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Abstract. — We investigate the p-adic properties of higher coherent cohomology of auto-
morphic vector bundles of singular weight on the Siegel threefolds.
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1. Introduction

In this paper we investigate the theory of p-adic families of automorphic forms for the
group GSp4/Q whose component at infinity has singular Harish-Chandra parameter and
is a non-degenerate limit of discrete series. The automorphic forms we consider can be
realized in the coherent cohomology of an appropriate automorphic vector bundle over a
Siegel threefold ([26]). The Siegel threefolds are finite unions of arithmetic quotients of the
three dimensional Siegel upper half space. They have a modular interpretation as moduli
spaces of abelian surfaces with polarization and level structure and they have canonical
models over number fields. Using this coherent realization one can prove that the Hecke
parameters of these automorphic forms are defined over number fields and construct, using
congruences, compatible systems of 4-dimensional Galois representations ([70], [59]).

For the group GL2(R) there is (up to twist by a character) one non-degenerate limit
of discrete series. Automorphic forms with this component at infinity realize in the weight
1 coherent cohomology of the modular curves and correspond to weight 1 modular forms
in the classical terminology. We recall certain special features of weight 1 modular forms
compared to modular forms of weight k ≥ 2 : they don’t occur in the étale cohomology
of a local system of the modular curve; there is no dimension formula for the space of
weight 1 modular forms; they occur in degree 0 and degree 1 coherent cohomology of the
same weight 1 automorphic locally free sheaf; the Galois representations attached to an
eigenform has finite image (and has irregular Hodge-Tate weights (0, 0))...

For the group GSp4(R) there are lots of non degenerate limits of discrete series (even
modulo twist by a character). Their Harish-Chandra parameter lies on certain walls
of the character space of a maximal torus of the derived group Sp4, and these walls
are 1 dimensional ! If π is an automorphic form on GSp4 with component at infinity
one of these non degenerate limits of discrete series, the associated compatible system
of Galois representations has (conjectural) Hodge-Tate weights of the form (k + 1, k +
1, 0, 0) or (k + 1, 0, 0,−k − 1) for k ∈ Z≥0, up to twist. In this paper we will only
consider Harish-Chandra parameters which yield Hodge-Tate weights of the form (k +
1, k+1, 0, 0). The corresponding automorphic forms realize in the degree 0 and the degree

1 coherent cohomology of a vector bundle that we denote by Ω(k,2) (and is attached to the
representation SymkSt⊗det2St of the group GL2 which is the Levi of the Siegel parabolic
of Sp4).

We construct p-adic families of (cuspidal) cohomology classes for the sheaves

{Ω(k,2)}k≥0 in degree 0 and 1. To state precisely the theorems, we need some more
terminology. We denote by XK → Spec Zp a toroidal compactification of the Siegel
threefold of level some open subgroup K =

∏
K` ⊂ GSp4(Af ) such that Kp = GSp4(Zp).

We let XKli(p)K → XK be the Klingen moduli space associated to the Klingen parahoric
KKli(p) ⊂ Kp. We denote by D the relative Cartier divisor of the boundary in XK or
XKli(p)K (no confusion should arise). There is an Hecke operator U at p associated to
the double classe KKli(p)diag(1, p, p, p2)KKli(p). Let Λ = Zp[[Z×p ]] be the one dimensional
Iwasawa algebra. For each integer k, there is a map k : Λ → Zp extending the character

z 7→ zk of Z×p .
Our main theorem is :

Theorem 1.1. — There is a perfect complex M of Λ-modules of amplitude [0, 1] such that
for all k ∈ Z≥0 :

M ⊗LΛ,k Qp = RΓ(XKli(p)K ,Ω
(k,2)(−D))ord ⊗LZp Qp
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where the exponant ord means the ordinary part for U . For all k ∈ Z, k > p+ 1 :

H0(M ⊗LΛ,k Qp/Zp) = H0(XK ,Ω
(k,2)(−D)⊗Qp/Zp)ord.

The perfect complex M carries an action of the Hecke algebra and the isomorphisms above
are Hecke equivariant.

We also develop a theory of finite slope families.

Remark 1.1. — In [30], Hida initiated the study of ordinary Betti Cohomology on locally
symmetric spaces associated to GLn over arbitrary number fields F . When n ≥ 3 (or n ≥ 2
and F is not totally real), the non-eisenstein cohomology is concentrated in more than one
degree. To some extent, what we present here is the beginning of a coherent analogue of
this theory. The analogy is that in both situations the interesting cohomology is naturally
supported in several consecutive degree. See the introduction of [9].

The perfect complex M carries an action of the Hecke algebra. For a maximal ideal m
of the Hecke algebra we can consider the direct factor Mm of M obtained by localization.
Our second theorem is :

Theorem 1.2. — If m is a non-eisenstein maximal ideal, the complex Mm has trivial
Euler-Characteristic.

The perfect complex M is obtained as the U -ordinary part of the cohomology of a
huge sheaf of Λ-modules which “interpolates” the sheaves {Ω(k,2)(−D)}k∈Z≥0

. This sheaf

is defined on the open formal subscheme X≥1
Kli(p)K of the p-adic formal scheme XKli(p)K

attached to XKli(p)K where the p-rank of the semi-abelian scheme is at least 1 (and the
universal rank p group scheme is multiplicative). This formal scheme contains strictly the
ordinary locus. Its image in the minimal compactification is covered by two affines, this
explains why the complex M is supported in two degrees.

The interpolation property rests on the special shape of the universal p-divisible group
which contains at least a one dimensional multiplicative group.

Before taking the ordinary part, the cohomology is enormous. The U -ordinary part
cuts the perfect complex inside this enormous cohomology. There is a heuristic explanation
for this. Over the complement of X≥1

Kli(p)K (the supersingular locus), one can prove that

the U -operator acts topologically nilpotently on the sheaf Ω(k,2), when k is large enough.
This comes form the following observation. Let λ : A → A′ be an isogeny of “type” U
between two abelian surfaces defined over a discrete valuation ring OK . If A and A′ have
supersingular reduction, one showes that the isogeny on the reduction factors through the
Frobenius map of A. As a result, the differential of the isogeny dλ : ωA′ → ωA has to
vanish modulo the maximal mK of OK . This property is special to the supersingular locus.

Making this heuristic argument work requires some efforts. One of the difficulties is
to make sense of the Hecke operator U on the integral cohomology. We first need to define
the correspondence underlying the U operator integrally. The formulation of the moduli
problem is difficult because it involves the p2 torsion of the universal abelian variety (the
co-character of the torus of GSp4 underlying the double class is not minuscule). Our
approach is to use the factorization diag(1, p, p, p2) = diag(1, p, p, p).diag(1, 1, 1, p) and
factor accordingly the correspondence into two correspondences U1 and U2. The moduli
problems underlying U1 and U2 can be defined integrally, and the moduli spaces can
even be described locally using the local model theory. There is another difficulty. The
correspondences are not finite flat over the Siegel threefold. Defining the necessary trace
maps in cohomology requires some results from Grothendieck-Serre duality in coherent
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cohomology. There is also a subtle normalization issue. But luckily, all this can be
resolved.

Having defined the Hecke operator U , we are able to prove an integral control theorem
for k >> 0 :

H0(M ⊗LΛ,k Zp) = H0(XK ,Ω
(k,2)(−D))ord.

and to show that M is a prefect complex.
It seems very hard to obtain an integral control theorem for all k ≥ 0. We will

nevertheless be able to obtain a control theorem after inverting p by an indirect method.
Over Qp, we can construct an overconvergent version M † of M , obtained by taking the

ordinary part for U of some overconvergent cohomology of the analytic fiber X≥1
Kli(p)K

of X≥1
Kli(p)K with value in a huge Banach sheaf. We observe that U is compact on this

cohomology. We can actually develop a theory of finite slope families.
By construction, there is a map M † →M ⊗LZp Qp which is easily seen to be injective

on H0 and surjective on H1. This is a “degeneration” of the classical statement that all
ordinary p-adic modular forms are overconvergent.

With finite slope overconvergent cohomology classes, we can adapt the argument of
analytic continuation and gluing of [35] and prove that small slope cohomology classes are
classical. In the ordinary case, we obtain that for all k ≥ 0 :

M †|k = RΓ(XKli(p)K ,Ω
(k,2)(−D))ord ⊗LZp Qp.

Combining everything, we deduces that the map M † → M ⊗LZp Qp is a quasi-

isomorphism at weights k >> 0 and then at all weight k ≥ 0 by some elementary dimension
argument.

The cohomology M ⊗LΛ,k Zp is thus an integral modification of the cohomology

RΓ(XKli(p)K ,Ω
(k,2)(−D))ord. There is a quasi-isomorphism after inverting p but the

torsion may be different. A very important feature is that M ⊗LΛ,k Zp is concentrated in
degree 0 and 1.

In [31] and [3] a theory of p-adic modular forms in coherent cohomology is developped
for all weights. This means that we consider all possible automorphic vector bundles
Ω(k,r)(−D) for (k, r) ∈ Z≥0 × Z coming from the representations SymkSt ⊗ detrSt of the
group GL2. In this theory, only the degree 0 cohomology is interpolated. Let Λ2 be the two
dimensional Iwasawa algebra. For each pair (k, r) ∈ Z≥0×Z we can define a specialization
morphism (k, r) : Λ2 → Zp. The main theorem of [31] for the group GSp4 (using also the
results of [58]), states that there exists a finite free Λ2-module M ′ such that :

1. for all (k, r) ∈ Z≥0 × Z we have M ′ ⊗Λ2,(k,r) Zp = H0(X≥2
Kli(p)K ,Ω

(k,r)(−D))ord
′
,

2. for all (k, r) ∈ Z≥0 × Z≥4, H0(X≥2
Kli(p)K ,Ω

(k,r)(−D))ord
′

is a space of classical
modular forms of Iwahori level at p.

In this theorem, X≥2
Kli(p)K is the ordinary locus in X≥1

Kli(p)K and ord′ means
the ordinary part for the usual ordinary idempotent attached to the diagonal matrix
diag(1, p, p2, p3) ∈ GSp4(Qp). The control theorem holds for weights (k, r) with r ≥ 4.
One can sometimes (after making some localization) improve the control theorem to r ≥ 3
which is exactly the condition under which the corresponding automorphic forms are
discrete series at infinity.

When we specialize M ′ at singular weights we cannot expect to have a good classic-
ity theorem : we can attach p-adic Galois representations to eigenforms in M ′|(k,2) but
these Galois representations may not be de Rham at p. It should be true that classical
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eigenforms in M ′|(k,2) are exactly those with de Rham associated Galois representation
but unfortunately we don’t know how to establish this directly.

On the other hand, eigenforms in H0(M |k) correspond to classical automorphic forms
and one often knows that their associated Galois representation is de Rham ([50], prop.
4.16). There is a natural injective map H0(M |k) → M ′|(k,2). It should actually be true
that the sub-space of M ′|(k,2) spanned by eigenforms with de Rham associated Galois

representations is “generated” by the image of H0(M |k).

It is conjectured that for every simple abelian surface A over Q, there should ex-
ist a cuspidal automorphic form π on GSp4/Q such that the spin L-function of π and
the L-function of H1(A) coincide. When End(A) 6= Z this is known ([78], [39]). See
[8] for a precise conjecture in the case End(A) = Z. These automorphic forms are of
the type we have considered so far as there component at infinity should be a limit of
discrete series and they should realize in the cuspidal coherent cohomology of the sheaf
Ω(0,2). In [57] we were able to prove a modular lifting theorem saying, under many tech-
nical assumptions, that an abelian surface whose associated p-adic Galois representation
is residually modular arises from a p-adic modular form. In that paper, our Taylor-Wiles
system was constructed by letting Galois deformation rings act on the module of ordinary
p-adic modular forms H0(X≥2

Kli(p)K ,Ω
(0,2)(−D))ord

′
. Congruences are unobstructed for or-

dinary p-adic modular forms, while they are for classical modular forms in weight (0, 2)
because of the non vanishing of H1. The classical Taylor-Wiles method requires unob-
structed congruences. The draw back is that we don’t know how to characterize classical
modular forms among ordinary p-adic modular forms in weight (0, 2). In [9] and [10],
Calegari-Gergaghty explained how to modify the Taylor-Wiles method in order to apply it
in obstructed situations. They could prove a better (but conditional) modular lifting the-
orem saying, under technical conditions, that an abelian surface whose associated p-adic
Galois representation is residually modular arises from a weight (0, 2) modular form by let-

ting the Galois deformation ring act on some localization of H0(XK ,Ω
(0,2)(−D)⊗Qp/Zp)

provided one could show that the localized cohomology vanishes in degree greater or equal
than 2. Unfortunately, nobody has been able to establish this vanishing for the moment.
As a replacement of H0(XK ,Ω

(0,2)(−D) ⊗ Qp/Zp), we suggest to use H0(M ⊗LΛ,2 Qp/Zp)
where M is the complex provided by theorem 1.1. The point is that p-divisible classes
in H0(M ⊗LΛ,2 Qp/Zp) do come from cohomology classes in H0(XKli(p)K ,Ω

(0,2)(−D)) and
thus from classical automorphic forms. This strategy will be employed in a future joint
work with G. Boxer, F. Calegari and T. Gee.

This paper is organized in four parts. The first part is preliminary. We study the
existence of projectors on complexes of modules. This will be used to define ordinary
projector on cohomology. We present certain technical results on the cohomology of the
sheaf OX+ on an adic space. These are only used in section 14. We also develop a formalism
of cohomological correspondences that is adapted to our situation. Finally we recall some
results concerning automorphic forms and Siegel threefolds over C.

The second part of the this work is dedicated to the construction of the perfect
complex M of theorem 1.1. The definition of the complex itself is not so difficult, but
establishing that it is a perfect complex involves a delicate study of the correspondences
in characteristic p.

The third part is dedicated to complete the proof of theorem 1.1 and establishing
the control theorem in weight k ≥ 0. The argument is indirect as we have to use over-
convergent cohomology. Most of this part is dedicated to develop a theory of finite slope
overconvergent cohomology. In some sense this is easier than the integral slope zero theory:
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we can prove that U is compact and the finiteness of the finite slope cohomology follows
easily. There is nevertheless the delicate problem of proving that the cuspidal cohomology
is concentrated in degree 0 and 1. Finally we show that small slope cohomology classes
are classical. We use the method of [35], but need to rephrase it at the sheaf level (one
cannot glue higher cohomology classes).

In the fourth part we prove that the Euler-Characteristic of a non-eisenstein localiza-
tion of our perfect complex is zero by using results of Arthur in the theory of automorphic
forms.

I thank G. Boxer for suggesting that there should exist a theory of p-adic modular
forms for singular weights. The author attended a workshop in McGill Bellairs research
institute in 2014 where F.Calegari and D. Geraghty explained their modified Taylor-Wiles
method (now available in [10]). This was a motivation for developing a theory of p-
adic modular forms on higher cohomology. We are pleased to thank the organizers and
speakers of this workshop. I thank N. Fakhruddin for inviting me to the Tata institute and
for helping me to define Hecke operators. In a forthcoming joint work, we will study the
problem of defining Hecke operators on the integral coherent cohomology of more general
PEL Shimura varieties. I thank G. Chenevier for his help with section 15.2.4. I thank G.
Boxer, F. Calegari, T. Gee, B. Stroh, A. Weiss and L. Xiao for interesting discussions and
feedback. I thank J. Tilouine who introduced me to the modularity conjecture of abelian
surfaces. This research is supported by the ANR-14-CE25-0002-01.

PART I

PRELIMINARIES

2. Some algebra

In this section, R is a complete local noetherian ring with maximal ideal mR. We
assume moreover that R/mR is a finite field.

2.1. Locally finite endomorphisms. — Let Modcomp(R) be the category of mR-
adically separated and complete R-modules. Let M be an object of Modcomp(R). Let
T ∈ EndR(M).

Definition 2.1.1. — The action of T on M is locally finite if for all n ∈ N and all
v ∈M/mn

R, the elements {T kv}k∈N generate a finite R/mn
R sub-module of M/mn

R.

Thus, the action of T on M is locally finite if for all n ∈ N, M/mn
R can be written as

an inductive limit of finite and T -stable R-modules.

Lemma 2.1.1. — Let 0→ M1 → M2 → M3 → 0 be an exact sequence in Modcomp(R).
Let T be a R-linear homomorphism acting equivariantly on M1, M2 and M3.

1. If the action of T is locally finite on M3 and M1, it is locally finite on M2.

2. If the action of T is locally finite on M2, it is locally finite on M3.

3. If there exists n ∈ N such that mn
R.M2 = 0 and if T is locally finite on M2, then it

is locally finite on M1.
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Proof. Point 2 and 3 are obvious. We check 1. For all n ∈ N, we have an exact sequence:

M1/m
n
R →M2/m

n
R →M3/m

n
R → 0

Let M be the image of M1/m
n
R in M2/m

n
R. The action of T on M is locally finite by 2.

Let v ∈ M2. Since T is locally finite on M3, there is N ∈ N, w ∈ M , a0, · · · , aN−1 ∈ R
such that TNv = w +

∑N−1
i=0 aiT

iv. Since T is locally finite on M , there is N ′ ∈ N,

b0, · · · , bN ′−1 ∈ R such that TN
′
w =

∑N ′−1
j=0 bjT

jw. The sub-module of M2/m
n
R generated

by {T iv, T jw, 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N ′ − 1} is stable under the action of T .

Lemma 2.1.2. — Let M be an object of Modcomp(R) and let T be an endomorphism of
M . The action of T on M is locally finite if and only if it is on M/mR.

Proof. We prove it by induction on n. Consider the exact sequence :

mn−1
R /mn

R ⊗RM →M/mn
R →M/mn−1

R → 0

By assumption, the action is locally finite on M/mn−1
R and on mn−1

R /mn
R ⊗RM . It is also

on mn−1
R M/mn

R and finally on M/mn
R by the above lemma.

Lemma 2.1.3. — Assume that T acts locally finitely on an object M of Modcomp(R).
Then there is a unique projector e ∈ EndR(M) such that :

1. For all v ∈ M , ev = limN→∞ T
N !v where the limit is computed for the mR-adic

topology.

2. e and T commute, we have a T -stable decomposition M = eM ⊕ (1− e)M where
T is bijective on eM and topologically nilpotent on (1− e)M .

Proof. We reduce to the situation where M is a finite R/mn
R-module for some n. Then

M is a finite set and we claim that the sequence {TN !v} is constant for N large enough.
Indeed, the decreasing sequence of modules TN !M is stationnary for N ≥ N0. On TN0!M ,
T acts bijectively, hence has finite order. As a result the projector e is well defined and
all the properties are easily deduced.

2.2. Perfect complexes. — The category Modcomp(R) is not abelian but it is exact
(see [42], def. 1.0.2). Let Dcomp(R) be the associated derived category ([42], p. 259). Let
Cflat(R) be the category of bounded complexes of mR-adically complete and separated,
flat R-modules with morphisms the morphisms of complexes of degree 0. Let Kflat(R) be
the associated homotopy category. Its objects are the same as Cflat(R) but morphisms
are homotopy classes of morphisms in Cflat(R). Let Dflat(R) be the full subcategory
of Dcomp(R) generated by bounded complexes of flat, complete R-modules. There is a
canonical functor Kflat(R)→ Dflat(R) and this functor is an equivalence of category (see
[42], cor. 2.2.3). We denote by Cperf (R) the full sub-category of Cflat(R) of complexes
of finite free R-modules, by Kperf (R) the homotopy category. Let Dperf (R) be the full
subcategory of Dcomp(R) generated by bounded complexes of finite free R-modules. The
functor Kperf (R) → Dperf (R) is an equivalence of category. The following propostion
gives a caracterisation of Dperf (R) inside Dcomp(R).

Proposition 2.2.1. — Let M• be an object of Cflat(R), concentrated in degree [a, b].
Assume that M•⊗RR/mR has finite cohomology groups. Then M• is quasi-isomorphic to
a perfect complex concentrated in degree [a, b].

Proof. We have short exact sequences of complexes

0→ mn
R/m

n−1
R ⊗RM• →M•/mn

R →M•/mn−1
R → 0
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and by induction, we deduce easily that the cohomology groups Hi(M•/mn
R) are finite

R/mn
R-modules. As a result, the system {Hi(M•/mn

R)} satisfies the Mittag-Leffler condi-
tion. By [EGA], III, chap. 0, prop. 13.2.3, we deduce that Hi(M•) = limn Hi(M•/mn

R).
It follows that Hi(M•) is complete and separated. The map Hi(M•)→ limn Hi(M•)/mn

R

is an isomorphism. In order to show that Hi(M•) is a finite R-module, it is enough to
prove that Hi(M•)/mR is a finite R-module by topological Nakayama’s lemma.

Recall that there is a spectral sequence

Ep,q2 = TorR−p(H
q(M•), R/mR)⇒ Hp+q(M• ⊗R R/mR)

with d2 : Ep,q2 → Ep+2,q−1
2 .

We prove by descending induction on i that Hi(M•) is a finite R module. As-
sume this holds for i ≥ n + 1 and let us prove it for i = n. The map Hn(M•)/mR →
Hn(M•/mR) has a kernel which admits a surjective map from subquotients of the modules
Torr+1(Hn+r(M•), R/mR) for r ≥ 1. There are only finitely many values of r for which
these modules are non-zero and all are finite dimensional by the induction hypothesis. It
follows that the kernel is finite dimensional and thus Hn(M•)/mR is also finite dimensional
and Hn(M•) is a finite R-module by Nakayama’s lemma. By [51], lem. 1, p. 44, we deduce
that M• is quasi-isomorphic to a perfect complex concentrated in degree [a, b].

The following is a version of Nakayama’s lemma for complexes.

Proposition 2.2.2. — Let f : M• → N• be a map in Cflat(R). We assume that f ⊗ 1 :
M• ⊗R R/mR → N• ⊗R R/mR is a quasi-isomorphism. Then f is a quasi-isomorphism.

Proof. Consider the cone C(f) of the map f . We need to prove that C(f) is acyclic. C(f)
is an object of Cflat(R) and C(f)⊗R R/mR is the cone of f ⊗ 1 and is acyclic. It follows
from the previous proposition that C(f) is quasi-isomorphic to a perfect complex and
thus, the groups Hi(C(f)) are finite R-modules. We now prove by descending induction
on i that Hi(C(f)) = 0. Assume this holds for i ≥ n + 1. Using the spectral sequence
Ep,q2 = TorR−p(H

q(M•), R/mR) ⇒ Hp+q(M• ⊗R R/mR) we see that Hn(C(f))/mR ↪→
Hn(C(f)/mR) = 0. By Nakayama’s lemma, we deduce that Hn(C(f)) = 0.

2.3. Projectors. — We now consider projectors on complexes.

Definition 2.3.1. — Let M• ∈ Cflat(R). Let T ∈ EndCflat(R)(M
•). We say that T is

locally finite on M• if T acts locally finitely on each M i.

By lemma 2.1.3, we can attach to T a projector e ∈ EndCflat(R)(M
•). In general,

an endomorphism homotopic to a locally finite endomorphism is not locally finite. Let
T0 and T1 be two homotopic locally finite endomorphisms of a complex M• ∈ Cflat(R).
Let e0 and e1 be the associated projectors. We don’t know if the projectors e0 and e1 are
homotopic.

Lemma 2.3.1. — In the above situation, the canonical map e0M
• → e1M

• is a quasi-
isomorphism.

