1+Z')P=1-2,Y'-Y) - W(F,)[[X,Y, Z]|
factors through p?W (F,)[[X,Y, Z]] which implies that the map p{@x — pjOx factors
through pr!1 Ox.

On the components where G — G’ has kernel a group of p-rank two, the map
pEQ(kﬂ") — p{Q(k’r) factors through p(k+2T)p’{Q(k’T) and the map p’{Q(k’T) — p!lQ(’”) is
an isomorphism.

Under the assumption k + 2r > 2 + r (which holds if » > 2), we denote by T} =
p 2T p‘éQ(’”) — pllQ(k’T) the normalized map or the map on cohomology :

Ty : RI(X,, Q%)) - RI(X, Q)

We now define a second cohomological correspondence in the other direction (we
exchange the roles of p; and p2). We have maps :

where the first map arises from the differential of the isogeny G’ — G and the second map
from the fundamental class.

Lemma 7.1.2. — The map Ty factors through ppIQQ(k””) ifr>1.

Proof. We compute over the ordinary locus. There are two types of components. The
components where the kernel of G’ — G is an étale group scheme. Over these components,
the map p’{Q(k”’) — p’z‘Q(k’T) is an isomorphism and the map p§Q(k’T) — pIQQ(k”’) factors
through pp!IQ(’”). On the components where the kernel of G’ — G is a multiplicative group
scheme, the map p’{Q(k’T) — pEQ(’”) factors through prp“{Q(k’T) and the map pEQ(k”) —
p!QQ(k"") is an isomorphism. ]

Under the assumption r > 1, we denote by T the associated normalized map p~ 1T} :
p‘fQ(k’T) — p!QQ(’”) or the map on cohomology :

Ty : RT(X, Q%) = RI(X,, Q%)
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Welet T'=Tj o Ts.

7.2. Independence on the choice of the toroidal compactification. — Suppose
we have a commutative diagram for choices 3, ¥/, X" and A, A/, A” of good polyhedral cone
decompositions :

! !
Xy < Xg1i(p)ar — Xa

T
Xpsr <= Xii(p)sr = Xy
By theorem 6.1.5.1, we have isomorphisms :
t*: RD(Xyx, Q1)) = RD(Xy, Q%)
r*: RT(X, », Q) - RF(Xp,Au,r*Q(k””))
s*: RT(X ki (p)sr, Q7)) = RT(X ki (p)ar, s7Q5)

where in this last isomorphisms Q%) stands for either p’l‘ﬂ(’”) or pgﬂ(k””).

Proposition 7.2.1. — The diagrams :

T
RI (X, v, Q7)) 225 RI(X, Q)

T
R (X, 5, QF")) 2225 RT (X5, QK1)

and

T
RI(X, Q7)) —22 RI(X,, pn, QF)

t*T T*T
(kr)y 1L (k.r)

RI'( Xy, Q%) —= RI(X, s, Q7))
are commutative.
Proof. The bottom horizontal map is induced by the cohomological correspondence
Tiy : pEQ(k”’) — paQ(k”") which by adjunction is a map : R(pl)*ng(k”’) — QF) | Since
Rs*s*ng(k”") ~ pgﬂ(’”), this map is equivalently a map :

T{ 5 : R(p1)«Rs,s*p3Q*") = Rt R(1y)3r*QFr) — k),

We can obtain another map. We have a second cohomological correspondence
Tip - R(1y) I5r= Q) — +Q(k7) - Using the adjunction property and the isomorphism
Rt, t*QF) ~ Q) we obtain a map that we denote by

T{ s : Rt R(l)L5r Q) — o),

The commutativity of the diagram is equivalent to the equality 7] y, = 7| ,. By adjunction,
both can be seen as maps of locally free shaves I5r*QE") — 11 Q%) Both maps coincide
over the complement of the boundary. Thus, they coincide everywhere. The commutativity
of the second diagram follows along similar lines. O
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7.3. The operator on cuspidal cohomology. — The boundary of the toroidal com-
pactification X, X}, or Xgy;(p) is denoted by Dx, Dx, or Dx,, (- If no confusion will
arise, it is simply denoted by D.

k’r) k7T)

Lemma 7.3.1. — The cohomological correspondences Ty :pgﬂ( — paQ( induces a
cohomological correspondence T : p5sQ*7)(~Dy,) — piQ*")(~Dy).
The cohomological correspondences Ty : p{Q(k’r) — p!ZQ(’”)

correspondence Ty : piQF7) (=Dx) — ple(k’T)(—DXp).

induces a cohomological

Proof. We have a map pgﬁ(k’r)(—DXp) — pgﬂ(k’r)(—DXK”(p)). Twisting the map
p3QE) 5 Q) we get a map pgﬁ(k””)(—DXK”(p)) — p{Q(k’T)(—DXK”(p)). By lemma
4.2.4.1, the fundamental class induces a map Ox,,. (») (= Dx s (p)) — p}Ox(—Dx). Tensor-
ing with Q*7) and composing everything gives a non-normalized map pgﬁ(k”)(—D x,) —
p Q) (=Dx). This map factors through p"p} Q*") Npt QEN (—Dy) = p"pt Q") (—Dy).
A similar argument applies to the correspondence T5. O

7.4. Restriction of the correspondence. — In this section, we work over F,. Let
1 Xkii(p)1 — X1 and pa : Xkii(p)1 — Xp1 be the reduction modulo p of the maps p;
and ps. We keep the notation p; and ps for the two projections.

We have (by reduction modulo p and proposition 4.1.2.1), two normalized coho-
mological correspondences 77 : pg(Q(k’THXm) — p(QF)| ) and Ty : p5(QF)|x,) —
ph(QFT)] X,.1). Again, we keep the notations 77, T3 for the reduction of the cohomological
correspondences. We deduce maps on cohomology T € Hom(RI'(X,, 1, Q7)) RT(Xy, Q*:1))
and Ty € Hom(RT(X1, Q*7) RT (X, 1, Q%)) We keep writting T = T o Tb.

7.4.1. Restriction to the non-ordinary locus. — We now study the restriction of the cor-
respondence to the non-ordinary locus.

Proposition 7.4.1.1. — Forr > 2 and k + r > 2, the following diagrams commute :

T

pgg(km) pllg(kﬂ")

\Lpg Ha ip’{ Ha

piQr+e=1) Tl qUer+(p-1))

T

piaks) pheter)

lp’f Ha ipg Ha

pﬂl(Q(kar(pfl)) B p!QQ(kﬂ“+(p*1))

Proof. It is enough to prove the commutativity over some dense open subscheme since
Xkii(p)1 is cohen-macaulay. We can thus work over the interior of the moduli space
and the ordinary locus. We consider the first diagram. There are two types of ordinary
components. First, the components where the kernel of the isogeny G — G’ is of étale
rank 2. Over these components, the diagram can be rewritten as the composition of two
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diagrams :

pEQ(k,r) k,r)

ipg Ha lp’l‘Ha lp{Ha

pgg(k,7‘+(1’*1)) —_— p’]\:Q(kvr‘i'(p*l)) —_— p!lQ(k,T‘i’(p*l))

piatn) g

The map p§§2(’”) — p{Q(k’T) is obtained as the tensor product of the natural map
p’Q*Q(k’O) — p’{Q(k’O) and a normalized map p’Z‘Q(O’T) — p’{Q(O”"). By lemma 6.2.4.1, the left
square is commutative. The right square diagram is obtained by tensoring a normalized

fundamental class p5@x, — p}Ox, by the morphism Q") pgla QUer+(=1) and is obvi-
ously commutative. We next deal with the components where the kernel of the isogeny
G — @' is of étale rank 1 and thus of multiplicative rank 2. Going back to the defini-
tion (see lemma 7.1.1), we deduce that the map p’gQ(k”) — p’lﬁ(’”) vanishes as soon as
k+ 2r > r 4 2. As a result, the commutativity is obvious on these components.

We now deal with the commutativity of the second diagram. First, we consider the
components where the isogeny G’ — G has étale kernel. On those components, we can
again split the diagram as

pan(k,r) k,r)

ip{ Ha lpg Ha lnga

p’fQ(va+(p71)) _ pEQ(k‘,T*F(p*l)) _ pIQQ(krr‘i’(p*l))

P s

The left square is commutative because the Hasse invariant commutes with étale iso-
genies. The right square is commutative because it is obtained by tensoring the normalized
fundamental class p50x, — plzﬁxl by the morphism Q&) — Qr+E=1))

Finally, we consider components where the kernel of the map G’ — G is multiplicative.
Then, as soon as r > 1, the map p{Q(k”") — p!QQ(I”) vanishes and commutativity is obvious.
O

We recall that ng’ll and XlSl are the vanishing locus of the Hasse invariant in X, 1
and X7.

Lemma 7.4.1.1. — The sections psHa and piHa are not zero divisors in X g;(p)1.

Proof. The scheme Xgy;(p)1 is Cohen-Macaulay and the non-ordinary locus has codi-
mension 1. ]

By proposition 7.4.1.1 and proposition 4.1.2.1, for all r > 2+p—1 and k+r > 2, we
have cohomological correspondences :

Ty s p5( Q)] <) = (0 21)

and
o pi(QF ] ) = Py (2P <),

They induce a map T} € Hom(RF(XEll,Q(k"")),RF(Xlgl,Q(’”))) and a map Ty €

Hom(RT(XT!, Q") RO(X 5, Q%)) We let T = Ty o To. We obtain maps of exact
triangles for all r > 2 and k+17 > 2 :
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R(p1)«p3Q2kr) Qir)
piHa prHa

R(pl)*p’éﬁ(kﬂ”"r(p—l)) Q(k,?“—i—(p—l))

R(p1)(p2)* Q=D oy —— QUr )] o,

p,1 1
+1 +1
and
R(p2)p} (k) Qk,r)
pyHa psHa

R(p2)piQkrte-0) . krt(p-1))

R(p2)«(p1)*Qert@-1)| o — s Qhrt(r-1

)
; x5t

+1 +1

For r > 2 and k 4+ r > 2, we deduce that there is a long exact sequence on which T’
acts equivariantly:

HA (X, Q00 o gy er+0-1)y y gr( xS et e-1)y

7.4.2. Restriction to the rank zero locus. — Forr > 2+ (p—1) and k + r > 2, we have
cohomological correspondences :

T : p;Q(k’T)‘ngl — pllﬂ(k’r) ’X1§1, and 75 : p){Q(k’T)‘ngi — péﬂ(k,r) ’XSI

)1 1

We are going to decompose these correspondences into pieces.

Lemma 7.4.2.1. — Let S be a scheme of characteristic p and G be a truncated Barsotti-
Tate group of level N over S. Assume that the étale rank and the multiplicative rank of
G is constant over S. Let H C G be a subgroup scheme of order p. Then S is the union
of three types of open and closed subschemes S = S]] S™]]S% such that over each
geometric point of S, S™ and S°, the group H is of étale, multiplicative, biconnected

type.

Proof. We can assume that S is reduced. After base change via some high power of
the absolute frobenius S — S, we have a decomposition : G = G™ ® G¢ & G°° into
multiplicative, biconnected and étale components (see [55], prop. 1.3). The condition that
H is of étale, multiplicative or biconnected type is then obviously closed. The condition
that H is étale or multiplicative is open. Thus we have connected components S¢ and
S™. Their complement is S°. O
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Using this lemma we can decompose certain schemes. Consider the chain of isogenies
G — G — G over Xg;(p).

Lemma 7.4.2.2. — The scheme XKli(p)\X:% s the union of three types of connected
Db,
components. The étale components (XKli(p)’X:%)et where the isogeny G' — G is of multi-
P,
plicative type, the multiplicative components (XKli(p)|X:%)m where the isogeny G' — G is
p

étale and the bi-infinitesimal components (XKli(p)|X:%)700 where the isogeny G' — G has
p,
bi-connected kernel.

Proof. We first establish the decomposition on Yjq(p)|x=1, the locus where G is an
p,

abelian scheme. We can consider the universal order p subgroup H of G[p| and apply the
above lemma. This decomposition extends to X (p)] x=1 by the description of the local
D,

charts. O

Similarly, the scheme Xg;(p)l x5! (which has the same topological space as
Xk1i(p)|x=1) is the union of three types of components. The components (Xki(p)| X1:1)et,
p

(Xkc1i(p) o)™ and (X gei (p)] x1)*.

Lemma 7.4.2.3. — The scheme X;ll is the union of two types of components. The com-

ponents X;ll’oo where the kernel of the quasi-polarization G'[p>] — (G")![p™] is isomorphic
to a biconnected group and the components sz’ll’mfet where the kernel of the polarization

contains a multiplicative group.

Proof. Over X - 1% we consider K(\) the kernel of the quasi-polarization G/[p™®] —

(G")t[p™]. If G' is an abelian scheme, this group is either a connected BT} of height 2 and
dimension 1 or an extension of an étale by a multiplicative group. We consider the group
KerF : K(\) — K(\)®). This is a rank p group either of multiplicative type or locally
isomorphic to a;,. We can apply lemma 7.4.2.1. O

Lemma 7.4.2.4. — We have :
p2((XKli(p)’X;%)oo) - Xp:,11’00

and
P2 ((Xicti (p)x;1)™ U (XKzz‘(p)|X;1)6t) c X"

Proof. The group Ker(G' — G) is included in the group K () and therefore determines
its type. [

The cohomological correspondence T} : pgﬁ(k”” x=1 = p!IQ(’”)| X1 s naturally the

sum T + TF' + T?° of three cohomological correspondences. The cohomological corre-
spondence 77" is obtained from 7} by composing on the source with the inclusion of direct

factor
k,r) |

k
(592" ””)\X;;)!(xxu(p>|le>m = p30*7 <
) p,1 P,

and composing on the target with the projection :
Uy (k, 1ok,
plQ( T)|X1Sl - (plﬂ( r)’Xlgl)kXKzz‘(P)\Xl:l)m

The same definition applies to Tf' and T¢°, using the étale type and bi-infinitesimal
components.
Similarly, the cohomological correspondence Th : ptQ(*:7)| X1 = ph k)| x=1 decom-
P,

poses into Ty = Ty" + T§' + T5°, where we denote by 15", T§' and T¢° the projection
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of the cohomological correspondence T5 respectively on the étale, multiplicative and bi-
infinitesimal components (note that the roles of étale an multiplicative components are
switched between T} and T5).

We have maps on cohomology :

H*(X1:1’ Q(k,r) (—D)) (Tfov%Tft)

(TPe Y+ 1)

HY (X 1%, Q) (- D)@ (X0, k) (- D)) HY (X7, Q%) (D)),

The first important result of this section is :

Proposition 7.4.2.1. — Forr >2+(p—1) and k+1r > 2(p+1), the following diagrams
are commutative :

T

pgg(k,r)‘xﬁ pllg(k,r)‘xlgl

lpg Ha' lp{Ha’

2 Ty | 2_
PO oy T plrt P

1

et
2
PR o 5 k)

lp’{Ha’ ipg Ha'

2_ Tst 2_
Pk )] T gt

Moreover, T =T7° = 0 and 15" = 0. Finally, if r > p+2, T5° = 0 and the diagram:

T

p‘l*Q(k’,T)|X1§1 p!ZQ(k,r)‘Xﬁ

lpf Ha/ lnga’

2_ T 2_
P0G o T a2 )]

15 commutative.

Proof. We first deal with the operator 7T7. We notice that it is enough to prove
the claim over Xk (p)| X7 which is dense in the support of the Cohen-Macaulay sheaf

piQ(k’”(le))\ <1 We can treat separately the different connected components. We first
1

deal with the components of étale type. We take some simplifying notations. Let A = X p:11

and A be the completion of X, ; along this locally closed subscheme. Let B = X =1 and

B be the completion of X; along B. The ideal of definition of A and B are (p, Ha.w1=P)),
Finally, consider C, the completion of X g (p) along (XKli(p)]X:%)et = (py '(A))** (or the
P,

completion along (p;*(B))¢, it makes no difference). We consider the following restriction
of the correspondence (we keep using the same notations for the projections):
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We are now going to give a description of the cohomologlcal correspondence 17 re-
stricted to C. Consider the following commutative diagram over C:

Gp>]™ G[p™] Gp™]/Gp>]"

L |

The middle vertical map is the universal isogeny. The exponant m means the multi-
plicative part of the BT. The right vertical map is an isomorphism and the left vertical
map is multiplication by p composed with an isomorphism. The non-normalized map
psw — pjw can be normalized by p~! to give an isomorphism. The non-normalized map
pgﬁ(k’r) — p{ﬂ(’”) can be normalized by p~". Under the isomorphism p§w(p*1) ~ p{w(pfl)
we have pyHa = piHa by lemma 6.2.4.2. We now define C' = V(p, pjHa. plwl_p) o C
(we could have used instead pjHa.p5w!™P). The fundamental class p} ﬁ — plﬁ ~ is di-
visible by p? as we can check over the ordinary locus as in lemma 7.1. 1 We can thus
write the cohomological correspondence 77 over C as the composition of a normalized
map pgﬁ(’”) o= p{Q(’”) ¢ and the map which is the tensor product with p{Q(k’T) of a
normalized fundamental class. We are using here 4.2.5 to check the compatibility of the
fundamental class with base change via the morphism B X.

After this analysis, we can prove the commutativity of the diagram of the proposition
over C. We can write the diagram as the composition of two diagrams

piQED)| 5

lnga/ lPIHa' \Lp{Ha’

pgg(kmﬂzﬂ—l))’A prg(k,r+(p2—1))|3 lelg(kw+(p2—1))|3

P3|y Q)|

The commutativity of the left square follows from lemma 6.2.4.2 and the commuta-
tivity of the right square is obvious.
We now deal with the components of X i (p)| x=1 of multiplicative and bi-infinitesimal
p,1

type. Over these components, we will actually prove that the cohomological correspon-
dence is zero. The commutativity is thus obvious.

We have denoted by 77° and 77" the restriction of the cohomological correspondence
to bi-infinitesimal and multiplicative components. Let Spec | — X ! be a point corre-
sponding to a p-rank 1 principally polarized abelian surface A over an algebraically closed
field [ of characteristic p. Consider the lift B — Spec W (l) with associated Barsotti-Tate
group fupee @ E[p>] ©Q)p/Z, with E[p™] the Barsotti-Tate group of a supersingular elliptic
curve over W (l). Consider the following commutative diagram :
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TOO
HO(X1i(p) X xp1 Spec. W (1), p3Q*7)) ——H(Spec W (1), Q%))

| |

HO( X gi(p)1 X x,,p1 Spec l,ng('f’T)) ! HO(Spec I, Q(k’T))

All vertical maps are surjective because all schemes are affine. Let f € HO(X g (p) X x p,
Spec W (1), p5Q*7)). Then by definition and section 4.2.5,

TOf(B. 1) = pi 3 F(B/L )

LCB]Ip|, Ltbiconnected

In this formula, p : W(l)? ~ e*Q}B is an isomorphism. Let C be the completion of an
algebraic closure of W(1)[1/p]. Then

d71
p': C? gl e Qp® C 5, e*Q}B/L®(C

where £ : B — B/L is the isogeny. We have a non-canonical decomposition over O¢:
L = L"™® L°® L where each of these groups is multiplicative/bi-connected/étale of
1

order p. Moreover, it is easy to see that LY has degree 17 in the sense of [18] (see [58],

example A.2.2). As a result, the map : e*Q}B L e*QL has elementary divisors (p, @)
with the p-adic valuation of w (normalized by v(p) = 1) equal to ﬁ. Ifr+k>2p+1)
then Iﬁf(B/L,,u’) € mo. and as a result, 77°f(A,v mod p) = 0. The proof of the
vanishing of 77" is similar.

The commutativity of the second diagram follows easily from the observation that the
isogeny G’ — G is étale. The proof of the vanishing of 735" or T5° (if » > p + 2) is similar
to the proof of the vanishing of 77°. The commutativity of the last diagram follows.

O

Remark 7.4.2.1. — For r = p + 1, one can prove that the correspondence 75° does’t
commute with Ha' and doesn’t vanish and therefore the operator 75 doesn’t commute with
Ha'.

Corollary 7.4.2.1. — We have T = Ty o Ty = T o TS' as endomorphisms of
H* (X1 w®))) when r > p+1 and k+7r > 2(p+ 1).

Proof. This follows from the vanishing 77" = T7° = T5" = 0. O

Lemma 7.4.2.5. — The section p{Ha' is not a zero divisor in X ;(p)1 X x, Xlsl.

Proof. The scheme Xgii(p)1 Xx, XlSl is Cohen-Macaulay and the rank 0 locus has
codimension 1. ]

By proposition 7.4.2.1 and proposition 4.1.2.1, we have for r > p?>+p = 24+p—1+p>—1
and k +1r > 2(p+ 1) a cohomological correspondence :
k "ok
Ty : p5Q ’r)’X;(f — piQ ’T)‘Xfo-

Moreover, we have for all > 2+p—1and k+r > 2(p+ 1) a commutative diagram
of long exact sequences :
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H*(Xlgl’ Q(k,r)) ﬂ; H*(XISI’ Q(k,r+(p271))) - H*(XISO, Q(k,rﬂr(pzfl)))

o] o] o]

e (XS], Qo)) 18 (XS] Qbr+e?=1)) o (X0, ke +0? 1)

The following proposition is absolutely crucial to the argument of the paper.

Proposition 7.4.2.2. — There is a constant C' independant on the prime to p level
KP such that for all k > C and all r > p*> + p, the cohomological correspondence T} :
pgﬁ(k’mng — pllQ(k’r)|X1:0 is zero.

D,

Proof. Let T C Ox be the ideal of the closed subscheme X7 °. In a local trivialization
of the sheaf w, the ideal is generated by p and lifts of Ha and Ha'. Since X7V is a local
complete intersection in X, we deduce that & X0 has finite tor dimension has &'x-module.