Proof. Consider the identity maps : e0Hi(M•/mR) ⊕ (1 − e0)Hi(M•/mR) →
e1Hi(M•/mR)⊕ (1− e1)Hi(M•/mR). We show that the associated map e0Hi(M•/mR)→
(1− e1)Hi(M•/mR) is 0. The operator T on e0Hi(M•/mR) is locally finite and bijective.
The operator T on (1−e1)Hi(M•/mR) is locally finite and locally nilpotent. The associated
map has to be 0. Similarly, one proves that the map (1−e0)Hi(M•/mR)→ e1Hi(M•/mR)
is 0. It follows that the map e0Hi(M•/mR) → e1Hi(M•/mR) is bijective. By proposition
2.2.2 we see that the map e0M

• → e1M
• is a quasi-isomorphism.
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Definition 2.3.2. — Let M• ∈ Dflat(R). Let T ∈ EndDflat(R)(M
•). We say

that T is locally finite if there exists M•0 ∈ Cflat(R) a representative of M• and
T0 ∈ EndCflat(R)(M

•
0 ) a representative of T which is locally finite.

The following is a characterization of locally finite morphisms.

Proposition 2.3.1. — Let M• ∈ Dflat(R). Let T ∈ EndDflat(R)(M
•). Then T is locally

finite if and only if T is locally finite on the cohomology groups Hi(M• ⊗LR R/mR).

Proof. The implication that if T is locally finite it is locally finite on Hi(M• ⊗LR R/mR)
follows from lemma 2.1.1. We do the other implication. We first claim that M• has a
representative N• ∈ Cflat(R) such that all the differentials d : N i → N i+1 are 0 modulo
mR. The argument is a straightforward generalization of lemma 3.2 of [38]. Let L• be a
representative of M•. Fix some index i. We can find decompositions Li = J i ⊕Ki and
Li+1 = J i+1 ⊕Ki+1 such that d : Li → Li+1 preserves these decompositions and induces
isomorphisms J i → J i+1 and the zero map Ki/mR → Ki+1/mR. It is easy to check that
we get a sub-complex S• of L• by setting Sj = Lj if j 6= i, i+1 and Sj = Kj if j ∈ {i, i+1}.
This sub-complex is quasi-isomorphic to L• and the differential d : Si → Si+1 vanishes
modulo mR. Repeating the process for all indices will produce a complex N• with the
expected property. The map T can be represented by an endomorphism T0 of N•. Since
T0 is locally finite on Hi(M•⊗LRR/mR) = N i/mR, we deduce from lemma 2.1.2 that T0 is
locally finite.

Let M• ∈ Dflat(R) and T ∈ EndDflat(R)(M
•) be a locally finite endomorphism. For

each locally finite representative M•0 ∈ Cflat(R) of M•, and T0 ∈ EndCflat(R)(M
•
0 ) of

T , we get a projector e0 ∈ EndCflat(R)(M
•
0 ) and a direct factor e0M

•
0 of e0. We can

consider ē0 the image of e0 in EndDcomp(R)(M
•) and the associated direct factor ē0M

• of
M• in Dcomp(R), which is represented with e0M

•
0 . We don’t know if ē0 is independant

of the choices, but the direct factor ē0M
• of M• is. Indeed, if ē1 is another projector

obtained by taking other representatives, it follows from lemma 2.3.1 that the canonical
map ē0M

• → ē1M
• is a quasi-isomorphism. In the sequel of the paper we will sometimes

speak of the projector associated to a locally finite endomorphism, but one should keep in
mind this non-uniqueness issue.

Remark 2.3.1. — In [38], lem. 2.12, there is a definition of the ordinary projector
attached to an element T ∈ EndDcomp(R)(M

•) in the case where M• is an object of

Dperf (R). In this setting, the condition of being locally finite is automatically satisfied.
Our definition in a more general setting is compatible with the definition of op. cit.. It is
proven in op. cit. that the projector is unique. This rests on the property that the algebra
EndDcomp(R)(M

•) is finite over R when M• is a perfect complex.

3. Cohomological preliminaries

3.1. Cohomology of O+
X . — Let k be a complete non-archimedean field with ring of

integers Ok and maximal ideal mOk . In this section, we will only consider adic spaces
X over Spa(k,Ok) which are of finite type (in particular quasi-compact), and separated.
The structural sheaf of X is denoted by OX . There are a subsheaves O+

X and O++
X of OX

defined by

O+
X (U) = {f ∈ OX (U), ∀x ∈ U |f |x ≤ 1} and O++

X (U) = {f ∈ OX (U), ∀x ∈ U |f |x < 1}
for all open subsets U of X . If U = Spa(A,A+) for a complete Tate algebra topologically of
finite type, and A0 denotes the subring of A of power bounded elements, and A00 the ideal
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of A0 of topologically nilpotent elements, then O+
X (U) = A+ = A0 and O++

X (U) = A00

([32], lem. 4.4).
Let X be a formal scheme which is topologically of finite type over Spf Ok. Let X̄

be its special fiber over Spec Ok/mOk and X̄red the reduced special fiber. There is a
surjective map of coherent sheaves over X : OX → OX̄red and we denote by IX its kernel.
If X has reduced special fiber then IX = mOkOX.

Proposition 3.1.1. — Let X be a separated adic space of finite type. The natural maps

Hi
Ch(X ,O+

X )→ Hi(X ,O+
X )

and

Hi
Ch(X ,O++

X )→ Hi(X ,O++
X )

from Chech cohomology to cohomology are isomorphisms.

Proof. There is an isomorphism in the category of locally ringed spaces (X ,O+
X ) =

limX(X,OX) where X runs over all formal models of X (see [65], thm. 2.22). By [17],
prop. 3.1.10, we deduce that Hi(X ,O+

X ) = limX Hi(X,OX). Since X is quasi-compact, one
can compute Chech cohomology using only finite coverings (see [24], p. 224). It follows
that Hi

Ch(X ,O+
X ) = limX Hi

Ch(X,OX). Since X is separated, the formal models X are

separated ([7], prop. 4.7) and Hi(X,OX) = Hi
Ch(X,OX). The second isomorphism follows

along similar lines.

We now recall a result of Bartenwerfer.

Theorem 3.1.1 ([2]). — Let X be a smooth affinoid adic space of finite type. For all
i > 0, Hi(X ,O+

X ) is annihilated by a non-zero element c(X ) ∈ Ok. If X admits a smooth

affine formal model, then Hi(X ,O++
X ) = 0 for all i > 0.

Remark 3.1.1. — We do not known whether Hi(X ,O+
X ) = 0 for affinoids which admit

a smooth affine formal models. For some results in dimension 1, see [76] sect. 3.

Corollary 3.1.1. — Let X be an admissible smooth and separated formal scheme. Let X
be its generic fiber. Then the canonical map Hi(X,mOkOX)→ Hi(X ,O++

X ) is an isomor-
phism.

Proof. Take an affine covering U of X. The cohomology of mOkOX is computed by Chech
cohomology with respect to this covering : Hi(X,mOkOX) = Hi

U(X,mOkOX). Let U be
the generic fiber of U. Let V be an open in X with generic fiber V. Since X is smooth,
mOkOX(V) = O++

X (V). We deduce that Hi
U(X,mOkOX) = Hi

U (X ,O++
X ). By [24] corollaire

on page 213 and theorem 3.1.1, we have Hi
U (X ,O++

X ) = Hi(X ,O++
X ).

3.2. Cohomology of projective limits of sheaves. — We denote by p a topologically
nilpotent unit in k.

Lemma 3.2.1. — Let X be a smooth affinoid adic space. The map Hi(X ,OX ) →
limn Hi(X ,OX /pnO+

X ) is an isomorphism.

Proof. First assume that i > 0. We need to prove that limn Hi(X ,OX /pnO+
X ) = 0.

Using the exact sequence 0 → pnO+
X → OX → OX /p

nO+
X → 0 and theorem 3.1.1, we

deduce that Hi(X ,OX /pnO+
X ) is annihilated by some constant c ∈ Ok \ {0} if i > 0. It

follows that limn Hi(X ,OX /pnO+
X ) is annihilated by c. On the other hand, this group is p-

divisible. It follows that it vanishes. The cokernel of the map H0(X ,OX )/pnH0(X ,O+
X )→

H0(X ,OX /pnO+
X ) is killed by c. It follows that the map limn H0(X ,OX )/pnH0(X ,O+

X )→
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limn H0(X ,OX /pnO+
X ) is surjective : its cokernel is killed by c and both sides are p-

divisible. On the other hand, H0(X ,OX ) is a Banach space and, since X is reduced,
H0(X ,O+

X ) is bounded inside this Banach space. It follows that ∩npnH0(X ,O+
X ) = {0}.

Let F be a locally free sheaf of OX -modules. We assume that there exists F+ ⊂ F
a locally free sheaf of O+

X -modules such that F = F+ ⊗O+
X

OX .

Lemma 3.2.2. — Assume that X is a smooth and separated adic space. Let U be a finite
affinoide covering of X , such that F+|U is trivial. There is a non-zero element c ∈ Ok
depending on U such that :

— the map Hi
U (X ,F/pnF+)→ Hi(X ,F/pnF+) from Chech cohomology relative to

U to cohomology has kernel and cokernel annhiliated by c,
— the map Hi

U (X ,F+)→ Hi(X ,F+) has kernel and cokernel killed by c,
— the map limn Hi

U (X ,F/pnF+)→ limn Hi(X ,F/pnF+) has kernel killed by c and
is surjective.

Proof. Considering the spectral sequence associated to the covering
∐
Ui∈U Ui → X , we

deduce that the kernel and cokernel of the maps Hi
U (X ,F/pnF+) → Hi(X ,F/pnF+)

are sub-quotients of Hk(UJ ,F/pnF+) for k > 0 and UJ some intersection of the affinoids
in U . As a result, both the kernel and cokernel are killed by some non-zero constant
c. The same applies to the map Hi

U (X ,F+) → Hi(X ,F+). It follows that the map
limn Hi

U (X ,F/pnF+) → limn Hi(X ,F/pnF+) has kernel killed by c. Let us prove that
the cokernel is killed by c2. Since both modules are p-divisible, this will show the surjectiv-
ity. Let (fn) ∈ limn Hi(X ,F/pnF+). Then for all n, there exists gn in Hi

U (X ,F/pnF+)
such that the image of gn is cfn. One sees that (cgn) ∈ limn Hi

U (X ,F/pnF+) has image
(c2fn).

Proposition 3.2.1. — Let X be a smooth and separated adic space. The map

Hi(X ,F )→ lim
n

Hi(X ,F/pnF+)

is surjective. If X is proper, the map is an isomorphism.

Proof. Let U be a finite affinoide covering of X , such that F+|U is trivial. The map
limn Hi

U (X ,F/pnF+)→ limn Hi(X ,F/pnF+) is surjective. To prove the surjectivity of
the map of the proposition, it suffices to show that the map Hi(X ,F ) = Hi

U (X ,F ) →
limn Hi

U (X ,F/pnF+) is surjective. Since all groups are p-divisible it is enough to prove
that the cokernel is killed by some non-zero element c ∈ OK . This follows from the lemma
below where K• is the Chech complex which computes Hi

U (X ,F ) and K•α is the complex
that computes Hi

U (X ,F/pαF+). The fact that K• is the limit of the K•α is a consequence
of lemma 3.2.1.

We now prove injectivity in case X is proper. The kernel of the map is

∩pnIm(H i(X ,F+)→ Hi(X ,F )).

Since Hi(X ,F ) is a finite dimensional Qp-vector space, we need to show that

Im(Hi(X ,F+)→ Hi(X ,F ))

is a lattice. This will follow if we can show that that H i(X ,F+) is the sum of a finite
type Ok-module and a torsion group. This can be proved as follows. Take a normal
proper formal model X of X such that the sheaf F+ comes from a sheaf F on X. We
can obtain such a model as follows. By Raynaud’s theory, we can find a model X′ of X
which admits an affinoid covering U′ whose generic fiber refines U . The sheaf F+ comes
from a sheaf F on X′. We can then replace X′ by its normalisation X in X . This is still
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a formal model. By [48], lemma 2.6, this model is automatically proper. Let V be an
affine covering of X and V be its generic fiber. We have a map from Cech cohomology to
cohomology Hi

V(X ,F+)→ Hi(X ,F+) whose kernel and cokernel are killed by a non-zero
constant c. The cohomology Hi

V(X ,F+) is identified with the cohomology Hi(X,F) and
it is a finite Ok-module since X is proper.

Lemma 3.2.3. — Let (K•α)α∈N be a projective system of complexes of Ok-modules. Let
K• = limαK

•
α. Assume that there is an element c ∈ Ok such that the cokernel of the

map Kn → Kn
α is killed by c for all n and α. Then the cokernel of the map Hi(K•) →

limα Hi(K•α) is killed by c.

Proof. For all i we have exact sequences :

0→ Bi(K•α)→ Zi(K•α)→ Hi(K•α)→ 0

Clearly Zi(K•) = limα Z
i(K•α) ↪→ Ki. Let (xα) ∈ limα Hi(K•α). Let zα ∈ Zi(K•α) be a

lift of xα. Let Imα(zα+1) be the image of zα+1 in Zi(K•α). Then Imα(zα+1)−zα = d(wα) ∈
Bi(K•α). Let tα ∈ Ki−1 be a lift of cwα. The sequence (cz0, cz1 +d(t0), cz2 +d(t0 + t1), · · · )
converges in Zi(K•) to a lift of c(xα).

3.3. Base change. — Let f : X → Y be a quasi-compact map of finite type adic spaces
over Spa(k,Ok). Let i : Z → Y be a map of adic spaces over Spa(k,Ok) inducing an
homeomorphism from Z to i(Z) and for all z ∈ Z a bijective map (k(i(z)), k(i(z))+) →
(k(z), k(z)+). We can form the following cartesian diagram :

XZ
i′ //

f ′

��

X

f
��

Z i // Y

Lemma 3.3.1. — For all n ∈ N, the canonical map (i′)−1O++
X /pn → O++

XZ /p
n is an

isomorphism.

Proof. The stalk of these sheaves at a point x ∈ XZ is k(x)00/pn (compare with [65],
prop. 2.25).

Proposition 3.3.1. — We have the base change formula :

i−1Rf?O
++
X /pn = Rf ′?O

++
XZ /p

n

Proof. The sheaf Rif?O
++
X /pn is sheaf associated to the presheaf U 7→ Hi(f−1(U),O+

X /p
n).

Thus, i−1Rif?O
++
X /pn is the sheaf associated to the presheaf V 7→ colimV⊂UHi(f−1(U),O++

X /pn)
where U runs over the neighborhoods of V in Y. Using the lemma above, we de-
duce that Rif ′?O

++
XZ /p

n = Rif ′?i
′−1O++

X /pn is the sheaf associated to the presheaf

V 7→ colimXV ⊂WHi(W,O++
X /pn) where W runs along the neighborhoods of XV in X .

Since the map f is quasi-compact, we deduce that for V a quasi-compact open in Z,
the set of neighborhoods of XV of the form f−1(U) for U a neighborhood of V in Y is
cofinal in the set of all neighborhoods of XV in X .
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3.4. Cohomology of torus embeddings. — Let T be a split torus over Spec Z. We
will denote by T the formal torus over Spf Zp obtained by completion of T along Spec Fp.
We denote by T an → Spa(Qp,Zp) the analytification of T × Spec Qp ( in other words,
T an = Spa(Qp,Zp) ×Spec Q T , see [32], prop. 3.8). We denote by T rig ⊂ T an the generic
fiber of T (see [32], prop. 4.2). Let X?(T ) denote the group of co-characters of T . Let Σ
be a rational polyhedral cone in X?(T ). Let T → TΣ be the associated toroidal embedding

defined over Spec Z ([37]). We define obviously T anΣ , T rigΣ and TΣ. Let Σ′ be a refinement

of Σ. We can similarly define T anΣ′ , T
rig
Σ′ and TΣ′ .

Proposition 3.4.1. — Let f : T anΣ′ → T anΣ be the natural morphism. Assume that Σ′ is
smooth. Then we have a quasi-isomorphism :

O++
TanΣ
' Rf?O

++
Tan

Σ′

Proof. We first observe that the result holds true after inverting p by classical results on
toroidal embeddings (see [37], coro. 1 on page 44) and the comparison theorem stated
in [65], thm. 9.1. It follows easily that O++

TanΣ
' f?O

++
Tan

Σ′
and we are left to prove that

Rif?O
++
Tan

Σ′
= 0 for all i > 0. It suffices to show that Rif?O

++
Tan

Σ′
/p = 0 for all i > 0 since this

will imply that multiplication by p is surjective on Rif?O
++
Tan

Σ′
for all i > 0 and we know

that this sheaf is torsion.
Let x ∈ T anΣ . Let σ ∈ Σ be the minimal cone such that x ∈ T anσ . This means that

x belong to the closed stratum in T anσ . Let σR ⊂ X?(T )R be the R-span of σ. Define
X?(T2) = X?(T ) ∩ σR. This is a sturated sub Z-module of X?(T ). It follows that X?(T2)
is a free Z-module and a direct factor. We choose a direct factor X?(T1). We have
X?(T ) = X?(T1)⊕X?(T2). Let T = T1 × T2 be the associated decomposition of T .

Then we have T anσ ' T an1 × T an2,σ. Moreover, since σ spans X?(T2), we deduce that
the closed stratum of T an2,σ for the action of T an2 is reduced to a point wich we call 0. Then

x = (x′, 0) ∈ T an1 × T an2,σ. Moreover, f−1(T anσ ) ' T an1 × T an2,Σ′′ where Σ′′ is the polyhedral

decomposition (σ ∩Σ′)∩X?(T2). Let f2 : T an2,Σ′′ → T an2,σ be the natural projection deduced

from f . Let f ′2 : x′ × T an2,Σ′′ → x′ × T an2,σ be the map obtained from f2 by base change.
By proposition 3.3.1, we have

Rif?O
++
Tan

Σ′
/p|(x′,0) = Ri(f ′2)?O

++
x′×Tan

2,Σ′′
/p|(x′,0).

First assume that x is a maximal point corresponding to a rank 1 valuation on k(x).

Set U0 = x′× T rig2,σ . Fix an isomorphism T2 ' Gs
m for some integer s. Let p = (p, · · · , p) ∈

T an2 (Qp). Then the {Un = pnU0}n∈N form a fundamental system of neighborhoods of x in

x′×T an2,σ. It is enough to prove that Hi(f−1(Un),O++
x′×Tan

2,Σ′′
) = 0 for all i > 0 and all n ≥ 0.

Using the action of p we are reduced to the case of U0. There,

Hi(f−1(U0),O++
x′×Tan

2,Σ′′
) = Hi(x′ × T rig2,Σ′′ ,O

++

x′×T rig
2,Σ′′

) = Hi(T2,Σ′′ , k(x)00⊗̂ZpOT2,Σ′′ )

by corollary 3.1.1 applied over the non-archimedean field (k(x), k(x)+). By clas-
sical results on toroidal embeddings (see [37], coro. 1 on page 44) we find that
Hi(T2,Σ′′ , k(x)00⊗̂OT2,Σ′′ ) = Hi(T2,σ, k(x)00⊗̂OT2,σ). But Hi(T2,σ, k(x)00⊗̂OT2,σ) = 0 for

i > 0 since T2,σ is affine.
If x is not a maximal point, let x̃ be the maximal generisation of x. Then

Rif?O
++
Tan

Σ′
/p|x = Rif?O

++
Tan

Σ′
/p|x̃ = 0

by [76], prop. 1.4.10 and example 1.5.2.
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4. Correspondences and coherent cohomology

4.1. Preliminaries on residue and duality. — We start by recalling some results
of the duality theory for coherent cohomology. Standard references are [29] and [13].
For a scheme X we let Dqcoh(OX) be the subcategory of the derived category D(OX) of

OX -modules whose objects have quasi-coherent cohomology sheaves. We let D+
qcoh(OX)

(resp. D−qcoh(OX)) be the full subcategory of Dqcoh(OX) whose objects have 0 cohomology

sheaves in sufficiently negative (resp. positive) degree. We let Db
qcoh(OX) be the full

subcategory of Dqcoh(OX) whose objects have 0 cohomology sheaves for all but finitely

many degrees. We remark that if X is locally notherian D+
qcoh(OX) is also the derived

category of the category of bounded below complexes of quasi-coherent sheaves on X ([29],
coro. 7.19). We let Db

qcoh(OX)fTd be the full subcategory of Db
qcoh(OX) whose objects are

quasi-isomorphic to bounded complexes of flat sheaves of OX -modules (see [29], def. 4.3
on p. 97). Let us fix for the rest of this section a noetherian affine scheme S.

4.1.1. Embeddable morphisms. — Let X, Y be two S-schemes and f : X → Y be a
morphism of S-schemes. The mophisme f is embeddable if there exists a smooth S-
scheme P and a finite map i : X → P ×S Y such that f is the composition of i and the
second projection (see [29], p. 189). A morphism f is projectively embeddable if it is
embeddable and P can be taken to be a projective space over S (see [29], p. 206).

4.1.2. The functor f !. — Let f : X → Y be a morphism of S-schemes. There is a functor
Rf? : Dqcoh(OX) → Dqcoh(OY ). By [29], thm. 8.7, if f is embeddable, we can define a

functor f ! : D+
qcoh(OY )→ D+

qcoh(OX). If f is projectively embeddable, by [29] thm. 10.5,

there is a natural transformation (trace map) Rf?f
! ⇒ Id of endofunctors of D+

qcoh(OY ).

Moreover, by [29], thm. 11. 1, this natural transformation induces a duality isomorphism:

HomDqcoh(OX)(F , f !G )
∼→ HomDqcoh(OY )(Rf?F ,G )

for F ∈ D−qcoh(OX) and G ∈ D+
qcoh(OY ).

The functor f ! for embeddable morphisms enjoys many good properties. Let us record
one that will be crucially used.

Proposition 4.1.2.1 ([29], prop. 8.8). — If F ∈ D+
qcoh(OY ) and G ∈ Db

qcoh(OY )fTd ,

we have a functorial isomorphism f !F ⊗L Lf?G = f !(F ⊗L G ).

4.1.3. Dualizing sheaf and cotangent complex. — A morphism f : X → S is called a local

complete intersection (abbreviated lci) if locally on X we have a factorization f : X
i→

Z → S where i is a regular immersion (see [EGA] IV, def. 16.9.2) and Z is a smooth
S-scheme. If f is lci, we can define the cotangent complex of f denoted by LX/S (see [34],
prop. 3.2.9). This is a perfect complex concentrated in degree −1 and 0. Its determinant
in the sense of [40] is denoted by ωX/S .

Proposition 4.1.3.1. — If h : X → S is an embeddable morphism and a local com-
plete intersection of pure relative dimension n, then f !OX = ωX/S [n] where ωX/S is the
determinant of the cotangent complex LX/S.

Proof. This follows from the very definition of f ! given in thm 8.7 of [29].

Corollary 4.1.3.1. — Let h : X → S, g : Y → S be embeddable morphisms of S-
schemes which are lci of pure dimension n. Let f : X → Y be an embeddable morphism
of S-schemes. Then f !OY = ωX/S ⊗ f?ω−1

Y/S is an invertible sheaf.
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Proof. We have h!OS = ωX/S [n]. On the other hand,

h!OS = f !(g!OS)

= f !(ωY/S [n])

= f !(OY ⊗ ωY/S [n])

= f !(OY )⊗ f?ωY/S [n].

4.2. Fundamental class. — Let X,Y be two embeddable S-schemes and let f : X → Y
be an embeddable morphism. Under certain assumptions, we can construct a natural map

Θ : f?OY → f !OY

which we call the “fundamental class”. Our construction of the fundamental class is com-
pletely ad hoc and rather elementary. The interest of this fundamental class is that if f is
projectively embeddable, applying Rf? and taking the trace we get a map :

Tr : Rf?f
?OY → OY .

4.2.1. Construction 1. — Assume that X and Y are local complete intersections over
S of the same relative dimension. Assume that X is normal and that there is an open
V ⊂ X which is smooth over S, whose complement is of codimension 2 in X and an open
U ⊂ Y which is smooth and such that f(V ) ⊂ U . In this case, it is enough to specify the
fundamental class over V because, by normality it will extend. Then over V , we define
the fundamental class to be the determinant of the map df : Ω1

U/S ⊗ OV → Ω1
V/S .

4.2.2. Construction 2. — Here is another important example. Assume simply that f :
X → Y is a finite flat map. In this situation, f !OY = Hom(f?OX ,OY ). We have a trace
morphism trf : f?OX → OY and the fundamental class is defined by Θ(1) = trf .

4.2.3. Comparison. — We check that the two constructions coincide in the situation
where X,Y are smooth over S and the map X → Y is finite flat. In this situation,
X → Y is lci.

Lemma 4.2.3.1. — The cotangent complex LX/Y is represented by the complex

[Ω1
Y/S ⊗OY OX

df→ Ω1
X/S ]. The determinant det(df) ∈ ωX/Y = f !OY is the trace

map trf .

Proof. We have a closed embedding i : X ↪→ X ×S Y of X into the smooth Y -scheme
X ×S Y . We have an exact sequence :

0→ IY → OY×SY → OY → 0

which gives after tensoring with OX above OY

0→ IX → OX×SY → OX → 0

where IX is the ideal sheaf of the immersion i. It follows that IX/I2
X = IY /I2

Y ⊗OY OX =
Ω1
Y/S ⊗OY OX .

On the other hand, i?Ω1
X×SY/Y = Ω1

X/S . The cotangent complex is represented by

[IX/I2
X → i?Ω1

X×SY/Y ] which is the same as [Ω1
Y/S ⊗OY OX → Ω1

X/S ].

The morphism f? detLX/Y = Hom(f?OX ,OY )→ OY is the residue map which asso-

ciates to ω ∈ f?Ω1
X/S and to (t1, · · · , tn) local generators of the ideal IX over Y the function
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Res[ω, t1, ..., tn]. It follows from [29], property (R6) on page 198 that the determinant of
[Ω1
Y/S ⊗OY OX → Ω1

X/S ] maps to the usual trace map.

4.2.4. Fundamental class and divisors. — Let DX ↪→ X and DY ↪→ Y be two effective,
reduced Cartier divisors relative to S. We assume that f : X → Y restricts to a map
f |DX : DX → DY . We moreover assume that the induced map DX → f−1(DY ) is an
isomorphism of topological spaces. We assume that the fundamental class is defined, so
that we are either in the situation of construction 1 or construction 2.

Lemma 4.2.4.1. — 1. In the setting of construction 1, assume moreover that over
the smooth locus Xsm of X, DX ∩ Xsm is a normal croosing divisor and that
over the smooth locus Y sm of Y , DY ∩ Y sm is a normal crossing divisor. Then
the fundamental class Θ : OX → f !OY restricts to a morphism : OX(−DX) →
f !OY (−DY ).

2. In the setting of construction 2, the fundamental class Θ : OX → f !OY restricts
to a morphism : OX(−DX)→ f !OY (−DY ).

Proof. We first assume thatX and Y are smooth, DX and DY are relative normal crossing
divisors. In that case, we have a well defined differential map df : f?Ω1

Y/S(logDY ) →
Ω1
X/S(logDX). Taking the determinant yields det df : f? det Ω1

Y/S(DY ) → det Ω1
X/S(DX)

or equivalently det df : OX(−DX)→ f !OY (−DY ). We work in the setting of construction
1. Let V be an open subset of X. Let s ∈ OX(−DX)(V ) be a section. We deduce that
Θ(s) ∈ f !OY (V ) actually belongs to f !OY (−DY )(V ∩ U) where U is a smooth open in X
whose complement is of codimension 2. But then f !OY (−DY )(V ) = f !OY (−DY )(V ∩ U)
and the lemma is proven. We now work in the setting of construction 2. The lemma is
then equivalent to the obvious assertion that the trace of a section which vanishes along
DX will vanish along DY (since DY is reduced).

4.2.5. Base change. — Assume that we are in the situation of construction 1 or 2. Let
Θ : f?OY → f !OY be the fundamental class. Consider a cartesian diagram :

X ′
j //

f ′

��

X

f
��

Y ′
i // Y

Assume that i is an open immersion. Then, i?f ! = (f ′)! (by [29], thm. 8.7, 5) and
the map i?Θ : (f ′)?OY ′ → (f ′)!OY ′ is the fundamental class of the morphism f ′.

Assume that i is a closed immersion and that f is finite flat. Then, i?f ! = (f ′)! and
the map i?Θ : (f ′)?OY ′ → (f ′)!OY ′ is the fundamental class of the morphism f ′.

4.3. Cohomological correspondences. — Let X, Y be two S-schemes.

Definition 4.3.1. — A correspondence C over X and Y is a diagram of S-morphisms :

C
p1

  

p2

~~
X Y

where X, Y , C have the same pure relative dimension over S and the morphisms p1

and p2 are projectively embeddable.

Remark 4.3.1. — In practice, the maps p1, p2 will be surjective, generically finite.
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Let F be a coherent sheaf over X and G a coherent sheaf over Y .

Definition 4.3.2. — A cohomological correspondence from F to G is the data of a cor-
respondence C over X and Y and a map T : R(p1)?p

?
2F → G .

The map T can be seen, by adjunction, as a map p?2F → p!
1G . It gives rise to a map

still denoted by T on cohomology :

RΓ(X,F )
p?2→ RΓ(C, p?2F ) = RΓ(Y,R(p1)?p

?
2F )

T→ RΓ(Y,G ).

4.3.1. Construction of cohomological correspondences. — We assume that we are given
a morphism p?2F → p?1G . We also assume that we have a map p?1OY → p!

1OY (typically
a fundamental class). Finally, we assume that G is a locally free sheaf. Tensoring by G
the map p?1OY → p!

1OY and using prop. 4.1.2.1, we obtain a morphism p?1G → p!
1G and

composing we obtain T : p?2F → p!
1G .

Remark 4.3.2. — In certain cases, one wants to renormalize this morphism. Let O be a
discrete valuation ring with uniformizer $. We assume that S = Spec O, that X, Y , C are
flat over S. We also assume that F and G are flat OS-modules. We further assume that
the map T : p?2F → p!

1G factors through T : p?2F → $kp!
1G → p!

1G for some non-negative
integer k. Then we can normalize the map T into a map $−kT : p?2F → p!

1G . We will
see many situations where this occurs in the sequel.

5. Automorphic forms and Galois representations

5.1. The group GSp4. — Let V = Z4 with canonical basis (e1, · · · , e4). Let J =(
0 A
−A 0

)
where A is the anti-diagonal matrix with coefficients equal to 1 on the anti-

diagonal. This is the matrix of a symplectic form < . > on V . We let GSp4 → Spec Z be
the group scheme GSp(V,< . >).

5.1.1. The dual group of GSp4. — Let T be the diagonal torus

{diag(st1, st2, st
−1
2 , st−1

1 ), s, t1, t2 ∈ Gm}
of GSp4. Its character group X?(T) is identified with

{(a1, a2; c), c = a1 + a2 mod 2} ⊂ Z3

where (a1, a2; c).diag(st1, st2, st
−1
2 , st−1

1 ) = scta1
1 t

a2
2 . We pick the following basis of X?(T):

e1 = (1, 0; 1), e2 = (1, 0; 1) and e3 = (0, 0; 2).

For the choice of the upper triangular Borel B, the positive roots are {e1 − e2, 2e1 −
e3, e1 + e2 − e3, 2e2 − e3}. Set α1 = e1 − e2 and α2 = 2e2 − e3. The simple positive roots
are ∆ = {α1, α2}. The compact root is α1.

The cocharacter group X?(T) is the dual of X?(T). We identify it with

{(b1, b2; d) ∈ 1

2
Z3, b1 + d ∈ Z, b2 + d ∈ Z}

via (b1, b2; d).t = diag(tb1+d, tb2+d, t−b2+d, t−b1+d). The following basis of X?(T) is dual to
e1, e2 and e3 :

f1 = (1, 0; 0), f2 = (0, 1; 0), and f3 = (−1

2
,−1

2
;
1

2
).

The coroot of α1 is α∨1 = f1 − f2 and the coroot of α2 is α∨2 = f2. We let ∆∨ = {α∨1 , α∨2 }.
We let (X?(T),∆∨, X?(T),∆) be the based root datum of GSp4 corresponding to our

choices of maximal torus T and upper triangular Borel subgroup.



18 Higher coherent cohomology and p-adic modular forms of singular weight

By [61], lemma 2.3.1 there is an isomorphism of roots datum between

(X?(T),∆∨, X?(T),∆) and (X?(T),∆, X?(T),∆∨).

It is given by a map i : X?(T)→ X?(T) whose matrix in the basis e1, e2, e3 and f1, f2, f3

is 1 1 1
1 0 1
1 1 2


This isomorphism induces an identification of the dual group ĜSp4 with GSp4(C).

5.1.2. Parabolic subgroups. — If W ⊂ V is a totally isotropic direct factor, we let PW
be the parabolic subgroup of GSp4 which stabilizes PW . We denote by UW its unipotent
radical and by MW its Levi quotient. The group MW decomposes as the product MW,l ×
MW,h where MW,l is the linear group of automorphisms of W and MW,h is the group of

symplectic similitudes of W⊥/W (with the convention that when W = W⊥, this group is
Gm.)

When W = 〈e1〉, then PW is denoted by PKli and called the Klingen parabolic. Its
Levi quotient is MKli 'MKli,l ×MKli,h. If W = 〈e1, e2〉, then PW is denoted by PSi and
called the Siegel parabolic. Its Levi quotient is MSi 'MSi,l ×MSi,h.

5.1.3. Spherical Hecke algebra. — Let ` be a prime number. We let H` be the spherical
Hecke algebra

C0
c (GSp4(Q`)//GSp4(Z`),Z).

This is a commutative algebra isomorphic to Z[T`,0, T
−1
`,0 , T`,1, T`,2], generated by the

characteristic functions of the double classes :

T`,2 = GSp4(Z`)diag(1, 1, `, `)GSp4(Z`), T`,1 = GSp4(Z`)diag(1, `, `, `2)GSp4(Z`)

T`,0 = `GSp4(Z`)
The Hecke polynomial is by definition Q`(X) = 1−T`,2X + `(T`,1 + (`2 + 1)T`,0)X2−

`3T`,2T`,0X
3 + `6T 2

`,0X
4.

Consider the twisted Satake isomorphism H`⊗C→ C[Y (T)]W where W is the Weyl
group of GSp4 (see [23], p. 193). To any homomorphism Θ` : H` → C we can associate

(using the identification ĜSp4 ' GSp4(C) and the standard 4-dimensional representation
of GSp4(C)) a semi-simple conjugacy class cΘ` ∈ GL4(C). Moreover, Θ`(Q`(X)) = det(1−
XcΘ`) ([23], rem. 3 on page 196).

Let N be an integer. We let HN = ⊗′`-NH` be the restricted tensor product of the

Hecke algebras H` for all prime numbers ` - N .

5.1.4. Discrete series. — Given λ = (λ1, λ2; c) ∈ X(T)+(2, 1; 0) ⊂ X(T)C which satisfies
λ1 > λ2 ≥ −λ1 and a Weyl chamber C positive for λ we have a (limit of) discrete series
π(λ,C) (see [26], 3.3).

Let Z be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism
(recalled in [16], p. 229 for instance), Z ' C[Y (T)]W where W is the Weyl group. The
infinitesimal character of π(λ,C) is the Weyl group orbit of λ.

If λ2 6= 0 and λ2 6= −λ1, λ determines uniquely C and π(λ,C) is a discrete series. It
is natural to normalize the central character c by c = −λ1 − λ2 + 3.

If λ1 > λ2 ≥ 0 and C is the chamber corresponding to the upper triangular Borel,
then π(λ,C) is called a holomorphic (limit of) discrete series.
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5.1.5. Galois representations attached to automorphic forms. — The following theorem
is obtained in [71], [43], [77] and [74]. A different proof (for the general type, see below)
is given in [68], completed by [50] using a lift to GL4 and [11].

Theorem 5.1.5.1. — Let π = π∞ ⊗ πf be a cuspidal automorphic form for the group
GSp4 such that π∞ = π(λ,C) is in the discrete series and λ = (λ1, λ2;−λ1 − λ2 + 3).
Let N be the product of primes ` such that π` is not spherical. Let Θπ : HN → C be the

homomorphism giving the action of HN on ⊗`-Nπ
GSp4(Z`)
` .

1. The image of Θπ generates a number field E.

2. For all finite place λ of E there is a semi-simple, continuous Galois representation:

ρπ,λ : GQ → GL4(Eλ)

which is unramified away from N and the prime p below λ and such that for all
` - Np, we have

det(1−Xρπ,λ(Frob`)) = Θπ(Q`(X))

3. The representation ρπ,λ is de Rham at p with Hodge-Tate weights (0,−λ2,−λ1,−λ1−
λ2).

4. If p - N , then ρπ,λ is crystalline at p and det(1−Xφ|Dcrys(ρπ,λ)) = Θπ(Qp(X)).

5. ρπ,λ ' ρ∨π,λ⊗χ−λ1−λ2
p ωπ,λ for some finite character ωπ,λ and the cyclotomic char-

acter χp.

According to Arthur’s classification [1], the representation π in the theorem can fall
into three categories : general type, Yoshida type (the endoscopic case), Saito-Kurokawa
type (cuspidal associated to the Siegel parabolic) . We observe that if π is of Yoshida or
Saito-Kurokawa type, then ρπ,λ is reducible. On the contrary, if π is of general type then
it is expected that ρπ,λ is irreducible.

5.2. Complex Siegel threefolds. —

5.2.1. Siegel datum. — We let h : ResC/R → GSp4|R be the map given by h(a + ib) =
a12 + bJ . We let K∞ ⊂ GSp4(R) be the centralizer of the image of h. The quotient
H = GSp4(R)/K∞ is the Siegel space.

Let K ⊂ GSp4(Af ) be a neat compact open subgroup. We let SK = GSp4(Q)\H ×
GSp4(Af )/K. This is the complex analytic Siegel threefold of levelK. It can be interpreted
as a moduli space of abelian surfaces with additional structures. See [43], sect. 3 for
example.

5.2.2. Minimal compactification. — Let S?K be the minimal compactification of SK (see
[60], sect. 3 for example). There is a stratification

S?K = SK
∐

S
(1)
K

∐
S

(0)
K .

Let H(1) = C \ R and H(0) = {1,−1}.

S
(1)
K = PKli(Q)\H(1) ×G(Af )/K

is a union of modular curves and

S
(0)
K = PSi(Q)\H(0) ×G(Af )/K

is the union of cusps of these modular curves. The parabolic PKli(Q) and PSi(Q) act
diagonally. They act on H1 and H0 through their quotient MKli,h(Q) and MSi,h(Q). We

let S
(1),?
K = S

(1)
K

∐
S

(0)
K . This is a union of compactified modular curves.
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5.2.3. Toroidal compactification. — Depending on certain auxiliary choice of polyehdral
cone decomposition Σ, one can also construct toroidal compactifications StorK,Σ of SK . There

is a semi-abelian surface G→ StorK,Σ. See [27], sect. 2.

5.3. Coherent cohomology and Galois representations. — Over StorK,Σ, we have a

semi-abelian surface G. We let ωG → StorK,Σ be the conormal sheaf of G. This is a locally

free sheaf of rank 2. For all pairs of integers (k, r) ∈ Z≥0 × Z, we define an automorphic

vector bundle Ω(k,r) = SymkωG ⊗ detr ωG on StorK,Σ. We let DK, Σ = StorK,Σ \ SK,Σ. This

is a Cartier divisor. We can consider the cuspidal sub-sheaf Ω(k,r)(−DK, Σ) (or simply

Ω(k,r)(−D) if no confusion will arise) of Ω(k,r).

We will be interested in the coherent cohomology groups Hi(StorK,Σ,Ω
(k,r)(−D)). These

cohomology groups are independent of the choice of Σ ([28], prop. 2.4). Our main focus
will be on the case r = 2, i ∈ {0, 1}.

If π = π∞ ⊗ πf and π∞ = π(λ,C) is a holomorphic (limit of) discrete series with

λ = (λ1, λ2; c) (and hence λ1 > λ2 ≥ 0), then there is a natural embedding πKf ↪→
H0(StorK,Σ,Ω

(λ1−λ2−1,λ2+2)(−D)).
It follows from the description of representations having a ”lowest weight” given in

[63], p. 12 diagram (44) that for all r ≥ 2 :

H0(StorK,Σ,Ω
(k,r)(−D)) = ⊕πfπ

K
f

where πf runs through the set of admissible representations of GSp4(Af ) such that
π(λ,C) ⊗ πf is cuspidal automorphic for λ = (k + r − 1, r − 2;−k − 2r + 6) and π(λ,C)
the holomorphic (limit) of discrete series.

We let N be the product of primes ` such that K` 6= GSp4(Z`). We let HN = ⊗′`-NH
`

be the restricted tensor product of all the spherical Hecke algebras.
The Hecke algebra HN acts on Hi(StorK,Σ,Ω

(k,r)) and Hi(StorK,Σ,Ω
(k,r)(−D)). Let Θ :

HN → C be a system of eigenvalues for the action of HN . The following theorem is
deduced from theorem 5.1.5.1 in [70] and [59], using p-adic interpolation :

Theorem 5.3.1. — The image of Θ generates a number field E. For all finite place λ of
E there is a semi-simple, continuous Galois representation :

ρΘ,λ : GQ → GL4(Eλ)

which is unramified away from N and the prime p below λ and such that for all ` - Np,
we have

det(1−XρΘ,λ(Frob`)) = Θ(Q`(X))

Proof. If k ≥ 0 and r ≥ 3, then

H0(StorK,Σ,Ω
(k,r)(−D)) = ⊕πKf

where πf runs through the set of admissible representations of GSp4(Af ) such that
π(λ,C)⊗ πf is cuspidal automorphic with λ = (k+ r− 1, r− 2;−k− 2r+ 6). Thus, when
k ≥ 0, r ≥ 3, we can use theorem 5.1.5.1. The general case follows from the main result of
[59] (but see also [70] for degree 0 cuspidal cohomology) by p-adic interpolation technics.
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PART II

HIGHER HIDA THEORY

6. Siegel threefolds over Zp
6.1. Schemes. — We fix a prime p. We introduce several Siegel threefolds defined over
Spec Zp and study their p-adic geometry.

6.1.1. The smooth Siegel threefold. — Let K ⊂ GSp4(Af ) be a neat compact open sub-
group. We assume that K = KpKp and that Kp = GSp4(Zp). We let YK,Z(p)

→ Spec Z(p)

be the moduli space representing the functor which associates to each scheme S over
Spec Z(p) the set of isomorphism classes of triples (G,λ, ψ) where :

1. G is an abelian surface,

2. λ : G → Gt is a Z×(p)-multiple of a polarization of degree prime to p where Gt

stands for the dual abelian scheme of G,

3. ψ is a Kp level structure : for a geometric point s of S, ψ is a Kp-orbit of symplectic
similitudes H1(Gs,Apf ) ' V ⊗Z Apf that is invariant under the action of Π1(S, s)

(V is defined in section 5.1).

The triples (G,λ, ψ) are taken up to prime to p quasi-isogenies. See [41]. There is an
isomorphism (YK,Z(p)

× Spec C)an ' SK . We shall denote by YK = YK,Z(p)
×Spec Z(p)

Spec Zp.
6.1.2. Klingen level. — We denote by p1 : YKli(p)K → YK the moduli space which
parametrizes subgroups of order p, H ⊂ G[p]. Over YKli(p)K we have a chain of iso-
genies of abelian surfaces G → G/H → G/H⊥ → G. Here H⊥ is the orthogonal of H
for the Weil pairing on G[p] (obtained by the polarization). The total map G → G is
multiplication by p.

6.1.3. Paramodular level. — We also introduce Yp,K → Spec Zp, the moduli space of

isomorphism classes of triples (G′, λ′, ψ) where λ′ : G′ → (G′)t is a Z×(p)-multiple of a

polarization of degree p2 and ψ is a Kp-level structure. We have a natural map p2 :
YKli(p)K → Yp,K which sends (G,λ,H, ψ) to (G/H⊥, λ′, ψ′) where λ′ is the polarization

on G/H⊥ obtained by descending the polarization λp
2

from G to G/H⊥ and ψ′ is induced
by the isomorphism G[N ] = G/H⊥[N ] for every integer N prime to p.

6.1.4. Local properties. — We now investigate the local geometry of these schemes.

Proposition 6.1.4.1. — The scheme YK is smooth over Spec Zp. The schemes Yp,K and
YKli(p)K are regular schemes. They are flat, local complete intersections over Spec Zp.
The non smooth locus of Yp,K consists of a finite set of characteristic p points.

Proof. The smoothness of YK over Zp results from the deformation theory of abelian
varieties with a polarization of degree prime to p. For YKli(p)K , the local model theory
computation is worked out in [73], sect. 2.2, thm. 3. For Yp,K we can again use local

model theory (see [15]). Let V1 = pe1Z⊕
⊕4

i=2 eiZ ⊂ V (V is defined in section 5.1). The
local model for Yp,K is the moduli space of totally isotropic direct factors L ⊂ V1 of rank
2. The only singularity occurs at L0 = 〈pe1, e4〉 ⊂ V1 ⊗ Fp. The formal deformation ring
at this point has equation Zp[[X,Y,W,Z]]/(XY −WZ+p) and the universal deformation
of L0 is the module 〈pe1 +Xe2 +We3, Ze2 + Y e3 + e4〉.
6.1.5. Integral arithmetic compactifications. — We recall results of Faltings-Chai [16],
Lan [44], [45], [46] and Stroh [69].
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6.1.5.1. Arithmetic groups. — Let Γ = GSp4(Z(p))
+ be the group of automorphisms of

(V ⊗ Z(p), < . >) up to a positive similitude factor. Let V1 = pe1Z ⊕
⊕4

i=2 eiZ ⊂ V . We

let GSp′4 → Spec Z be the group scheme GSp(V1, < . >). This is the paramodular group.
Let Γp = GSp′4(Z(p))

+ be the subgroup of GSp′4(Z(p)) of elements with positive similitude
factor. Let ΓKli(p) be the automorphisms group of (V1 ⊗ Z(p) → V ⊗ Z(p), < . >) up to a
positive similitude factor. Thus, ΓKli(p) is a subgroup of both Γ and Γp. All are subgroups
of GSp4(Q).

6.1.5.2. Local charts. — Let C be the set of totally isotropic direct factors W ⊂ V .
For all W ∈ C, let C(V/W⊥) be the cone of positive symmetric bilinear forms V/W⊥ ×
V/W⊥ → R with radical defined over Q. Let C be the conical complex which is the quotient
of
∐
W∈CC(V/W⊥) by the equivalence relation induced by the inclusions C(V/W⊥) ⊂

C(V/Z⊥) for W ⊂ Z. This set carries an action of GSp4(Q).
Let W ∈ C. Recall from section 5.1.2 that PW is the parabolic subgroup which is

the stabilizer of W , that MW = MW,l ×MW,h is its Levi quotient. There is a projection
PW →MW and we let PW,h be the inverse image of MW,h ∈ PW . Let γ ∈ GSp4(Apf )/Kp.

We can attach to W and γ moduli spaces of 1-motives (see [69], sect. 1 and [44], sect.
6.2) which only depend on the class of γ in PW,h(Apf )\GSp4(Apf )/Kp :

MW,γ

��

MW,γ,Kli(p)

��

MW,γ,p

��
BW,γ

��

BW,γ,Kli(p)

��

BW,γ,p

��
YW,γ YW,γ,Kli(p) YW,γ,p

The scheme MW,γ is a moduli space of polarized 1-motives (for a polarization of

degree prime to p), rigidified by V/W⊥ ([69], def. 1.4.3) with a Kp-level structure.
The schemeMW,γ admits the following description : it is a torsor under a torus TW,γ

isogenous to Sym2(V/W⊥) ⊗ Gm over BW,γ . The scheme BW,γ is an abelian scheme over
YW,γ which is a moduli space of abelian schemes of dimension rankZW with a polarization
of degree prime to p and a level structure away from p.