The cohomological correspondence T : pgﬁ(k”) — p!IQ(’”) induces a cohomological

correspondence

P32 =5 pl (@) & 6y o)
thanks to proposition 4.1.2.1. Morover, thanks to proposition 7.4.2.1, this cohomological
correspondence factors through the map T; : p§Q<va)|X=(l) — p!IQ(k’T)|X1:o of the propo-
sition. Thus, in order to prove the proposition it is gnough to show that there is a
constant C' such that for all & > C, the map T} : pgﬁ(’”) — p!l(l(k”") factors through
Ty :p’gQ(k’T) — Ip!lQ(k’r).

We now need to analyse one more time the construction of 7. Let ¥ : G — G’ be
the universal isogeny. Its differential is a map d¥ : p5Qt — p1Ql. Call Wy p’Q*Q(k”") —
p{Q(k’T) the map obtained by applying the functor Sym* @ det”. The determinant det6; :
psw! — piw! factors through ppiw! (check this over the tube of the ordinary locus).

Secondly, we have a non-normalized fundamental class © : p7Ox — p!1 O'x . Tensoring
with Q*7") gives a non-normalized map

Ok PO  plotbn.

We have established in lemma 7.1.1 that the composite ©y,,. o ¥y, ,. is divisible by ptr
when r > 1, and the cohomological correspondence T3 is p_Q_TG)k,T oWy .
To prove the proposition, it is enough to show that there is a constant C such that

Ok, © Uy (p3QF1))  p? T Ipi Q)

for k> C.

The problem is local. Let Spec A be an open in Xgy;(p) and I = pj{Z(Spec A). Set
My = p3Qt(Spec A), M3 = p1QY(Spec A), My = pin(Spec A).

Let p1,--- ,pr be the minimal prime ideals in Spec A/I. One sees that d¥; o(Maz) C
p;Ms as the differential d¥ : QL, — Qé is 0 modulo p; because the isogeny ¥ : G — G’
factors through the Frobenius map at p; by lemma 7.4.2.6 below.

We deduce that

Oy 0 Uiy (My) C p**" M, ﬂ(ﬁz’pTPf)Ml-

By Artin-Rees lemma, there exists C(A) > 0 such that pQAﬂﬁipiC(A) C p?I. Tt follows
that for all k > C(A), Ok, 0 ¥y .(Ms) C p*"IMy. Since X gy;(p) is quasi-compact, it can
be covered by finitely many affines as above.

O
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Lemma 7.4.2.6. — Let A — Spec | be an abelian surface of p-rank 0 over a field I of
characteristic p. Let L C Alp] be a group scheme of order p*. Then Ker F C L.

Proof. We have a perfect pairing A[p] x A[p]” — p,. The orthogonal of Ker F C A[p] is
Ker ' C A[p]P. The group L+ C A[p]” is a group of rank p and is necessarily killed by F,
since A has p-rank 0. It follows that L+ C Ker (F : A[p]® — A[p]”) and that Ker F C L.
0

8. Finiteness of the ordinary cohomology

8.1. Finiteness of the ordinary cohomology on X;!. — We begin with the follow-
ing lemma.

Lemma 8.1.1. — For all v > 2+ (p — 1) and all k > p + 1, the action of T on
HO(X =L, Q1) (D)) is locally finite.

Proof. We let Ha' € HO(Xlgl,prl(—D)) be the second Hasse invariant. Since
HO(XL, QR0 (—D) = colim, HO(X =1, QUkr+n(* 1) (— D)) where the limit is over multi-
plication by Ha' and Ha'T = THa’ by proposition 7.4.2.1 and corollary 7.4.2.1, the lemma
follows. O

Using the result of section 2.3, we can define an ordinary projector e associated to T’
on HO(XTH Q*")(—D)) for k>p+1, 7 >p+ 1.

Proposition 8.1.1. — There is a constant C (see prop. 7.4.2.2) which is independent
of the level KP such that for k > C and r > p+ 1 we have isomorphisms :

eH(XT!, Q) (—D)) = eHO(XT, Q*7)(-D)).
If r > p+ 2, we moreover have eHi(Xlgl,Q(k’r)(—D)) = eHY(XTLQ®)(=D)) =0
fori=1,2.

Proof. Consider the following exact sequence of sheaves over X 131 or Xp§11 :

0 — QB (=D) — Qr+@*=1)(_p) - kr+E*=1)(_ D) /(Ha') — 0

Applying the functor global sections, we get a commutative diagram of long exact
sequences :

HA(XT!, k) (= D) — 21 (X7, QU+ 07 0) (- D)) —— B (X0, @+ 0" =) (- D))

o] " o]

(X5 Q0 (= D)) — 2B (X3, QU407 0) (- D)) —— H(X, Q07 =0) (- D))

The map
Ty (XG0, QP D) (- D)) — B (X0, bt D))
is the zero map by proposition 7.4.2.2.
If f € eH*(X=!, Qo +@*=1)(— D)), we deduce that there exists f' € H*(X ="', Q1) (- D))
mapping to f.
We have injections HO(X=', Q") (D)) «— HO(X7!, Q%) (—D)). Moreover, it fol-
lows from proposition 7.4.2.1 and corollary 7.4.2.1 that THa' = Ha'T € End(H(X !, Q(kr+7°~1)(—D))).
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The same identity holds in End(HO(XS' Q*r+r*~1(_D))).  Observe also that
THa' = Ha/T in End(H*(X=!, Q- +2°=1)(—D)Y)) if 7 > p 4 2 by proposition 7.4.2.1.
It follows that
HO(XF, 08 (~ D)) = (X!, Q7 0* 1) (- D)),
Passing to the limit over multiplication by (Ha')"” we get that eHO(X=' Q) (—D)) =
eHO(XT!, Qk)(= D)),
When r > p + 2, we can apply the ordinary projector associated to T =
Ty, o T» on H*(X:',Q*)(—D)) and H*(X:',Qkr+@*=1)(—D)) and to Ty o Ty on
<
H*(X>,Q*7)(=D)) and
(X1, Q®r D) (D)),
The map 77 is an isomorphism between the ordinary parts. On the other hand,
Ty HAY(X, 0, Qb0 =) (- DY) — HH (X0, k0" =D) (- D))
is the zero map by proposition 7.4.2.2. It follows that
eH (X7, Q87 (=D)) = eH (X7, Q" -0)(— D)),

Passing to the limit over multiplication by (Ha/)"” we get that eH*(X=' Q*7)(—D)) =
eH*(XT1, Q¥ (—D)). Finally, for all r, the sheaf Q*7)(—D) is acyclic relatively to the
minimal compactification by thm 6.4.2.1. Moreover, the rank 1 locus X7 ! has affine image
in the minimal compactification. As a result HY(X7!, Q") (=D)) = 0 for i > 0.

O

Remark 8.1.1. — We have not been able to establish that

THa' = Ha'T € End(H' (X7, Q%7 7)(—D)))
for ¢ > 1 although we believe this should be true. If we had been able to prove this, we
would deduce that eH! (X!, QRP+D (= D)) = eH!(XT!, QFP+D (D)) for all 4.

8.2. Finiteness of the cohomology on Xlzl. —

Lemma 8.2.1. — The action of T on RD(XT, QW) (=D)) is locally finite for k > p+1
and r > 2.

Proof. Consider the following resolution over XlZl of the sheaf Q57)(—D) :

0 = Q®F(=D) = colimy, 1. QF"FP=DM (D) — colim, Q*F +P=H") (— D) /(Ha)™ — 0.
All sheaves are acyclic relatively to the minimal compactification by thm 6.4.2.1.
Moreover, the support of colimn’xHaQ(k’TJr(pz*l)")(—D) is the rank 2 locus which is affine
in the minimal compactification. The support of colim,Q*+#*=Dn)(_D)/(Ha)" is the
rank 1 locus which is also affine in the minimal compactification. It follows that the above
sequence is an acyclic resolution of the sheaf Q%) (—D) over X 121.
The cohomology RI'(X 121, Q1) (—D)) is thus represented by the following complex :

HO(X2, Q%" (D)) — colim, H(X !, Qkr+(P=Un)(_ D) /(Ha)™)
We will see that the action of T is locally finite on both terms. Since
HO(X 72, Q%) (—D)) = colim, H* (X1, Qr+ne=1)(_ D))

where the transition maps are given by multiplication by Ha and T' commutes with mul-
tiplication by Ha by proposition 7.4.1.1, the action of 1" is locally finite on the first term.
We now prove that it is locally finite on the second term. It is enough to see that it is
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locally finite on HO(X !, Qkr+(—1n) (D) /(Ha)"). For n = 1, this follows from lemma
8.1.1. For general n, we use induction, lemma 8.1.1, lemma 2.1.1 and the following exact
sequence :

0—)H0(X>1 Q(kr—i-(p 1)(n— 1)( )/Han 1)—>HO(X>1 Q(kr—i-(p 1)n) ( D)/Ha”)

— HO(xZt, Qler+(p=Dn)(_ D) /Ha).
L]

We can now prove the following proposition, which is one of the main technical results
of the paper :

Proposition 8.2.1. — Forallr > 2 andk > C (see prop 7.4.2.2), eRF(Xlzl, Qkr)(—D))
is a perfect complex of amplitude [0,1] of Fy-vector spaces.

For all 7 >3 and k > C, the map eRT'(X1, Q%) (—D)) — eRF(Xlzl,Q(k’T)(—D)) is
a quasi-isomorphism.

For all k > C, eH'(XZ',Q®2(=D)) = eHY(X;,Q® 2 (-D)) and the map
eH' (X1, QF2)(—D)) — eHl(Xlzl,Q(k’Q)(—D)) is injective.

Proof. Since the codimension of X 121 in X7 is 2 and X is smooth, we have unconditionally
HO(X7!, Q) (—D)) = HO(Xy, Q%) (—D)).
We consider the following exact sequence over X :

0 = Q"D (=D) — colimy, x Q" P~ (—D) — colim, Q*"+P~D" (—D) /(Ha)" — 0

From the above short exact sequence of sheaves we obtain the following long exact
sequences :

0 — HO(X7", Q0 (= D)) — HO(X¢7, Q60 (— D)) —

| |

0 —— H'(X3, Qb (= D) —— HO(Xp, 040 (- D)) —

colimHO(X 2!, Qkr+n(-1)(— D) /Ha")) — H' (X, Q*7) (= D)) ——=0

| |

colimHO (X, QEr+n(p=1)(_ D) /Ha")) H' (X, Q%) (—D)) ——=0

and the isomorphisms : colimH* (X, Q& +n(r=1)(—D)/Ha")) ~ H (X1, Q%) (—D))
fori=1,2.

The first two vertical maps in the diagram are isomorphisms. We now check that
eH! (X1, Qr+n(=1))(—D)/Ha")) = 0 for all n > 0, k > C, r > 3 and i € {1,2}. The
case n = 1 follows from proposition 8.1.1. For the general case, we take the long exact
sequence of cohomology associated to the short exact sequence of sheaves :

0 — Q(k r+n(p—1)) ( )/Han Ha Q(k r+(n+1)(p— 1))( )/Han+1 N

Qer+(+DE=1)(_ D) /Ha — 0.

We now check that eHO(X;, Q7 +7(—1)(— D) /Ha")) — eHO(X 1, Qkr+7n(e—1))(— D) /Ha™))
is bijective for all n > 0, £ > C and r > 3. We prove this by induction on n. The case
n = 1 follows from proposition 8.1.1. The general case follows by taking one more time
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the long exact sequence of cohomology associated to the following short exact sequence of
sheaves (when r > 3, there is no eH! as we just checked) :

0 — Qkrn@-1)(_py/Ham B o+t DE-1)(_ D) /Ham —
QUEr+(n+D)E=1)(_ D) /Ha — 0.

We finally prove that eH' (X1, Q#2) (-D)) — eH'(XZ', Q%2 (—D)) is an injection of
finite dimensional vector spaces when k > C. We use the long exact sequence associated
to

0 — Q®2(—Dp) B ket (_p) 5 QP+ (D) /Ha — 0
and the claim follows from the isomorphism
eHY (X1, QP (— D)) — eHY (X 2!, Qkr+D (D))
that we just extablished and the isomorphism of proposition 8.1.1 :
eHO (XS QP (— D)) — eHO(XT, QP+ (—D)).

9. Families of sheaves

9.1. Deep Klingen level structure and Igusa towers. — We introduce certain level
structure that will allow us to define p-adic sheaves.

9.1.1. Deep Klingen level structure. — We let X%ll(pm)n — XZ! be the moduli space
of subgroups H,, C G[p™] where H,, is locally étale isomorphic to p,m. We denote by

Xord(p™),, or Xz (p™), the ordinary locus of Xlz(lli(pm)n.
Lemma 9.1.1.1. — The map Xlz(lll(pm)n — Xlz(lli(pmfl)n is étale and affine.

Proof. We first prove that the map is étale. It suffices to show that the map f :
XIZ(ZIZ (p™)n, — X2t is étale. We can prove this over the spectrum S of a completed local
ring in X2!. Over S, there is a finite flat subgroup scheme G[p™] C G[p™] such that the
connected component of G[p™] is contained in G[p™]. Let g : R — Xlzall (p™)n. Let R— R’
be an infinitesimal thickening of R. We suppose that h = f o g extends to b’ : R’ — X!
and we want ton prove that A’ can be lifted to a unique map ¢’ : R’ — X%llz(pm)n such
that fog = h'. To the map g is associated a surjective map g : GD[p”}|R — HP|gr
over R where HP |k is an étale group scheme, locally isomorphic to Z/p™Z. The group
scheme HP|r deforms uniquely to an étale group scheme H|r over R’ and the data of
' provides a deformation of G[p"]g to R’ of GP[p"]|z. By Illusie’s deformation theory
([34], thm VII, 4.2.5) , the map ¢z admits a unique extension ¢p : GP[p"]|pr — HE |
We are left to prove that the map is affine. It will be enough to prove this for n = 1. Let
us denote by Z — Xlz(llz (p™~1); the grasmannian of subgroups of order p™ inside G[F™]
(the Kernel of F™ : G — G®™)). We note that G[F™] is a finite flat group scheme. As
a result Z is proper and moreover, it is easy to see that Z is quasi-finite. As a result, Z
is finite. We denote by C' the universal subgroup. Let us denote by Z’ the closed sub-
scheme of Z where C[p™ '] = H,,_1. The group scheme C/H,, 1 is connected of order
p over Z'. Tts co-normal sheaf is £, an invertible sheaf over Z’ and the differential of the
Vershiebung map V : (C/H,,_1)®) — C/H,,_; provides a section s € HO(Z’, £P~D). The
non vanishing locus of this section is the open subscheme (Z')™ of Z where C'/H,,,_1 is of
multiplicative type. The map (Z")™ — XlzﬂlZ (p™~1)1 is affine as the composite of the affine

open immersion (Z')™ < Z' and the finite map 7’ — X[Z(lli(pmfl)l. Finally, X[Z(lli(pm)l
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is the open and closed subscheme of (Z’)™ where C' is locally isomorphic to p,m for the
étale topology. We have thus proved that the map X[ZalZ (™)1 — sz(zlz (p™~ 1)1 is affine. [J

9.1.2. Igusa towers. — We let IG(p™),, = Isom 1 ™) (ppm , Hyy). This is a (Z/p™7Z)*-
Kli n
torsor over Xlz(lll (p™)n. There is an obvious commutative diagram :

Xlz(lli(pm)nfl - le‘(pm)n

-

>1 _ >1 _
X (™ 1)n—1*>Xfm(pm D

The horizontal maps are closed immersions and the vertical maps are étale and affine
maps.
Above the last diagram, there is a commutative diagram :

IG(pm)n—l IG(pm)n

| |

IG(pmil)n—l I IG(pmil)n

9.2. Formal schemes. — Let X — Spf Z, be the p-adic completion of X and we let
X2! < X be the open where the multiplicative rank of G is at least 1.

Let X%Z(pm) — X be the moduli of H,, — G[p™] where H,, is locally isomorphic
for the étale topology to p,m». The map .’{%Z (p™) — X is étale and affine (but not finite
). We let Z{%Z (p>°) be the formal scheme equal to the inverse limit of }:Izél(pm) as m
varies. It exists because the transition maps are affine. Let Ho, < G[p™] be the universal
multiplicative Barsotti-Tate group. Above %%i(pm), we set JB(p™) = Isom(ppm, Hy,).
This is a (Z/p™Z)*-torsor.Above %%i(poo), we set JB(p™°) = Isom(ppe, Hx). This is a
Z,;-torsor.

9.3. p-adic Sheaves. — We now define sheaves of p-adic modular forms. Let 7 :
JI&(p>) — %%Z (p) be the projection. Let A = Z,[[Z,]] and & : Z); — A is the universal
character. We can define the sheaf §% = (W*ﬁqu(pw)@ZpA)Z; where Z, acts diagonally,
through its natural action on m,@5g(,=) and via the universal character x : Z; — A* on
A. This is an invertible sheaf of ﬁx%z (pw)®ZpA—modules over %%Z (p).

Remark 9.3.1. — The natural base for the action of Hecke operators is %IZ{Z (p) and this
is why we want to project down to %%l (p) but since the map 7 is affine, this is harmless.

For any adic complete Z,-algebra R and any continuous character x : Z; — R* we
let §X 1= F*®p R

For some arguments, it is useful to consider certain truncated versions of the sheaf
§°. Let Ay, = Z/p"Z[(Z/p"Z)*]. Let mpp : IG(P™)n — szﬂll(p)n be the projection. For
m > n, we let Ky : (Z/p"7Z)* — A be the obvious character that factorizes through
(Z/[p"Z)*. We let Zp . = (Tmn)+(Orapm), @z, An)[kmn]. The sheaf Ff | is a sheaf of
ﬁx;ﬂli(pm)n ®Ap-modules. If x : (Z/p"Z)* — R* is any character with R a Z/p"Z-algebra,

we denote by % , the sheaf obtained by base change.
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We have the following maps :

Tk Tk
 —
‘/m,n ‘/’m,n—l

| |

F — 7

m—1,n m—1,n—1

where the vertical maps are inclusions and the horizontal maps are induced by reduction

modulo the kernel of Ay = Ap—1. We can set F5, , = colim,,, 7, ,. Then we have
surjective maps F5, , — FL ,_1 and §° = lim, FL .

: .y2loon >1 21/ n
9.4. Comparison map. — Let f, : X5 (p")n = X5 (p)n. Over Xz, (p")n, we have

a universal multiplicative subgroup H, < (. Passing to the conormal sheaves we get a
surjective map :

wG — WH,
where wg is a locally free sheaf of rank 2 and wy,, is a locally free sheaf of rank 1. Moreover,
the Hodge-Tate map provides an isomorphism :

HT : HY ®z, Ox>1(m), — wh,

and it induces an isomorphism ﬁffn — (wp,, ¥

As a consequence, there is a surjective map Q0 — (wp, ¥ ~ ﬁjf » of locally free
sheaves on sz(llz (p™)n. We denote by KQW®0) the kernel of this map and we set KQK*7) =
KQWE0) & 7,

Remark 9.4.1. — One can think of the map Q*7) — ﬁ,’fn ®w" as the projection to the
highest weight vector on the representation Sym*St @ det” of the group GLs.

9.5. Variant. — All the constructions can be performed over X, instead of X, because
the polarization has never been used. We have defined classical sheaves Q%) over X,
obtained by using the conormal sheaf of G — X,.

We let Xp%% be the open subscheme of X, , where the p-rank is at least one. We let

sz’flm P"™)n — sz,flz the moduli space of subgroups H/, C G’ which are locally isomorphic

to ppm in the étale topology.

Lemma 9.5.1. — The map X_Klz( ) — Xillm(pm_l)n is étale and affine.

Proof. Similar to the proof of lemma 9.1.1.1. O

We let %Z}m( ") be the formal scheme equal to the limit indexed by n of the schemes

X pz’[lm (p"™)n and we let .’{p Klz( >°) be the formal scheme equal to the inverse limit over m

of the formal schemes %p Kh( ™). We can define a sheaf §* of 0, X2 )®ZPA—moduleS

over .’{Z}( /(p). Similarly, we can define sheaves Z7 , of Oy >1 .\ ® Ap-modules.
p, pKlz(p )n

10. The U operator

10.1. Definition of the correspondence. — The operator U is associated to the
matrix diag(1,p,p,p?) inside GSp4(Q). We recall the definition of the moduli space as-
sociated to this operator. Let @Kh( ) %Kh( ) be the open subscheme where the
semi-abelian scheme is an abelian scheme. Let € (p™) be the moduli over gy (p™) of
triples (G, Hyn,, L) where L C G[p?] is totally isotropic LN H,, = {0}, and pL N H;- = {0}.
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We have exact sequences : 0 — LN H- — L — L/H: — 0 where L N H- is a trun-
cated Barsotti-Tate group of level 1, height 2 and dimension 1 (the (p,p) part of the
correspondence) and L/H;- is étale locally isomorphic to Z/p?Z (the p?-part of the cor-

respondence). We have two projections t; and ta from €y (p™) to @%}Z(pm) They are
defined by t1 : (G, Hy, L) — (G, Hy,) and to : (G, Hy,, L) — (G/L,H,, + L/L).

10.2. Compactification of the correspondence. — As we want to define an action of
the correspondence on cohomology groups it is necessary to compactify it. We will actually
factor the correspondence as a product of two correspondences and we will compactify
both. The advantage of this approach is that it will be easy to compare U and the other
correspondence 7" studied in section 7.