The scheme MW,γ,Kli(p) is a moduli space of polarized 1-motives (for a polarization

of degree prime to p), rigidified by V/W⊥ with a Kp-level structure and a Klingen level
structure.

The schemeMW,γ,Kli(p) admits the following description : it is a torsor under a torus

TW,γ,Kli(p) isogenous to Sym2(V/W⊥) ⊗ Gm over BW,γ,Kli(p). The scheme BW,γ,Kli(p) is
an abelian scheme over YW,γ,Kli(p) which is a moduli space of abelian schemes of genus
rankZW with a polarization of degree prime to p a level structure away from p and possibly
a Klingen level structure at p.

The scheme MW,γ,p is a moduli space of one motives with a polarization of degree
Np2 (with (N, p) = 1, the integer N depends on the tame level Kp). The character group
of the toric part is isomorphic to V1/W

⊥. It carries a Kp-level structure.
The scheme MW,γ,p admits the following description : it is a torsor under a torus

TW,γ,p isogenous to Sym2(V/W⊥) ⊗ Gm over BW,γ,p. The scheme BW,γ,p is an abelian
scheme over YW,γ which is a moduli space of either abelian schemes of genus rankZW with
a polarization of degree prime to p, a level structure away from p or a moduli space of
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abelian schemes of genus rankZW with a polarization of degree a prime to p multiple of
p2 and with a level structure away from p.

Let σ ⊂ C(V/W⊥) be a cone. Associated to this cone we have affine toroidal em-
bedding TW,γ → TW,γ,σ, TW,γ,Kli(p) → TW,γ,Kli(p),σ and TW,γ,p → TW,γ,p,σ. We can de-

fine MW,γ,σ = MW,γ ×TW,γ TW,γ,σ, MW,γ,Kli(p),σ = MW,γ,Kli(p) ×TW,γ,Kli(p) TW,γ,Kli(p),σ,

MW,γ,p,σ =MW,γ,p×TW,γ,pTW,γ,p,σ, and we denote by ZW,γ,σ, ZW,γ,Kli(p),σ and ZW,γ,p,σ the
closed subschemes that correspond to the closed strata of these respective affine toroidal
embeddings.

6.1.5.3. Polyhedral decompositions. — We denote by C×GSp4(Apf )/Kp the quotient of

C×GSp4(Apf )/Kp by the relations (W,γ) ∼ (W,γ′) if γ = γ′ in PW,h(Apf )\GSp4(Apf )/Kp.

We denote by C ×GSp4(Apf )/Kp the quotient of C × GSp4(Apf )/Kp by the relations

(C(V/W⊥), γ) ∼ (C(V,W⊥), γ′) if γ = γ′ in PW,h(Apf )\GSp4(Apf )/Kp. A non-degenerate

rational polyhedral cone of C ×GSp4(Apf )/Kp is a subset contained in C(V/W⊥)×{γ} for

some (W,γ) which is of the form ⊕ki=1R>0si for elements si : V/W⊥ × V/W⊥ → Q.
Let us fix a Z-lattice LW ⊂ Sym2V/W⊥ ⊗Z Q. Then the cone is called smooth with

respect to LW if the si’s can be taken to be part of a Z-basis of Hom(LW ,Z).

A rational polyhedral cone decomposition Σ of C ×GSp4(Apf )/Kp is a partition

C ×GSp4(Apf )/Kp =
∐
σ∈Σ σ by non-degenerate rational polyhedral cones σ such that

the closure of each cone is a union of cones.
The set C ×GSp4(Apf )/Kp carries a diagonal action of GSp4(Q). For any subgroup

H ⊂ GSp4(Q) a rational polyhedral cone decomposition Σ is H-equivariant if for all h ∈ H
and σ ∈ Σ, h.σ ∈ H. It is H-admissible if Σ/H is finite. It is projective if there exists a
polarization function (see [46], def. 2.4).

For all (W,γ) ∈ C×GSp4(Apf )/Kp we have integral structures X?(TW,γ), X?(TW,γ,p)

and X?(TW,γ,Kli(p)) ⊂ Sym2V/W⊥ ⊗Z Q. We say that a rational polyhedral cone decom-
position Σ is smooth with respect to one of these integral structures if each cone σ ∈ Σ is
smooth.

Let H be either Γ, Γp or ΓKli(p). The H-admissible rational polyhedral cone decom-
positions exist and are naturally ordered by inclusion ([16], p. 97). Any two H-admissible
rational polyhedral cone decompositions can be refined by a third one.

The H-admissible rational polyhedral cone decompositions which satisfy the following
extra properties form a cofinal subset of the set of all H-admissible rational polyhedral
cone decompositions (see [16], p. 97) :

1. The decomposition is projective.

2. For all cone σ, let W ∈ C be minimal such that σ ⊂ C(V/W⊥). Then if h ∈ H∩PW
satisfies hσ ∩ σ 6= ∅, h acts trivially on C(V/W⊥).

3. If H is Γ (resp. Γp, resp. ΓKli(p))-admissible, the decomposition is smooth
with respect to the integral structure given by X?(TW,γ), (resp. X?(TW,γ,p), resp.
X?(TW,γ,Kli(p))).

In the sequel of the paper we will consider mostly H-admissible rational polyhedral
cone decompositions which satisfy these extra properties unless explicitely stated. We will
call them H-admissible good polyhedral cone decompositions or simply good polyhedral
cone decompositions.

6.1.5.4. Main theorem on compactification. — The following theorem is a special case of
[46], thm. 6.1.
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Theorem 6.1.5.1. — 1. Let Σ be a good polyhedral cone decomposition which is Γ
(resp. ΓKli(p), resp. Γp)-admissible. There is a toroidal compactification XK,Σ of
YK (resp. XKli(p)K,Σ of YKli(p)K , resp. Xp,K,Σ of Yp,K). It has a stratification
indexed by Σ/Γ (resp. Σ/ΓKli(p), resp. Σ/Γp). For each (σ, γ) ∈ Σ, the (σ, γ)-
stratum is isomorphic to ZW,γ,σ (resp. ZW,γ,σ,p, resp. ZW,γ,Kli(p),σ). The comple-
tion of XK,Σ (resp. XKli(p)K,Σ, resp. Xp,K,Σ) along ZW,γ,σ (resp. ZW,γ,Kli(p),σ,

resp. ZW,γ,p,σ) is isomorphic to the completion of MW,γ,σ along ZW,γ,σ (resp.

MW,γ,Kli(p),σ along ZW,γ,Kli(p),σ, resp. MW,γ,p,σ along ZW,γ,p,σ.) The boundary is
the reduced complement of YK in XK,Σ (resp. of YKli(p)K in XKli(p)K,Σ, resp. of
Yp,K in Xp,K,Σ). This is a relative Cartier divisor.

2. If Σ′ ⊂ Σ is a refinement, then there are projective maps πΣ′,Σ : XK,Σ′ → XK,Σ

and (RπΣ′,Σ)?OXK,Σ′ = OXK,Σ. Let IXK,Σ and IXK,Σ′ be the invertible sheaves

of the boundary in XK,Σ and XK,Σ′. Then π?Σ′,ΣIXK,Σ = IXK,Σ′ . Similar results

hold for Xp,K,Σ and XKli(p),K,Σ.

3. If Σ is Γ-admissible and Σ′ is a refinement which is Γp-admissible, then the map
p1 : YKli(p)K → YK extends to a map XKli(p)K,Σ′ → XK,Σ. If Σ is Γp-admissible
and Σ′ is a refinement which is Γp-admissible, then the map p2 : YKli(p)K → Yp,K
extends to a map XKli(p)K,Σ′ → Xp,K,Σ.

4. If Σ is Γ (resp. ΓKli(p), resp. Γp)-admissible, then the toroidal compactification
XK,Σ of YK (resp. XKli(p)K,Σ of YKli(p)K , resp. Xp,K,Σ of Yp,K) is normal and
a local complete intersection over Spec Zp.

Proof. All points follow from [46], thm. 6.1 and prop. 7.5, except for the last point which
follows from the description of the local charts, proposition 6.1.4.1 and our knowledge of
modular curves. Let us recall that in the case of YK , the toroidal compactification is
constructed in the book [16]. In the case of Yp,K , the method of [45] and [46] is to embed
Yp,K in a Siegel moduli space of principally polarized abelian varieties of genus 16 (Zarhin’s
trick). The later can be compactified by the methods of [16]. The compactification of Yp,K
is obtained by normalization. The toroidal compactification of YKli(p)K is constructed in
[69]. It is also constructed in [45], [46] by first embedding YKli(p)K in the product Yp,K×
YK , then considering the toroidal compactification of the product and then normalizing.

Notation : If not necessary, we drop the subscript K or Σ and simply write X, Xp

and XKli(p) for XK,Σ, XKli(p)K,Σ and Xp,K,Σ.

6.2. Hasse invariants. — Let S be a scheme over Spec Fp. If H → S is a group
scheme, we denote by ωH the conormal sheaf of H along the unit section.

6.2.1. The classical Hasse invariant. — Let G → S be a truncated Barsotti-Tate group
of level 1 (BT1 for short). We have a Verschiebung map V : G(p) → G with differential

V ? : ωG → ω
(p)
G also called the Hasse-Witt operator. The Hasse invariant is Ha(G) :=

detV ? ∈ H0(S, detω
(p−1)
G ). We let GD be the Cartier dual of G. We recall the following

result of Fargues.

Proposition 6.2.1.1 ([19], 2.2.3, prop. 2). — There is a canonical and functorial iso-

morphism LF : detω
(p−1)
G ' detω

(p−1)

GD
such that LF (Ha(G)) = Ha(GD).

Assume that we have a quasi-polarization λ : G
∼→ GD.
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Lemma 6.2.1.1. — The composite detω
(p−1)

GD
λ∗→ detω

(p−1)
G

LF→ detω
(p−1)

GD
is the identity

map.

Proof. We first assume that G is ordinary. Thus Ha(G)OS ' detω
(p−1)
G and similarly,

Ha(GD)OS ' detω
(p−1)

GD
. By functoriality, λ?Ha(GD) = Ha(G). Since LF (Ha(G)) =

Ha(GD) we deduce the claim. The algebraic stack of quasi-polarized truncated Barsotti-
Tate group schemes of level 1 is smooth with dense ordinary locus by [33]. We can thus
deduce the lemma in general.

6.2.2. Another Hasse invariant. — We assume that S is reduced, that G is a BT1 of height
4 and dimension 2 and that the étale rank and multiplicative rank of G are constant, both
equal to 1. In this setting, the classical Hasse invariant vanishes identically on S. We
recall the construction of an other Hasse invariant in this situation (this is a very special
case of more general constructions of Boxer [5] and Goldring-Koskivirta [25]). We have a
multiplicative-connected filtration over S :

Gm ⊂ Go ⊂ G
We set Goo = Go/Gm. This is a BT1 of height 2 and dimension 1. Let E =
Ext1cris(G

oo,OS/SpecFp)S . It carries the Hodge filtration:

0→ ωGoo → E → ω−1
(Goo)D

→ 0

There is a map V ? : E → E(p). The map V ?|ωGoo : ωGoo → ωpGoo is zero (because it

is zero pointwise and S is reduced). The map V ?|ω−1
(Goo)D

: ω−1
(Goo)D

→ ω−p
(Goo)D

is always

zero. Passing to the quotient, we get an isomorphism V ? : ω−1
(Goo)D

→ ωpGoo . We set

Ha′(Goo) = (V ?)p−1 ∈ H0(S, ωp
2−1
Goo ). We are using here the isomorphism LF to identify

ωp−1
(Goo)D

and ωp−1
Goo .

We define the following invertible section (which we call the second Hasse invariant):

Ha′(G) = Ha(Gm)p+1 ⊗Ha′(Goo) ∈ H0(S, detωp
2−1
G ).

Let GD be the Cartier dual of G. It satisfies the same assumptions as G.

Lemma 6.2.2.1. — Under the isomorphism LF⊗(p+1) : detωp
2−1
G ' detωp

2−1
GD

, we have

Ha′(G) = Ha′(GD).

Proof. Since S is reduced, we need only to check the equality on points. Thus, we can
reduce to the case where S is the spectrum of an algebraically closed field. In this case,
there exists a quasi-polarization λ : G→ GD. The composite

detωp
2−1
GD

λ?→ detωp
2−1
G

LF⊗(p+1)

→ detωp
2−1
G .

is the identity map by lemma 6.2.1.1. On the other hand, λ?(Ha′(GD)) = Ha′(G) be
functoriality. It follows that LF p+1(Ha′(G)) = Ha′(GD).

6.2.3. Extension of the second Hasse invariant. — We are going to prove that the second
Hasse invariant can be extended under some hypothesis. This is again a very special case
of extensions considered by Boxer and Goldring-Koskivirta. We now assume that S is a
normal reduced scheme and that G is a BT1 of height 4, dimension 2. We assume that
over a dense open subscheme S′ of S, G has étale rank one and multiplicative rank one.

We moreover assume that over S, the Hasse-Witt map V ? : ωG → ω
(p)
G has rank 1. The

next lemma shoes that GD satisfies the same hypothesis as G.
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Lemma 6.2.3.1. — The map V ? : ωGD → ω
(p)

GD
has rank one.

Proof. Let E = Ext1cris(G,OS/Fp)S . As in [19], p. 9, one proves that there is a short
exact sequence of perfect complexes (the complexes are the horizontal ones) :

ωG
V ? //

��

ω
(p)
G

��

(ω∨
GD

)(p) F ? //

��

E V ? //

��

ω
(p)
G

(ω∨
GD

)(p) F ? // ω∨
GD

The map F ? : (ω∨
GD

)(p) → ω∨
GD

is the dual of the map V ? : ωGD → ω
(p)

GD
. Taking the

long exact sequence in cohomology shoes that this last map has rank one.

Over S′, we have a multiplicative subgroup H = Gm ⊂ G[F ] := Ker F .

Lemma 6.2.3.2. — The group H extends to a finite flat group scheme H ⊂ G[F ] over
S.

Proof. Consider the map V : G[F ](p) → G[F ]. We prove that the kernel K of this map
is a finite flat rank p group scheme (locally isomorphic to αp). Note that K is also the

kernel of F : G(p)[V ] → G(p2)[V ]. The Hodge-Tate map provides a long exact sequence
(see [19], sect. 2.1.2) :

0→ KerF → GD
HT→ ωG

F−V ?→ ω
(p)
G

Moreover, GD/KerF ' G(p)[V ]. It follows that K ' Ker(ωG ⊗ αp
V ?→ ωG(p) ⊗ αp) is a

rank p group. We now set H = G[F ](p)/K ↪→ G[F ]. This is the extension we are looking
for.

Applying the lemma to GD, we also get a subgroup L ⊂ GD[F ]. We now consider

the chain of maps G
F→ G(p) V→ G. Applying the functor Ext1cris(−,OS/Fp)S and setting

E = Ext1cris(G,OS/Fp)S yields the following diagram :

ω
(p)
G

��

0 // ωG //

��

ω
(p)
G

��
E(p) F ? //

��

E V ? //

��

E(p)

��
(ω∨
GD

)(p) // ω∨
GD

0 // (ω∨
GD

)(p)

(6.2.A)

The map V ? : ωG → ω
(p)
G fits in the diagram :
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ωG[F ]/H
0 //

��

ω
(p)
G[F ]/H

��

ωG
V ? //

��

ω
(p)
G

��

ωH
V ?H // ω

(p)
H

(6.2.B)

We retain from this diagram the two maps : V ?
H : ωH → ω

(p)
H and W : ω

(p)
G[F ]/H →

ω
(p)
G /V ?(ωG).

Lemma 6.2.3.3. — The maps V ?
H and W vanish on the complement of S′. Moreover,

they have the same order of vanishing.

Proof. Let x be a generic point of one component of S \ S′. We work over the discrete

valuation ring OS,x. We take a basis e1, e2 for ωG,x and f1, f2 for ω
(p)
G,x such that e1

generates ωH and f1 generates ω
(p)
H . The matrix of V ? in this basis has the form(

0 a
0 b

)
where b ∈ mS,x and a ∈ O×S,x since V ?

H vanishes at x and V ? has rank one. The claim is
now obvious.

The map V ? of diagram 6.2.A induces, after passing to the quotient, a map

Z : ω∨GD/F
?(ω∨GD)(p) → ω

(p)
G /V ?ωG.

Lemma 6.2.3.4. — There is a canonical isomorphism ω∨
GD
/F ?(ω∨

GD
)(p) = (ωGD[F ]/L)∨.

Proof. The map F ? : (ω∨
GD

)(p) → ω∨
GD

is dual to V ? : ωGD → ω
(p)

GD
and the kernel of V ?

is ωGD[F ]/L by the analogue of diagram 6.2.B for GD.

We can define a rational section (V ?
H)p+1⊗(W−1◦Z)p−1 of the sheaf ωp

2−1
H ⊗ωp(p−1)

G[F ]/H⊗
ωp−1
GD[F ]/L

.

Lemma 6.2.3.5. — This section is regular and vanishes precisely over S \ S′.

Proof. This follows from lemma 6.2.3.3 since p+ 1 > p− 1.

We can finally prove :

Proposition 6.2.3.1. — The Hasse invariant Ha′(G) ∈ H0(S′, ωp
2−1
G ) extends to S.

Moreover, it vanishes precisely on S \ S′.

Proof. It is enough to prove the claim for (Ha′(G))2 = Ha′(G) ⊗ Ha′(GD) (see lemma

6.2.2.1). Call A = (V ?
H)p+1 ⊗ (W−1 ◦ Z)p−1 the section of the sheaf ωp

2−1
H ⊗ ωp(p−1)

G[F ]/H ⊗
ωp−1
GD[F ]/L

we just constructed. Exchanging the roles of G and GD, we obtain a section B

of ωp
2−1
L ⊗ ωp(p−1)

GD[F ]/L
⊗ ωp−1

G[F ]/H . The product A⊗B extends (Ha′(G))2.
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6.2.4. Functoriality. — Let S be a scheme over Spec Fp. Let G,G′ → Spec S be Barsotti-
Tate groups. We recall that if λ : G → G′ is an étale isogeny, then λ? : ωG′ → ωG is an
isomorphism and moreover λ?Ha(G′) = Ha(G). If we are in a situation where the second
Hasse invariant is defined, we also have λ?Ha′(G′) = Ha′(G). We want to obtain similar
results in the case of non-étale isogeny.

Lemma 6.2.4.1. — Assume that G and G′ are Barsotti-Tate groups of multiplicative
type. Let λ : G→ G′ be an isogeny. Then we can define a canonical isomorphism :

λ̃? : detωG′ → detωG

Moreover, λ̃?Ha(G′) = Ha(G).

Proof. Let pr be the degree of λ. We have G = T ⊗Zp µp∞ and G′ = T ′ ⊗Zp µp∞ for
two smooth pro-étale sheaves T and T ′. The map λ provides a map λ0 : T → T ′ which
induces an isomorphism p−r detλ0 : detT → detT ′. Since detωG = detT ⊗ ωµp∞ and

detωG′ = detT ′ ⊗ ωµp∞ we get a canonical isomorphism λ̃? between these two. There

are canonical trivialisations Fp ' (detT/pT )p−1 and Fp ' (detT ′/pT ′)p−1. In these
trivalisations we have Ha(G) = 1⊗Ha(µp∞) and Ha(G′) = 1⊗Ha(µp∞) which are identified

via the map λ̃?.

Lemma 6.2.4.2. — Let G and G′ be Barsotti-Tate groups. We assume that they have
constant multiplicative rank over S. Let λ : G → G′ be an isogeny with kernel L ⊂ G[p].
Assume that for all geometric points x→ S, there exists a multiplicative group Hx ⊂ Gx[p]
such that Hx ⊕ Lx = Gx[p]. Then there is a canonical isomorphism

λ̃? : detωG′ → detωG.

Moreover, λ̃?Ha(G′) = Ha(G). If the second Hasse invariant is defined, we also have

λ̃?Ha′(G′) = Ha′(G).

Proof. We have filtrations by multiplicative Barsotti-Tate subgroups Gm ⊂ G and
(G′)m ⊂ G′. Let Lm = L ∩Gm. Then we have a commutative diagram :

Gm //

λm

��

G //

λ
��

G/Gm

pµ

��
(G′)m // G′ // G′/(G′)m

Where the right vertical map has kernel Lm. The isogeny G/Gm → G′/(G′)m can be

uniquely written in the form pµ where µ is an isomorphism inducing µ? : detωG′/(G′)m
∼→

detωG/Gm . The above lemma provides an isomorphism (λ̃m)? : detω(G′)m → detωGm .
The tensor product of these two maps is the isomorphism we are looking for. The other
properties are obvious.

6.3. Stratification of the special fiber. — We will now stratify the special fibers of
the Siegel threefolds. We denote by G the semi-abelian scheme over X and by G′ the
semi-abelian scheme over Xp. For all n ∈ Z≥1, we let Xn → Spec Z/pnZ be the mod pn

reduction of X and Xp,n the reduction modulo pn of Xp.
For r ∈ {0, 1, 2}, we set :
— X=r

n the locally closed subset of Xn where the multiplicative rank of G is exactly
r,

— X≤rn the closed subset of Xn where the multiplicative rank of G is less than r,
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— X≥rn , the open subscheme of Xn where the multiplicative rank of G is greater than
r.

We define similarly X=r
p,n, X≤rp,n and X≥rp,n. We recall that X=r

n is dense open in X≤rn ,

that X=r
p,n is dense open in X≤rp,n and they are of dimension 3− r (see [53]).

We now specify the schematic structure. We let ω denote the invertible sheaf det ωG
over X1 or detωG′ over Xp,1 (no confusion should arise). We have two Hasse invariants

Ha(G) ∈ H0(X1, ω
(p−1)) and Ha(G′) ∈ H0(Xp,1, ω

(p−1)) . Their definition was recalled in
section 6.2.1 in the context of abelian schemes. The extension to semi-abelian schemes is
straightforward. Alternatively, we can use Koecher’s principle. We let X≤1

1 = V (Ha(G))

and X≤1
p,1 = V (Ha(G′)).

Lemma 6.3.1. — X≤1
1 and X≤1

p,1 carry the reduced schematic structure.

Proof. The scheme X1 is smooth, hence normal. The scheme Xp,1 is smooth up to a
dimension 0 set and is Cohen-Macaulay by proposition 6.1.4.1. By Serre’s criterion, it is
also normal. It follows that it suffices to prove that Ha(G) and Ha(G′) vanish at order
one at each generic point of the non-ordinary locus. Let k be an algebraically closed field
of characteristic p and let x : Spec k → X=1

1 or x : Spec k → X=1
p,1 . Let H → Spec k

be the p-divisible group associated to x. The contravariant Dieudonné module D of H is
isomorphic to the 4-dimensional free W (k)-module with canonical basis (e1, e2, e3, e4) and
with Frobenius matrix given by : 

p 0 0 0
0 0 1 0
0 p 0 0
0 0 0 1


It is the sum of three direct factors W (k)e1

⊕
(W (k)e2 ⊕W (k)e3)

⊕
W (k)e4, corre-

sponding to the multiplicative-biconnected-étale decomposition. We find that the Hodge
filtration is given by Ker(F ) = 〈ē1, ē2〉 ⊂ D/pD.

By [33], the universal first order deformation of H is represented by

R = k[X,Y,W,Z]/(X,Y, Z,W )2

where the universal Hodge filtration Fil inside D⊗W (k) R is generated by the columns of
the matrix 

1 0
0 1
X Y
W Z


The Hasse-invariant of the universal deformation is the determinant of F : D ⊗

R/Fil→ D ⊗R/Fil. The matrix of F in the basis ē3, ē4 of D ⊗R/Fil is(
−Y 0
−X 1

)
To find the universal deformation of x we need to incorporate the polarization 〈.〉 :

D/pD×D/pD → k. The tangent space at x is given by the subspace where the filtration
is isotropic. We need to see that this subspace is not contained in Y = 0. This will prove
that the Hasse invariant defines a non-zero linear form on the tangent space. Concerning
the polarization, we necessarily have 〈ē1, ē2〉 = 0, 〈ē1, ē3〉 = 0, 〈ē2, ē4〉 = 0 and 〈ē3, ē4〉 = 0.
The isotropy condition is then 〈ē1, ē4〉Z − 〈ē2, ē3〉X = 0.