We fix toroidal compactifications Xx, Xgi;(p)sy and X, s (for good polyhedral cone
decompositions) such that we have maps p1 : Xgy;(p)sy — Xz and pa : Xgu(p)sy — Xpyr.
We call as usual G the semi-abelian scheme over Xy, G’ the semi-abelian scheme over
Xp 5. Over Xgii(p)sy we have the chain G — G’ — G. We drop X, ¥’ and X" from the
notations if no confusion will arise.

Let us define .’{21_“ as the open subscheme of X, where the kernel of the polarization
N :G" — (G')! contains a multiplicative group. When G’ is an abelian scheme, this group
is an extension of an étale by a multiplicative group. We observe that %;”*et is contained
in the Newton strata of p-rank at least 1. Let f{gl[_{lef (") — .’{'I’,”_Et be the moduli space
of subgroups H,, C G’ locally isomorphic in the étale topology to p,m (where G’ is the
semi-abelian scheme over X,).

We let €!(p™) be the open and closed subscheme of X (p) xx :{12(%1 (p™) where the
universal triple (G — G', H,,) satisfies Ker(G — G') N H,, = {0}. We let ¢; : €' (p™) —
%?{}Z(pm) be the tautological projection sending (G — G', Hp,) to (G, Hy,).

We have another projection €!(p™) — X, induced from the map ps. It factors through
%Z"“et and can moreover be lifted to a map ¢o : €' (p™) — %;n[}ff (p™). Indeed, under the
isogeny of semi-abelian schemes G — G’ the subgroup H,, C G maps isomorphically to its
image H] C G’ which provides the required lift. In conclusion, we have ¢2(G — G', H,,) =
(G, HY).

As a result we have defined a correspondence :

¢ct(p™)
P
Xt (om) X (P™)

We let €2(p™) be the open and closed subscheme of X g;(p) x %, %;”;(ff (p™) where the
universal triple (G’ — G, H], C G') satisfies Ker(G' — G) is not a multiplicative group.
By definition Ker(G’' — G) is a subgroup of the kernel of the polarization G’ — (G’)t. As
a result, over the interior of the moduli space, Ker(G' — G) is an étale group scheme. We
let 71 : €2(p™) — %]T;(ff(pm) be the tautological projection given by (G’ — G, H), C
G') = (G, Hp,).

There is a second projection €2(p™) — X induced by the projection p;. It factors
through X7 (p) and moreover it can be lifted to a map 7y : €2(p™) — X7y, (p™). Indeed,
under the isogeny G’ — G the group H/, is mapped isomorphically to its image H,, C G.
In conclusion, ro(G' — G, H), C G') = (G, Hy,).

As a result we have a second correspondence :
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2(p™)
X7:(0™) Xt (om)

We let €(p"™) be the composite of these correspondences. Namely, we set

C(p™) = E(P™) X, xm—et(m) 4, € (P")

and we obtain the following commutative diagram with cartesian center :

(p™)
0 "
2 (p™m) ¢tp™)
X7 (0™) X (™) X7 (™)

There are two projections t; = g1 o7y, ta = reo0¢h : €(p™) — .’{%Z (p™). The notation
t1,ts for these maps is justified by the following proposition :

Proposition 10.2.1. — The restriction of €(p™) to @%Z(pm) is the correspondence
Cy(P™)-

Proof. Let (G, Hy,, L) be a point of €y (p™). The isogeny G — G/L factors into G —
G/(L[p]) — G/L where L[p] is a subgroup of G[p] of order p? such that L[p| N H,, = {0},
G/(L]p]) carries a polarization whose degree is a prime-to-p multiple of p? (it comes from
the p?-power of the polarization on G) whose kernel is an extension of an étale by a
multiplicative group. The kernel of G/(L[p]) — G/L is an étale subgroup of order p in the
kernel of the polarization on G/(L[p]). This gives a map Cy(p™) — €(p™) which identifies
€y (p™) with the locus of €(p™) where the semi-abelian schemes are abelian. O

10.3. Trace maps. — We now construct trace maps (or fundamental classes) which
will be used later to define the action on the cohomology. We start with the interior of
the moduli space.

Lemma 10.3.1. — The map t1 : €y(p™) — @%&Z(pm) is finite flat.

Proof. The map is proper. The finiteness follows from the fact that an abelian suface
over a field of characteristic p of p-rank at least 1 has only finitely many subgroups of order
p. We prove the flatness. This boils down to the flatness of the maps r1 and g1 over the
interior of the moduli space. Let (G, Hy,) be a point on @%Z (p™). The fiber of ¢ is the set
of splittings of the exact sequence 0 — Hy — G[p] — G[p]/H1 — 0 (where H; = H,,[p]).
They are the same as splittings of the sequence 0 — Hi- — G[p] — G[p]/(H1)* — 0.
The group Gp]/(H;)" is étale locally isomorphic to Z/pZ. It follows that splittings exists
locally for the faithfully flat topology and form a torsor under Hom(G[p]/(H1)*, Hi)
which is locally isomorphic for the étale topology to the finite flat group scheme H f As a
result, the fiber is flat. We now prove that r is finite flat. Let (G, H},) € X~ (p™) be a
point with G’ an abelian surface. The fiber of r1 over this point is the moduli space of étale
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subgroups of order p inside the kernel of the polarization. The kernel of the polarization
is an extension of an étale by a multiplicative group scheme. It is a standard fact that
this moduli space is finite flat (it can be proved as above). O

Lemma 10.3.2. — There is a normalized trace map - LTy, (tl)*ﬁ%( my — ﬁ@>1 (™)
K1i\P

Proof. We have a usual Trace map for finite flat morphism ]%Trtl t(t1)x Oy (i [1/P] —
ﬁfylz{}l (™) [1/p] and we need to check that lattices match. It is enough to check this over the
ordinary locus and away from the boundary. Let (G, Hy,) € X7%(p™)(F,) be an ordinary
point with G an abelian scheme. Let T be the Tate module of this point. Then T ~ Zg.
The deformation space of this point is Hom(Sym?7" — (/};) with ring W (F,)[[X,Y, Z]]
where the Serre-Tate parameter is the map Zg — ZIQ) ® @; given by the symmetric matrix

X Z
Z'Y
by the map L — T'® Q,/Z, and the intersection L NT/p) of spaces with ring

WEX,Y, Z,X Y Z 1+ X))V -1=X,(1+2Z)V -1=2Y' =Y)

which parametrize the following diagram of Serre-Tate parameters :

. The fiber of this deformation space under ¢; is a disjoint union (parametrized

Zs, Ly ® Gy,
l(pQ,O;Om) l(l,O;O,p)
2 (X/7Z/;Z/>Yl) 2 -
Zs, Ly @ Gy,
It is now clear that division by p? preserves the integrality of the Trace map. O

We now extend this normalized trace to the compactification. The next two lemmas
are the analogues of lemmas 7.1.1 and 7.1.2. We have to be a little bit careful since we
are now dealing with formal schemes.

Lemma 10.3.3. — There is a normalized Trace map I%Tqu1 © R(@)«Oerpmy —
o

:{IZ(%Z (™)’

Proof. By reduction modulo p™ we have a map of schemes over Spec Z/p"Z :

>1
q - Cl(Pm)n - Xfai(pm)n'
By construction, C'(p™), and Xl%lli(pm)n are local complete intel'rsections over
Spec Z/p"7Z and the morphism ¢; is projective. The dualizing complex ¢; & X2 (pm)
Kli n
an invertible sheaf and we have canonical isomorphisms q!lﬁ’X>1

>1, o Rz L/pVIT =
%1 (P™)n P

L1’ We define Chﬁ We want to produce a
fundamental class :

is

qlﬁ’ 21 = lim, qlﬁ 21

™) 1P’

Ku(p

O: qfﬁ >1( m) —>q16’ ;}l(pm).

Away from the boundary, this map is provided by the trace map of the finite flat morphism
¢l(p )]2)>1 oy @Kh( ") (see section 4.2.2). We need to check that the map © is
Well deﬁned at the boundary Actually, it is enough to see that it is well defined over the

entire ordinary locus since the intersection of the boundary and the non-ordinary locus is
of codimension 2.
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The formal schemes X734, (p™) and €' (P")|x=2, (ym) are smooth. The smoothness of

X733 (p™) follows from the smoothness of X. The smoothness of €!(p™)| xz2 (pmy AWaY
from the boundary follows from the proof of lemma 7.1.1 where we established that the
completed local rings are isomorphic to W (F,)[[X,Y, Z, X", Y, Z"]/(1+ X")P—1- X, (1+
Z"\Y—1—Z,Y'—Y) using Serre-Tate theory. The smoothness at the boundary follows from
the description of the local charts. The main point being the smoothness of the modular
curves of level T'g(p) over the ordinary locus. As a consequence, the fundamental class
extends over the ordinary locus : it is given by the determinant of the map on differentials

1
0L,

1
Kli(pm)/Zp — Qel(

pm)|x}:{%z (pm)/Zp ’
Moreover, this fundamental class is divisible by p? since it is over the complement of
the boundary by a variant of lemma 7.1.1.
O
The proof of the next lemma is left to the reader. It is completely analoguous to the
proof of the previous lemma.

Lemma 10.3.4. — There is a normalized trace map %Trr1 ¢ R(r)«Og2pmy —
gt (pm)-

10.4. Action on modular forms. — Over ¢!(p™) we have a universal isogeny G — G’
whose differential is a map Qé/ Jel(pmy Qé JeL(pm)”

Assume for a second we work over €1 (p°°) (the projective limit of all €1(p™)) or over
C'(p™),, (the reduction modulo p" of €!(p™)) with m > n. Then there is a commutative
diagram of group schemes :

H,, — H],

G——G

which induces a commutative diagram of conormal sheaves :

waqg! wmn 0
wa WH,, 0

Moreover, there is a Zariski covering of ¢!(p>) by affine opens Spf R (resp. of
C1(p™),, by Spec R) such that the above diagram becomes isomorphic over Spf R (resp.
Spec R) to

(10.4.A) R@RQRHO
(ﬁ ?) 0 Ir
N

We drop the hypothesis that m > n. It follows from the above discussion that we can
define a normalized morphism :

2D = gl
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as the tensor product of the natural map qng — q’ka and a normalized map }%qgw" —
qiw’.

By composing with the trace map of lemma 10.3.3, we get a map R(q1)«q5 (kr)
Q) which gives an operator :

Uy € Hom(RD(X7 < (p™), QF1) RD(X5,(p™), QF1)).
We check as usual that the definition of U; is independent of the choices of good
polyhedral decompositions.
We can proceed in a similar way with the correspondence ¢2(p™). The main sim-
plification is that the tautological isogeny G’ — G over €2(p™) is étale, and induces an
isomorphism on differentials. Thus, we obtain a canonical isomorphism

7'5(2(’”) — TIQ(k’T)

with no need to take a normalization. Applying the trace map of lemma 10.3.4 produces
a cohomological correspondence R(rl)*rgQ(k”') — Q) and as a result an operator

U € Hom (RT (R4 (™), 06), RE(EG (), 206))
We denote by U = Uj o Us.
10.5. Action on mod-p forms. — In this section we analyze the action of the U
operator in caracteristic p.

10.5.1. reduction modulo p. — By taking m = 1 and reducing modulo p, we obtain the
following diagram (we still use the same letters to denote the various projections) :

N
X (P Xk (Ph X ()1
By reduction modulo p (and proposition 4.1.2.1), we obtain the following two
cohomological correspondences ¢5Q*7)| XMt (o), — k) xZL(), OB Cl(p); and
rgﬁ(k»r)‘xl%li(p)
They induce operators (we keep using the same notations as in the previous para-
graph)

Lok, 2
L Q) T)‘X;?I;leit(p)l on C*(p);.

U, € HOIn(RF(X}TI;l? (p)17 Q(kvr))’ RF(Xlz{lli (p)h Q(k,r)))
and
Uz € Hom(R (X (p)7 ', &), RT (X (p)1, 967)).
We set U = Uy o Us.
10.5.2. The non-ordinary locus. — We now study the reduction to the non-ordinary locus.

The following lemma is the analogue of proposition 7.4.1.1. Notice that everything is
simpler in this setting and that there are no restrictions on the weight.

Lemma 10.5.2.1. — 1. Under the isomorphism q3wP~ = qfwP™!, we have giHa =
¢iHa.

2. Under the isomorphism r3wP~! = r1wP~! we have riHa = riHa.
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3. The following diagrams are commutative :

gtk U Q)

o o

Qe+ =1) UL gl qUert(p-1)

1 1L N R o ()

o o

Q=1 2 i+ (p-1))

Proof. The correspondence C(p); and C2(p); are Cohen-Macaulay. It is enough to
prove the statements over the interior of the moduli space and the ordinary locus. Then
1 follows from lemma 6.2.4.2. Remark that the way the isomorphism qgw(p_l) ~ q{w(p_l)
is constructed is precisely the canonical map of the lemma.

The point 2 is easier since the isogeny G’ — G over C?(p); is étale and the formation
of the Hasse invariant commutes with étale isogeny.

We now prove the commutativity of the diagrams. We can rewrite the first diagram
as the composition of two diagrams

Q) ———— i) ———— glakn)

o o o

qgg(k’,’l‘-i-(p—l)) R q‘fﬂ(kv"""_(p_l)) JRE— q!IQ(k7T+(p_1))

The first left square commutes by 1. The second square is the tensor product of the
normalized fundamental class ¢ Ox, — ¢} Ox, and the map Ha : gtQ*) — grQhr+e=1)),
It is also commutative. One proves the commutativity of the second diagram along similar
lines. O

Remark 10.5.2.1. — We can speak of the Hasse invariant on C'*(p); and C?(p); without
having to worry about which semi-abelian scheme is used to define it.

Lemma 10.5.2.2. — The Hasse invariant is not a zero divisor in C'(p)1 and C?(p);.

Proof. Both schemes are Cohen-Macaulay of dimension 3. Since an abelian surface with
p-rank at least one has only finitely many subgroups of order p, we deduce that the non-
ordinary locus in C1(p); or C?(p); has dimension 2. As a result, the Hasse invariant
cannot be a zero divisor. d

We let Xgi(p)T! € Xkus (p)lZl be the zero locus of Ha. This scheme is canonically
isomorphic to X7 !. Taking the non-ordinary locus at all places, we obtain a diagram:
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C='(ph
C>=(ph ¢h=1(p)
X! Xy~ (Ph X!

Using lemma 10.5.2.1, 3. and proposition 4.1.2.1, we obtain cohomological correspon-
dences:

R(4)(g2) " QI | mermi ) = Q87 o and R(ra ) (r2) Q8 g = QED o eea

They induce operators (that we still denote by the same way as in the previous paragraph):
Uy € Hom(RT(X)' i (p)1, Q%)) RO(X T, Qb))
and

Uy € Hom (RI(XT, 7)), RT (X, ™ (p), 07))).

We set U = Uy o Us. By lemma 10.5.2.2, we have a map of triangles:

R(q1)*q§(2(k”") Q(k,r)

Ha Ha

Qkr+(p—1))

R(ql)*qé‘Q(kﬂ"'i'(p_l))

kyr+(p—1

— .

R(Ql)*(q2)*ﬂ(k’r+(pil)) ‘meet,:1

p,Kli (P ))’Xlzl

+1 +1

A similar result holds for the other correspondence. It follows that the U-operator
acts equivariantly on the long exact sequence

* r)\ Ha 11x r _ . _ , B
H* (X725, (p), Q")) =3 HA (X 25 (p), QB D)y — HX(X s (p), QU He=1))

10.5.3. Invariance under multiplication by Ha'. — The following lemma is the analogue
of proposition 7.4.2.1.

Lemma 10.5.3.1. — 1. Under the isomorphism (qg)"pr*1 = (ql)*pr1

(g2)*Ha’ = (q1)*Ha’.
2. Under the isomorphism (r2)*wP”~! = (r1)*w?’ =1, we have (ry)*Ha’ = (r1)*Ha’.

3. The following diagram is commutative :

, we have

HO(x, Q) — 2 HO(XT, )

iHa’ lHa’

HO (Xlzl, Q(k»7'+p2*1)) 4U> HO (X1=1’ Q(k,rerzfl))
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Proof. Point 1 follows from lemma 6.2.4.2. Point 2 is easy (the isogeny is étale). Point 3
is an inmediate consequence of 1 and 2. ]

10.6. Action on p-adic modular forms. — The universal isogeny over €!(p™) or
C*(p™),, induces an isomorphism g3 H,, — ¢ H,, and thus a map ¢ T — G Ty, for
m > n and ¢35 — ¢;§". As a result we can define the U; operator. The definition of
Us is highly similar and we let U = U; o Us. It acts on RF(XIZ(lli(pm)n,ﬁr’fL,n ® w") and

RF(%[Z(Z(pOO),S“ ®w").

10.7. Comparison map and the U correspondence. — By section 9.4, for all
(k,7) € Z>0 x Z we have an exact sequence of sheaves over X[Z(lll (P")n :

0— KQE) 5 eqbn) - gk oW — 0.
Lemma 10.7.1. — U € pEnd(RT(X5;(p")n, KQFM)).
Proof. This is obvious on the diagram 10.4.A. O

11. Perfect complexes of p-adic modular forms

11.1. Finiteness of the cohomology on X%li(p)l. — In this section, we will deduce
the finiteness of the ordinary cohomology (with respect to U) over Xlzali(p)l from the

finiteness of the ordinary cohomology (with respect to T') on X 121 established in section
8. In order to do so, we need to analyze carefully the relation between U and T

11.1.1. The operators U and T over the ordinary locus. — In this subsection, we will
work over the ordinary locus. Since we are only interested in degree 0 cohomology groups,
we can work over the complement of the boundary by Koecher’s principle. The various
Hecke operators we will introduce respect cuspidality. That way, we do not need to worry
about compactifications (although taking care of what happens with compactifications
would have been possible).

First of all, we claim that we can decompose the Hecke operators Ty : HO(X ;12, Q) (—D)) —

HO(X72, Q% (-D)) and T» : HY(X{% QK" (-D)) — HYX;Z,Q%)(-D)) into
Ty = T8+ T and Ty, = T§' + T4, The operator Tf' accounts for all isogenies
G — G’ with kernel a group of étale rank 2 and multiplicative rank one. The operator 77"
accounts for all isogenies G — G’ with kernel a group of multiplicative rank 2 and étale
rank one. Similarly, the operator T accounts for all isogenies G’ — G with kernel an étale
group. The operator T5" accounts for all isogenies G’ — G with kernel a multiplicative

group.
Lemma 11.1.1.1. — For all T > 2 and k > 1, the operators
Ty 1O (X, Q) (D)) — HO(XE k) (—D)) and
e HO(x g, ) (—D)) — HO(X¢, k) (- D))
are 0.
Proof. This follows from the proof of proposition 7.4.1.1. O

We recall that ) C X is the open formal subscheme where G is an abelian scheme.
The ordinary locus of 9) is denoted by 2)°"¢. We now introduce a Hecke correspondence ©
over 9°"¢. It parametrizes pairs (G, L) where L C G[p?] is a totally isotropic group scheme
which is an extension of an étale group scheme locally isomorphic to Z/pZ & Z/p*Z by a
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multiplicative group scheme locally isomorphic to j,. We have two finite flat projections
91,92 : D — Yora given by g1((G, L)) = G and g2((G, L)) = G/L. We can associate to this
correspondence an Hecke operator 7" and it is clear that 7" acting on HO(X {74 Q(*:)(— D))
is the operator T{' o T which is also equal to T by the lemma above if 7 > 2. The second
projection g2 : ® — P actually lifts to go : D — Y¥e(p) by mapping (G, L) to
(G/L,G[p]/L). If follows that the map T’ € End(H°(X{ %, Q*7)(~D))) factors through
a map

HO(Xx77, Q%) (=D)) - HO(X i (p)h, @7 (=D)) — HO(X7™, o7 (—D))
where the first map is the canonical inclusion. By abuse of notation we also call T" :
HO(X 2 (p)1, Q) (—D)) — HO(X¢d, Q) (~D)) the second map. We can compose it
again with the natural inclusion HO(X¢"4, Q*) (D)) — HO(X¢(p)1, Q%" (~D)) and
view T" has an endomorphism of HO(X¢(p)1, Q%) (~D)). As a consequence, for r > 2
there is a commutative diagram where all vertical maps are the obvious inclusions :

HO (X (p)1, Q07 (= D)) — HUX i (p)1, @47 (= D))

=

HO(X{, Q) (~D)) HO(X{, Q) (~D))

Lemma 11.1.1.2. — The action of T' is locally finite on HO(X ¢ (p)1, Q*7)(—-D)) if
r>2andk>1.

Proof. The action of T is locally finite on HO(X{"¢, Q*7)(—D)) by proposition 7.4.1.1.
O

Lemma 11.1.1.8. — On HY(X%(p)1, Q%) (—D)) we have UoT' = U o U for r > 2
and k > 1.

Proof. Over Y[%Tlf(p)l, we can decompose 7" = U + F where F accounts for all isogenies
G — G/L where L is such that L N H # {0}. We are left to prove that U o F' = 0. Let
H — Y%(p) be the moduli space of (G, H, L, L") where (G, H) € YZ&(p)1, L C G[p?] is
of type (1,p, p,p?) (that is, an extension of an étale group scheme locally isomorphic to
Z/pZ&Z/p*Z by a multiplicative group scheme locally isomorphic to p,) and LNH = {0},
L' c G/L[p?* is of type (1,p,p,p?) and L' N G[p]/L # {0}. We have two projections
s1(G,H,L, L") = (G,H), s2(G,H,L,L') = (G/L+ L', (G/L[p])/L"). This correspondence
is associated to the operator U o F. We observe that G[p] C L + L'. As a result, the map
55010 5 5+ 0(10) factors through pstQ(19). It then follows easily that the non normalized
cohomological correspondence © : s3QF7) — s QE") factors through pSt2rtkpt Qkr),
The factor p> ¥ arises from the map on differential and the factor p® from the fundamental
class. The operator UoF arises from the normalized cohomological correspondence ]ﬁ@.
When k£ > 1, this map reduces to 0 modulo p. ]

Corollary 11.1.1.1. — The action of U on HO(X})(’”Z%(p)l, Q*1)(—D)) is locally finite for
allr>2 and k > 1.

Proof. Let f € HO(X%(p)1, Q%) (=D)). Then U?f = U(T'f). The action of T is
locally finite on HO(X¢"? Q*7)(—D)). Let V ¢ HY(X¢4 Q) (—D)) be a finite di-
mensional T-stable vector space containing 7”f (which can be viewed as an element of
HO(X ¢4, Q1) (—D))). We embedd V in HO(X%d(p)1, Q%) (—D)). Clearly, U.V +V is
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stable under U. It follows that U.V +V +F, f +F,U f is a stable finite dimensional vector
space containing f. O

We denote by f the ordinary projector associated to U on HO(X}’(Tl‘f(p)l, Q) (—D)).

Corollary 11.1.1.2. — Assume that v > 2 and k > 1. Then the canonical map f :
eHO (X ¢, Q) (D)) — fHO(X%d(p)1, Q*7)(=D)) is bijective.

Proof. We first prove the surjectivity of the map. Let
G e fH(XZ(ph, Q7 (-D)).

Then T'U'G € HO(X¢4, Q") (—D)) and eT'ULG € eHO(X{4, Q1) (-D)). By
lemma 11.1.1.3, feT'U~'G = fT'U'G = fUU'G = G. We now prove injectivity
which is the existence of a suitable p-stabilisation. Let g € eHO(Xf’”d,Q(k””)(—D))
be a non-zero element. After multiplying g by some high power of Ha, we can as-
sume that ¢ € eH(X;,Q®")(—=D)) and that the reduction map HO(X,Q*")(—-D)) —
HO(X,,Q* ") (—D)) is surjective. We now need to use some group theory. Let E

be the finite set of irreducible smooth admissible representations of GSp,(Af) oc-

curring in HO(X, Q%) (—D)) ®z, Q,. For each 7y € E, 77][@( = (W?)Kp ® Wg(" —

HO(X, Q) (—D)) ®z, Q, where K, = GSpy(Z,). Note that m, is an unramified
principal series. Let T,o = K,diag(l,1,p,p)K,, Tp1 = Kpdiag(l,p,p,p*)K, and
Tp0 = diag(p, p, p, p) K, be the classical elements in the spherical Hecke algebra 1, (see

section 5.1.3). Then H,, acts via a caracter O, : H, — @p on w]g{ ?. The reciprocal of the
Hecke polynomial is (see [23], rem. 3 on page 196 for example)

Q;(X) = X*— Tp,2X3 +p(Tpy + (1 +P2)TP,O)X2 - p3Tp,2Tp,1X + p6Tp,0-

Let (ap, Bp, ¥p, 0p) be the roots of O (Q5(X)), ordered such that apdy = By, and
such that there p-adic valuations are in increasing order. The roots are p-adic integers.
Moreover a0, has p-adic valuation k 4 2r — 3 and a3, has valuation at least » — 2. This
means that the Newton polygon is above the Hodge polygon with same initial and end
points. It can be proved in an elementary way (by an analysis of the integral properties
of the Hecke operators). This implies that T}, 2 acts through oy, + 5, + v + 0, and that
T, acts through

pil(O‘pﬁp + apYp + Bpbp + OpYp) — pigo‘pép-

Let Kgii(p) C Kp be the parahoric Klingen subgroup. The space 71'{;( wiP) §g 4 di-
mensional. Indeed, since m is cohomological and & > 1, 7 is either general or Yoshida
type in Arthur’s classification [1]. Therefore m, is tempered ([77]), hence generic. The

dimension of 775 x1(P) jg given in [62], table 3 (m, is of type I). Moreover, the operator U =

P> Krai(p)diag(1, p, p, p*) Kii(p) has eigenvalues p*~" a8y, p* " apyp, 0° " Bpdp, 0° " 0%
on this space by [23], coro. 3.2.2. We say that m, is T}, -ordinary if p*~"O, (Tp1) is a
p-adic unit. Equivalently, this means that pQ_’"apﬁp is a p-adic unit.

It follows that if 7, is ordinary, the natural inclusion 7r{,< P 7T:£( xiP) gollowed by

the projection to the ordinary line (given by the ordinary projector) in 71{;{ s (P)

U acts by p>"a,f, is a bijection ﬂf” — (W,{{K”(p))o’“d_

unit) (Wf’(“(p))‘”’d — m)? is obtained by taking the trace of an element. See [23],
corollary 3.2.4. These local considerations allow us to construct a p-stabilisation map
HO(X,Q(’“)(—D))\@p)TPvl_ord — (H(Xgui(p), Q%) (=D))[g )V~ which on each 7 €

P
E with ordinary m, is (W?)KP ®7r£<p — (W?)KP ®(7r£(K“(p))m’d. This map induces an injective

where

An inverse (up to a p-adic
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p-stabilisation map (HO(X, Q") (—D))Tra—ord — HO(x%%d(p), Q) (—D))V=ord. More-
over, the cokernel of this map is torsion free. If G € H(X, Q(k”)(—D))é’;l_ord has image
G’ in (H)(X ki (p), Q#7(=D))|g,)V ~r¢ nHO (X% (p), Qk:7) (= D)), the G is, up to multi-
plication by a p-adic unit, the trace of G’ and a section of H(X, Q(’“’))\@p is integral if and
only if it is integral over the ordinary locus. If we reduce modulo p we obtain an injective
map : HO(X,, QD)) Tra=ord g0 xord (), 0kn)(—D))”~"" Finally, for all r > 2
and k > 1, we have T = p3~"T,; = T’ as operators on H(X7"?, Q") (—D)). Tt follows
that g € HO(X, Q%7 (—D))Tr17o7 has non zero image in eH° (XZEp)1, Q(k””)(—D)). O
11.1.2. The operators T and U on Xi'. — In section 7.4.1, we have constructed two
cohomological correspondences (for k+r>2and r > 2+p—1):
T :p;QW)\Xﬁ — p’lsz(’“)yxlgl

and

kr)|

15 :p <1 — pQQ(k T)’ <%

which we can restrict to the p-rank one locus to get two cohomological correspondences
(still denoted in the same way) :

T :pgg(km)b(;% — Pllﬂ(k’r)’Xfl
and
Ty ZPTQUC’T)|X1:1 - plzﬂ(k’r)’X;}
and we obtain operators 7 : HO(X;%,Q(’”)(—D)) — HY(X7!, Qk)(=D)) and Ty :

HO(XTL Q®)(—D)) — HO(Xp L QW) (=D)). We let T = Ty o Ty. The operators T} and

T, can be decomposed in this setting into Ty = 17" + T¢' + T° and Th = Ty" + TS! + T5°
(see section 7.4.2).

Lemma 11.1.2.1. — U =T on HO(X7L,QE) ifk+r>2(p+1), r>2+ (p—1).

Proof. By definition, U = T o T*. Tt is enough to prove that 7¢° = 0 and 77" = T5" = 0
and this follows from proposition 7.4.2.1. 0

11.1.3. Finiteness. — We are now ready to prove the finiteness of the ordinary cohomol-
ogy on X,(p)1-
Corollary 11.1.3.1. — 1. For allr > 2 and k > p+ 1, the action of U on
RI(X 7, ()1, 257 (D))
is locally finite.
2. The natural map induced by pull back:

eRT(XF', Q7 (D)) = FRO(Xgy;(p)1, 2% (—D))
18 a quasi-isomorphism.

3. There is a constant C' independant of the prime to p level KP such that for all
k>C andr > 3, the map

eRT (X1, Q"7 (=D)) = fRT(Xz,(p)1, "7 (=D))

18 an isomorphism.
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4. The map
eH' (X1, Q%2 (=D)) = fH' (X, (p)1, Q%2 (=D))
is bijective for k > C and i = 0 and injective for k > C and i = 1.
5. Forr > 2 and k > C, fRI( Klz( )1, QB (=D)) is a prefect complex of Fp-vector
spaces of amplitude [0, 1].

Proof. The cohomology RI'( Kh( )1, Q%) (D)) is computed by the complex :

HO(X53:(p)1, 257 (= D)) = colim, H(X gy, (p)1, QB+~ (= D) /(Ha)")

By corollary 11.1.1.1, the action is locally finite on the first term. It is enough to
prove that it is locally finite on each HO(XIZ(llZ.(p)l,Q(k”"+(7’_1)”)(—D)/(Ha)”). The case
n = 1 follows from lemma 11.1.2.1 and lemma 8.1.1. In general, one argues by induction.

The map

eRI(XTH, Q) (D)) = fRE(XZy,(p)1, 27 (=D))

is represented by the following map of complexes :

HO (X722 (p)1, 25 (~ D)) — colim, HO (X 21, (p)1, QU+ @~ (D) /(Ha)")

j T

HY(XT2, Q) (-D)) HO(XE!, QU 0-0m (- D) /(Ha)")

We need to prove that the vertical maps become isomorphisms after applying f
on the top and e on the bottom. For the left vertical map, this is corollary 11.1.1.2.
We remark that the right vertical map is actually an isomorphism. We need to prove
that it stays so after applying the projectors. We will see that for each n, the map
eHO(XZ!, QUm0 (~ D) /(Ha)™) — FHO(X jei(p)7!, Q7+ 0= D) (- D) /(Ha)") is an
isomorphism. For n = 1, this follows from lemma 11.1.2.1. The general case follows
easily by induction. Points 4 and 5 follow from proposition 8.2.1. O

11.2. Finiteness of the ordinary cohomology over ¥~! and Z{%Z(p) — In the
following theorem we establish relations between the ordinary cohomology over ¥~! and
classical cohomology in weight (k,r) if k is large enough.

Theorem 11.2.1. — Fork>p+1andr > 2 :

1. The Hecke operator U acts locally finitely on RT(X7;,(p), Q%) (~D)).
2. The Hecke operator T acts locally finitely on RT'(X21, Q1) (—D)).

3. The complezes RT(XZ', QF7)(—D)) and RF(Z{KZZ( ), Q%) (=D)) only have co-
homology in degree 0, 1.

4. Let us denote by f the ordinary projector associated to U and by e the ordinary
projector associated to T'. Then the natural map :

eRI'(x=!, Q"7 (=D)) — fRO(X%,(p), Q"7 (=D))

18 a quasi-isomorphism.
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5. There is a constant C' independent on the level KP such that for k > C and r > 3,
the map

eRT(X, Q*") (~D)) — eRD(X21, Q") (— D))
18 a quast-tsomorphism.
6. For all k > C,
eH! (X, Q%2 (—D)) — eH' (21, Q") (~D))
is bijective for i = 0 and injective if 1 = 1.

7. For all k > C and r > 2, fRI'(X Klz( ), Q") (=D)) is a prefect complex of Z,-
modules of amplitude |0, 1}.

Proof. Over sz(zlz (p)n, or X1, we have the following exact sequence of sheaves :

0— Q*(—D) - colile(k’THpn_l(p_l))(—D) — colim, QU+ (p=1) (-D)/Ha"”" 0
where the limit in the middle is over multiplication by powers of Ha?" ~' which lifts to a
section of HO(X,,,w?" =), The middle sheaf is also the restriction of Q*")(—D) to the
ordinary locus. This is an acyclic resolution of Q) (—D) by flat Z/p"Z-sheaves. Indeed,
all sheaves are acyclic relatively to the minimal compactification and the middle and right
sheaves are supported over affine sub-schemes of the minimal compactification. Passing
to the limit over n we obtain an acyclic resolution of Q*7")(—D) over %[2(%1 (p) or X=1. Let
us denote by M*® and N°® the complexes concentrated in degree [0,1] that compute the
cohomologies RI'(X21, Q*7)(—D)) and RF(.’{KZZ( ), Q%) (= D)) using these resolutions.
They are objects of C/1%(Z,). By lemma 8.2.1, corollary 11.1.3.1 and lemma 2.1.2, we
deduce that the actions of T' and U are locally ﬁnite on M*® and N°®. The points 4 and 5
follow from corollary 11.1.3.1 using proposition 2.2.2. The point 6 also follows by induction
on n from corollary 11.1.3.1. Finally, we deduce 7 by another application of proposition
2.2.2.

O

Corollary 11.2.1. — For k > p+ 1 the map
eH'(X, 2% (=D) © Qy/Z,) — fH(X5,(p), 27 (~D) © Q,/2Z,)
1S a quasi-isomorphism.
Proof. The map
eH'(X, Q(k’Q)(_D) ® Qp/Zp) — eH (M ®k,k Qp/Zy)
is an isomorphism since the complement of X=! in X is of codimension 2. The claim follows

from theorem 11.2.1 4. O

11.3. The perfect complex. — We can finally construct a perfect complex over A and
obtain an Hida theory for higher cohomology. We specialize to r = 2 as this is the case of
interest.
Theorem 11.3.1. — Consider the complex RT(%KlZ( ), & ® w?(=D)).

1. The action of U is locally finite. Call f the associated projector.

2. The complex fRI'(X Kh( ), §* @ w?(—D)) is a perfect complex of A-modules con-
centrated in degree [0, 1].
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3. For all k > 0, there is a quasi-isomorphism :

fRI(X Klz( ), Q(k72)(—D)) — fRI(X Klz( >735®w2(_D))®/L\,k Lp.

4. There is a constant C independant of the level KP such that for all k > C, the
canonical map

el (X, Q%) (D)) — H'(fRT(X7;(p), 3" ® w* (D)) ©X 1 Zy)
is bijective for i = 0 and injective for i = 1.

Proof. For all m > n, we have the following acyclic resolution of the sheaf 7% | @w?(—D)
over X KZZ.( In

0= Fphn® w2(—D) — colim; 7y, (=D)® uJ2+lzo”’1(1071)(_D)

n—1

— colim;. 7, (— D) @ Wt l(p V(—D)/Ha"" =0
Indeed, all theses sheaves are acyclic relatively to the minimal compactification by [46],
thm. 8.6 and the middle and right sheaves have affine support in the minimal com-
pactification. For all £ € Z>o, we have an exact sequence of sheaves over X Iz(llz(p)l
0 — KQ®2(—D) - Q®2(—D) — FF (—=D) — 0 (see section 9.4). Using a resolution
as above for all sheaves in this exact seciuence, we get a commutative diagram :

HO(X i (p)T?, ZL) @ w(=D)) —= H(Xs(p)7 ", colim 'y @ WP~V (—D)/Ha')

HO(X33:(p)1, Q%2 (=D)) HO(X73;(p)1, colimQk2H@=D) (—D) / Hal)

H(X %3 (p)1, KQW2) (—D)) HO(X 72, (p)1, colim K Q*:2+ (=1 (D) / Hal)

0 0
Assume that k& > p + 1. Since U is locally finite on HO(X 7% (p)1, Q%2 (—D)) and on
HO(X,(p)1, colimQ*2+n0=D) (D) /Ha"),

it is locally finite on all the modules in the above diagram by lemma 2.1.1. Moreover, by
lemma 10.7.1, U acts by zero on the bottom horizontal complex. Applying the projector,
we obtain a quasi-isomorphism:

SRT(X 2 (ph, Q7 (=D)) — fRT(X ()1, Ff1 © w?(=D))

For all m, the operator U™ arises from the correspondence C,, which parametrizes
triples (G, H1,G,,) with (G, H;y) € Xiz(lli(p)l and G — G, is an isogeny whose ker-
nel is a group L,, satisfying L,, N H; = {0} and moreover, if G is abelian, L,, is
an extension of an étale group scheme, locally isomorphic to Z/p™Z x Z/p*™Z by a
multiplicative group scheme, locally isomorphic to p,=. We have two projections zy :



62 Higher coherent cohomology and p-adic modular forms of singular weight

Cp — X]%lli(p)l defined by z1(G, H1,Gy,) = (G, Hy) and 29 : C' — sz(lli(p)l defined by
290(G, H1,Gp) = (G, Im(Hyp)). Actually, 2o lifts to a map 29 : C),, — X%li(pm)l defined
by z2(G, H1,Gp,) = (Gm, H),) where H] is the image of G[p"] in Gy,.

As a result we have the following diagram :

RI(X 7y, ()1, 1 © w?(=D)) —=RU(X3,(p)1, 7,y © w?(=D))

T
R (X7, (), ZF; © w?(=D)) == RT(X2,(p)1, Z{y @ w*(=D))

It follows that U is locally finite on colim,, RI'( Kh(p) T’;,l ® w?(—D)) and that
we have an isomorphism :

feolimy, RT'( Kzl(p) JTIZ1®W2( D)) = fRIY( Klz( )1, &%) (=D)).

We deduce from lemma 2.1.2 that U is locally finite on RI’(%KZZ( ), 3" ® w?(—D)).
Moreover, proposition 2.2.2 and theorem 11.2.1 imply directly the points 3 and 4 of the
theorem. O

In order to complete the proof of theorem 1.1 of the introduction, we still have to
obtain a control theorem for characteristic 0 classes of weight & > 0. This will be obtained
at the end of the next part of this work in theorem 14.8.1.

PART III
HIGHER COLEMAN THEORY

12. Overconvergent cohomology

12.1. Notation. — We introduce certain notations that are specific to this part of the
work. In this section, the base ring for our constructions is O the ring of integers of C,
rather than Z,. The p-adic valuation is normalized by v(p) = 1. For any rational number
w, we let p* € O be an element of valuation w. If M is an O-module, we denote by
M, = M/p*M. We let Adm be the category of admissible O-algebras. We recall that
an admissible O-algebra is a flat O-algebra which is the quotient of a convergent power
series ring O(X7y,---, X;) by a finitely generated ideal. We let NAdm be the category of
normal admissible O-algebras.

12.2. Formal Siegel threefold and the Hodge-Tate period map. —

12.2.1. The Hodge-Tute period map. — We start by introducing several formal and ana-
lytic Siegel threefolds as in section 1.2 of [59]. Let X be a polyhedral decomposition which
is ['-admissible and let X — Spec O be a toroidal compactification of the Siegel threefold
with spherical level at p and tame level KP.

Let X be the associated analytic adic space over Spa(Cp,, O). Let X be the formal
p-adic completion of X. We let X'(p") — X be the adic Siegel threefold with full p" level
structure at p. Let X(p™) be the normalization of X in X' (p").

We denote by 2) the complement of the boundary in X and by 2)(p™) the complement
of the boundary in X(p"). Over 2)(p") we have a universal map (Z/p"Z)* — G[p"] of
group schemes which is a symplectic isomorphism up to a similitude factor on the analytic
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generic fiber. We also have a Hodge-Tate period map G[p"] — wg/p"wg (we are using
the polarization to identify wg and we:). We denote by HT : (Z/p"7Z)* — wg/p"wg the
composite of the two maps.
In [59], prop. 1.2 we show that the Hodge-Tate period map can be extended over
X(p") to a morphism
HT : (Z/p"Z)* — wa/p".
Following [59], prop. 1.10, there is a formal scheme X(p")™°¢ — X(p") which is the

normalization of a blow up and which carries a rank 2-locally-free modification wgwd — wg

such that

1
1. pr-lwg C wgwd C wa,

2. the Hodge-Tate map factors through a surjective homomorphism :

1
(Z/an)4 ®Z ﬁx(pn)nwd — Wg()d/pn_pnglt)d

12.2.2. The canonical filtration. — We equip (Z/p"Z)* with the canonical basis
(e1,e2,e3,eq4). For all € € [0,n — ﬁ] NQ, we let X(p",¢) — X(p™)™? be the for-
mal scheme where HT(e;) = 0 in w%°?/p‘wm°d. This is an open sub-scheme of an

mod

admissible blow up of X(p™)
Over X(p", €) we denote by Filé" C (w°?). the coherent sub-sheaf generated by
HT(e2) and HT(e3).

Lemma 12.2.2.1. — The sheaf Filg"" is a locally free sheaf of rank one of Oxn ¢)/p°-

mod)

modules and locally a direct summand in (wE°®)e.

Proof. We work locally over some open affine Spf R of X(p™,€). So we can assume that
we have (w°?).(Spf R) ~ R? and the matrix of Hodge-Tate is given by

0 a c e
(05 a7)
in the canonical basis of (Z/p"Z)*. By symplecticity (the kernel of the map HT ® 1 :
R} — R? is a Lagrangian sub-space) we get ad — bc = 0. The map HT ® 1 is surjective
and therefore there is (locally on R) a 2 x 2 minor which is invertible. Let us assume that
cf — de is a unit in R.. Localizing further on R, we can assume that ¢, f or d, e are units
in R.. Let us assume that c, f are units for example. We deduce that HT(e2) = SHT (e3)
and that Filé®" is generated by HT(ez), a direct factor is provided by the sub-module
generated by HT (ey). O

The formal scheme X(p", €) is covered by the open sub-formal schemes X(p”, ¢, e3)
and X(p", ¢, e3) which are respectively defined by the conditions HT (e2) generates Filé"
and HT(e3) generates Fil*".

12.2.3. The canonical quotient. — We denote by

Gre = coker(Fil“™" — (w°%),)

€
Passing to the quotient we get canonical map
HT : (Z/p"Z)*/{e1, e, e3) ~ Z/p"Z — Gre™™
inducing an isomorphism

HT @ 1: Z/p"Z & (Oxpn o))e — Greo™

€ .
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12.3. Flag varieties. — We let §&, — X(p")™°? be the flag variety parametrizing
locally free direct summands of rank one Filwg"d C wTGm’d.