In section 6.2.2 we have defined a second Hasse invariant. The construction applies to
the open subscheme of X=1

1 and X=1
p,1 where the semi-abelian scheme is an abelian scheme.
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The extension to the case of semi-abelian schemes is straightforward. As a result, we have

two Hasse invariants Ha′(G) ∈ H0(X=1
1 , ωp

2−1) and Ha′(G′) ∈ H0(X=1
p,1 , ω

p2−1).

Lemma 6.3.2. — The second Hasse invariants Ha′(G) ∈ H0(X=1
1 , ωp

2−1) and Ha′(G′) ∈
H0(X=1

p,1 , ω
p2−1) extend to X≤1

1 and X≤1
p,1 . Moreover, they vanish on X≤0

1 and X≤0
p,1 .

Proof. Recall that an abelian surface is called superspecial if it is isomorphic to the
product of two supersingular elliptic curves. There are only finitely many superspecial
points on Xp,1 and X1 by [52]. Call this finite set SS. Since X≤1

p,1 and X≤1
1 are Cohen-

Macaulay, it suffices to construct the extension over the complement of SS. Moreover,
since we removed the superspecial points, the Hasse-Witt matrix has rank 1. We now prove
the smoothness for X≤1

1 \ SS. Over X≤1
1 \ SS, we have a canonical filtration H ⊂ KerF

where the group H is constructed in lemma 6.2.3.2 . As a result, X≤1
1 \ SS embeds in

the moduli space of abelian surfaces with a polarization of degree prime to p and with
Iwahori level. The local model is computed in detail in [58], page 186 to 189. We find that

X≤1
1 \SS is exactly the union of the strata denoted Xm,e

0 and Xsg,F
0 in that reference. We

see that this union of strata is smooth. We compute that the closure of Xm,e
0 is locally

isomorphic to

Spec Fp[x, y, a, b, c]/(xy, ax+ by + abc, a, y, x+ bc) ' Fp[b, c]

where Xm,e
0 is corresponds to the stratum bc 6= 0 and Xsg,F

0 corresponds to the stratum

c = 0, b 6= 0. The extension of Ha′(G) over X≤1
1 \ SS follows from proposition 6.2.3.1.

We now prove that X≤1
p,1 \ SS is locally isomorphic to Spec Fp[a, b, c]/(ab) with a 6= 0

or b 6= 0 corresponding to X=1
p,1 . By proposition 6.2.3.1 we deduce that Ha′(G′) extends

on each irreducible components of X≤1
p,1 \SS. Moreover, to check that it glues to a section

over X≤1
p,1 \ SS we need to prove that the values of Ha′(G′) agree on the intersections of

the irreducible components. Since this value is zero, this is true. Over X≤1
p,1 \ SS we have

a chain G′ → G → (G′)t → G′′ → G′ → G. This chain is constructed as follows. Let
K(λ) be the kernel of the polarization G′ → (G′)t and K(λt) the kernel of the polarization
λt : (G′)t → G. Set H = K(λ) ∩Ker F and set H ′ = K(λt) ∩Ker F . These are groups of
order p because K(λ) and K(λt) are BT1 of height 2 and dimension 1. We set G = G′/H

and G′′ = (G′)t/H ′. This chain provides an embedding of X≤1
p,1 \ SS in the moduli of

space of abelian surfaces with a polarization of degree prime to p and Iwahori level. More
precisely, it identifies X≤1

p,1 \ SS with an open subscheme of the union of the closure of

the stratum denoted by Xo,m
0 and Xet,o

0 in [58]. We compute that the closure of Xo,m
0

corresponds on the local model to the ring quotient

Fp[x, y, a, b, c]/(xy, ax+ by + abc) 7→ Fp[b, c]

given x = y = a = 0. The closure of Xet,o
0 corresponds on the local model to the ring

quotient

Fp[x, y, a, b, c]/(xy, ax+ by + abc) 7→ Fp[a, c]
given x = b = 0 and y 7→ −ac. Both rings are quotients of

Fp[x, y, a, b, c]/(xy, ax+ by + abc, y + ac, x) ' Fp[a, b, c]

given by the respective equations a = 0 and b = 0. Finally, the open stratum corresponding
to X=1

p,1 is given by a 6= 0 or b 6= 0.

We define the schematic structure X≤0
1 = V (Ha′(G)) and X≤0

p,1 = V (Ha′(G′)).
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Remark 6.3.1. — It is possible to check that the modular form Ha′(G) vanishes at order
2 along the rank 0 locus. When p ≥ 3, the modular form Ha′(G) has a square root which
vanishes at order 1. When p = 2, it doesn’t have a square root.

6.4. Sheaves. — We recall the definition of the classical automorphic sheaves as well
as the vanishing theorem for the projection to the minimal compactification.

6.4.1. Definition. — We now define several sheaves of modular forms. Over X we have
a rank 2 locally free sheaf Ω1 := e?Ω1

G/X . For all pairs (k, r) ∈ Z≥0 × Z we set Ω(k,r) =

SymkΩ1⊗ detr Ω1. For simplicity, we sometimes write ωr instead of Ω(0,r) and Ωk instead
of Ω(k,0). Similarly, over Xp we have a rank 2 locally free sheaf e?Ω1

G′/X . If no confusion

arises, we still denote this sheaf by Ω1. We define similarly Ω(k,r).

6.4.2. Vanishing theorems. — According to [16], [45] and [46], we can construct minimal
compactifications X? and X?

p for YK and Yp,K . They are defined as the Proj of the graded

algebras ⊕k≥0H0(X,ωk) and ⊕k≥0H0(Xp, ω
k). The sheaves ω descend to ample sheaves

on X? and X?
p . We have canonical morphisms π : X → X? and πp : Xp → X?

p .

Theorem 6.4.2.1 ([46], thm. 8.6). — For all (k, r) ∈ Z≥0 × Z and i > 0, we have

Riπ?Ω
(k,r)(−DX) = 0

and
Ri(πp)?Ω

(k,r)(−DXp) = 0.

7. The T operator

7.1. Definition of the T -operator. — Consider the schemes X, XKli(p) and Xp for
choices of good polyhedral decompositions Σ, Σ′ and Σ′′ (see section 6.1). We also assume
that Σ′ refines both Σ and Σ′′. As a result we have maps p1 : XKli(p) → X and p2 :
XKli(p)→ Xp. By theorem 6.1.5.1, these schemes are normal and lci over Spec Zp. Their
non-smooth locus is included in the non-ordinary locus of the special fiber. As a result, it
is of codimension 2. We recall that G denotes the semi-abelian scheme over X and G′ the
semi-abelian scheme over Xp. Over XKli(p) we have the chain of isogenies G→ G′ → G.

We apply the formalism developed in section 4 to construct cohomological corre-
spondences. Let (k, r) ∈ Z2

≥0. The differential of the isogeny G → G′ provides a map

p?2Ω(k,r) → p?1Ω(k,r). Moreover, we have by construction 1 (see section 4.2.1), a fundamen-
tal class p?1OX → p!

1OX and p!
1OX is an invertible sheaf. We thus obtain by tensor product

with Ω(k,r) and proposition 4.1.2.1 a map p?1Ω(k,r) → p!
1Ω(k,r). Finally, if we compose with

the map p?2Ω(k,r) → p?1Ω(k,r), we obtain a cohomological correspondence

T ′1 : p?2Ω(k,r) → p?1Ω(k,r) → p!
1Ω(k,r)

that we need to normalize.

Lemma 7.1.1. — The map T ′1 factors through p2+rp!
1Ω(k,r) if k + 2r ≥ 2 + r.

Proof. It is enough to prove the divisibility over the complement of the non-ordinary
locus. This is sufficient because XKli(p) is normal and the closed subscheme non-ordinary
locus is of codimension 2. We are thus left to prove the divisibility over the completion of
XKli(p) along the ordinary locus. There are two types of components. We first consider the
components where G→ G′ has kernel a group of étale rank two. Over these components,
the map p?2ω

r → p?1ω
r factors through prp?1ω

r because the multiplicative rank of the

kernel of the isogeny G → G′ is exactly 1. As a result, the map p?2Ω(k,r) → p?1Ω(k,r)
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factors through prp?1Ω(k,r). On the other hand, we claim that the map p?1Ω(k,r) → p!
1Ω(k,r)

factors through p2p!
1Ω(k,r). Let G ∈ X(F̄p) be an ordinary point. Let T be the Tate

module of this point. We fix an isomorphism T ' Z2
p. The deformation space of this

point is Hom(Sym2T, Ĝm) by Serre-Tate theory ([36]). This space has underlying ring

W (Fp)[[X,Y, Z]] where the Serre-Tate parameter is the map Z2
p → Z2

p ⊗ Ĝm given by the

symmetric matrix

(
X Z
Z Y

)
. The fiber of this deformation space under p1 is a disjoint

union (parametrized by ker(G→ G′) ∩G[p]m) of spaces with associated rings

W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1 +X ′)p − 1−X, (1 + Z ′)p − 1− Z, Y ′ − Y )

which parametrize the following diagram of Serre-Tate parameters :

Z2
p

(X,Z;Z,Y ) //

(p,0;0,p)

��

Z2
p ⊗ Ĝm

(1,0;0,p)
��

Z2
p

(X′,p.Z′;Z′,Y ′) // Z2
p ⊗ Ĝm

The trace

W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1+X ′)p−1−X, (1+Z ′)p−1−Z, Y ′−Y )→W (Fp)[[X,Y, Z]]

factors through p2W (Fp)[[X,Y, Z]] which implies that the map p?1OX → p!
1OX factors

through p2p!
1OX .

On the components where G → G′ has kernel a group of p-rank two, the map
p?2Ω(k,r) → p?1Ω(k,r) factors through p(k+2r)p?1Ω(k,r) and the map p?1Ω(k,r) → p!

1Ω(k,r) is
an isomorphism.

Under the assumption k + 2r ≥ 2 + r (which holds if r ≥ 2), we denote by T1 =

p−2−rT ′1 : p?2Ω(k,r) → p!
1Ω(k,r) the normalized map or the map on cohomology :

T1 : RΓ(Xp,Ω
(k,r))→ RΓ(X,Ω(k,r))

We now define a second cohomological correspondence in the other direction (we
exchange the roles of p1 and p2). We have maps :

T ′2 : p?1Ω(k,r) → p?2Ω(k,r) → p!
2Ω(k,r)

where the first map arises from the differential of the isogeny G′ → G and the second map
from the fundamental class.

Lemma 7.1.2. — The map T ′2 factors through pp!
2Ω(k,r) if r ≥ 1.

Proof. We compute over the ordinary locus. There are two types of components. The
components where the kernel of G′ → G is an étale group scheme. Over these components,
the map p?1Ω(k,r) → p?2Ω(k,r) is an isomorphism and the map p?2Ω(k,r) → p!

2Ω(k,r) factors

through pp!
1Ω(k,r). On the components where the kernel ofG′ → G is a multiplicative group

scheme, the map p?1Ω(k,r) → p?2Ω(k,r) factors through prp?1Ω(k,r) and the map p?2Ω(k,r) →
p!

2Ω(k,r) is an isomorphism.

Under the assumption r ≥ 1, we denote by T2 the associated normalized map p−1T ′2 :

p?1Ω(k,r) → p!
2Ω(k,r) or the map on cohomology :

T2 : RΓ(X,Ω(k,r))→ RΓ(Xp,Ω
(k,r))
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We let T = T1 ◦ T2.

7.2. Independence on the choice of the toroidal compactification. — Suppose
we have a commutative diagram for choices Σ,Σ′,Σ′′ and Λ,Λ′,Λ′′ of good polyhedral cone
decompositions :

Xp,Λ′′

r

��

XKli(p)Λ′
l1 //l2oo

s

��

XΛ

t

��
Xp,Σ′′ XKli(p)Σ′

p2oo p1 // XΣ

By theorem 6.1.5.1, we have isomorphisms :

t? : RΓ(XΣ,Ω
(k,r))→ RΓ(XΛ, t

?Ω(k,r))

r? : RΓ(Xp,Σ′′ ,Ω
(k,r))→ RΓ(Xp,Λ′′ , r

?Ω(k,r))

s? : RΓ(XKli(p)Σ′ ,Ω
(k,r))→ RΓ(XKli(p)Λ′ , s

?Ω(k,r))

where in this last isomorphisms Ω(k,r) stands for either p?1Ω(k,r) or p?2Ω(k,r).

Proposition 7.2.1. — The diagrams :

RΓ(Xp,Λ′′ ,Ω
(k,r))

T1,Λ // RΓ(XΛ,Ω
(k,r))

RΓ(Xp,Σ′′ ,Ω
(k,r))

r?

OO

T1,Σ // RΓ(XΣ,Ω
(k,r))

t?

OO

and

RΓ(XΛ,Ω
(k,r))

T2,Λ // RΓ(Xp,Λ′′ ,Ω
(k,r))

RΓ(XΣ,Ω
(k,r))

t?

OO

T1,Σ // RΓ(Xp,Σ′′ ,Ω
(k,r))

r?

OO

are commutative.

Proof. The bottom horizontal map is induced by the cohomological correspondence
T1,Σ : p?2Ω(k,r) → p!

1Ω(k,r) which by adjunction is a map : R(p1)?p
?
2Ω(k,r) → Ω(k,r). Since

Rs?s
?p?2Ω(k,r) ' p?2Ω(k,r), this map is equivalently a map :

T ′1,Σ : R(p1)?Rs?s
?p?2Ω(k,r) = Rt?R(l1)?l

?
2r
?Ω(k,r) → Ω(k,r).

We can obtain another map. We have a second cohomological correspondence
T1,Λ : R(l1)?l

?
2r
?Ω(k,r) → t?Ω(k,r). Using the adjunction property and the isomorphism

Rt?t
?Ω(k,r) ' Ω(k,r) we obtain a map that we denote by

T ′1,Λ : Rt?R(l1)?l
?
2r
?Ω(k,r) → Ω(k,r).

The commutativity of the diagram is equivalent to the equality T ′1,Σ = T ′1,Λ. By adjunction,

both can be seen as maps of locally free shaves l?2r
?Ω(k,r) → l!1t

!Ω(k,r). Both maps coincide
over the complement of the boundary. Thus, they coincide everywhere. The commutativity
of the second diagram follows along similar lines.
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7.3. The operator on cuspidal cohomology. — The boundary of the toroidal com-
pactification X, Xp or XKli(p) is denoted by DX , DXp or DXKli(p). If no confusion will
arise, it is simply denoted by D.

Lemma 7.3.1. — The cohomological correspondences T1 : p?2Ω(k,r) → p!
1Ω(k,r) induces a

cohomological correspondence T1 : p?2Ω(k,r)(−DXp) → p!
1Ω(k,r)(−DX).

The cohomological correspondences T2 : p?1Ω(k,r) → p!
2Ω(k,r) induces a cohomological

correspondence T2 : p?1Ω(k,r)(−DX) → p!
2Ω(k,r)(−DXp).

Proof. We have a map p?2Ω(k,r)(−DXp) → p?2Ω(k,r)(−DXKli(p)). Twisting the map

p?2Ω(k,r) → p?1Ω(k,r) we get a map p?2Ω(k,r)(−DXKli(p)) → p?1Ω(k,r)(−DXKli(p)). By lemma

4.2.4.1, the fundamental class induces a map OXKli(p)(−DXKli(p))→ p!
1OX(−DX). Tensor-

ing with Ω(k,r) and composing everything gives a non-normalized map p?2Ω(k,r)(−DXp) →
p!

1Ω(k,r)(−DX). This map factors through prp!
1Ω(k,r)∩p!

1Ω(k,r)(−DX) = prp!
1Ω(k,r)(−DX).

A similar argument applies to the correspondence T2.

7.4. Restriction of the correspondence. — In this section, we work over Fp. Let
p1 : XKli(p)1 → X1 and p2 : XKli(p)1 → Xp,1 be the reduction modulo p of the maps p1

and p2. We keep the notation p1 and p2 for the two projections.
We have (by reduction modulo p and proposition 4.1.2.1), two normalized coho-

mological correspondences T1 : p?2(Ω(k,r)|Xp,1) → p!
1(Ω(k,r)|X1) and T2 : p?1(Ω(k,r)|X1) →

p!
2(Ω(k,r)|Xp,1). Again, we keep the notations T1, T2 for the reduction of the cohomological

correspondences. We deduce maps on cohomology T1 ∈ Hom(RΓ(Xp,1,Ω
(k,r)),RΓ(X1,Ω

(k,r)))

and T2 ∈ Hom(RΓ(X1,Ω
(k,r)),RΓ(Xp,1,Ω

(k,r))). We keep writting T = T1 ◦ T2.

7.4.1. Restriction to the non-ordinary locus. — We now study the restriction of the cor-
respondence to the non-ordinary locus.

Proposition 7.4.1.1. — For r ≥ 2 and k + r > 2, the following diagrams commute :

p?2Ω(k,r) T1 //

p?2Ha
��

p!
1Ω(k,r)

p?1Ha
��

p?2Ω(k,r+(p−1)) T1 // p!
1Ω(k,r+(p−1))

p?1Ω(k,r) T2 //

p?1Ha
��

p!
2Ω(k,r)

p?2Ha
��

p?1Ω(k,r+(p−1)) T2 // p!
2Ω(k,r+(p−1))

Proof. It is enough to prove the commutativity over some dense open subscheme since
XKli(p)1 is cohen-macaulay. We can thus work over the interior of the moduli space
and the ordinary locus. We consider the first diagram. There are two types of ordinary
components. First, the components where the kernel of the isogeny G → G′ is of étale
rank 2. Over these components, the diagram can be rewritten as the composition of two
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diagrams :

p?2Ω(k,r) //

p?2Ha
��

p?1Ω(k,r)

p?1Ha
��

// p!
1Ω(k,r)

p?1Ha
��

p?2Ω(k,r+(p−1)) // p?1Ω(k,r+(p−1)) // p!
1Ω(k,r+(p−1))

The map p?2Ω(k,r) → p?1Ω(k,r) is obtained as the tensor product of the natural map

p?2Ω(k,0) → p?1Ω(k,0) and a normalized map p?2Ω(0,r) → p?1Ω(0,r). By lemma 6.2.4.1, the left
square is commutative. The right square diagram is obtained by tensoring a normalized

fundamental class p?1OX1 → p!
1OX1 by the morphism Ω(k,r) p?1Ha

→ Ω(k,r+(p−1)) and is obvi-
ously commutative. We next deal with the components where the kernel of the isogeny
G → G′ is of étale rank 1 and thus of multiplicative rank 2. Going back to the defini-
tion (see lemma 7.1.1), we deduce that the map p?2Ω(k,r) → p!

1Ω(k,r) vanishes as soon as
k + 2r > r + 2. As a result, the commutativity is obvious on these components.

We now deal with the commutativity of the second diagram. First, we consider the
components where the isogeny G′ → G has étale kernel. On those components, we can
again split the diagram as

p?1Ω(k,r) //

p?1Ha
��

p?2Ω(k,r)

p?2Ha
��

// p!
2Ω(k,r)

p?2Ha
��

p?1Ω(k,r+(p−1)) // p?2Ω(k,r+(p−1)) // p!
2Ω(k,r+(p−1))

The left square is commutative because the Hasse invariant commutes with étale iso-
genies. The right square is commutative because it is obtained by tensoring the normalized
fundamental class p?2OX1 → p!

2OX1 by the morphism Ω(k,r) → Ω(k,r+(p−1)).
Finally, we consider components where the kernel of the map G′ → G is multiplicative.

Then, as soon as r > 1, the map p?1Ω(k,r) → p!
2Ω(k,r) vanishes and commutativity is obvious.

We recall that X≤1
p,1 and X≤1

1 are the vanishing locus of the Hasse invariant in Xp,1

and X1.

Lemma 7.4.1.1. — The sections p?2Ha and p?1Ha are not zero divisors in XKli(p)1.

Proof. The scheme XKli(p)1 is Cohen-Macaulay and the non-ordinary locus has codi-
mension 1.

By proposition 7.4.1.1 and proposition 4.1.2.1, for all r ≥ 2 + p− 1 and k+ r > 2, we
have cohomological correspondences :

T1 : p?2(Ω(k,r)|
X≤1
p,1

)→ p!
1(Ω(k,r)|

X≤1
1

)

and

T2 : p?1(Ω(k,r)|
X≤1

1
)→ p!

2(Ω(k,r)|
X≤1
p,1

).

They induce a map T1 ∈ Hom(RΓ(X≤1
p,1 ,Ω

(k,r)),RΓ(X≤1
1 ,Ω(k,r))) and a map T2 ∈

Hom(RΓ(X≤1
1 ,Ω(k,r)),RΓ(X≤1

p,1 ,Ω
(k,r))). We let T = T1 ◦ T2. We obtain maps of exact

triangles for all r ≥ 2 and k + r > 2 :
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R(p1)?p
?
2Ω(k,r) //

p?2Ha
��

Ω(k,r)

p?1Ha
��

R(p1)?p
?
2Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(p1)?(p2)?Ω(k,r+(p−1))|

X≤1
p,1

//

+1

��

Ω(k,r+(p−1))|
X≤1

1

+1

��

and

R(p2)?p
?
1Ω(k,r) //

p?1Ha
��

Ω(k,r)

p?2Ha
��

R(p2)?p
?
1Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(p2)?(p1)?Ω(k,r+(p−1))|

X≤1
1

//

+1

��

Ω(k,r+(p−1))|
X≤1
p,1

+1

��

For r ≥ 2 and k + r > 2, we deduce that there is a long exact sequence on which T
acts equivariantly:

H?(X1,Ω
(k,r))

×Ha→ H?(X1,Ω
(k,r+(p−1)))→ H?(X≤1

1 ,Ω(k,r+(p−1)))→
7.4.2. Restriction to the rank zero locus. — For r ≥ 2 + (p − 1) and k + r > 2, we have
cohomological correspondences :

T1 : p?2Ω(k,r)|
X≤1
p,1
→ p!

1Ω(k,r)|
X≤1

1
, and T2 : p?1Ω(k,r)|

X≤1
p,1
→ p!

2Ω(k,r)|
X≤1

1

We are going to decompose these correspondences into pieces.

Lemma 7.4.2.1. — Let S be a scheme of characteristic p and G be a truncated Barsotti-
Tate group of level N over S. Assume that the étale rank and the multiplicative rank of
G is constant over S. Let H ⊂ G be a subgroup scheme of order p. Then S is the union
of three types of open and closed subschemes S = Set

∐
Sm
∐
Soo such that over each

geometric point of Set, Sm and Soo, the group H is of étale, multiplicative, biconnected
type.

Proof. We can assume that S is reduced. After base change via some high power of
the absolute frobenius S → S, we have a decomposition : G = Gm ⊕ Get ⊕ Goo into
multiplicative, biconnected and étale components (see [55], prop. 1.3). The condition that
H is of étale, multiplicative or biconnected type is then obviously closed. The condition
that H is étale or multiplicative is open. Thus we have connected components Set and
Sm. Their complement is Soo.
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Using this lemma we can decompose certain schemes. Consider the chain of isogenies
G→ G′ → G over XKli(p).

Lemma 7.4.2.2. — The scheme XKli(p)|X=1
p,1

is the union of three types of connected

components. The étale components (XKli(p)|X=1
p,1

)et where the isogeny G′ → G is of multi-

plicative type, the multiplicative components (XKli(p)|X=1
p,1

)m where the isogeny G′ → G is

étale and the bi-infinitesimal components (XKli(p)|X=1
p,1

)oo where the isogeny G′ → G has

bi-connected kernel.