For all rational number 0 < w < €, we denote by FL, ¢y — FLn X x(pnymod X(p"e) —
X(p", €) the admissible formal scheme parametrizing invertible sheaves Filw’g"d C wg"d
satisfying

(Filw°d),, = Filn,

For all positive rational number w’ < w, we also denote by SSI cww

» — §Ln w0 the
normal admissible formal scheme which parametrizes basis p : ﬁ’m:e o ~ wg}"d / Filwg"d
such that p,y = (HT ® 1),.

12.4. Group action. — Denote by &Gy, the formal p-adic completion of GSp,. Let
Rli C BGp, be the Klingen parabolic of upper triangular matrices by block of size 1 x 1,
2 x 2 and 1 x 1. There is a well defined action of &S&p,(Z/p"7Z) on X (p"), trivial over
X and it extends to an action on X(p™) by normality and on X(p")™°¢ (since X(p")™? is
obtained by blowing up along ideals which are invariant under the group action and by
normlaization). It is clear that there is an induced action of R(Z/p"Z) on X(p™, ). We
denote by X (p", €) the quotient of X(p", €) by the finite group RU(Z/p"Z).

We let T, be the formal scheme in groups defined by T,/ (R) = Z, (1 + p*'R) for all
R in Adm. We let ‘Z?U, be the connected component of the identity in ¥,. For all R in
Adm, T%(R) = 1 + p“R. The group TV, acts on SE;G’w’w, (it acts on p) and the map
Sﬁ:;e,w,w, — FLpew isa T?U, torsor.

For all integers n > w' we let %, ,, be the fiber product T, Xg,,/%0, RU(Z/p"Z)
where the map Ri(Z/p"Z) — T,y /Y, is the composite of RE(Z/p"Z) — (Z/p"Z)* (given
by the last diagonal entry) and the natural projection (Z/p"Z)* — T,y /T2, (recall that
w' < n).

The action of ‘I?U, can be extended to an action of Ty, on FL
action of RI(Z/p"Z) on X(p",€).

+

 cwa s inducing the
 1vy 9

12.5. Local description. — Let Spf R < X(p",€) be a Zariski open subset such that
we have wgwd\gpf r = Rwi @ Rwy where w; lifts a basis of Fil®" and wy lifts HT (ey).
Over Spf R, &5 is identified with the set

N,€,W,W

1 0 w'
(pw%(O,l)R 1) X (1+p %(07 1)R)

with 98(0,1)r = Spf R(X). We associate to the universal matrix

1 0 w’ 3/
<pr 1) X (1+p¥ X')
the flag Filwg"d = w1 + p¥Xws and the trivialization p of the quotient ergwd given by
p(1) = (14 p¥ X').ws.

12.6. Banach sheaves. — We construct in this section formal Banach sheaves of locally
analytic and overconvergent modular forms.

12.6.1. Formal Banach sheaves. — We recall some definitions taken from [3], def. A.1.1.1.
We let & be an admissible formal scheme. A formal Banach sheaf over & is a family
(§n)n>0 of quasi-coherent sheaves such that :

1. &, is a sheaf of Og/p™-modules,

2. §, is flat over O/p",
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3. For all 0 < m < n, we have isomorphisms §, o O/p™ ~ F,.

We can associate to (), a sheaf § over & equal to the inverse limit lim, §, (the
maps in the inverse limit are those provided by 3) above). The sheaf § clearly determines
the (F,) and we identify § and the family (§,) in the sequel. We say that a Banach sheaf
is flat if §, is a flat Og/p"-module for all n.

12.6.2. Formal Banach sheaf of overconvergent modular forms. — Let € €]0,n — [ﬁ] NQ
and 0 < w’ < w < € be rational numbers. Let A be an object of Nadm. We assume that
we are given a continuous character x4 : Z; — A* which is w’-analytic in the sense that
it extends to a pairing x4 : T X Spf A — Gyy,.

We have a series of affine maps

T 32:76711)71[)/ - S'Qn,e,’u)”u)/ - %(pn7 6)'
Let 7y : 32;; cww §L,e,w- This map is a torsor under T?U,. We define an invertible
sheaf

£ = (M)uOygr  E0A)™

n,e,w’ w

over §£, ¢ X Spf A. The invariants are taken with respect to the diagonal action of 0.

Remark 12.6.2.1. — The sheaf £%4 doesn’t depend on w' for if we choose w” € [w', w],
we can view k4 as a character of T,,» and perform a similar construction with §L, ¢ 1w
which will give the same sheaf.

Let m2 : §&5, e = X(p", €). We define a formal Banach sheaf
G = (1g), L4
over X(p™, €) x SpfA.
Lemma 12.6.2.1. — The formal Banach sheaf &4 s flat.

. . . . +
Proof. Using a covering as in section 12.5, Sﬂmawﬂu

/|spt R is identified with the set of
matrices

1 0 o
<pw%(0’ 1)R 1) x1+p %(07 1)R

The action of T, is on the right term. It follows that &4 (Spf R x Spf A) ~ R®A(X).
U

Lemma 12.6.2.2. — Fori € {2,3}, the restriction of the quasi-coherent sheaf &*4Y /p*
to X(p", €, ;) is an inductive limit of coherent sheaves which are extensions of the sheaf

ﬁ%(p",e,ei)/pw-

Proof. Over X(p",€,¢;), the vectors HT (e;), HT(e4) are a basis of (w°?).. We are
therefore in a situation similar to [3], main construction, section 4.5. The claim follows
from corollary 8.1.5.4 and corollary 8.1.6.4 of [3].
U
We let 73 : X(p™,€) — Xk (p™, €) be the finite projection. The sheaf (73),&"4" is
RU(Z/p™Z)-equivariant. We define a Banach sheaf

gI{A,’w — ((7_(,3)*6,‘{14,11))(171;,11
over Xg;(p", €) x Spf A.
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12.7. Analytic geometry. — The aim of this section is to translate some of our con-
structions in the setting of analytic adic spaces. One of the improvements in the analytic
setting is that the constructions can be performed for Klingen type level structure rather
than full level structure. It will be natural to work with Klingen level structure when we
consider Hecke operators.

12.7.1. Siegel analytic spaces. — We have an action of GSp,(Z/p"Z) on X(p™). We
denote by Xk;(p™) the quotient of this space by the group RI(Z/p"Z) C GSp,(Z/p"Z) of
matrices which are upper triangular by blocks of size 1 x 1, 2 x 2 and 1 x 1.

Let 8(Z/p"Z)" be the subgroup of elements whose lower diagonal entry is trivial.
This is a normal subgroup of KH(Z/p"Z) and the quotient KU(Z/p"Z)/KW(Z/p"Z)" is
isomorphic to (Z/p"Z)*. We let Xg;(p™)™ be the quotient of X (p™) by this group.

We denote by X' (p", €) the analytic space associated to X(p", €). This is an open subset
of Xki;(p™) stabilized by the action of the Klingen parabolic RI(Z/p"Z) C GSp4(Z/p"Z)
on this space. We denote by Xgi;(p"”,€) C Xgii(p™) the quotient by RI(Z/p"™) and by
Xri(p™, )T C Xgu(p™)T the quotient by KH(Z/p")t of X(p™,€). We therefore have
diagrams for all n € Z> :

Xri(p", €) X (p™)

and

Xu(p" L o)t —— Xu(p )T

Over X we define a sheaf w/y

odt of ﬁj\;—modules for the étale topology. This is the
sub-sheaf of the sheaf wg of integral differential forms at the origin of GG, generated by the

image of the Hodge-Tate period map (compare with section 12.2.1).

Remark 12.7.1.1. — The sheaf ngd’Jr is really a sheaf on the étale site and does not
come from the analytic site.

The space Xg;(p", €) has the following simple modular interpretation. It parametrizes
pairs (x, H,) where x is a point of X and H,, C G,[p"] is a finite flat group scheme locally
isomorphic to Z/p™Z, which is locally for the étale topology generated by an element e;
which satisfies HT(e1) = 0 in wg:d’+ / pewg:d’Jr.

We can define sheaves for the étale topology

Fil“" = Im(HT ® 1 : Hy¥ ® 07,

mod,+
Xx1i(p™€) )e)

— (wg
and .
1 ,+
Gre™ = coker(HT @ 1: Hy @ O3 on ) = (W™ 7 )e).
These are locally free sheaves of ﬁ;
K

and section 12.2.3).

The space Xx;(p",€)T — Xxu(p", €) is the torsor of trivializations of HP. We let

Y : Z)p"Z — HP be the universal trivialization.
Over Xgy;(p™, )t we have a canonical isomorphism

HT®1:Z/p"Z ® (ﬁ;K”(p%))e — Greom

(o7 6)/pe—modules (compare with section 12.2.2
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obtained via the map 1) and the Hodge-Tate map for G[p"] (compare with section 12.2.3).

Remark 12.7.1.2. — We have obtained the analogue of paragraphs 12.2.2 and 12.2.3
in the analytic setting. We observe that in the analytic setting we are able to work
at the level of Xky;(p", €) rather than X'(p™, €). The main reason being that the map
X(p",€) — Xki(p", €) is finite flat and étale away from the boundary while this fails for
the map X(p",€) — Xgu(p™, €). It will turn out to be more natural later when we want
to define the action of the Hecke operator U to work at “Klingen” level.

12.7.2. Analytic flag varieties. — Welet FLT

spaces associated to §£,, ¢, and SE:{G W

s = FLpew — X(p", €) be the analytic

n,e,w,w

Lemma 12.7.2.1. — The space FLy, ¢ descends to an open-subspace of the flag variety
FL = Xki(p",€) of wg that we denote by FLKinew- This is the space of flags Filwg C
wa such that locally for the étale topology (Filwg N w+ mody = Filg™.

Proof. Consider the map of analytic spaces : X (p", €) Xy, (pn ) F £ — FL. This map is
finite flat. Moreover, FLp cw <> X (P",€) X xyp(pm,e) F £ is an admissible open subset. We
can therefore apply the descent of admissible opens of [14], lem. 4.2.4. O

Let us denote by FL1 — X p;(p™, e1)™ the moduli space of flags Filwg of wg together
with a trivialization p € Grwg.

Lemma 12.7.2.2. — The space FLT
Xi1i(p™,e1)t that we denote by ]:‘cKlzneww This is the space of flags Filwg C wa
and trivialization p € Gry,, which satzsfy the following condition :

— (Filwg N w+ mOd)w = Filj™,
— The tmmalzzation p reduces to the element HT(1) of Gri)".

descends to an open-subspace of FLT —

n,e,w’ ,w

Proof. This is another application of [14], lem. 4.2.4. O

Let us denote by T, Tu?,, Tw' n the analytic fibers of T,s and T?U, and T,y . We
denote by £"4 the invertible sheaf over FL,, (., x Spa(A[l/p], A) associated to £"4. We
denote by ¥4 the Banach sheaf generic fiber of "4 over X (p", €) x Spa(A[l/p], A)
(see [3], def. A.2.1.2 and prop. A.2.2.3). We finally denote by .#"4" the Banach sheaf
associated to F*4" over Xk;(p",€) x Spa(A[l/p], A). A more direct definition of .#"4:"

is the following

b —_— 5 Tw/n
FEA = (1,6t &A)

Kli,n,e,w,w’

where 7 : FL}. , — Xkii(p™, €) is the projection.

Klin,e,w,w

12.8. Overconvergent cohomology. — We are now ready to define overconvergent,
locally analytic cohomology.

12.8.1. Definitions. — The n, e-overconvergent, w-analytic cohomology of weight (x4, r)
is the cohomology :

C(n,e,w,ka,r): RI'(Xku(p",€), FH4Y @w").
There is also a cuspidal version :
Ceusp(n, €,w, k4,7) : RI'( Xy (p", €), F*4Y @ W' (—=D)).
There are obvious maps C'(n, e, w, k,r) — C(n'é,w',k,r) for n’ > n, € > €, w' > w

(and w < e, w' <€, e<n—%,e <n—%)
P
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We may define the overconvergent, locally analytic degree i cohomology of weight
(ka,T) to be
HZ(T? KA, T’) = COlimn,e,w%wHi(XKli (pn7 5)7 FrEAY R wr)
and similarly for the cuspidal version :

H! (t,64,7) = colimnve,wﬁooHi(XKli(p”, €), F "4 @w"(—=D)).

cusp
12.8.2. Another interpretation. — Here is another way to think about these cohomology
groups in terms of coherent cohomology. Thanks to section 12.5, we observe that F L, ¢
is locally affine over X (p™,€) : this means that there is a covering of X' (p",¢€) by affinoid
spaces such that the fiber of Ly, ¢, over each such affinoid is affinoid (be careful that we
don’t claim that the fibers over all affinoids are affinoids !). The sheaf ¢%4" comes from
the line bundle "4 over FL, ¢, by pushforward via the map mo : FLy ¢y — X(p",€).
Since R(72),Z"4 = 0 for i > 0, we obtain that

RINX(p",€), 9" 4" @ w") = RI(FLp e, L™ @w")
and
RIN(Xki(p",€), ™Y @ w") = RI(RW(Z/p"Z), RU(F Ly e v, L4 @ W")).
Similar statements hold for cuspidal cohomology.

Proposition 12.8.2.1. — These cohomologies are represented by bounded complexes of
projective Banach A[l/p|-modules.

Proof. We only treat the non-cuspidal version. We take a covering U of FL, . by
affinoids such that the sheaf #%4 is isomorphic to A®pOy over each U € U. Refin-
ing U by adding all the Rli(Z/p"Z)-translates of each opens, we can assume that U is
RU(Z/p"7Z)-stable. The U-Chech complex of the sheaf £*4 ® w" is a bounded complex
of projective Banach A[l/p]-modules which computes RI'(Xg;(p"™, €), 9"+ @ w"). The
group RU(Z/p™Z) acts on this complex and the direct factor of invariants computes the

cohomology RI'( Xk (p™, €), F4" @ w'). O
12.9. Cohomological vanishing. — The main result of this section is a cohomological
vanishing.

Proposition 12.9.1. — The cuspidal overconvergent locally analytic cohomology

H., (T, ka,7) vanishes for i > 1.

The proof of this proposition follows [3] section 8 closely. The strategy is to compute
this cohomology on the minimal compactification. The cohomological vanishing results
from two facts :

1. that the relative cuspidal cohomology between toroidal and minimal compactifi-
cation vanishes in higher degree,

2. that the pushforward of our overconvergent sheaves to the minimal compactifica-
tion are supported on open sub-sets that can be covered by two affines.

12.9.1. The minimal compactification. — We let X* be the minimal compactification of
). There is a natural map X(p") — X* and we define X(p")* to be the Stein factorization
of this map. In [59], we proved that the determinant of the Hodge-Tate map :

APHT : A%2((2/p"Z)*) — detwg/p"
descends from X(p") to X*(p").
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In [59] section 1.8 we have introduced a formal scheme X(p")*~"°? — X(p™)*. This

space is the normalization of a blow up and it carries a locally free modification det wgwd -

det wg such that :
2
1. pr-1 detwg C det wg"d C det wg

2. The Hodge-Tate map factorizes into a surjective map :
APHT : A2((Z/p"2)*) @ Orgpny—mos — detwli/p" 51

By the universal property of blow-up and normalization, there is a map X(p")™°% —
X(p™)*~™°% such that the pull back of det wgo‘l is det of ngd and the pull back of the
map A2HT : A2((Z/p"7Z)*) — det wg?"d/p"_ﬁ agrees with A? applied to the map HT :
(Z/p"Z)" = wiol /'

Let € € [0, n—%]ﬂ@. We let X(p", €)* be the formal scheme where HT(e;)AHT (e3) =
HT(e;) AHT(e3) = HT(e1) AHT(eq) =0 mod p-.

Lemma 12.9.1.1. — There is a cartesian diagram :

X(p",€) x(pr)me?
i i
X(p", e

)* %(pn)*fmod

Proof. It suffices to prove that the condition HT(e;) A HT(e2) = HT(e;) A HT(e3) =
HT(e;) AHT(eq) =0 mod p° is equivalent to the condition HT(e;) = 0 mod p. The
reverse implication is obvious so let us prove the direct implication. We can work locally
over Spf R — X(p")™°¢ and assume that (wg)e ~ R?. The matrix of HT is given in the

canonical basis of (Z/p"Z)* by
a b ¢ d
e f g h

and the ideal generated by the 2 x 2 minors is R..

By assumption, af — eb = ag — ec = ah — ed = 0. By symplecticity, bg — fc = 0.
Therefore, after localizing R and possibly permuting es and e, we may assume that ch—gd
is a unit. Therefore, there are linear combinations of HT(e3) and HT(e4) wich are equal

to

(o) = ()
and since HT(e1) AHT(e3) = HT(e1) AHT(e4) =0 mod p® we deduce that HT(e;) =0
mod p°. ]

We denote X(p", €, e2)* and X(p", €, e3)* the open formal schemes of X(p™, €)* where
the sheaf det w°? is generated by HT(e4) A HT(e2) and HT(eq) A HT (e3).
We have cartesian diagrams :

mod

x(pn7 €, ei) — x(pn)

| |

%(pn’ €, ei)* - x(pn)*fmod

for i € {2,3}.
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By [66], p. 72 (see also [59], thm. 1.16), there is an integer N such that for alln > N
there is a formal scheme X(p™)*~#7 and a projective map X(p")*~™°¢ — X(p")*~H7T such
that :

1. 2(p")*~HT is a normal admissible formal scheme with generic analytic adic fiber
X(pn)*,

2. The invertible sheaf det wg“’d descends to an ample invertible sheaf det wg“’d over
%(pn)*fHT

3. For all € > 0, there is n(e) > N such that for all n > n(e) we have sections
sij € HO(X(p™)*~HT det wo?) for 1 < i, j < 4 such that s; ; = HT(e;) AHT (e;) €
det wd /pe.

Let € > 0 and let n > n(e). Let us define X(p", ¢,e;)* HT — X(p")*~HT by the
conditions :

— 84 #0,

— 81,5 € p° dethOd, V1<j<4

Lemma 12.9.1.2. — The formal scheme X(p", ¢,¢;)* "7 is affine and the map
%(pnjgei)*fmod N %(pn,e, ei)*fHT
s a projective map and is an isomorphism on the generic fiber.

Proof. The open formal sub-scheme of X(p")* 7 defined by s;4 # 0 is affine since

det w&md is ample. Let us denote by A its ring of functions. Observe that det w&”"d is trivial

over Spf A, generated by s; 4. The formal scheme defined by the equation s ; € p©det wg?"d
is 1
Spf A(—L 1< <)
85, 4P¢

and is again affine. The final claim follows from the obvious equality
%(pn’ €, ei)* = %(pn)*—mOd Xf(p")*fHT x(pn’ €, ei)*_HT'
O

12.9.2. Vanishing. — A formal Banach sheaf § over an admissible formal scheme & is
small if §1 can be written has an inductive limit of coherent sheaves colimen§1,; and there
exists a coherent sheaf & over & such that the quotients §1 ; / §1,j+1 are direct summands
of 4. We now recall a vanishing result of [3], thm. A.1.2.2 :

Theorem 12.9.2.1. — Let G be an admissible formal scheme. Assume that & admits a
projective map & — &' to an affine admissible formal scheme which is an isomorphism of
the associated analytic adic spaces over Spa(Cp, O). Let § be a small Banach sheaf over
&. Let Al be an affine cover of G. Then the Chech complex

Chech(U,F) @0 C,
s acyclic in positive degree.

We denote by 7 : X(p",e) — X(p",€)* the projection. The following proposition is
the analogue of [3], proposition 8.2.2.4 (see also [47]) :

Proposition 12.9.2.1. — We have the vanishing Riﬂ'*ﬁf(pn,e)(—D) for alli>1.

Proof. The formal scheme X(p",¢€) carries a stratification indexed by a subset of the set
of all Lagrangian locally direct factors W of V' = Z*. We are going to describe briefly this
stratification, based on the analogous description of the stratification of X(p™)™°? given in
proposition 4.9 of [59]. The case W = {0} corresponds to the open and dense stratum with
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complement the boundary D. This stratum maps isomorphically to its image in X(p", €)*.
We now deal with the case W is one dimensional. First of all there is a one dimensional
affine formal scheme Xy (p™, €) constructed as follows. We start with the formal affine
modular curve Xy of some prime-to-p level determined by W and the tame level KP.
Then we can construct a normal formal scheme Xy (p™) and a finite map Xw (p") — Xw
by adding a full level structure of level p™. We then perform a blow up and a normalization
to define Xy (p™)™°? which carries a locally free modification of the conormal sheaf of the
universal elliptic curve. We finally consider a formal scheme Xy (p",¢) — Xy (p")™o?
which is an open sub-scheme of a blow up defined by a condition on the Hodge-Tate
period map.

Over Xy (p™,€) we have an elliptic curve By (p™,e) — Xw(p"™,¢€), isogenous to the
universal elliptic curve. There is a G,,-torsor My (p™,€) — By (p™, €) isogenous to the
torsor of trivializations of Oy, (,n.¢)(—20) (Where O is the identity section of the elliptic
curve) and a relative toroidal embedding My (p™, €) — My (p™, €) (obtained by adjoin-
ing to the G,,-torsor the 0 element). The complement of My (p™,€) < My (p™, €) is
By (p", €). The W-stratum in X(p™, €) is By (p™, €) and the completion of X(p", €) along
By (p", €) is isomorphic to the completion of My (p™, €) along By (p™, €).

The morphism 7 restricts to a morphism By (p™, €) — X(p™, €)* and factors through
By (p",€) — Xw(p™, e) = X(p", €)* where Xy (p",e) — X(p™,€)* is finite (compare with
[59], lem. 4.4 and thm. 4.7).

In the case W is two dimensional, the boundary component is included in the or-
dinary locus and the maps X(p", ¢) — X(p™)™°% — X(p") restrict on the ordinary locus
respectively to an open immersion and an isomorphism. The description of the boundary
component is given in [59], thm 4.1. We recall that there is a formal torus Ty isogenous
to the p-adic completion of Hom(Sym?V/W+,G,,), a Ty -torsor My (p”, €), a relative
toroidal embedding My (p™, €) — My (p™, €), a closed codimension 1 formal sub-scheme
3w (p™, €) — My (p", €) in the complement of My (p™, €) and an arithmetic subgroup Ty
of GL(W) such that the closed W-stratum is isomorphic to 3w (p",€)/I'w and the com-
pletion of X(p", €) along 3w (p™, €)/Tw is isomorphic to the completion of My (p™, €)/Tw
along 3w (p",€)/Tw. Lastly, the image of 3w (p™, €)/T'w in X(p™, €)* is a closed formal
sub-scheme, finite over Spf O.

By the theorem on formal functions, the vanishing theorem is equivalent to :

1. H(Ow (p", €)/Tw, ﬁﬁw(p",e)/f‘w(_z)w(pn’6)/FW>) =0 for all i > 0 and W two
dimensional,

2. HY(MMw (p™, €) s Oty (e (—Bw (p", €)) for all & > 0, W one dimensional, z €

Xw(p", €) a closed point. We have denoted by My (p™,e) the completion of
M (p",€) along the fiber of the map By (p”, €) — Xw (p™, €) at .

We are therefore in a similar situation to [3], proposition 8.2.2.4, or to [47], sect. 4.

One can conclude by repeating the arguments of these papers.
O

Lemma 12.9.2.1. — Let ¢ > 0. There exists n(e) such that for all n > n(e),
RI'(X(p",€), 9" 4" @ w"(—D)) is concentrated in degree 0 and 1.

Proof. We let 7 : X(p™,€) — X(p™, €)* denote the usual projection. By lemma 12.6.2.2,
proposition 12.9.2.1 and proposition A.1.3.1 of [3], m,G&"4" @ w"(—D) is a small formal
Banach sheaf over X(p", €)* and Rim, &*4* @ w"(—D) = 0 for all i > 0.

Let us take an affine covering U; of X(p",€,e;)* and an affine covering ; of
FLn,cwlx(pn e,e,)» Which refines the inverse image of U; in FELy, ¢ wlx( « for i € {2,3}.

P €,€4)
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Since Rim, &4 @ w"(—D) = 0 for all i > 0 we deduce that the map

Chech(U;, 7, &" 4" @ w"(—D)) — Chech(;, £"* @ w"(—D))
is a quasi-isomorphism.
We deduce from thm 12.9.2.1 that Chech(;, £"4 ® w"(—D))[1/p] is concentrated
in degree 0. We now consider the Chech complex associated to the covering 4 = iy U
Us of FL, ¢ for the sheaf £°4(—D)). Then Chech(ih, £°4 ® w"(—D))[1/p] computes
RINF Ly e, L 4 @w"(—D)). But this Cech complex is quasi-isomorphic to the complex:
HO(X(pn7 €, 62)*> ﬂ.*gm ® wr(_D)) ® HO(X(pn7 €, 63)*7 ﬂ*gHA ® wr(_D))
— HY(X(p", €, e2)* N X(p", €, e3)", 1, G4 @ w"(—D))
and has therefore cohomology in degree 0 and 1.
O

Corollary 12.9.2.1. — Let € > 0. There exists n(e) such that for all n > n(e),
R ( Xk (p™,€), FrH4Y @ W' (—D)) is concentrated in degree 0 and 1.

Proof. This follows from the formula
Hi(XKli(p”, €), F A @w"(=D)) = Ho(ﬁ[i(Z/p"), Hi(X(p”, €),9"" @w"(=D))).

O
13. Finite slope families
13.1. Review of spectral theory. — We quickly review the notion of slope decompo-
sition and the construction of spectral varieties.
13.1.1. Slope decomposition. — The valuation on Q, is normalized by v(p) = 1 as usual.

Let k£ be a complete non-archimedean field extension of Q, for a valuation extending the
p-adic valuation. Let M be a vector space over k and let U be an endomorphism of the
vector space M. Let h € Q. A h-slope decomposition of M with respect to U is a direct
sum decompostion of k-vector spaces M = M =" & M>" such that:

1. M=" and M>" are stable under the action of U.

2. M=" is finite dimensional over k.

3. All the eigenvalues of U acting on M =" are of valuation less or equal to h.
4

. For any polynomial ) with roots of valuation strictly greater than h, the restriction
of @*(U) to M>" is an invertible endomorphism. Here Q* is the reciprocal of Q.

By [75], coro. 2.3.3, if such a slope decomposition exists, it is unique. If M has h-slope
decomposition for all A € Q, we simply say that M has slope decomposition. In this
situation we can obviously define sub-modules M=" and M <" of M for all h € Q.

13.1.2. Spectral varieties. — Let A be a Tate algebra over k. We let Ban(A) be the
category of Banach modules over A. A Banach module is called projective if it is a direct
factor of an orthonormalizable Banach module. We let K"/ (A) be the category whose
objects are bounded complexes of projective Banach modules over A and morphisms are
homotopy classes of morphisms of complexes. Let M® € KP™(A). An element U €
Endgproj(4)(M*®) is compact if it has a representative U € End4(M*) whose restriction to
each M* is compact.

Given a compact representative U, we can define by [12], Part A, the characteristic
series P(X) = det(1 — XU|M*®) = [], det(1— XU|M¥). This characteristic series is entire:
it defines a function on A! x Spa(A4, AT). We denote by Z < A' x Spa(A, A™) the spectral
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variety which is the closed subspace defined by P(X). It depends on U. Over Z we have a
complex of coherent sheaves M?®. Tt is the universal eigen-subspace of M* for the action of
U. There is a covering of Z by opens U which are finite over their image V in Spa(4, A™T)
and such that M*®|;, is a perfect complex of &y-module.

The cohomology groups H®(M?®) are coherent sheaves over Z. Let F C Oz be
the annihilator of this graded module. We let Z = V(.#) C Z be the spectral variety

associated to U and M®. It doesn’t depend on the choice of U. It comes equipped with a
graded coherent sheaf H®*(M?®).

13.1.8. FEuler characteristic. — Let M® be a complex of Banach modules and U be a
compact operator as above. If z : Spa(K, Ok) — Spa(A, AT) is a rank one point, it
follows from [67] that the space H*(M,) has a slope decomposition. We have :

Proposition 13.1.3.1. — For all h € Q, the Euler-Characteristic function
T Z )? dim H*(M2)~™"

is a locally constant function of the rank one points of Spa(A4, A™).

Proof. This follows from the equality

D (=1 dim H (M) =) "(~1)" dim(M)="

7 %

and the local constancy of dim(M2)=" (see [12], Part A). O

13.2. The U-operator on overconvergent cohomology. — We construct the U-
operator in the setting of overconvergent cohomology. The construction is parallel to
section 10.

13.2.1. The cohomological correspondence C. — Let Yi;(p™) be the open subspace of
Xk (p™) where the semi-abelian scheme is an abelian scheme. There is a Hecke corre-
spondence t1 : Cly,, ) — Viiu(p") where Cly,, n) is the moduli space of (G, Hy, L)
where (G, H,,) € Vi (p") and L C G[p?] is a totally isotropic subgroup which is locally for
the étale topology isomorphic to (Z/pZ)? @ Z/p*Z and L N H,, = {0}. The map t; sends
(G,Hp, L) to (G, H). There is a map t2 : Cpnly,,,pm) — Vi1 (p™1) defined by mapping
(G,H,, L) to (G/L,p~*H, + L/L).

By the theory of toroidal compactification (see [44] for instance), there exist a polyhe-
dral cone decompositions ¥’ and toroidal compactifications of C |V (pr) Which we denote
by Csv or simply C and maps t; : Cxy — Xgp(p™)s and to : Cxy — Xg;(p"1)s which
extend the maps ¢; and to previously defined. We drop X and ¥’ from the notations if not
necessary. We also recall that the map (¢1),0c — R(t1)«0¢ is a quasi-isomorphism.

Lemma 13.2.1.1. — Let Cc = C Xy, xp,,m) Xi1i(p™, €). Then C. factorizes to a corre-
spondence

Ce
Xrci(p"th e+ 1) X (p",€)

Proof. All adic spaces are topologically of finite type, so it is enough to check that the
map to has the expected factorization for rank one points. Let (K,Ok) be a rank one

point of C,, corresponding to an isogeny ¢ : G — G;. Let K be the completion of an
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algebraic closure of K. Over O, we have a commutative diagram (where T), is the Tate
module and HT is the Hodge-Tate map) :

Ty(G) — T} (Gh)

| ) |

mod mod
Weg T T Wg

(In case G and G have bad reduction, one can interpret T,,(G) and T),(G1) as the Tate
modules of the corresponding 1-motives.) We take a basis of T,(G) ~ Zﬁ and T,(G1) ~ Z;l)

lifting the basis of G[p"] and G;[p"] provided by the moduli problems. For suitable basis
of wg and wg, respecting the canonical filtration, this diagram is isomorphic to

1 2]
4 [Lpp,p
Zy = Sp

lpl lPQ
[p.p?]

0% ——= 02
K K

Z4

where [1,p, p, p?] and [p, p?] represent diagonal matrices. Moreover, by definition p;(e1) €
pe(’)%. We deduce at once that the group generated by the image [1, p, p, p?](e1) in Gy [p" ]

is independant of choices and that p([1,p,p,p?](e1)) € pGpO%. Therefore, at the level of

points, we have proved that to(C,) factors through X (p"*!, e + 1).
]

18.2.2. Action on the sheaf. — In this section we prove that for all positive rational w < e
we can define over the correspondence C, a natural map

ty Frawtl _ gx graw
Over the correspondence C. we consider the universal isogeny £ : G — G and its dif-

ferential £* : wg, — wg. Therefore we get a map t7FL — t53FL obtained by Filwg —
(691 Filwg.

Lemma 13.2.2.1. — The map t]FL — t5F L restricts to a map
U FLKlimew = toF LKl nt1,e41,041

Proof. It is enough to check this on rank one points. Let (K, Og) be a rank one point of
C. corresponding to an isogeny £ : G — G1. As in the proof of lemma 13.2.1.1, we obtain
over O i a commutative diagram :

T,(G) — = T)(Gh)

"

mod mod
wa WG,
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isomorphic to

,0,p*]

1
74P g
ipl ipz
02 PP o2
K K

Let Filw°? be a flag. We may assume that it is generated by a vector HT (e2) +ap”HT (eq)
with a € (9[:{ (up to changing es and e3). Its image via &P is the line generated by
pHT (e2) + ap¥p?*HT (e4) or equivalently HT (e2) + ap® 1 HT (ey). O

Corollary 13.2.2.1. — We have a map £* : t5FravHl 5 prgraw,

Proof. Let Spa(R, RT) — C. be a point. Let £ : G — G4 be the associated isogeny. To
(Filwg, pe : R ~ Gr(wg)) € FL}. , we associate (£*) !Filwg and a trivialization

Klin,e,w,w

(€)' pe : R~ Gr(wg) ~ Gr(wg, ). This defines a point on FL}, e Lt L . Given a
section s € t5.7 74wl we set £*s(Filwg, pg) = s((£*) "1 Filwg, (%) Lpa). O
13.2.3. The action of U on overconvergent cohomology. — We now get an operator U as

the composite

RT(Xgi(p™, €), FrAYQw"™) — RO (X (p" T, e4-1), Fr4v T ouw™) — RI(C,, t5.F 54w Tl gun)

g*% %TI‘

£ RIN(C,, t1.7"4"@w") — RI( X (p", €), (1)t [-F "4 @w") "= RI( Xy (p", €), F 4 @uw")
and similarly on cuspidal cohomology. The map £* is the tensor product of the map

of corollary 13.2.2.1 and the obvious map tjw" — tjw"

Remark 13.2.3.1. — Note the normalization of the map £* and of the Trace map.
18.2.4. Compacity. — We prove the compacity of the operator U.

Lemma 13.2.4.1. — The natural map
RI( Xk (p", €), FrE4% @ w') — RT (X (p" ™, e 4 1), Fravtl g wn)

is compact. A similar statement holds for cuspidal cohomology.

Proof. We have an obvious injective map FLp11 e41,w+1 — X (pmth) X x(pr) FLnew- All
these spaces are open sub-spaces of the the proper analytic spaces F L which parametrizes
flags in wg over X (p"*1). It follows from the definitions that the closure of F Lyt1,e41,w4+1
is contained in X' (p"t1!) X x(pn) FLn,ew-

Let U = {U; }icr be an affinoid covering of FLy 41 e+1,0+1. We may assume that this
covering is stable under the action of Ki(Z/p"*1Z). By [48], thm. 5.1, for each U; € U we
can find an affinoid open U] C X (p™th) X Xes(pr) T Ln,ew such that U; C U!. We may
refine {U!} by adding all translates under the action of Ri(Z/p""1Z) so we can suppose
that U’ = {U]} is stable under the action of RN(Z/p"Z). We let T = U;U';.

The cohomology RI'(T, Z"4®w") is represented by the Chech complex Ch(U', L A®
w"). Similarly, the cohomology RI'(FLy41,e41,w+1,-Z%4 @w") is represented by the Chech
complex Ch(U, L4 @ w"). The map Ch(U', "4 @ w") — Ch(U, L 4 @ w") is compact.
It follows that the map of the proposition is compact as it can be factored into :

RT(Xgi(p"s €), F™4 @ ") — (ChU', L™ ®wr))ﬁﬁ(2/pn+lz)
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/(Z/p"T17)

— (Ch(U, L™ @w")) = RT(Xgi (p" T e + 1), Fravtl g on).

Corollary 13.2.4.1. — The operator U is compact.

Proof. It is the composition of several continuous maps and one of the maps is compact.
O

Corollary 13.2.4.2. — The restriction maps C(n,e,w,ka,7) — C(n', e, w' ka,7) for
n' >mn, € > ¢, w > w induces an isomorphism on the finite slope part for U. A similar
statement holds for cuspidal cohomology.

Proof. Without loss of generality, we can assume that n’ <n+1, w' <w+1, € <e+1.
The map U : H'(C(n/, €, v, ka,7)) = H(C(n',€,w', ka,r)) factors canonically into

HY(C(n/, e, v, ka,T)) LA HY(C(n,e,w,k4,7)) =S U : H(C(n/, e, 0, ka,7)).
where the second map is the obvious restriction map. Given a finite slope class
f € H{(C(n',e,w' ka,7)), there is by definition (locally on A) a non-zero polynomial
P(X) € A[X] with P(0) = 0 such that f = P(U)f. We define the extension of f to
H'(C(n, e, w, ka,7)) to be P(U)f. This provides a map ext : H'(C(n', €, w', ka,7))/* —
HY(C(n, e, w, ka,r)) on finite slope classes. We call res the map of the proposition. It is
clear that ext o res = Id and res o ext = Id on finite slope classes. O

Remark 13.2.4.1. — This corollary allows us to identify finite slope cohomology classes
in H'(t, k4, 7) with classes of prescribed radius of convergence and analyticity.

13.3. Classicity at the level of the sheaf. — Let (k,7) € Z>o X Z>o. There is a
natural map going from overconvergent cohomology of the classical sheaf to overconvergent
locally analytic cohomology.

R (X (p", €), Q7)) — RO (X (p", ), F 5 @ W)
and similarly for cuspidal cohomology. The goal of this section is to prove that on the

small slope part, this map is a quasi-isomorphism.

13.8.1. Slopes. — The aim of this paragraph is to bound the possible slopes for U on
overconvergent cohomology.

Proposition 13.3.1.1. — Let k : Z; — O be a w-analytic character. The operator U
has slopes > —3 on H'(t, k,7) or H., . (f,k,7). Moreover it has slopes > 0 in degree 0.

cusp

Proof. The Banach sheaf 7" is a sub-sheaf of the structural sheaf Oz . .y And We
let Z%5%+ T+ be the sheaf F5% N ﬁ;ZKl_ . (we recall that the superscript ++ stands
for topologically nilpotent sections). o

The map
tgffﬁ’w—’_l SN t’fﬁn’w
arises from a map of spaces
t){fﬁKli,n,e,w — tgfﬁKli,nJrl,e,erl
therefore, it respects the integral structure and induces a map :
tgyn,w-i—l,-i—-i— N tﬂl(cg%n,w,—i--i-

Next, the differential of the universal isogeny induces &* : tjw” — tjw" and factors
through &* : t5(wt™)" — p't3(wt™)" by lemma 14.3.1, 2. By proposition 14.4.1.1 we
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have that Ri(tl)*ﬁgj = (t1)«0¢c. = 0 for all ¢ > 0. Finally, the trace map Tr :
(t1)xCc. — O xy1s(pe) Testricts to Tr : (tl)*ﬁgj — ﬁ;}i_p(p” 0 Therefore there is a map
p3U : RI(Xgi(p™, €), Fravtt @ (wth)") — RI(Xgu(p", €), Fravtt @ (wth)r) fiting
in the commutative diagram :

3U
RT (X (p", €), Frat @ ") — RI (X (p™, €), Fra® @ w')

T | !

RT(Xgyi(p", €), Frawtt @ (whh)") LR RT(Xkpi(p" €), Fatt @ (whh)n)

We now consider an affinoid covering U of Xg;(p™, €) (chosen such that for all U € U, one
has FLK1inew is affinoid). The Cech complex C*® associated to U of the sheaf F#%4:" @ w"
computes the cohomology RI'(Xxy;(p™,¢€), #54" @ w"). This is a bounded complex of
Banach spaces and we can lift the U operator to a compact endomorphism U of C®. Let
a be rational number and let (C*)= be the associated direct factor of C'* computing the
slope a cohomology. This is a perfect complex of C, vector spaces and the projection
C*® — (C*)™% is continuous. We now consider the Chech complex C* ™ of U of the sheaf
FrRAWFY @ (wFT)". This is a sub-complex of C*® of open and bounded O-modules. Its
image (C*®,+)=% under the continuous projection C* — (C*®)=% is open and bounded.
Therefore, the image of HY(C**¥) in HY(C*®)=% is bounded.
We now consider the chain of maps :

H (O ) — HE (X (p7, €), R+t @ ()7 = Hi(C®) — H(C*)™®
We now deduce from lemma 3.2.2 that the map
HY(C*F) = H (Xg(p", €), 7540 @ (WF)7)
has kernel and co-kernel of bounded p-torsion. It follows that the image of
H' (Xgcti (p", €), 4 @ (wFF)")

in H'(C*)=* is open and bounded. It follows that in H(C*®*)=¢, the operator p3U stabilizes
an open and bounded sub-module. Therefore, we deduce that a + 3 > 0.

On degree 0 cohomology we can embed the module in the space of p-adic modular
forms and the claim follows from the fact that our U-operator stabilizes the integral
structure on p-adic modular forms. O

Remark 13.3.1.1. — Although we believe only non-negative slopes can occur in all co-
homological degree, it is difficult to improve the above argument. The reason is that the
trace map is normalized by a factor p—3. This normalization doesn’t preserve integrality
in general.

13.3.2. Classicity for the sheaf. — For all (k,r) € Z>o x Z we have a classical sheaf Qkr).

Lemma 18.3.2.1. — There is a canonical map of sheaves over X ;(p",€) :

Q(k,r) N eggk,w Qw"

Proof. Remark that Q*7) = Q*0) @ " Tt suffices to construct the map for r = 0.
Let FL — Xki;(p™, €) be the analytic flag variety parametrizing flags Filwg C wg. Let
FLY — FL be the G,,-torsor parametrizing trivializations of Gr(wg). We denote by
f:+ FLY — Xgu(0",¢€) the structural map. Then by definition Q*0) = 6, . [k
where [—k] means the subsheaf of f,0r,+ where G,, acts via the character —k. There
is an obvious map i : FL , — FLT, equivariant for the action of 7, on the left

n,e,W,w
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and G, on the right (under the map 7., — G,,). Taking the —k invariants part of
i*:Orp+ = Oxp provides a map

Klzneww/

Q(k,O) =N yk,w
]

For the next proposition, we shall denote .Z%%" the inductive limit colimyy <, Z %"

Proposition 13.3.2.1. — Let (k,r) be an algebraic weight. Then we have an exact se-
quence over X (p",e1) :

0 — Q) W gkw™ QW A g—2—kw” 2wt

Proof. See [3], prop. 7.2.1. This is a relative version of the locally analytic BGG
resolution. 0

We let C(n,e,w™, k,r) = colimyy«,C(n,e,w, k,r).

Corollary 13.3.2.1. — There is an exact triangle :

RF(XKli(pna 6)7 QUWN)) - C(TL, W, kﬂﬂ) - C(n7 W ,—2— ka k+r+ 1) —;1

A similar statement holds for cuspidal cohomology.

13.3.3. Equivariance of the BGG resolution. — We will now prove that certain n,e-
overconvergent and w-analytic cohomology classes are in fact n,e-overconvergent coho-
mology classes of a classical sheaf.

Proposition 13.3.3.1. — The following diagram is commutative:
R (X (p™, €), FF" @ w') v RL(Xgri(p", €), FF" @ W)
2 o
—k—1
RI(Xgi (p" €), F270w" @ Whtrtl) L RT(Xpi(p, €), F 27 kw" @ htr+1)
Proof. See [3], prop. 7.2.3. O
Corollary 13.3.3.1. — 1. The maps H (Xgp;(p™, €), QFEMY<F=2 5 HY (X (p", €), FFW @

2
wr)<k—2 and Hi(XKli(pna 6), Q(k,r)(_D))<k—2 — Hi(XKli(pna 6) k w)®w ( D))<k—2
are isomorphisms.