Proof. We first establish the decomposition on YKli(p)|X=1
p,1

, the locus where G is an

abelian scheme. We can consider the universal order p subgroup H of G[p] and apply the
above lemma. This decomposition extends to XKli(p)|X=1

p,1
by the description of the local

charts.

Similarly, the scheme XKli(p)|X=1
1

(which has the same topological space as

XKli(p)|X=1
p,1

) is the union of three types of components. The components (XKli(p)|X=1
1

)et,

(XKli(p)|X=1
1

)m and (XKli(p)|X=1
1

)oo.

Lemma 7.4.2.3. — The scheme X=1
p,1 is the union of two types of components. The com-

ponents X=1,oo
p,1 where the kernel of the quasi-polarization G′[p∞]→ (G′)t[p∞] is isomorphic

to a biconnected group and the components X=1,m−et
p,1 where the kernel of the polarization

contains a multiplicative group.

Proof. Over X=1,oo
p,1 we consider K(λ) the kernel of the quasi-polarization G′[p∞] →

(G′)t[p∞]. If G′ is an abelian scheme, this group is either a connected BT1 of height 2 and
dimension 1 or an extension of an étale by a multiplicative group. We consider the group
KerF : K(λ) → K(λ)(p). This is a rank p group either of multiplicative type or locally
isomorphic to αp. We can apply lemma 7.4.2.1.

Lemma 7.4.2.4. — We have :

p2((XKli(p)|X=1
p,1

)oo) ⊂ X=1,oo
p,1

and
p2((XKli(p)|X=1

p,1
)m ∪ (XKli(p)|X=1

p,1
)et) ⊂ X=1,m−et

p,1 .

Proof. The group Ker(G′ → G) is included in the group K(λ) and therefore determines
its type.

The cohomological correspondence T1 : p?2Ω(k,r)|X=1
p,1
→ p!

1Ω(k,r)|X=1
1

is naturally the

sum Tm1 + T et1 + T oo1 of three cohomological correspondences. The cohomological corre-
spondence Tm1 is obtained from T1 by composing on the source with the inclusion of direct
factor

(p?2Ω(k,r)|
X≤1
p,1

)|(XKli(p)|X=1
p,1

)m → p?2Ω(k,r)|
X≤1
p,1

and composing on the target with the projection :

p!
1Ω(k,r)|

X≤1
1
→ (p!

1Ω(k,r)|
X≤1

1
)|(XKli(p)|X=1

1
)m

The same definition applies to T et1 and T oo1 , using the étale type and bi-infinitesimal
components.

Similarly, the cohomological correspondence T2 : p?1Ω(k,r)|X=1
1
→ p!

2Ω(k,r)|X=1
p,1

decom-

poses into T2 = Tm2 + T et2 + T oo2 , where we denote by Tm2 , T et2 and T oo2 the projection
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of the cohomological correspondence T2 respectively on the étale, multiplicative and bi-
infinitesimal components (note that the roles of étale an multiplicative components are
switched between T1 and T2).

We have maps on cohomology :

H?(X=1
1 ,Ω(k,r)(−D))

(T oo2 ,Tm2 +T et2 )
−→

H?(X=1,oo
p,1 ,Ω(k,r)(−D))⊕H?(X=1,m−et

p,1 ,Ω(k,r)(−D))
(T oo1 ,T et1 +Tm1 )
−→ H?(X=1

1 ,Ω(k,r)(−D)).

The first important result of this section is :

Proposition 7.4.2.1. — For r ≥ 2+(p−1) and k+r > 2(p+1), the following diagrams
are commutative :

p?2Ω(k,r)|
X≤1
p,1

T1 //

p?2Ha′

��

p!
1Ω(k,r)|

X≤1
1

p?1Ha′

��

p?2Ω(k,r+(p2−1))|
X≤1
p,1

T1 // p!
1Ω(k,r+(p2−1))|

X≤1
1

p?1Ω(k,r)|X=1
1

T et2 //

p?1Ha′

��

p!
2Ω(k,r)|X=1

p,1

p?2Ha′

��

p?1Ω(k,r+(p2−1))|X=1
1

T et2 // p!
2Ω(k,r+(p2−1))|X=1

p,1

Moreover, Tm1 = T oo1 = 0 and Tm2 = 0. Finally, if r ≥ p+2, T oo2 = 0 and the diagram:

p?1Ω(k,r)|
X≤1

1

T2 //

p?1Ha′

��

p!
2Ω(k,r)|

X≤1
p,1

p?2Ha′

��

p?1Ω(k,r+(p2−1))|
X≤1

1

T2 // p!
2Ω(k,r+(p2−1))|

X≤1
p,1

is commutative.

Proof. We first deal with the operator T1. We notice that it is enough to prove
the claim over XKli(p)|X=1

1
which is dense in the support of the Cohen-Macaulay sheaf

p!
1Ω(k,r+(p2−1))|

X≤1
1

. We can treat separately the different connected components. We first

deal with the components of étale type. We take some simplifying notations. Let A = X=1
p,1

and Â be the completion of Xp,1 along this locally closed subscheme. Let B = X=1
1 and

B̂ be the completion of X1 along B. The ideal of definition of Â and B̂ are (p,Ha.ω(1−p)).

Finally, consider Ĉ, the completion of XKil(p) along (XKli(p)|X=1
p,1

)et = (p−1
2 (A))et (or the

completion along (p−1
1 (B))et, it makes no difference). We consider the following restriction

of the correspondence (we keep using the same notations for the projections):
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Ĉ
p1

��

p2

��
Â B̂

We are now going to give a description of the cohomological correspondence T1 re-
stricted to Ĉ. Consider the following commutative diagram over Ĉ :

G[p∞]m //

��

G[p∞] //

��

G[p∞]/G[p∞]m

��
G′[p∞]m // G′[p∞] // G′[p∞]/G′[p∞]m

The middle vertical map is the universal isogeny. The exponant m means the multi-
plicative part of the BT . The right vertical map is an isomorphism and the left vertical
map is multiplication by p composed with an isomorphism. The non-normalized map
p?2ω → p?1ω can be normalized by p−1 to give an isomorphism. The non-normalized map

p?2Ω(k,r) → p?1Ω(k,r) can be normalized by p−r. Under the isomorphism p?2ω
(p−1) ' p?1ω(p−1)

we have p?1Ha = p?2Ha by lemma 6.2.4.2. We now define C = V (p, p?1Ha.p?1ω
1−p) ↪→ Ĉ

(we could have used instead p?2Ha.p?2ω
1−p). The fundamental class p?1OB̂ → p!

1OB̂ is di-

visible by p2 as we can check over the ordinary locus as in lemma 7.1.1. We can thus
write the cohomological correspondence T1 over Ĉ as the composition of a normalized
map p?2Ω(k,r)|Ĉ → p?1Ω(k,r)|Ĉ and the map which is the tensor product with p?1Ω(k,r) of a
normalized fundamental class. We are using here 4.2.5 to check the compatibility of the
fundamental class with base change via the morphism B̂ → X.

After this analysis, we can prove the commutativity of the diagram of the proposition
over C. We can write the diagram as the composition of two diagrams

p?2Ω(k,r)|A //

p?2Ha′

��

p?1Ω(k,r)|B

p?1Ha′

��

// p!
1Ω(k,r)|B

p?1Ha′

��

p?2Ω(k,r+(p2−1))|A // p?1Ω(k,r+(p2−1))|B // p!
1Ω(k,r+(p2−1))|B

The commutativity of the left square follows from lemma 6.2.4.2 and the commuta-
tivity of the right square is obvious.

We now deal with the components ofXKli(p)|X=1
p,1

of multiplicative and bi-infinitesimal

type. Over these components, we will actually prove that the cohomological correspon-
dence is zero. The commutativity is thus obvious.

We have denoted by T oo1 and Tm1 the restriction of the cohomological correspondence
to bi-infinitesimal and multiplicative components. Let Spec l → X=1

1 be a point corre-
sponding to a p-rank 1 principally polarized abelian surface A over an algebraically closed
field l of characteristic p. Consider the lift B → Spec W (l) with associated Barsotti-Tate
group µp∞⊕E[p∞]⊕Qp/Zp with E[p∞] the Barsotti-Tate group of a supersingular elliptic
curve over W (l). Consider the following commutative diagram :
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H0(XKli(p)×X,p1 Spec W (l), p?2Ω(k,r))

��

T oo1 // H0(Spec W (l),Ω(k,r))

��
H0(XKli(p)1 ×X1,p1 Spec l, p?2Ω(k,r))

T oo1 // H0(Spec l,Ω(k,r))

All vertical maps are surjective because all schemes are affine. Let f ∈ H0(XKli(p)×X,p1

Spec W (l), p?2Ω(k,r)). Then by definition and section 4.2.5,

T 00
1 f(B,µ) =

1

p2+r

∑
L⊂B[p], L⊥biconnected

f(B/L, µ′)

In this formula, µ : W (l)2 ' e?Ω1
B is an isomorphism. Let C be the completion of an

algebraic closure of W (l)[1/p]. Then

µ′ : C2 ψ⊗1→ e?Ω1
B ⊗ C dξ−1

→ e?Ω1
B/L ⊗ C

where ξ : B → B/L is the isogeny. We have a non-canonical decomposition over OC:
L = Lm ⊕ L0 ⊕ Let where each of these groups is multiplicative/bi-connected/étale of
order p. Moreover, it is easy to see that L0 has degree 1

p+1 in the sense of [18] (see [58],

example A.2.2). As a result, the map : e?Ω1
B/L → e?Ω1

B has elementary divisors (p,$)

with the p-adic valuation of $ (normalized by v(p) = 1) equal to 1
p+1 . If r + k > 2(p+ 1)

then 1
p2+r f(B/L, µ′) ∈ mOC and as a result, T oo1 f(A,ψ mod p) = 0. The proof of the

vanishing of Tm1 is similar.
The commutativity of the second diagram follows easily from the observation that the

isogeny G′ → G is étale. The proof of the vanishing of Tm2 or T oo2 (if r ≥ p+ 2) is similar
to the proof of the vanishing of T oo1 . The commutativity of the last diagram follows.

Remark 7.4.2.1. — For r = p + 1, one can prove that the correspondence T oo2 does’t
commute with Ha′ and doesn’t vanish and therefore the operator T2 doesn’t commute with
Ha′.

Corollary 7.4.2.1. — We have T = T1 ◦ T2 = T et1 ◦ T et2 as endomorphisms of

H?(X=1
1 , ω(k,r)) when r ≥ p+ 1 and k + r > 2(p+ 1).

Proof. This follows from the vanishing Tm1 = T oo1 = Tm2 = 0.

Lemma 7.4.2.5. — The section p?1Ha′ is not a zero divisor in XKli(p)1 ×X1 X
≤1
1 .

Proof. The scheme XKli(p)1 ×X1 X
≤1
1 is Cohen-Macaulay and the rank 0 locus has

codimension 1.

By proposition 7.4.2.1 and proposition 4.1.2.1, we have for r ≥ p2+p = 2+p−1+p2−1
and k + r > 2(p+ 1) a cohomological correspondence :

T1 : p?2Ω(k,r)|X=0
p,1
→ p!

1Ω(k,r)|X=0
1
.

Moreover, we have for all r ≥ 2 + p− 1 and k+ r > 2(p+ 1) a commutative diagram
of long exact sequences :
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H?(X≤1
1 ,Ω(k,r))

Ha′ // H?(X≤1
1 ,Ω(k,r+(p2−1))) // H?(X≤0

1 ,Ω(k,r+(p2−1)))

H?(X≤1
p,1 ,Ω

(k,r))

T1

OO

Ha′// H?(X≤1
p,1 ,Ω

(k,r+(p2−1)))

T1

OO

// H?(X≤0
p,1 ,Ω

(k,r+(p2−1)))

T1

OO

The following proposition is absolutely crucial to the argument of the paper.

Proposition 7.4.2.2. — There is a constant C independant on the prime to p level
Kp such that for all k ≥ C and all r ≥ p2 + p, the cohomological correspondence T1 :
p?2Ω(k,r)|X=0

p,1
→ p!

1Ω(k,r)|X=0
1

is zero.

Proof. Let I ⊂ OX be the ideal of the closed subscheme X=0
1 . In a local trivialization

of the sheaf ω, the ideal is generated by p and lifts of Ha and Ha′. Since X=0
1 is a local

complete intersection in X, we deduce that OX=0
1

has finite tor dimension has OX -module.

The cohomological correspondence T1 : p?2Ω(k,r) → p!
1Ω(k,r) induces a cohomological

correspondence

p?2Ω(k,r) → p!
1(Ω(k,r) ⊗ OX=0

1
)

thanks to proposition 4.1.2.1. Morover, thanks to proposition 7.4.2.1, this cohomological
correspondence factors through the map T1 : p?2Ω(k,r)|X=0

p,1
→ p!

1Ω(k,r)|X=0
1

of the propo-

sition. Thus, in order to prove the proposition it is enough to show that there is a
constant C such that for all k ≥ C, the map T1 : p?2Ω(k,r) → p!

1Ω(k,r) factors through

T1 : p?2Ω(k,r) → Ip!
1Ω(k,r).

We now need to analyse one more time the construction of T1. Let Ψ : G → G′ be
the universal isogeny. Its differential is a map dΨ : p?2Ω1 → p?1Ω1. Call Ψk,r : p?2Ω(k,r) →
p?1Ω(k,r) the map obtained by applying the functor Symk ⊗ detr. The determinant detθ1 :
p?2ω

1 → p?1ω
1 factors through pp?1ω

1 (check this over the tube of the ordinary locus).
Secondly, we have a non-normalized fundamental class Θ : p?1OX → p!

1OX . Tensoring

with Ω(k,r) gives a non-normalized map

Θk,r : p?1Ω(k,r) → p!
1Ω(k,r).

We have established in lemma 7.1.1 that the composite Θk,r ◦Ψk,r is divisible by p2+r

when r ≥ 1, and the cohomological correspondence T1 is p−2−rΘk,r ◦Ψk,r.
To prove the proposition, it is enough to show that there is a constant C such that

Θk,r ◦Ψk,r(p
?
2Ω(k,r)) ⊂ p2+rIp!

1Ω(k,r)

for k ≥ C.
The problem is local. Let Spec A be an open in XKli(p) and I = p?1I(Spec A). Set

M2 = p?2Ω1(Spec A), M3 = p?1Ω1(Spec A), M1 = p!
1Ω1(Spec A).

Let p1, · · · , pr be the minimal prime ideals in Spec A/I. One sees that dΨ1,0(M2) ⊂
piM3 as the differential dΨ : Ω1

G′ → Ω1
G is 0 modulo pi because the isogeny Ψ : G → G′

factors through the Frobenius map at pi by lemma 7.4.2.6 below.
We deduce that

Θk,r ◦Ψk,r(M2) ⊂ p2+rM1

⋂
(∩iprpki )M1.

By Artin-Rees lemma, there exists C(A) ≥ 0 such that p2A
⋂
∩ipC(A)

i ⊂ p2I. It follows
that for all k ≥ C(A), Θk,r ◦Ψk,r(M2) ⊂ p2+rIM1. Since XKli(p) is quasi-compact, it can
be covered by finitely many affines as above.
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Lemma 7.4.2.6. — Let A → Spec l be an abelian surface of p-rank 0 over a field l of
characteristic p. Let L ⊂ A[p] be a group scheme of order p3. Then Ker F ⊂ L.

Proof. We have a perfect pairing A[p]×A[p]D → µp. The orthogonal of Ker F ⊂ A[p] is

Ker F ⊂ A[p]D. The group L⊥ ⊂ A[p]D is a group of rank p and is necessarily killed by F ,
since A has p-rank 0. It follows that L⊥ ⊂ Ker (F : A[p]D → A[p]D) and that Ker F ⊂ L.

8. Finiteness of the ordinary cohomology

8.1. Finiteness of the ordinary cohomology on X=1
1 . — We begin with the follow-

ing lemma.

Lemma 8.1.1. — For all r ≥ 2 + (p − 1) and all k > p + 1, the action of T on

H0(X=1
1 ,Ω(k,r)(−D)) is locally finite.

Proof. We let Ha′ ∈ H0(X≤1
1 , ωp

2−1(−D)) be the second Hasse invariant. Since

H0(X=1
1 ,Ω(k,r)(−D) = colimnH0(X≤1

1 ,Ω(k,r+n(p2−1))(−D)) where the limit is over multi-
plication by Ha′ and Ha′T = THa′ by proposition 7.4.2.1 and corollary 7.4.2.1, the lemma
follows.

Using the result of section 2.3, we can define an ordinary projector e associated to T
on H0(X=1

1 ,Ω(k,r)(−D)) for k > p+ 1, r > p+ 1.

Proposition 8.1.1. — There is a constant C (see prop. 7.4.2.2) which is independent
of the level Kp such that for k ≥ C and r ≥ p+ 1 we have isomorphisms :

eH0(X≤1
1 ,Ω(k,r)(−D)) = eH0(X=1

1 ,Ω(k,r)(−D)).

If r ≥ p + 2, we moreover have eHi(X≤1
1 ,Ω(k,r)(−D)) = eHi(X=1

1 ,Ω(k,r)(−D)) = 0
for i = 1, 2.

Proof. Consider the following exact sequence of sheaves over X≤1
1 or X≤1

p,1 :

0→ Ω(k,r)(−D)→ Ω(k,r+(p2−1))(−D)→ Ω(k,r+(p2−1))(−D)/(Ha′)→ 0

Applying the functor global sections, we get a commutative diagram of long exact
sequences :

H?(X≤1
1 ,Ω(k,r)(−D))

Ha′// H?(X≤1
1 ,Ω(k,r+(p2−1))(−D)) // H?(X≤0

1 ,Ω(k,r+(p2−1))(−D))

H?(X≤1
p,1 ,Ω

(k,r)(−D))

T1

OO

Ha′// H?(X≤1
p,1 ,Ω

(k,r+(p2−1))(−D))

T1

OO

// H?(X≤0
p,1 ,Ω

(k,r+(p2−1))(−D))

T1

OO

The map

T1 : H?(X=0
p,1 ,Ω

(k,r+(p2−1))(−D))→ H?(X=0
1 ,Ω(k,r+(p2−1))(−D))

is the zero map by proposition 7.4.2.2.

If f ∈ eH?(X≤1
1 ,Ω(k,r+(p2−1))(−D)), we deduce that there exists f ′ ∈ H?(X≤1

1 ,Ω(k,r)(−D))
mapping to f .

We have injections H0(X≤1
1 ,Ω(k,r)(−D)) ↪→ H0(X=1

1 ,Ω(k,r)(−D)). Moreover, it fol-

lows from proposition 7.4.2.1 and corollary 7.4.2.1 that THa′ = Ha′T ∈ End(H0(X=1
1 ,Ω(k,r+p2−1)(−D))).
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The same identity holds in End(H0(X≤1
1 ,Ω(k,r+p2−1)(−D))). Observe also that

THa′ = Ha′T in End(H?(X≤1
1 ,Ω(k,r+p2−1)(−D))) if r ≥ p+ 2 by proposition 7.4.2.1.

It follows that

eH0(X≤1
1 ,Ωk,r(−D)) = eH0(X≤1

1 ,Ω(k,r+(p2−1))(−D)).

Passing to the limit over multiplication by (Ha′)n we get that eH0(X≤1
1 ,Ω(k,r)(−D)) =

eH0(X=1
1 ,Ω(k,r)(−D)).

When r ≥ p + 2, we can apply the ordinary projector associated to T =

T1 ◦ T2 on H?(X≤1
1 ,Ω(k,r)(−D)) and H?(X≤1

1 ,Ω(k,r+(p2−1))(−D)) and to T2 ◦ T1 on

H?(X≤1
p,1 ,Ω

(k,r)(−D)) and

H?(X≤1
p,1 ,Ω

(k,r+(p2−1))(−D)).

The map T1 is an isomorphism between the ordinary parts. On the other hand,

T1 : H?(X=0
p,1 ,Ω

(k,r+(p2−1))(−D))→ H?(X=0
1 ,Ω(k,r+(p2−1))(−D))

is the zero map by proposition 7.4.2.2. It follows that

eH?(X≤1
1 ,Ωk,r(−D)) = eH?(X≤1

1 ,Ω(k,r+(p2−1))(−D)).

Passing to the limit over multiplication by (Ha′)n we get that eH?(X≤1
1 ,Ω(k,r)(−D)) =

eH?(X=1
1 ,Ω(k,r)(−D)). Finally, for all r, the sheaf Ω(k,r)(−D) is acyclic relatively to the

minimal compactification by thm 6.4.2.1. Moreover, the rank 1 locus X=1
1 has affine image

in the minimal compactification. As a result Hi(X=1
1 ,Ω(k,r)(−D)) = 0 for i > 0.

Remark 8.1.1. — We have not been able to establish that

THa′ = Ha′T ∈ End(Hi(X≤1
1 ,Ω(k,p2+p)(−D)))

for i ≥ 1 although we believe this should be true. If we had been able to prove this, we
would deduce that eHi(X≤1

1 ,Ω(k,p+1)(−D)) = eHi(X=1
1 ,Ω(k,p+1)(−D)) for all i.

8.2. Finiteness of the cohomology on X≥1
1 . —

Lemma 8.2.1. — The action of T on RΓ(X≥1
1 ,Ω(k,r)(−D)) is locally finite for k > p+1

and r ≥ 2.

Proof. Consider the following resolution over X≥1
1 of the sheaf Ω(k,r)(−D) :

0→ Ω(k,r)(−D)→ colimn,×HaΩ(k,r+(p−1)n)(−D)→ colimnΩ(k,r+(p−1)n)(−D)/(Ha)n → 0.

All sheaves are acyclic relatively to the minimal compactification by thm 6.4.2.1.

Moreover, the support of colimn,×HaΩ(k,r+(p2−1)n)(−D) is the rank 2 locus which is affine

in the minimal compactification. The support of colimnΩ(k,r+(p2−1)n)(−D)/(Ha)n is the
rank 1 locus which is also affine in the minimal compactification. It follows that the above
sequence is an acyclic resolution of the sheaf Ω(k,r)(−D) over X≥1

1 .

The cohomology RΓ(X≥1
1 ,Ω(k,r)(−D)) is thus represented by the following complex :

H0(X=2
1 ,Ω(k,r)(−D))→ colimnH0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n)

We will see that the action of T is locally finite on both terms. Since

H0(X=2
1 ,Ω(k,r)(−D)) = colimnH0(X1,Ω

(k,r+n(p−1))(−D))

where the transition maps are given by multiplication by Ha and T commutes with mul-
tiplication by Ha by proposition 7.4.1.1, the action of T is locally finite on the first term.
We now prove that it is locally finite on the second term. It is enough to see that it is
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locally finite on H0(X≥1
1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n). For n = 1, this follows from lemma

8.1.1. For general n, we use induction, lemma 8.1.1, lemma 2.1.1 and the following exact
sequence :

0→ H0(X≥1
1 ,Ω(k,r+(p−1)(n−1))(−D)/Han−1)→ H0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/Han)

→ H0(X≥1
1 ,Ω(k,r+(p−1)n)(−D)/Ha).

We can now prove the following proposition, which is one of the main technical results
of the paper :

Proposition 8.2.1. — For all r ≥ 2 and k ≥ C (see prop 7.4.2.2), eRΓ(X≥1
1 ,Ω(k,r)(−D))

is a perfect complex of amplitude [0, 1] of Fp-vector spaces.

For all r ≥ 3 and k ≥ C, the map eRΓ(X1,Ω
(k,r)(−D)) → eRΓ(X≥1

1 ,Ω(k,r)(−D)) is
a quasi-isomorphism.

For all k ≥ C, eH0(X≥1
1 ,Ω(k,2)(−D)) = eH0(X1,Ω

(k,2)(−D)) and the map

eH1(X1,Ω
(k,2)(−D))→ eH1(X≥1

1 ,Ω(k,2)(−D)) is injective.

Proof. Since the codimension of X≥1
1 in X1 is 2 and X1 is smooth, we have unconditionally

H0(X≥1
1 ,Ω(k,r)(−D)) = H0(X1,Ω

(k,r)(−D)).
We consider the following exact sequence over X1 :

0→ Ω(k,r)(−D)→ colimn,×HaΩ(k,r+(p−1)n)(−D)→ colimnΩ(k,r+(p−1)n)(−D)/(Ha)n → 0

From the above short exact sequence of sheaves we obtain the following long exact
sequences :

0 // H0(X≥1
1 ,Ω(k,r)(−D)) // H0(Xord

1 ,Ω(k,r)(−D)) //

0 // H0(X1,Ω
(k,r)(−D)) //

OO

H0(Xord
1 ,Ω(k,r)(−D)) //

OO

colimH0(X≥1
1 ,Ω(k,r+n(p−1))(−D)/Han)) // H1(X≥1

1 ,Ω(k,r)(−D)) // 0

colimH0(X1,Ω
(k,r+n(p−1))(−D)/Han)) //

OO

H1(X1,Ω
(k,r)(−D)) //

OO

0

and the isomorphisms : colimHi(X1,Ω
(k,r+n(p−1))(−D)/Han)) ' Hi+1(X1,Ω

(k,r)(−D))
for i = 1, 2.

The first two vertical maps in the diagram are isomorphisms. We now check that
eHi(X1,Ω

(k,r+n(p−1))(−D)/Han)) = 0 for all n ≥ 0, k ≥ C, r ≥ 3 and i ∈ {1, 2}. The
case n = 1 follows from proposition 8.1.1. For the general case, we take the long exact
sequence of cohomology associated to the short exact sequence of sheaves :

0→ Ω(k,r+n(p−1))(−D)/Han
Ha→ Ω(k,r+(n+1)(p−1))(−D)/Han+1 →

Ω(k,r+(n+1)(p−1))(−D)/Ha→ 0.

We now check that eH0(X1,Ω
(k,r+n(p−1))(−D)/Han))→ eH0(X≥1

1 ,Ω(k,r+n(p−1))(−D)/Han))
is bijective for all n ≥ 0, k ≥ C and r ≥ 3. We prove this by induction on n. The case
n = 1 follows from proposition 8.1.1. The general case follows by taking one more time
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the long exact sequence of cohomology associated to the following short exact sequence of
sheaves (when r ≥ 3, there is no eH1 as we just checked) :

0→ Ω(k,r+n(p−1))(−D)/Han
Ha→ Ω(k,r+(n+1)(p−1))(−D)/Han+1 →

Ω(k,r+(n+1)(p−1))(−D)/Ha→ 0.

We finally prove that eH1(X1,Ω
(k,2)(−D))→ eH1(X≥1

1 ,Ω(k,2)(−D)) is an injection of
finite dimensional vector spaces when k ≥ C. We use the long exact sequence associated
to

0→ Ω(k,2)(−D)
Ha→ Ω(k,p+1)(−D)→ Ω(k,p+1)(−D)/Ha→ 0

and the claim follows from the isomorphism

eH1(X1,Ω
(k,p+1)(−D))→ eH1(X≥1

1 ,Ω(k,p+1)(−D))

that we just extablished and the isomorphism of proposition 8.1.1 :

eH0(X≤1
1 ,Ω(k,p+1)(−D))→ eH0(X=1

1 ,Ω(k,p+1)(−D)).

9. Families of sheaves

9.1. Deep Klingen level structure and Igusa towers. — We introduce certain level
structure that will allow us to define p-adic sheaves.

9.1.1. Deep Klingen level structure. — We let X≥1
Kli(p

m)n → X≥1
n be the moduli space

of subgroups Hm ⊂ G[pm] where Hm is locally étale isomorphic to µpm . We denote by

Xord
Kli(p

m)n or X=2
Kli(p

m)n the ordinary locus of X≥1
Kli(p

m)n.

Lemma 9.1.1.1. — The map X≥1
Kli(p

m)n → X≥1
Kli(p

m−1)n is étale and affine.

Proof. We first prove that the map is étale. It suffices to show that the map f :
X≥1
Kli(p

m)n → X≥1
n is étale. We can prove this over the spectrum S of a completed local

ring in X≥1
n . Over S, there is a finite flat subgroup scheme G̃[pm] ⊂ G[pm] such that the

connected component of G[pm] is contained in G̃[pm]. Let g : R→ X≥1
Kli(p

m)n. Let R ↪→ R′

be an infinitesimal thickening of R. We suppose that h = f ◦ g extends to h′ : R′ → X≥1
n

and we want ton prove that h′ can be lifted to a unique map g′ : R′ → X≥1
Kli(p

m)n such

that f ◦ g′ = h′. To the map g is associated a surjective map ψR : G̃D[pn]|R → HD
m |R

over R where HD
m |R is an étale group scheme, locally isomorphic to Z/pmZ. The group

scheme HD
m |R deforms uniquely to an étale group scheme HD

m |R′ over R′ and the data of

h′ provides a deformation of G̃[pn]R′ to R′ of G̃D[pn]|R. By Illusie’s deformation theory

([34], thm VII, 4.2.5) , the map ψR admits a unique extension ψR′ : G̃D[pn]|R′ → HD
m |R′ .

We are left to prove that the map is affine. It will be enough to prove this for n = 1. Let
us denote by Z → X≥1

Kli(p
m−1)1 the grasmannian of subgroups of order pm inside G[Fm]

(the Kernel of Fm : G → G(pm)). We note that G[Fm] is a finite flat group scheme. As
a result Z is proper and moreover, it is easy to see that Z is quasi-finite. As a result, Z
is finite. We denote by C the universal subgroup. Let us denote by Z ′ the closed sub-
scheme of Z where C[pm−1] = Hm−1. The group scheme C/Hm−1 is connected of order
p over Z ′. Its co-normal sheaf is L, an invertible sheaf over Z ′ and the differential of the
Vershiebung map V : (C/Hm−1)(p) → C/Hm−1 provides a section s ∈ H0(Z ′,L(p−1)). The
non vanishing locus of this section is the open subscheme (Z ′)m of Z where C/Hm−1 is of

multiplicative type. The map (Z ′)m → X≥1
Kli(p

m−1)1 is affine as the composite of the affine

open immersion (Z ′)m ↪→ Z ′ and the finite map Z ′ → X≥1
Kli(p

m−1)1. Finally, X≥1
Kli(p

m)1
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is the open and closed subscheme of (Z ′)m where C is locally isomorphic to µpm for the

étale topology. We have thus proved that the map X≥1
Kli(p

m)1 → X≥1
Kli(p

m−1)1 is affine.

9.1.2. Igusa towers. — We let IG(pm)n = Isom
X≥1
Kli(p

m)n
(µpm , Hm). This is a (Z/pmZ)×-

torsor over X≥1
Kli(p

m)n. There is an obvious commutative diagram :

X≥1
Kli(p

m)n−1
//

��

X≥1
Kli(p

m)n

��

X≥1
Kli(p

m−1)n−1
// X≥1

Kli(p
m−1)n

The horizontal maps are closed immersions and the vertical maps are étale and affine
maps.

Above the last diagram, there is a commutative diagram :

IG(pm)n−1
//

��

IG(pm)n

��
IG(pm−1)n−1

// IG(pm−1)n

9.2. Formal schemes. — Let X → Spf Zp be the p-adic completion of X and we let
X≥1 ↪→ X be the open where the multiplicative rank of G is at least 1.

Let X≥1
Kli(p

m) → X be the moduli of Hm ↪→ G[pm] where Hm is locally isomorphic

for the étale topology to µpm . The map X≥1
Kli(p

m) → X is étale and affine (but not finite

!). We let X≥1
Kli(p

∞) be the formal scheme equal to the inverse limit of X≥1
Kli(p

m) as m
varies. It exists because the transition maps are affine. Let H∞ ↪→ G[p∞] be the universal

multiplicative Barsotti-Tate group. Above X≥1
Kli(p

m), we set IG(pm) = Isom(µpm , Hm).

This is a (Z/pmZ)×-torsor.Above X≥1
Kli(p

∞), we set IG(p∞) = Isom(µp∞ , H∞). This is a
Z×p -torsor.

9.3. p-adic Sheaves. — We now define sheaves of p-adic modular forms. Let π :
IG(p∞)→ X≥1

Kli(p) be the projection. Let Λ = Zp[[Z×p ]] and κ : Z×p → Λ× is the universal

character. We can define the sheaf Fκ = (π?OIG(p∞)⊗̂ZpΛ)Z
×
p where Z×p acts diagonally,

through its natural action on π?OIG(p∞) and via the universal character κ : Z×p → Λ× on

Λ. This is an invertible sheaf of O
X≥1
Kli(p

∞)
⊗̂ZpΛ-modules over X≥1

Kli(p).

Remark 9.3.1. — The natural base for the action of Hecke operators is X≥1
Kli(p) and this

is why we want to project down to X≥1
Kli(p) but since the map π is affine, this is harmless.

For any adic complete Zp-algebra R and any continuous character χ : Z×p → R× we

let Fχ := Fκ⊗̂Λ,χR.
For some arguments, it is useful to consider certain truncated versions of the sheaf

Fκ. Let Λn = Z/pnZ[(Z/pnZ)×]. Let πm,n : IG(pm)n → X≥1
Kli(p)n be the projection. For

m ≥ n, we let κm,n : (Z/pmZ)× → Λ×n be the obvious character that factorizes through
(Z/pnZ)×. We let F κ

m,n = (πm,n)?(OIG(pm)n ⊗Zp Λn)[κm,n]. The sheaf F κ
m,n is a sheaf of

O
X≥1
Kli(p

m)n
⊗Λn-modules. If χ : (Z/pnZ)× → R× is any character with R a Z/pnZ-algebra,

we denote by Fχ
m,n the sheaf obtained by base change.
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We have the following maps :

F κ
m,n

// F κ
m,n−1

F κ
m−1,n

//

OO

F κ
m−1,n−1

OO

where the vertical maps are inclusions and the horizontal maps are induced by reduction
modulo the kernel of Λn → Λn−1. We can set F κ

∞,n = colimmF κ
m,n. Then we have

surjective maps F κ
∞,n → F κ

∞,n−1 and Fκ = limn F κ
∞,n.

9.4. Comparison map. — Let fn : X≥1
Kli(p

n)n → X≥1
Kli(p)n. Over X≥1

Kli(p
n)n, we have

a universal multiplicative subgroup Hn ↪→ G. Passing to the conormal sheaves we get a
surjective map :

ωG → ωHn
where ωG is a locally free sheaf of rank 2 and ωHn is a locally free sheaf of rank 1. Moreover,
the Hodge-Tate map provides an isomorphism :

HT : HD
n ⊗Zp OX≥1(pn)n → ωHn

and it induces an isomorphism F k
n,n → (ωHn)k.

As a consequence, there is a surjective map Ω(k,0) → (ωHn)k ' F k
n,n of locally free

sheaves on X≥1
Kli(p

n)n. We denote by KΩ(k,0) the kernel of this map and we set KΩ(k,r) =

KΩ(k,0) ⊗ ωr.

Remark 9.4.1. — One can think of the map Ω(k,r) → F k
n,n⊗ωr as the projection to the

highest weight vector on the representation SymkSt⊗ detr of the group GL2.

9.5. Variant. — All the constructions can be performed over Xp instead of X, because

the polarization has never been used. We have defined classical sheaves Ω(k,r) over Xp

obtained by using the conormal sheaf of G′ → Xp.
We let X≥1

p,n be the open subscheme of Xp,n where the p-rank is at least one. We let

X≥1
p,Kli(p

m)n → X≥1
p,n the moduli space of subgroups H ′m ⊂ G′ which are locally isomorphic

to µpm in the étale topology.

Lemma 9.5.1. — The map X≥1
p,Kli(p

m)n → X≥1
p,Kli(p

m−1)n is étale and affine.

Proof. Similar to the proof of lemma 9.1.1.1.

We let X≥1
p,Kli(p

m) be the formal scheme equal to the limit indexed by n of the schemes

X≥1
p,Kli(p

m)n and we let X≥1
p,Kli(p

∞) be the formal scheme equal to the inverse limit over m

of the formal schemes X≥1
p,Kli(p

m). We can define a sheaf Fκ of O
X≥1
p,Kli(p

∞)
⊗̂ZpΛ-modules

over X≥1
p,Kli(p). Similarly, we can define sheaves F κ

m,n of O
X≥1
p,Kli(p

m)n
⊗ Λn-modules.

10. The U operator

10.1. Definition of the correspondence. — The operator U is associated to the
matrix diag(1, p, p, p2) inside GSp4(Q). We recall the definition of the moduli space as-

sociated to this operator. Let Y≥1
Kli(p

m) ↪→ X≥1
Kli(p

m) be the open subscheme where the
semi-abelian scheme is an abelian scheme. Let CY(pm) be the moduli over YKli(p

m) of

triples (G,Hm, L) where L ⊂ G[p2] is totally isotropic L∩Hm = {0}, and pL∩H⊥m = {0}.
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We have exact sequences : 0 → L ∩ H⊥m → L → L/H⊥m → 0 where L ∩ H⊥m is a trun-
cated Barsotti-Tate group of level 1, height 2 and dimension 1 (the (p, p) part of the
correspondence) and L/H⊥m is étale locally isomorphic to Z/p2Z (the p2-part of the cor-

respondence). We have two projections t1 and t2 from CY(pm) to Y≥1
Kli(p

m). They are
defined by t1 : (G,Hm, L) 7→ (G,Hm) and t2 : (G,Hm, L) 7→ (G/L,Hm + L/L).

10.2. Compactification of the correspondence. — As we want to define an action of
the correspondence on cohomology groups it is necessary to compactify it. We will actually
factor the correspondence as a product of two correspondences and we will compactify
both. The advantage of this approach is that it will be easy to compare U and the other
correspondence T studied in section 7.

We fix toroidal compactifications XΣ, XKli(p)Σ′ and Xp,Σ′′ (for good polyhedral cone
decompositions) such that we have maps p1 : XKli(p)Σ′ → XΣ and p2 : XKli(p)Σ′ → Xp,Σ′′ .
We call as usual G the semi-abelian scheme over XΣ, G′ the semi-abelian scheme over
Xp,Σ′′ . Over XKli(p)Σ′ we have the chain G→ G′ → G. We drop Σ, Σ′ and Σ′′ from the
notations if no confusion will arise.

Let us define Xm−etp as the open subscheme of Xp where the kernel of the polarization

λ′ : G′ → (G′)t contains a multiplicative group. When G′ is an abelian scheme, this group
is an extension of an étale by a multiplicative group. We observe that Xm−etp is contained

in the Newton strata of p-rank at least 1. Let Xm−etp,Kli (p
m) → Xm−etp be the moduli space

of subgroups H ′m ⊂ G′ locally isomorphic in the étale topology to µpm (where G′ is the
semi-abelian scheme over Xp).

We let C1(pm) be the open and closed subscheme of XKli(p) ×X X≥1
Kli(p

m) where the
universal triple (G → G′, Hm) satisfies Ker(G → G′) ∩Hm = {0}. We let q1 : C1(pm) →
X≥1
Kli(p

m) be the tautological projection sending (G→ G′, Hm) to (G,Hm).
We have another projection C1(pm)→ Xp induced from the map p2. It factors through

Xm−etp and can moreover be lifted to a map q2 : C1(pm)→ Xm−etp,Kli (p
m). Indeed, under the

isogeny of semi-abelian schemes G→ G′ the subgroup Hm ⊂ G maps isomorphically to its
image H ′m ⊂ G′ which provides the required lift. In conclusion, we have q2(G→ G′, Hm) =
(G′, H ′m).

As a result we have defined a correspondence :

C1(pm)

q2

yy

q1

%%

Xm−etp,Kli (p
m) X≥1

Kli(p
m)

We let C2(pm) be the open and closed subscheme of XKli(p)×XpX
m−et
p,Kli (p

m) where the

universal triple (G′ → G,H ′m ⊂ G′) satisfies Ker(G′ → G) is not a multiplicative group.
By definition Ker(G′ → G) is a subgroup of the kernel of the polarization G′ → (G′)t. As
a result, over the interior of the moduli space, Ker(G′ → G) is an étale group scheme. We
let r1 : C2(pm) → Xm−etp,Kli (p

m) be the tautological projection given by r1(G′ → G,H ′m ⊂
G′) = (G′, Hm).

There is a second projection C2(pm) → X induced by the projection p1. It factors

through X≥1
Kli(p) and moreover it can be lifted to a map r2 : C2(pm)→ X≥1

Kli(p
m). Indeed,

under the isogeny G′ → G the group H ′m is mapped isomorphically to its image Hm ⊂ G.
In conclusion, r2(G′ → G,H ′m ⊂ G′) = (G,Hm).

As a result we have a second correspondence :
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C2(pm)

r2

yy

r1

%%
X≥1
Kli(p

m) Xm−etp,Kli (p
m)

We let C(pm) be the composite of these correspondences. Namely, we set

C(pm) = C2(pm)×r1,Xm−etp (pm),q2
C1(pm)

and we obtain the following commutative diagram with cartesian center :

C(pm)
q′2

xx

r′1

&&
C2(pm)

r2

yy

r1

%%

C1(pm)

q2

yy

q1

%%

X≥1
Kli(p

m) Xm−etp,Kli (p
m) X≥1

Kli(p
m)

There are two projections t1 = q1 ◦ r′1, t2 = r2 ◦ q′2 : C(pm)→ X≥1
Kli(p

m). The notation
t1, t2 for these maps is justified by the following proposition :

Proposition 10.2.1. — The restriction of C(pm) to Y≥1
Kli(p

m) is the correspondence
CY(pm).

Proof. Let (G,Hm, L) be a point of CY(pm). The isogeny G → G/L factors into G →
G/(L[p])→ G/L where L[p] is a subgroup of G[p] of order p3 such that L[p] ∩Hm = {0},
G/(L[p]) carries a polarization whose degree is a prime-to-p multiple of p2 (it comes from
the p2-power of the polarization on G) whose kernel is an extension of an étale by a
multiplicative group. The kernel of G/(L[p])→ G/L is an étale subgroup of order p in the
kernel of the polarization on G/(L[p]). This gives a map CY(pm)→ C(pm) which identifies
CY(pm) with the locus of C(pm) where the semi-abelian schemes are abelian.

10.3. Trace maps. — We now construct trace maps (or fundamental classes) which
will be used later to define the action on the cohomology. We start with the interior of
the moduli space.

Lemma 10.3.1. — The map t1 : CY(pm)→ Y≥1
Kli(p

m) is finite flat.

Proof. The map is proper. The finiteness follows from the fact that an abelian suface
over a field of characteristic p of p-rank at least 1 has only finitely many subgroups of order
p. We prove the flatness. This boils down to the flatness of the maps r1 and q1 over the
interior of the moduli space. Let (G,Hm) be a point on Y≥1

Kli(p
m). The fiber of q1 is the set

of splittings of the exact sequence 0 → H1 → G[p] → G[p]/H1 → 0 (where H1 = Hm[p]).
They are the same as splittings of the sequence 0 → H⊥1 → G[p] → G[p]/(H1)⊥ → 0.
The group G[p]/(H1)⊥ is étale locally isomorphic to Z/pZ. It follows that splittings exists
locally for the faithfully flat topology and form a torsor under Hom(G[p]/(H1)⊥, H⊥1 )
which is locally isomorphic for the étale topology to the finite flat group scheme H⊥1 . As a
result, the fiber is flat. We now prove that r1 is finite flat. Let (G′, H ′m) ∈ Xm−etp (pm) be a
point with G′ an abelian surface. The fiber of r1 over this point is the moduli space of étale
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subgroups of order p inside the kernel of the polarization. The kernel of the polarization
is an extension of an étale by a multiplicative group scheme. It is a standard fact that
this moduli space is finite flat (it can be proved as above).

Lemma 10.3.2. — There is a normalized trace map 1
p3 Trt1 : (t1)?OCY(pm) → O

Y≥1
Kli(p

m)
.

Proof. We have a usual Trace map for finite flat morphism 1
p3 Trt1 : (t1)?OCY(pm)[1/p]→

O
Y≥1
Kli(p

m)
[1/p] and we need to check that lattices match. It is enough to check this over the

ordinary locus and away from the boundary. Let (G,Hm) ∈ X=2
Kli(p

m)(Fp) be an ordinary
point with G an abelian scheme. Let T be the Tate module of this point. Then T ' Z2

p.

The deformation space of this point is Hom(Sym2T → Ĝm) with ring W (Fp)[[X,Y, Z]]

where the Serre-Tate parameter is the map Z2
p → Z2

p⊗ Ĝm given by the symmetric matrix(
X Z
Z Y

)
. The fiber of this deformation space under t1 is a disjoint union (parametrized

by the map L→ T ⊗Qp/Zp and the intersection L ∩ T/p) of spaces with ring

W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1 +X ′)p − 1 = X, (1 + Z ′)p
2 − 1 = Z, Y ′ = Y )

which parametrize the following diagram of Serre-Tate parameters :

Z2
p

(X,Z;Z,Y ) //

(p2,0;0,p)

��

Z2
p ⊗ Ĝm

(1,0;0,p)
��

Z2
p

(X′,Z′;Z′,Y ′) // Z2
p ⊗ Ĝm

It is now clear that division by p3 preserves the integrality of the Trace map.

We now extend this normalized trace to the compactification. The next two lemmas
are the analogues of lemmas 7.1.1 and 7.1.2. We have to be a little bit careful since we
are now dealing with formal schemes.

Lemma 10.3.3. — There is a normalized Trace map 1
p2 Trq1 : R(q1)?OC1(pm) →

O
X≥1
Kli(p

m)
.

Proof. By reduction modulo pn we have a map of schemes over Spec Z/pnZ :

q1 : C1(pm)n → X≥1
Kli(p

m)n.

By construction, C1(pm)n and X≥1
Kli(p

m)n are local complete intersections over

Spec Z/pnZ and the morphism q1 is projective. The dualizing complex q!
1OX≥1

Kli(p
m)n

is

an invertible sheaf and we have canonical isomorphisms q!
1OX≥1

Kli(p
m)n
⊗Zp Z/pn−1Z =

q!
1OX≥1

Kli(p
m)n−1

. We define q!
1OX≥1

Kli(p
m)

= limn q
!
1OX≥1

Kli(p
m)n

. We want to produce a

fundamental class :

Θ : q?1OX≥1
Kli(p

m)
→ q!

1OX≥1
Kli(p

m)
.

Away from the boundary, this map is provided by the trace map of the finite flat morphism
q1 : C1(pm)|

Y≥1
Kli(p

m)
→ Y≥1

Kli(p
m) (see section 4.2.2). We need to check that the map Θ is

well defined at the boundary. Actually, it is enough to see that it is well defined over the
entire ordinary locus since the intersection of the boundary and the non-ordinary locus is
of codimension 2.
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The formal schemes X=2
Kli(p

m) and C1(pm)|X=2
Kli(p

m) are smooth. The smoothness of

X=2
Kli(p

m) follows from the smoothness of X. The smoothness of C1(pm)|X=2
Kli(p

m) away

from the boundary follows from the proof of lemma 7.1.1 where we established that the
completed local rings are isomorphic to W (Fp)[[X,Y, Z,X ′, Y ′, Z ′]]/((1+X ′)p−1−X, (1+
Z ′)p−1−Z, Y ′−Y ) using Serre-Tate theory. The smoothness at the boundary follows from
the description of the local charts. The main point being the smoothness of the modular
curves of level Γ0(p) over the ordinary locus. As a consequence, the fundamental class
extends over the ordinary locus : it is given by the determinant of the map on differentials

Ω1
X=2
Kli(p

m)/Zp → Ω1
C1(pm)|

X=2
Kli

(pm)
/Zp .