2. The maps HO(Xgy;(p", €), QFD)FH = HO(Xpei(p™, €), ) @ w")<FH and
HO (X (p™, €), QBT (= D))<k — HO (X (p, €), F*) @w” (= D))<k are iso-
morphisms.

3. The maps Hl(XKli(pn7€) Q(k r))<k+1 1(XKlz(p ) ) (k:,w) & wr)<k+1 and
HY (A5(p", €), 200 (= D)) <K+ 5 HY (Ayya(p7, ), F5%) @ W (— D))<+ are in-
jective.

Proof. This follows from proposition 13.3.1.1, proposition 13.3.3.1, and corollary 13.3.2.1.
O
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13.4. The spectral variety. — Let W = Spa(A, A) xSpa(C,, O) be the analytic weight
space in characteristic zero where we recall that A = Z[[Z)]] is the one dimensional
Iwasawa algebra. We can write V' as an increasing union of affinoids Spa(4;[1/p], A;).
We let k4, : Z); — AJ be the universal character. We can apply the formalism of section
13.1.2 to the cohomology Ceysp(n, €, w, k4,,2) (for, n, €, w large enough) and the compact
U-operator acting on it. We obtain a complex Ceysp(A;) over Spa(A4;[1/p], A;) X Gy, of
finite slope cuspidal overconvergent cohomology of weight (x4,,2) which is concentrated
in degree 0 and 1. We observe that Cgys,(A4;) is independant of n,e,w as the operator
U improves convergence and analyticity (see corollary 13.2.4.2 and the remark below the
proof).

Moreover, for all k : Spa(Cp, O) — Spa(A;[1/p], 4;) and a~! € C, providing a point
(k,a™1) : Spa(C,, O) — Spa(Ai[1/p], A) X Gy, , we have isomorphisms :

H((k, 0 1) Cousp (A1) = Hiyg (1, 7)[U =

cusp

The annihilator of H*(Ceusp(A;)) is a coherent ideal % C Ogpaa,[1/p),4,)x G, and the
associated closed sub-space is the spectral variety Z;. The map Z; — Spa(A;[1/p], 4;) is
quasi-finite and locally finite.

For all I, the spectral varieties Z; glue to Z — W and there is a universal graded
coherent module H*(Cqysp) over Z supported in degree 0 and 1.

We deduce the following proposition:

Proposition 13.4.1. — The function defined on N — W :
k— dimc HL,, (+,k,2)7° — dimc H?,, (1, k, 2)™°

cusp cusp

1$ locally constant.

Proof. This is a corollary of the discussion above and proposition 13.1.3.1. ]

14. Small slope cohomology classes are classical

14.1. Neighborhoods of the ordinary locus in Xk;(p). — We recall that Xg;(p)
is the analytic Siegel threefold of Klingen level at p. There is a universal chain of isogenies
G — G' — G where G — G’ is a degree p? isogeny and the composition of the two isogenies
is multiplication by p. We let H be the group scheme Ker(G — G’)* (the orthogonal is
for the Weil pairing). When G is an abelian scheme, H is a finite flat group scheme of
order p. We let G’ = G/H. We denote by wg the invertible sheaf of ﬁ;m_ ) modules

3

of integral differential form at the unit section on G (a similar notation applies to G”).
Let 07 € det wg @ det ™! wg,, be the determinant of the map wg,, — wg induced by the
isogeny G — G”. We recall that for all rank 1 point x : Spa(K,Ok) — Xkii(p) with
associated valuation v, normalized by v, (p) = 1, we have v, (dy) = deg H, € [0,1] in the
sense of [19] whenever H, is a finite flat group scheme whose schematic closure is a finite
flat subgroup scheme of G over Spf Ok

We let Xkii(p)e C Xkii(p) be the locus where |0g| > [p€]. This is another way to
measure the distance to the p-rank one locus that is more adapted to the arguments of this
part of the work. Before proceeding, we make a comparison with the spaces Xk;(p™, €)
intoduced in section 12.7.1.

Lemma 14.1.1. — The natural map Xi;(p", €) — Xk (p) factorizes through XKli(P)1_2(€+ L)

p—1
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Proof. It is enough to do the proof over rank 1 points. Let G — Spec Ok be a semi-
abelian surface. Let H,, C G[p"] be the group generated by e;. There is a commutative
diagram :

0 H, G[p"|
0 UJHnD WG/PnWG

The group wyp is generated by two elements and the cokernel of HT'®1 : H,® O —
1
wpp s killed by pr-T. Since the map H,, — wg“’d /p¢ is zero, we deduce that w Hp 18 killed

1
by pr—1"¢. Since it is generated by 2 elements we deduce that degHP < 2(e + ﬁ)

The goup H, has degree at least n — 2(e + p%l) Morover the maps pF—!

H,[p*]/H,[p*'] — H,[p""'] = H; are generic isomorphisms. Therefore, using [19], coro.
3 on p. 10, we deduce that deg H; > 1 deg HP > 1 — 2(e + ]ﬁ)
O

Lemma 14.1.2. — We have Xk;(p)e C Xkii(p, 1 — p%l) foralle >1— %.

Proof. This is an easy computation using Oort-Tate theory [54]. O

14.2. The correspondences C,,. — Let Vi;(p) be the open subspace of Xk;(p) where
the semi-abelian scheme is an abelian scheme. For all n € N, there is a Hecke correspon-
dence t,1,tn2 : Cnly,,p) — Yrii(p) where Cply,,. (p) is the moduli space of (G, H, Ly)
where (G,H) € Ygii(p) and L, C G[p"] is a totally isotropic subgroup which is locally
for the étale topology isomorphic to (Z/p"Z)? ® Z/p*"Z and L, N H = {0}. The map t, 1
sends (G, H, Ly,) to (G, H). The map t, 2 sends (G, H, L,,) to (G/Ly,,H+ Ly /Ly,). We re-
mark that C),| Viu(p) 18 simply obtained by iterating n times the correspondence 4| Vicii(p)
(which is the correspondence Cly, ., considered in section 13.2.1).

There exist smooth polyhedral cone decompositions ¥ and ¥’ and toroidal com-
pactifications of Cjly,,, ) which we denote by Ci s/ or simply Cp, of Vii(p) which
we denote by Xki(p)y, or simply by Xkii(p), and maps t,1 : Cp sy — Xgii(p)s and
tn2 1 Cp sy — Xgui(p)s which extend the maps ¢, and ¢, 2 previously defined.

14.3. Variation of the degree. — Over C), we have an isogeny G — G, with kernel L,,.
The differential of this isogeny provides a map (Qf, )T Q4 Jc,) " where (7 ) C
Qén e is the locally free ﬁéfn module of integral differentials. Taking the determinant
yields a section d, € det(Qé/Cn)-F ® det—l(QlGn/Cn)+.

When we have a rank one point x : Spa(K, Og) — C,,, with associated valuation v,
normalized by v, (p) = 1, we can define the degree deg L, |, = v,(dr, ) where v,(dr, ) means
the valuation of &z, (x) computed in any local trivialization of the sheaf det(€}, y )T ®
det™! (Qén /Cn)+' When G|, is an abelian scheme and extends to an abelian scheme & over
Spf Ok, this is the also degree of the schematic closure of Ly, in & defined in [19]. In
general, G|, can be uniformized as the quotient of a semi-abelian scheme G° by a lattice.

The semi-abelian scheme G extends to a semi-abelian scheme ®° over Spf Ok. In this
case, deg Ly |, = deg L, |, N GY.

Lemma 14.3.1. — Let x : Spa(K,Or) — Cy be a rank 1 point corresponding to a triple
(G,H,L = Ly). Then we have :
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deg H + deg Lp] < 2,

deg L[p]/pL =1,

deg L/L[p] < degpL,

deg(G[p] + L)/L =1 — deg L/L[p],

deg(G[p] + L)/L > deg H. In case of equality, H is either of multiplicative or
€tale type.

SN

Proof. It is enough to prove all the points when G is an abelian scheme, by Zariski density.
The first point follows from the fact that there is a generic isomorphism : H x L[p| — G|[p]
and properties of the degree [19], coro. 3 on p. 10.

Using the lemma below the proof, we deduce that the perfect Weil pairing on G|[p]
induces a perfect pairing between L[p|] and G[p|/pL which restricts to a perfect pairing on
L[p]/pL. As a result L{p]/pL ~ (L[p]/pL)”. We deduce from [19], lem. 4 on p. 9 that we
have deg L[p|/pL + deg L[p]/pL = 2 and it follows that deg L[p]/pL = 1.

The map given by multiplication by p : L/L[p] — pL is a generic isomorphism. It
follows from [19], coro. 3 on p. 10 that deg L/L[p] < degpL.

As before, the perfect Weil pairing on G[p?] induces a pairing between L and G[p?]/L
which restricts to a pairing between (G[p] + L)/L and L/L[p]. It follows that deg(G[p] +
L)/L +degL/L[p] = 1.

The map H — (G[p]+L)/L is a generic isomorphism. As a result, deg H < deg(G[p]+
L)/L. In case of equality, we deduce that deg H+deg L[p] = 2 and that the map H@L[p] —
G|p] is an isomorphism. The group H is a direct factor of truncated Barsotti-Tate group
of level 1, therefore it is a truncated Barsotti-Tate group of level 1. Since it is of order p,
we deduce that H is either of étale or multiplicative type. O

In the course of the proof of the above lemma, we have used the following easy lemma
whose proof is left to the reader :

Lemma 14.3.2. — Let J be a finite flat group scheme over Or. Let Mg C Jx be a
subgroup and let M be the schematic closure of M. Let M[% be the orthogonal of Mg in
JR. Let M+ be the schematic closure of Mj. Then JP/M+ = MP.

Corollary 14.3.1. — In the setting of lemma 14.5.1, let ¢ € R and assume that deg L <
3 —2¢. Then deg(G[p]+ L)/L > e.

Proof. Remark that deg L = degpL + deg L[p]/pL + deg L/L[p], so that deg L > 1 +
2deg L/L[p]. It follows from lemma 14.3.1 that deg L/L[p] < 1 — € and the claim follows
from the formula deg(G|p] + L)/L =1 — deg L/LI[p]. O

Corollary 14.3.2. — Let [a,b] C|0,1[. There ezists r(a,b) > 0 such that for all € € [a, D]
we have U(Xkii(p)e) C Xk1i(P)etr(ap)-

Proof. This follows from lemma 14.3.1, 5. and the maximum principle. See [58], prop.
2.3.6. O

14.4. Cohomological correspondences in the analytic setting. —

14.4.1. Basic vanishing. — In this section we establish a vanishing result for coherent
cohomology with respect to the change of polyhedral cone decomposition and also a van-
ishing result for higher direct images of the correspondence. These results will allow us to
consider safely the action of Hecke operators on cohomology.
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Proposition 14.4.1.1. — 1. Let X and ¥’ be smooth polyhedral cone decom-
positions.  Consider the map 7wsyy : Xgii(p)yy — Xku(p)s. We have
R(T‘-E’,E)*ﬁ?(mi(l’)zf = ﬁXKli(P)E and R(Wzlvz)*ﬁ;;zi(p)z/ - ﬁ;fr;u(p)z'

2. Let tn,l : On — XKll(p) Then we h,CL'Ue R’(tn,l)*ﬁcn = (tnvl)*ﬁon and
R(tml)*ﬁg: == (tn,1)*ﬁ§:-

Proof. The points 1 and 2 for the structural sheaves (not the ++ version) follow from
standard computations and the comparison theorem stated in [65], thm. 9.1. We now
proceed to deduce 1 and 2 for the “++" sheaves. Let ¢ C ¥ be a cone. Then, ¥’ No is
a refinement of 0. Associated to o is a boundary component Z, < Xk;(p)y. Its inverse
image in Xky;(p)s is a union of boundary stratum Z,~y.

We have local charts

Moy T M,
Zony, — 2o

and there is an isomorphism :

_—z _—z

onNx’/ o
Mo’ﬂE’ 4“— MU
— Z Ty —— 2,
Xi1i(p)sy —— Xki1i(p)s

There is a Kuga-Sato variety B, a split torus 1" and a natural map M, — B such that

Myay = M, is locally isomorphic over B to Ty x B — T, x B. By proposition 3.4.1, we

++ ot

deduce that RmﬁMmE = ﬁMU.

By proposition 3.3.1, this implies that Rmﬁ’}jﬂz /p" = ﬁ‘gj /p". This implies in turn
that

ot
R(WE,E’)*ﬁXKl (p)z/p Xku(p)g//pn'

We have a long exact sequence :

) ++ P, i ++ ++

- — Rl(’n’z/ ) ﬁXKl ( )E — RZ(W2/7Z)*6)XK11'(F)E/ — R (T('E/ ) ﬁXKl (p z://p —

We look at the sequence for ¢ = 0. Since (7yy %), 0 XKz /p = XKz /p
and ﬁ;\tt e (557 )% ﬁ;;l )y W deduce that the map (Wz}l’g) ﬁ;;”(p)zl —
(s %)« 6’;; ) ,/p is surjective.

~ This implies that for all i > 0, multiplication by p is an isomorphism on
RZ(TFE',E)*@);;Z@)E,. As a result, RZ(ng)*ﬁ;;i(p)E, = RY7"s )« Oxp;(p)- The

. : ++ _ s+t
later vanishes. We also deduce easily that (WZ/’E)*ﬁXKZi(p)z;/ = ﬁXKzi(p)z'
We next deal with point 2.. We have C,, = C,, sv and Xki(p) = Xki(p)y for two
smooth polyhedral decompositions ¥ and ¥/ (for different integral structures). Actually
we can use X to produce a toroidal compactification C), s; which is not going to be smooth

(because of the change of integral structure). We then have a factorization of ¢, ; into
Chsy i> Chx EN Xk1i(p)s. As in point 1, we show that Rf*ﬁ++ = ﬁ++2 (notice that

the smoothness of ¥ was not used in the proof of 1). On the other hand, the morphism g
is finite and has no higher cohomology. O
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14.4.2. Cohomological correspondences for classical sheaves. — Let .# be any of Q*:7)
or Q(’”)(—D). We can define an unnormalized analytic cohomological correspondence
(tn1)«ty o F — F by taking (for instance) the analytification of the algebraic cohomo-

logical correspondence. We normalize this map by dividing by the factor p™3+7) and call
it U™. This normalization is consistent with section 10.4. Restricting this map to .Z# T
provides amap U™ : (tn,1)«t} o F T+ — p~3" Z++. The reason the map lands in p~3".Z++
instead of p~3"~"".Z*7 is that the kernel L, of the isogeny G — G, has degree at least
one by lemma 14.3.1, 2.

Remark 14.4.2.1. — When we work on the analytic space, we cannot expect the co-
homological correspondence to have a better integral property than the integral property
stated above. The cohomological correspondence has a better integral property on the
formal scheme ordinary locus (see sect. 10.4).

We denote by U™ : RT'(Xky;(p), F) — RT(Xkui(p), F) and U™ : RT(Xkyi(p), F 1) —
RI (X (p),p 2" #+F) the corresponding maps on cohomology. Obviously, U" is the
n-th iterate of U = U™

14.5. Analytic continuation. — Let ¢ and e be such that tmgt;’ll(/l’mi(p)g) C
Xki1i(p)e. Then we get a map :
Ule : RI(Xkii(p)e, #) = RU(Xk1i(p)ers F).
On the other hand, if ¢ > ¢, we have a restriction map
resee : RI(Xkii(p)e, F) = RE(Xkii(p)e, F)
induced by the inclusions Xx;(p)e < Xkii(p)e. When it makes sense, we have Ule o

reser o = UL, and resg o U, = Ul,,. We often write U™ instead of U, and res
k)

€’ e €€’ €€’

instead of res, s if the context is clear.

Proposition 14.5.1. — Let f € H{( Xy (p)e, F) with € < 1. We assume that Uf = af
with a # 0. Then for all € > ¢ > 0, there is a unique section g € H*(Xky;i(p)e, F) such
that Ug = ag and resg g = f

Proof. Let [c,d] C]0, 1] such that €,€ € [c,d] and let n such that nr(c,d) + € > € (see
coro 14.3.2). We consider the operator a="U" : H'(Xk;(p)e, F) — H{(Xk1i(p)er, F) and
we set g = a "U™f.

The following diagram commutes :

H (X1i(p)e, F) —> Hi(Xi(p)er, F) — > Hi( Xy (p)er, F)
H (Xicpi (p) e, F) —= H(Xgi(p)e, F) —— Hi(Xicui(p)er, F)

and we deduce that Ug = ag. Moreover, since we can factor a™"U" : HY(Xk1i(p)er, F) —
H'(Xkii(p)e, F) into

. r . 77LU7L
H' (Xkii(p)er, F) = H (Xg1i(p)e, F) * = H (Xiii(p)er, F)

we deduce that g is unique.

We can slightly improve the last proposition, in the spirit of [35].
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Proposition 14.5.2. — Let f € H{(Xyi(p)e, F) withe < 1. Let P = X™+am 1 X™ 1+
-+ ag € O[X] be a polynomial of degree m with ag # 0. We assume that P(U)f = 0.
Then for all € > € > 0, there is a unique section g € H°(Xk;(p)er, F) such that P(U)g = 0
and rese g = f.

Proof. Let Q = —ag (X" + apm_1 X" '+ -+a1X). Then QU)f = f and g = QU)"f
for n large enough. O

Remark 14.5.1. — Using lemmas 14.1.1, 14.1.2, corollary 13.2.4.2 and the above propo-
sition we deduce that we can think of finite slope sections on H* (X ;(p™, €), Q%)) for any
e > 0 and n as sections of H(Xxy;(p)e, Q%) for any € > 0 and similarly for cuspidal
cohomology.

14.6. More analytic continuation. — We show that we can improve the last propo-
sition if we work with torsion coefficients.

Proposition 14.6.1. — Let 0 < € < €. There is a map oo fitting in the following
commutative diagram of normalized cohomological correspondences :

n
€

U € /
(tn,l)*(tn72)*(§++’Xmi(p)e) & ﬁ/pn(2r+k—3—2e (r+k))§++’X

K1i(P)e
T

(tml)*(tmg)*(ﬁ"""') " g/pn(2r+k—3—2e’(r+k))ﬁ~++

Before giving the proof we need the following lemma.

Lemma 14.6.1. — Let z : Spa(K,Ok) — Cy, be a point. Assume that |01, |+ < [p>" 9.
The map QE/LJ"E — QJGr|x factorizes through p"_O‘QJGr|x. The map

Sym*Qf ;@ det’ Q) [ — Sym*Qf ® det" Q.

factorizes through pk(”*o‘)”(?’”*o‘)Sykag ® detrQaw

Proof. We fix an isomorphism between Qg/LJz — Qf|, and O% R 0% with M a

diagonal matrix with coefficients my, ma. We have [mima|, < |[p*>"~|,. But on the other
hand, |m|, > |[p*"|. since L, C G[p*"]. We deduce that |m;|, < [p" .. O

Proof.[of proposition] Let x € Xk;(p). It have to find a neighborhood U of = in Xk;;(p)
and to construct a canonical map :

t:z,2y++’XKu(p)e(t;,11U) N y/pn(2r+k—3—25 (T+k))9f++(U)

Pick €’ €]e, €[ such that for all y = (G, H, L,,) € t;ll(z) we have |6z, |, # [p"G~2")],.
This is possible since the fiber of ¢, ; is finite away from the boundary. At the boundary,
it is easy to see that there are only finitely many possibilities for |0z, |y-

It follows that there exists a neighborhood U of x and a disjoint decomposition of
t;ﬂll(U) = V]IW where for all (G, H,L,) € W, we have |67, > [p"3=2¢)] and for all
(G, H,Ly,) € V, we have |61, | < [p"B~2¢")|,

We have a map U™ : th .. # (V) @t} o.7 71 (W) — F(U). The image of t; ,.Z (V)
in .7 (U) lands in p™(2r+k=3=2¢"(r+k)) Z2++({]) by the above lemma 14.6.1. We deduce a
factorization

U - (tn’l)*tzzﬂf—i—-&-([]) N t2729++(W) N ﬁ(U)/p”(27’+k_3_2€”(7’+k))9"""(U).
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Moreover t,, 2(W) C Xki(p)e by corollary 14.3.1, so that ), ,. 7 (W) = 5 5.7 | 1, (). (W).
We can construct the expected map as the composition :

* o T (o) bk U) = £, FHH (W) = F pr@rik=3-2¢(4k) z++ (1))
It clearly doesn’t depend on the choice of €”. B

Corollary 14.6.1. — Let ¢ > 0. Let f € H(Xk;(p)e, F) be a form satisfying Uf = af.
Assume v(a) < 2r + k — 3. There is a projective system

(fn) € lim H'(Xgii(p), Z /p"F )
which satisfies U(f,) = a(fn) and such that reso(fn) is the image of f in
lim B (Xii (p)e, F /0" F 7).

Remark 14.6.1. — The U operator induces maps
H' (X (p), F [p"F 1) = B (Xkui(p), F [p" > F ).
It follows that it acts on lim,, H! (X (p), Z /p"Z+1).

Proof. Let € > 0 be such that & = 2r+k—3—2¢(r+k)—v(a) > 0. We can assume that
0 < e < € and that f € H (Xki;(p)e, F) satisties Uf = af by proposition 14.5.1. The map
Xkii(p)e = Xkii(p) is affine (there is a covering of X'ky;(p) by affinoids, such that the fiber
over these affinoids is affinoid). It follows that H*(Xx;(p)e,-#) = H (Xk1i(D), Z | xgess(p).)-

After rescaling f we may assume that f comes from a section (still denoted f)
in HY(Xk1i(p), Z T annp).) and that Uf € HY(Xgu(p), p > F | xp(p).) is the im-
age of af in H'(Xkii(p),p > F | x(p).). We define the sections f, = a™" Jof €
H (Xsii(p), F [p"*F ).

Consider the following commutative diagram :

—n n
a""ul,

Hi(XKli(p)’ gz++|XKli(p)e) : H* (XKlz p), F [p"* 6\++)

|

H (Xk1i(0)s 7 | 200, ). ) : H (Xkui(p), F [pn— Doz ++)

where the vertical maps going from the bottom to the middle line are the obvious ones.
Since the image of f € H'(Xg1i(p), F T | xyeys(p).) is the same via any of the two left vertical
maps, we deduce that f, = f,_1 in H (Xgy(p), F /pn~Da—3-v(0) g++),

Consider the following commutative diagram :

XKlz ﬁ/pnoz 6\++

% \

Xicui(p HY(Xki(p), F [p 3.7 TT)

XKlZ( ) 3‘?++|XK12

H' (Xki(p), F 1|
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It follows that U f,, = af, in H(Xg;(p), F /p"*3F ).
As a conclusion, we obtain a projective system

(fn) € im H (Xgpi(p), Z /p" 370D ZHH) = lim HY (X (p), F /" F )

which satisfies U(f,) = a(f,). By construction, resgc(fn) is the image of f in
limy, B (Xp1i(p)e, F /p"F ).
O

We can again slightly improve the above corollary :

Corollary 14.6.2. — Let f € H(Xki(p)e, F). Let P= X"+ ap 1 X™ 14+ +ag €
O[X] be a polynomial of degree m. We assume that P(U)f = 0 and that for all the roots
a of P in Qp, we have v(a) < 2r + k — 3. There is a projective system

(fn) € im HY(Xgyi(p), F /p"F )
which satisfies P(U)(fn) = 0 and such that reso(fn) is the image of f in
lim H (Xg5(p)e, F /p"F ).

Proof. We let Q = —ay (X™ + a1 X™ ' + -+ + X). Then Q(U)f = f and we let
fn=Q(U)™f as in the proof of corollary 14.6.1. O

14.7. Classicity of overconvergent cohomology. — We are now ready to state our
main result on the classicity of small slope cohomology classes.

Lemma 14.7.1. — For any slope h, the map H'(Xk1;(p)e, F)=" — lim, H (Xkyi(p)e, F /p"F )
18 injective.

Proof. Let I be a finite set and U i{Ui}iEI and U’ = {U]}ier be two finite affinoid
coverings of Xgi;(p). We assume that U/ C U;. Such a covering exists because X;(p) is

proper. Let U = {U; ¢} be the finite affinoid covering U N X (p)e. Let € < € be such that
U(Xkii(p)er) C Xkii(p)e. Let Uy = {U; «} be the covering U' N Xk (p)e. For all i € I, we

have U; o« C U; . The U operator is defined as the composite

res Ue,e’
RI(Xk1i(p)e, #) = RU(Xgii(p)er, F) — RI(Xkii(p)e, F).

We can represent RI'(Xgi(p)e,#) by the Chech complex M®* = Ch(U., %) and
RI(Xki1i(p)e, F) by N®* = Ch(Ue,.F). The map U can be represented by

Ue/,e

U:M*™S N* = M

which is compact. We have a direct summand (M*)=" which is a complex of finite di-
mensional vector spaces and H!(Xg;(p)e, #)=" = H!((M*)<"). Denote by V the image
of H'(Xk1i(p)e, F ) in H(Xkyi(p)e, F). We have to prove that H'(X(p)e, )" NV is
bounded. Since the natural map Hj, (Xg1;i(p)e, #1) — H (Xg1i(p)e, F 1) has cokernel of
bounded torsion by lemma 3.2.2, we can replace V by V' the image of HZZE(X xii(D)e, FT)
in H(Xk;(p)e, F). Let Z{((M*®)<") ¢ M?. This is a finite dimensional vector space.
We denote by M*+° the Chech complex Chy, (F*). Then M +' is bounded in M. Tt

follows that M + N Zi(M ')gf) is bounded and thus a lattice. As a result, its image in
H(Xk1i(p)e, F)=I (which is H (X (p)e, F)S" N V') is bounded. O
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Theorem 14.7.1. — The map
Hi(XKli (p)’ Q(k,r))<k+2r—3 N Hi(XKli (p)a Q(k,r))<k+2r—3
is bijective. A similar statement holds for cuspidal cohomology

Proof. Denote by res the map of the corollary. We first exhibit a map ext :
HY (X (p)e, QBT <E+2r=3 s HI( X5 (p)e, QF))<k+2r=3 in the other direction. Given
f € H{(Xki(p)e, QM) <k+2r=3 " we obtain (f,) € lim, H (Xx;(p), QF) /pn(QF) ) by
corollary 14.6.2. Since

lim H' (X (p), Q57 /p (D)) = H (X (p), 2F7)

by proposition 3.2.1, this defines the map ext. Using lemma 14.7.1, we deduce that
res o ext = id. Unravelling the construction of ext, we deduce that ext o res = id. O

Corollary 14.7.1. — 1. The map H' (X (p), QUer)y<min{k+2r=3,k=2} _y |i(t [ p)<min{k+2r—3,k—2}
is an isomorphism. A similar statement holds for cuspidal cohomology.
2. The map HO(XKli(p)7Q(k,r))<min{k+2r—3,k+1} N HO(T,k,7’)<min{k+27"_3’k+1} is an
isomorphism and a similar statement holds for cuspidal cohomology.
3. The map H' (X (p), QFr))<min{et2r=35+1} _ Hl(.hk’,’n)<min{k+2r—3,k+1} is in-
jective and a similar statement holds for cuspidal cohomology.

Proof. This is a combination of theorem 14.7.1 and corollary 13.3.3.1 (see also remark
14.5.1). O]

14.8. Application to ordinary cohomology. — We are now able to deduce a classic-
ity theorem for ordinary classes in ordinary cohomology. We recall that f is the ordinary
projector attached to U.

Theorem 14.8.1. — The map
FRO(Xk1i(p), Q57 (=D)) @z, Qp — FRU(X75,(p), Q%7 (=D)) @7, Q,

is an isomorphism for all k > 0 and r > 2.

Proof. The map fRI'(Xku(p), Q%" (-D)) ®z, Q, — fRI(Xki(p)e, Q5" (=D))
is a quasi-isomorphism for all k by theorem 14.7.1. We are left to prove that
fRT(Xgii(p)e, UEM(=D)) = fRI(XZ(p), @) (=D)) @ @, is an isomorphism
for k > 0.

Both complexes are concentrated in degree 0 and 1. We actually have a factorization

FH (X (p)e, QP (=D)) — fHL,,, (1.5, 7) = fH (XZ, (), Q%) (=D))[1/p]

cusp

where the first map is injective by corollary 13.3.3.1.

Call d;(k) = dim fH/(X7};(p), Q%) (~D)) ® Q, and df (k) = dim fH.,,(f, k,r). We
have d%(k) < do(k) because there is an obvious injection fHO(Xxyi(p)e, Q#7)(=D)) =
fHY(f, k7)) — fHO(%IZ{%i(p),Q(k“)(—D)) ® Qp. We claim that there is a surjection
FHY(Xgii(p)e, QFM) (—=D))=0 — le(%[Z(}i(p),Q(k”’)(—D)) ® Qp. We can prove this as
follows. Let X7, (p) be the minimal compactification. Let 7 : Xx;(p) — X% ,;(p) be the
projection. Then Rm,Q*")(—-D) = 7,Q*")(—D). The image X%,;(p)=! of Xiui(p)=!
in the minimal compactification is covered by two affines (call them U; and Us). The
cohomology RI'(Xgi(p)=t, Q%) (—D)) is represented by the complex :

HO(U1, Q%) (—D)) @ HO(Uy, QF7) (= D)) — HY (U, N Uy, Q%) (—D))
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while the cohomology colim,_,1 RT'(X i (p)e, 257 (= D)) is represented by the sub-complex
of overconvergent sections :

HO(Uy, Q%) (D)) @ HO(Uy, Q- T(—D)) — HO(U, N Uy, QF)F(—D)).

We deduce that the map colim_,; H (Xxy;(p)e, QF7) (= D)) — H' (X7,(p), Q") (D)) @
Qp has dense image. If we apply the ordinary projector, we get a surjection since the
ordinary part is finite dimensional. Since H'(Xgi(p)e, Q57 (—D))=0 is independent of
€ €]0,1[, we conclude that H(Xg;(p)e, Q#7)(=D))=0 — le(%[Z(}i(p),Q(k”’)(—D)) ® Qp
is a surjection. It follows that d]i(k) > dy(k) for all k& > 0. For k larger than C + 3,
it follows from theorem 11.2.1, corollary 14.7.1 and corollary 13.3.3.1 that d;r)(k) = dy(k)
and that di(k) < dy(k). We deduce that for all k > C, di(k) — do(k) = di (k) — d})(k).
The euler characteristics dy (k) — do(k) and d;(/@) - d;r](k) are locally constant functions of
k € Z>o by theorem 11.3.1 and proposition 13.4.1. This finally forces d; (k) = d]{(k) and
do(k) = dj(k) for all k > 0.

We have thus established that fHL, (,k,7) — fH (X%, (), Q=) (=D))[1/p] is

cusp

an isomorphism. Since fH'(Xgy;(p)e, Q57 (=D)) — JHE,op(T.k,7) is injective and

FHY (XK (p)e, QBT (=D)) — le(%[z{}l(p), Q1) (—D)) ® Q, is surjective we deduce that

in the chain

FHY (X (p)e, QW (=D)) — fHL (1, k1) — FHY (X7,(p), Q%7 (=D))[1/p],

cusp

all maps are isomorphisms.

PART IV
EULER-CHARACTERISTIC

15. Vanishing of Euler characteristic

15.1. Action of the Hecke algebra. — We construct an action of the Hecke algebra
on the cohomology of our p-adic sheaves.

Let ¢ be a prime. We have introduced the spherical Hecke algebra H, =
Z[Tg70,TZ01,Tg71,T472} in section 5.1.3.

Let K = [[, K; C GSpy(Af) be a compact open subgroup. We assume that K, =
GSP4(Zp)-

Proposition 15.1.1. — Let ¢ # p be a prime such that K; = GSpy(Zy). We have
operators Ty, Ty and Tyo acting on RF(%Kli(p)IZ(I, T @w?(=D)).

Proof. We suppress the subscript K from the notations in this proof. For certain choices
of polyhedral cone decompositions that we suppress from the notation, we can define Hecke
correspondences attached to the double class Ty ; (see [16], p. 253) :
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Denote by €;; the formal completion of Cy;. We can form the fiber product ©; =
Coi Xp1,x %%l(p) The second projection py : ®y; — X can be lifted naturally to po :
>1
Dp; — %[_(li(p)'
Since the universal isogeny associated to the double class Tj; is étale, we have a
canonical isomorphism :

" ®w}(=D) = pi§*w?(~D)
The formal schemes .’{E (p) and ®y; are smooth, and as a result there is a funda-

mental class p70, 21 () plﬁ >1
16(P) K,Z( )’

correspondence TZ’Z 33" @ w?(—=D) — pi§w?(—D). We shall set Tyo = €*3Té72 and
Ty =717 .

We can thus form an un-normalized cohomological

O

15.2. Euler characteristic. — Let K = [[, K, C GSpy(Af) be a compact open
subgroup. We assume that K, = GSpy(Z,). Let N be the product of primes ¢ such
that Ky # GSpy(Z). Let p : Gg — GSpy(F,) be a Galois representation, unram-
ified away from the primes ¢ not dividing pN. We assume that p is absolutely irre-
ducible. We let m be the associated maximal ideal of the abstract Hecke algebra H™? and
Om : HNP — EJ the corresponding morphism. The map O, is thus defined by the rule
Om(Qe(X)) = det(1 — Xp(Foby)).

The algebra HNP acts on the perfect complex fRI(X Klz( ), 3" ® w?(—D)). The A-
sub-algebra of End(fRF( Kh( ), 3" ® w?(—D))) generated by H™? is a finite A-algebra.
In particular it is semi-local. We can define a direct factor (which may be trivial if p is
not modular) of fRI'(X Kh( ), % ®@ w?(—D)) associated to the maximal ideal m (see [38],
lemma 2.12) :

FRU(X73:(p), 8" @ w*(=D))m.
Theorem 15.2.1. — The Euler characteristic of the perfect complex
JRI(X Klz( ), 3" ® WQ(_D))m

1s equal to 0.

Remark 15.2.1. — We conjecture that the support over A of &} _,fH!(X Kh( ), ®
w?(—D))y has dimension less or equal to 1 if the representation p has big enough image.
Compare with conjecture 7.2 in [38].

The proof of this theorem will be given in section 15.2.5 below. Before giving the
proof we need to collect a certain number of results concerning automorphic forms.

15.2.1. Limits of discrete series. — Given A = (A1, \2;¢) € X(T) 4+ (2,1;0) € X(T)c
which satisfies A\; > A2 > —)\; and a Weyl chamber C positive for A we have a (limit of)
discrete series w(A, C) (see [26], 3.3).

Let 3 be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism,
3 ~ C[Y(T)]" where W is the Weyl group. The infinitesimal character of w(\,C) is the
Weyl group orbit of A.

Si A2 # 0 and A2 # —A1, A determines uniquely C' and (A, C) is a discrete series.
The case of interest to us is Ao = 0 and A\; > 0. We now make these hypothesis. Under
these assumptions, there are two choices for C. The natural choice (C' is the chamber
corresponding to the upper triangular Borel) provides a limit of discrete series that we
denote by m(\)" (it contains the holomorphic and anti-holomorphic limits of discrete series
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of the derived group). The other choice of C provides another limit of discrete series that
we denote by 7(\)Y.

Using the identification GTSEl ~ GSp,(C), we can think of the infinitesimal character
of m(A\)9 or m(\)" as a Weyl group orbit of the cocharacter C — t = Y (T) ® C which maps
1 to diag(A1 + 5§, A+ 5,5, 5).

15.2.2. Cohomology of limits of discrete series. — Consider the character (A +1,2;¢) €
X (T). This character is dominant for the Levi Mg; ~ GLg X Gy, of the Siegel parabolic
Pg; € GSp, which stabilizes the space (e, e2). Associated to this character is a complex
irreducible representation of Ps; of highest weight (A1+1,2; ¢) that we denote by Vi, 41,2;c)-

Recall that we have a map h : Resc/r — GSpy|r given by h(a + ib) = alz + bJ and
that Ko C GSpy(R) is the centralizer of the image of h. We let g be the complex Lie
algebra of GSp,. We have the Cartan decomposition g = €@ p. Since ¢ is also the complex
lie algebra of Mg;, the representation V(y, 11 2. can also be viewed as a representation of
t and K. Let W be a (g, Ko )-module. Then one can define the (p, K )-cohomology of
W, denoted by H®(p, Koo; W) (see [28], sect. 4.1.1).

Theorem 15.2.2.1 ([4], thm. 3.2.1, sect. 4.2). — 1. We have
7 Hl<p7 KOO;W(A)h(@‘/()\lJrl,Z;C)) =Cifi=0and Hl<p7 KOO;T((A)h®‘/()\1+1,2;C)) =0
otherwise. '
7 Hl<p7 KOO;T((A)9®‘/()\1+1,2;C)) =Cifi=1and H’L(p,Koo; 7‘—()‘)9@)‘/()\1—1—1,2;0)) =0
otherwise.

2. There is a constant R such that if Ay > R and 7o in an irreducible, essentially
unitary representation of GSp,y(R) and
7 Zf Ho(vaOO; Too & ‘/(/\1+1,2;c)) 7& 0 then mog =~ W()‘)h:
— if HY(p, Koo; Too @ Viai+1,2i)) # 0 then oo = w(A)9.

15.2.3. Representing cohomology classes by automorphic forms. — We let Sk be the
Siegel threefold of level K over C. We fix a toroidal compactification S}?’TE of Sk. Recall
that A = (A\1,0;¢) € X(T)+(2,1;0). We set k = A\; — 1. We also fix the central character
¢ to be —A; + 3. This the “correct” normalization for the Hecke operators. We denote by

W(S}?TE, Q*2)) the image of Hi(Sﬁg"E, Q2 (D)) in Hi(S}‘(”"E, Qk:2)),

Theorem 15.2.3.1 ([28], coro. 5.3.2). — For every integer k > R — 1 (see thm.
15.2.2.1, 2.), we have
"

w0 or m(m
0 (512, Q%) = @ (rf )" (r)

where m¢ runs over all irreducible admissible representations of GSpy(Ay) such that

7 @ m(A)" is cuspidal automorphic and m"(ws) is the multiplicity of mp @ w(A)".

Similarly,
H (515, Q8) = @, (nfm (70
where m¢ runs over all irreducible admissible representations of GSpy(Ayf) such that
m @ w(N)9 is cuspidal automorphic and m9(ws) is the multiplicity of wr @ w(A)9.
FemA) p P f plicity of 7y

We fix an isomorphism @p ~ C. Thanks to this isomorphism, we can make sense of
the localized cohomology groups H%S}?TE, QF2 (—D))p.

Corollary 15.2.3.1. — For k> R — 1, we have

a mh s
HO (51, QED (—D))yy = @ (k)" (1)
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where m¢ runs over all irreducible admissible representations of GSpy(Af) such that Ty ®
(M) is cuspidal automorphic and m"(ry) is the multiplicity of 7 @ T(A\)" and the char-
acter O, : HNP — C is congruent to Op,.
Similarly,
HY (512, Q42(- D)) = @, ()70
where Ty runs over all irreducible admissible representations of GSpy(Ay) such that 7y ®
m(A)9 is cuspidal automorphic and m9(my) is the multiplicity of mf @ w(X)? and the char-
acter @ﬂf : HNP — C is congruent to Op,.

Proof. In order to deduce the corollary from theorem 15.2.3.1, we need to prove that
the natural map H'(S%2%,, Q#2) (—D)), — H' (%%, Q%2)) is injective. We have a short
exact sequence :

HO(S%,TEa Q(k’r)) — HO(S?,TXH Q(k,r) ® ﬁD) — Hl(Sigrv Q(k:,r)(_D))

We shall prove that the cohomology group HO(S%TE, Q%2 @ Op)y is zero. Let Sy be the
minimal compactification. Recall that there is a stratification

=5k [[5¢ s
tor

where Sg)’* = Sg) HS}?) is a union of compactified modular curves. Let 7 : S, —

S% be the projection. There is an induced projection D — Sg)’*. One computes that

1 QF2|p = W2 (—cusp) if k # 0 and w? when k = 0, where w**? is the usual sheaf of
modular forms of weight k£ + 2 on the modular curve.

Let ¢ be a prime that is prime to the level K. We let T; 9 be the corresponding
Hecke operator. We let Ty be the usual Hecke operator on modular forms for the group
GL2/Q. On HO(Sﬁ‘(’fE,Q(,ﬁ,z) ® Op) ~ HO(Sg)’*,wk”(—cusp)) (resp. =~ HO(Sg)’*,wQ) if
k = 2), we have the formula Tyo = 2Ty by [20], IV, satz 4.4. Let f be an eigenform
in HO(SS)’*,w’”Q), with associated Galois representation py : Gg — GL2(Q,). Then,
associated to the character O : HNP @p, we have the reducible 4-dimensional Galois

representation py & py which is not congruent to p.
O

15.2.4. An application of Arthur’s results. — We use here Arthur’s classification for GSp,
as announced in [1].

Proposition 15.2.4.1. — Let 7y be an admissible irreducible representation of G(Ay)
which is unramified at primes £ not dividing Np. Let Or, : HNP @p be the associated
character of the Hecke algebra. Assume thal Oy, is congruent to On. Let A = (A1,05¢) €
X(T) + (2,1;0) with Ay > 0.

Then mr@m(A)" is automorphic if and only if 7@ (N)Y is automorphic and moreover,
mh(mp) =md(my) = 1.

Proof. Assume that m; ® m(\)" is automorphic (the argument would be the same if we
assumed that 7y ® m(A\)¢ is automorphic). Let II be the associated global A-packet. We
claim that II is of generic type in the sense of [1], classification theorem on p. 78. Hence
IT is stable and tempered. It follows that I, is an L-packet, and this is {m()\)?, 7(\)"}
(see [4], prop. 5.3.7). The conclusion follows. In order to see that II is of generic type, we
first observe that since m(\)" is a limit of discrete series, then II can either be of generic,
Yoshida or Saito-Kurokawa type (compare [64], sect. 1.1 and 1.2 with the description
of the parameters attached to m(\)" in [63], p.11). In the last two cases, the associated
Galois representation is reducible, while p is irreducible.



92 Higher coherent cohomology and p-adic modular forms of singular weight

O
15.2.5. Proof of theorem 15.2.1. — 1In order to prove the theorem, we can specialize at a
very large weight k. Then fRF(%IZ{}i(p), F* 2w (—D))m @1 Qp = eRI(Xf¢, QB2 (= D))y
by theorem 11.3.1. The cohomology is concentrated in degree 0 and 1. Extending the

scalars to @p we can express the cohomology in automorphic terms using corollary 15.2.3.1
and proposition prop 15.2.4.1 :

eH'(X i, Q5 (=D))m © Qp = Brje(f) = eH' (Xg, Q52 (-D))m © Q,
where 7¢ runs over all irreducible admissible representations of GSp,(A¢) such that 7; ®
7(A\)" is cuspidal automorphic, the character ©, = HNP 5 C is congruent to Oy. The

. K,
projector e acts on ), .
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