Moreover, this fundamental class is divisible by p2 since it is over the complement of
the boundary by a variant of lemma 7.1.1.

The proof of the next lemma is left to the reader. It is completely analoguous to the
proof of the previous lemma.

Lemma 10.3.4. — There is a normalized trace map 1
pTrr1 : R(r1)?OC2(pm) →

OXm−etp (pm).

10.4. Action on modular forms. — Over C1(pm) we have a universal isogeny G→ G′

whose differential is a map Ω1
G′/C1(pm) → Ω1

G/C1(pm).

Assume for a second we work over C1(p∞) (the projective limit of all C1(pm)) or over
C1(pm)n (the reduction modulo pn of C1(pm)) with m ≥ n. Then there is a commutative
diagram of group schemes :

Hm

��

// H ′m

��
G // G′

which induces a commutative diagram of conormal sheaves :

ωG′ //

��

ωH′m
//

��

0

ωG // ωHm // 0

Moreover, there is a Zariski covering of C1(p∞) by affine opens Spf R (resp. of
C1(pm)n by Spec R) such that the above diagram becomes isomorphic over Spf R (resp.
Spec R) to

R⊕R

(
0
1

)
//(

p 0
0 1

)
��

R //

1R
��

0

R⊕R

(
0
1

)
// R // 0

(10.4.A)

We drop the hypothesis that m ≥ n. It follows from the above discussion that we can
define a normalized morphism :

q?2Ω(k,r) → q?1Ω(k,r)
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as the tensor product of the natural map q?2Ωk → q?1Ωk and a normalized map 1
pr q

?
2ω

r →
q?1ω

r.

By composing with the trace map of lemma 10.3.3, we get a map R(q1)?q
?
2Ω(k,r) →

Ω(k,r) which gives an operator :

U1 ∈ Hom
(
RΓ(Xm−etp (pm),Ω(k,r)),RΓ(X≥1

Kli(p
m),Ω(k,r))

)
.

We check as usual that the definition of U1 is independent of the choices of good
polyhedral decompositions.

We can proceed in a similar way with the correspondence C2(pm). The main sim-
plification is that the tautological isogeny G′ → G over C2(pm) is étale, and induces an
isomorphism on differentials. Thus, we obtain a canonical isomorphism

r?2Ω(k,r) → r?1Ω(k,r)

with no need to take a normalization. Applying the trace map of lemma 10.3.4 produces
a cohomological correspondence R(r1)?r

?
2Ω(k,r) → Ω(k,r) and as a result an operator

U2 ∈ Hom
(
RΓ(X≥1

Kli(p
m),Ω(k,r)),RΓ(Xm−etp (pm),Ω(k,r))

)
.

We denote by U = U1 ◦ U2.

10.5. Action on mod-p forms. — In this section we analyze the action of the U
operator in caracteristic p.

10.5.1. reduction modulo p. — By taking m = 1 and reducing modulo p, we obtain the
following diagram (we still use the same letters to denote the various projections) :

C(p)1

q′2

xx

r′1

&&
C2(p)1

r2

zz

r1

%%

C1(p)1

q2

yy

q1

%%

X≥1
Kli(p)1 Xm−et

p,Kli (p)1 X≥1
Kli(p)1

By reduction modulo p (and proposition 4.1.2.1), we obtain the following two

cohomological correspondences q?2Ω(k,r)|Xm−et
p,Kli (p)1

→ q!
1Ω(k,r)|

X≥1
Kli(p)1

on C1(p)1 and

r?2Ω(k,r)|
X≥1
Kli(p)1

→ r!
1Ω(k,r)|Xm−et

p,Kli (p)1
on C2(p)1.

They induce operators (we keep using the same notations as in the previous para-
graph)

U1 ∈ Hom(RΓ(Xm−et
p,Kli (p)1,Ω

(k,r)),RΓ(X≥1
Kli(p)1,Ω

(k,r)))

and
U2 ∈ Hom(RΓ(XKli(p)

≥1
1 ,Ω(k,r)),RΓ(Xm−et

p,Kli (p)1,Ω
(k,r))).

We set U = U1 ◦ U2.

10.5.2. The non-ordinary locus. — We now study the reduction to the non-ordinary locus.
The following lemma is the analogue of proposition 7.4.1.1. Notice that everything is
simpler in this setting and that there are no restrictions on the weight.

Lemma 10.5.2.1. — 1. Under the isomorphism q?2ω
p−1 = q?1ω

p−1, we have q?2Ha =
q?1Ha.

2. Under the isomorphism r?2ω
p−1 = r?1ω

p−1, we have r?2Ha = r?1Ha.
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3. The following diagrams are commutative :

q?2Ω(k,r) U1 //

Ha
��

q!
1Ω(k,r)

Ha
��

q?2Ω(k,r+(p−1)) U1 // q!
1Ω(k,r+(p−1))

r?2Ω(k,r) U2 //

Ha
��

r!
1Ω(k,r)

Ha
��

r?2Ω(k,r+(p−1)) U2 // r!
1Ω(k,r+(p−1))

Proof. The correspondence C1(p)1 and C2(p)1 are Cohen-Macaulay. It is enough to
prove the statements over the interior of the moduli space and the ordinary locus. Then
1 follows from lemma 6.2.4.2. Remark that the way the isomorphism q?2ω

(p−1) ' q?1ω(p−1)

is constructed is precisely the canonical map of the lemma.
The point 2 is easier since the isogeny G′ → G over C2(p)1 is étale and the formation

of the Hasse invariant commutes with étale isogeny.
We now prove the commutativity of the diagrams. We can rewrite the first diagram

as the composition of two diagrams

q?2Ω(k,r) //

Ha
��

q?1Ω(k,r)

Ha
��

// q!
1Ω(k,r)

Ha
��

q?2Ω(k,r+(p−1)) // q?1Ω(k,r+(p−1)) // q!
1Ω(k,r+(p−1))

The first left square commutes by 1. The second square is the tensor product of the
normalized fundamental class q?1OX1 → q!

1OX1 and the map Ha : q?1Ω(k,r) → q?1Ω(k,r+(p−1)).
It is also commutative. One proves the commutativity of the second diagram along similar
lines.

Remark 10.5.2.1. — We can speak of the Hasse invariant on C1(p)1 and C2(p)1 without
having to worry about which semi-abelian scheme is used to define it.

Lemma 10.5.2.2. — The Hasse invariant is not a zero divisor in C1(p)1 and C2(p)1.

Proof. Both schemes are Cohen-Macaulay of dimension 3. Since an abelian surface with
p-rank at least one has only finitely many subgroups of order p, we deduce that the non-
ordinary locus in C1(p)1 or C2(p)1 has dimension 2. As a result, the Hasse invariant
cannot be a zero divisor.

We let XKli(p)
=1
1 ⊂ XKli(p)

≥1
1 be the zero locus of Ha. This scheme is canonically

isomorphic to X=1
1 . Taking the non-ordinary locus at all places, we obtain a diagram:
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C=1(p)1

ww ''
C2,=1(p)1

r2

zz

r1

''

C1,=1(p)1

q2

ww

q1

$$
X=1

1 Xm−et,=1
p,Kli (p)1 X=1

1

Using lemma 10.5.2.1, 3. and proposition 4.1.2.1, we obtain cohomological correspon-
dences:

R(q1)?(q2)?Ω(k,r)|
Xm−et,=1
p,Kli (p)1

→ Ω(k,r)|X=1
1

and R(r1)?(r2)?Ω(k,r)|X=1
1
→ Ω(k,r)|

Xm−et,=1
p,Kli (p)1

.

They induce operators (that we still denote by the same way as in the previous paragraph):

U1 ∈ Hom
(
RΓ(Xm−et,=1

p,Kli (p)1,Ω
(k,r)),RΓ(X=1

1 ,Ω(k,r))
)

and

U2 ∈ Hom
(
RΓ(X=1

1 ,Ω(k,r)),RΓ(Xm−et,=1
p,Kli (p),Ω(k,r))

)
.

We set U = U1 ◦ U2. By lemma 10.5.2.2, we have a map of triangles:

R(q1)?q
?
2Ω(k,r) //

Ha
��

Ω(k,r)

Ha
��

R(q1)?q
?
2Ω(k,r+(p−1)) //

��

Ω(k,r+(p−1))

��
R(q1)?(q2)?Ω(k,r+(p−1))|

Xm−et,=1
p,Kli (p)1

//

+1

��

Ω(k,r+(p−1))|X=1
1

+1

��

A similar result holds for the other correspondence. It follows that the U -operator
acts equivariantly on the long exact sequence

H?(X≥1
Kli(p),Ω

(k,r))
Ha→ H?(X≥1

Kli(p),Ω
(k,r+(p−1)))→ H?(X=1

Kli(p),Ω
(k,r+(p−1)))

10.5.3. Invariance under multiplication by Ha′. — The following lemma is the analogue
of proposition 7.4.2.1.

Lemma 10.5.3.1. — 1. Under the isomorphism (q2)?ωp
2−1 = (q1)?ωp

2−1, we have
(q2)?Ha′ = (q1)?Ha′.

2. Under the isomorphism (r2)?ωp
2−1 = (r1)?ωp

2−1, we have (r2)?Ha′ = (r1)?Ha′.

3. The following diagram is commutative :

H0(X=1
1 ,Ω(k,r))

U //

Ha′

��

H0(X=1
1 ,Ω(k,r))

Ha′

��

H0(X=1
1 ,Ω(k,r+p2−1))

U // H0(X=1
1 ,Ω(k,r+p2−1))
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Proof. Point 1 follows from lemma 6.2.4.2. Point 2 is easy (the isogeny is étale). Point 3
is an inmediate consequence of 1 and 2.

10.6. Action on p-adic modular forms. — The universal isogeny over C1(p∞) or
C1(pm)n induces an isomorphism q?2Hm → q?1Hm and thus a map q?2F

κ
m,n → q?1F

κ
m,n for

m ≥ n and q?2F
κ → q?1F

κ. As a result we can define the U1 operator. The definition of

U2 is highly similar and we let U = U1 ◦ U2. It acts on RΓ(X≥1
Kli(p

m)n,F κ
m,n ⊗ ωr) and

RΓ(X≥1
Kli(p

∞),Fκ ⊗ ωr).

10.7. Comparison map and the U correspondence. — By section 9.4, for all
(k, r) ∈ Z≥0 × Z we have an exact sequence of sheaves over X≥1

Kli(p
n)n :

0→ KΩ(k,r) → eΩ(k,r) → F k
n,n ⊗ ωr → 0.

Lemma 10.7.1. — U ∈ pEnd
(
RΓ(X≥1

Kli(p
n)n,KΩ(k,r))

)
.

Proof. This is obvious on the diagram 10.4.A.

11. Perfect complexes of p-adic modular forms

11.1. Finiteness of the cohomology on X≥1
Kli(p)1. — In this section, we will deduce

the finiteness of the ordinary cohomology (with respect to U) over X≥1
Kli(p)1 from the

finiteness of the ordinary cohomology (with respect to T ) on X≥1
1 established in section

8. In order to do so, we need to analyze carefully the relation between U and T .

11.1.1. The operators U and T over the ordinary locus. — In this subsection, we will
work over the ordinary locus. Since we are only interested in degree 0 cohomology groups,
we can work over the complement of the boundary by Koecher’s principle. The various
Hecke operators we will introduce respect cuspidality. That way, we do not need to worry
about compactifications (although taking care of what happens with compactifications
would have been possible).

First of all, we claim that we can decompose the Hecke operators T1 : H0(X=2
p,1 ,Ω

(k,r)(−D))→
H0(X=2

1 ,Ω(k,r)(−D)) and T2 : H0(X=2
1 ,Ω(k,r)(−D)) → H0(X=2

p,1 ,Ω
(k,r)(−D)) into

T1 = T et1 + Tm1 and T2 = T et2 + Tm2 . The operator T et1 accounts for all isogenies
G→ G′ with kernel a group of étale rank 2 and multiplicative rank one. The operator Tm1
accounts for all isogenies G → G′ with kernel a group of multiplicative rank 2 and étale
rank one. Similarly, the operator T et2 accounts for all isogenies G′ → G with kernel an étale
group. The operator Tm2 accounts for all isogenies G′ → G with kernel a multiplicative
group.

Lemma 11.1.1.1. — For all r ≥ 2 and k ≥ 1, the operators

Tm2 : H0(Xord
1 ,Ω(k,r)(−D))→ H0(Xord

p,1 ,Ω
(k,r)(−D)) and

Tm1 : H0(Xord
p,1 ,Ω

(k,r)(−D))→ H0(Xord
1 ,Ω(k,r)(−D))

are 0.

Proof. This follows from the proof of proposition 7.4.1.1.

We recall that Y ⊂ X is the open formal subscheme where G is an abelian scheme.
The ordinary locus of Y is denoted by Yord. We now introduce a Hecke correspondence D
over Yord. It parametrizes pairs (G,L) where L ⊂ G[p2] is a totally isotropic group scheme
which is an extension of an étale group scheme locally isomorphic to Z/pZ⊕ Z/p2Z by a
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multiplicative group scheme locally isomorphic to µp. We have two finite flat projections
g1, g2 : D→ Yord given by g1((G,L)) = G and g2((G,L)) = G/L. We can associate to this

correspondence an Hecke operator T ′ and it is clear that T ′ acting on H0(Xord
1 ,Ω(k,r)(−D))

is the operator T et1 ◦T et2 which is also equal to T by the lemma above if r ≥ 2. The second
projection g2 : D → Yord actually lifts to g2 : D → Yord

Kli(p) by mapping (G,L) to

(G/L,G[p]/L). If follows that the map T ′ ∈ End
(
H0(Xord

1 ,Ω(k,r)(−D))
)

factors through
a map

H0(Xord
1 ,Ω(k,r)(−D))→ H0(Xord

Kli(p)1,Ω
(k,r)(−D))→ H0(Xord

1 ,Ω(k,r)(−D))

where the first map is the canonical inclusion. By abuse of notation we also call T ′ :
H0(Xord

Kli(p)1,Ω
(k,r)(−D)) → H0(Xord

1 ,Ω(k,r)(−D)) the second map. We can compose it

again with the natural inclusion H0(Xord
1 ,Ω(k,r)(−D)) → H0(Xord

Kli(p)1,Ω
(k,r)(−D)) and

view T ′ has an endomorphism of H0(Xord
Kli(p)1,Ω

(k,r)(−D)). As a consequence, for r ≥ 2
there is a commutative diagram where all vertical maps are the obvious inclusions :

H0(Xord
Kli(p)1,Ω

(k,r)(−D)) //

T ′

**

H0(Xord
Kli(p)1,Ω

(k,r)(−D))

H0(Xord
1 ,Ω(k,r)(−D))

OO

T // H0(Xord
1 ,Ω(k,r)(−D))

OO

Lemma 11.1.1.2. — The action of T ′ is locally finite on H0(Xord
Kli(p)1,Ω

(k,r)(−D)) if
r ≥ 2 and k ≥ 1.

Proof. The action of T is locally finite on H0(Xord
1 ,Ω(k,r)(−D)) by proposition 7.4.1.1.

Lemma 11.1.1.3. — On H0(Xord
Kli(p)1,Ω

(k,r)(−D)) we have U ◦ T ′ = U ◦ U for r ≥ 2
and k ≥ 1.

Proof. Over Y ord
Kli (p)1, we can decompose T ′ = U + F where F accounts for all isogenies

G → G/L where L is such that L ∩H 6= {0}. We are left to prove that U ◦ F = 0. Let
H → Yord

Kli(p) be the moduli space of (G,H,L, L′) where (G,H) ∈ Y ord
Kli (p)1, L ⊂ G[p2] is

of type (1, p, p, p2) (that is, an extension of an étale group scheme locally isomorphic to
Z/pZ⊕Z/p2Z by a multiplicative group scheme locally isomorphic to µp) and L∩H = {0},
L′ ⊂ G/L[p2] is of type (1, p, p, p2) and L′ ∩ G[p]/L 6= {0}. We have two projections
s1(G,H,L, L′) = (G,H), s2(G,H,L, L′) = (G/L+ L′, (G/L[p])/L′). This correspondence
is associated to the operator U ◦ F . We observe that G[p] ⊂ L+ L′. As a result, the map

s?2Ω(1,0) → s?1Ω(1,0) factors through ps?1Ω(1,0). It then follows easily that the non normalized

cohomological correspondence Θ : s?2Ω(k,r) → s!
1Ω(k,r) factors through p6+2r+kp!

1Ω(k,r).
The factor p2r+k arises from the map on differential and the factor p6 from the fundamental
class. The operator U◦F arises from the normalized cohomological correspondence 1

p6+2rΘ.

When k ≥ 1, this map reduces to 0 modulo p.

Corollary 11.1.1.1. — The action of U on H0(Xord
Kli(p)1,Ω

(k,r)(−D)) is locally finite for
all r ≥ 2 and k ≥ 1.

Proof. Let f ∈ H0(Xord
Kli(p)1,Ω

(k,r)(−D)). Then U2f = U(T ′f). The action of T is

locally finite on H0(Xord
1 ,Ω(k,r)(−D)). Let V ⊂ H0(Xord

1 ,Ω(k,r)(−D)) be a finite di-
mensional T -stable vector space containing T ′f (which can be viewed as an element of

H0(Xord
1 ,Ω(k,r)(−D))). We embedd V in H0(Xord

Kli(p)1,Ω
(k,r)(−D)). Clearly, U.V + V is
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stable under U . It follows that U.V +V +Fpf +FpUf is a stable finite dimensional vector
space containing f .

We denote by f the ordinary projector associated to U on H0(Xord
Kli(p)1,Ω

(k,r)(−D)).

Corollary 11.1.1.2. — Assume that r ≥ 2 and k ≥ 1. Then the canonical map f :
eH0

(
Xord

1 ,Ω(k,r)(−D)
)
→ fH0

(
Xord
Kli(p)1,Ω

(k,r)(−D)
)

is bijective.

Proof. We first prove the surjectivity of the map. Let

G ∈ fH0
(
Xord
Kli(p)1,Ω

(k,r)(−D)
)
.

Then T ′U−1G ∈ H0
(
Xord

1 ,Ω(k,r)(−D)
)

and eT ′U−1G ∈ eH0
(
Xord

1 ,Ω(k,r)(−D)
)
. By

lemma 11.1.1.3, feT ′U−1G = fT ′U−1G = fUU−1G = G. We now prove injectivity
which is the existence of a suitable p-stabilisation. Let g ∈ eH0

(
Xord

1 ,Ω(k,r)(−D)
)

be a non-zero element. After multiplying g by some high power of Ha, we can as-
sume that g ∈ eH0(X1,Ω

(k,r)(−D)) and that the reduction map H0(X,Ω(k,r)(−D)) →
H0(X1,Ω

(k,r)(−D)) is surjective. We now need to use some group theory. Let E
be the finite set of irreducible smooth admissible representations of GSp4(Af ) oc-

curring in H0(X,Ω(k,r)(−D)) ⊗Zp Qp. For each πf ∈ E, πKf = (πpf )K
p ⊗ π

Kp
p ↪→

H0(X,Ω(k,r)(−D)) ⊗Zp Qp where Kp = GSp4(Zp). Note that πp is an unramified

principal series. Let Tp,2 = Kpdiag(1, 1, p, p)Kp, Tp,1 = Kpdiag(1, p, p, p2)Kp and
Tp,0 = diag(p, p, p, p)Kp be the classical elements in the spherical Hecke algebra Hp (see

section 5.1.3). Then Hp acts via a caracter Θπp : Hp → Qp on π
Kp
p . The reciprocal of the

Hecke polynomial is (see [23], rem. 3 on page 196 for example)

Q?p(X) = X4 − Tp,2X3 + p(Tp,1 + (1 + p2)Tp,0)X2 − p3Tp,2Tp,1X + p6Tp,0.

Let (αp, βp, γp, δp) be the roots of Θπp(Q
?
p(X)), ordered such that αpδp = βpγp and

such that there p-adic valuations are in increasing order. The roots are p-adic integers.
Moreover αpδp has p-adic valuation k+ 2r− 3 and αpβp has valuation at least r− 2. This
means that the Newton polygon is above the Hodge polygon with same initial and end
points. It can be proved in an elementary way (by an analysis of the integral properties
of the Hecke operators). This implies that Tp,2 acts through αp + βp + γp + δp and that
Tp,1 acts through

p−1(αpβp + αpγp + βpδp + δpγp)− p−3αpδp.

Let KKli(p) ⊂ Kp be the parahoric Klingen subgroup. The space π
KKli(p)
p is 4 di-

mensional. Indeed, since π is cohomological and k ≥ 1, π is either general or Yoshida
type in Arthur’s classification [1]. Therefore πp is tempered ([77]), hence generic. The

dimension of π
KKli(p)
p is given in [62], table 3 (πp is of type I). Moreover, the operator U =

p3−rKKli(p)diag(1, p, p, p2)KKli(p) has eigenvalues p2−rαpβp, p
2−rαpγp, p

2−rβpδp, p
2−rδpγp

on this space by [23], coro. 3.2.2. We say that πp is Tp,1-ordinary if p3−rΘπp(Tp,1) is a

p-adic unit. Equivalently, this means that p2−rαpβp is a p-adic unit.

It follows that if πp is ordinary, the natural inclusion π
Kp
p → π

KKli(p)
p followed by

the projection to the ordinary line (given by the ordinary projector) in π
KKli(p)
p where

U acts by p2−rαpβp is a bijection π
Kp
p → (π

KKli(p)
p )ord. An inverse (up to a p-adic

unit) (π
KKli(p)
p )ord → π

Kp
p is obtained by taking the trace of an element. See [23],

corollary 3.2.4. These local considerations allow us to construct a p-stabilisation map
H0(X,Ω(k,r)(−D))|Qp)

Tp,1−ord → (H0(XKli(p),Ω
(k,r)(−D))|Qp)

U−ord which on each πf ∈

E with ordinary πp is (πpf )Kp⊗πKpp → (πpf )Kp⊗(π
KKli(p)
p )ord. This map induces an injective



58 Higher coherent cohomology and p-adic modular forms of singular weight

p-stabilisation map (H0(X,Ω(k,r)(−D))Tp,1−ord → H0(XordKli(p),Ω
(k,r)(−D))U−ord. More-

over, the cokernel of this map is torsion free. If G ∈ H0(X,Ω(k,r)(−D))
Tp,1−ord
Qp has image

G′ in (H0(XKli(p),Ω
(k,r)(−D))|Qp)U−ord ∩H0(XordKli(p),Ω

(k,r)(−D)), the G is, up to multi-

plication by a p-adic unit, the trace of G′ and a section of H0(X,Ω(k,r))|Qp is integral if and

only if it is integral over the ordinary locus. If we reduce modulo p we obtain an injective

map : H0
(
X1,Ω

(k,r)(−D)
)Tp,1−ord → H0

(
Xord
Kli(p)1,Ω

(k,r)(−D)
)U−ord

. Finally, for all r ≥ 2

and k ≥ 1, we have T = p3−rTp,1 = T ′ as operators on H0(Xord
1 ,Ω(k,r)(−D)). It follows

that g ∈ H0(X1,Ω
(k,r)(−D))Tp,1−ord has non zero image in eH0

(
Xord
Kli(p)1,Ω

(k,r)(−D)
)
.

11.1.2. The operators T and U on X=1
1 . — In section 7.4.1, we have constructed two

cohomological correspondences (for k + r > 2 and r ≥ 2 + p− 1):

T1 : p?2Ω(k,r)|
X≤1
p,1
→ p!

1Ω(k,r)|
X≤1

1

and

T2 : p?1Ω(k,r)|
X≤1

1
→ p!

2Ω(k,r)|
X≤1
p,1

which we can restrict to the p-rank one locus to get two cohomological correspondences
(still denoted in the same way) :

T1 : p?2Ω(k,r)|X=1
p,1
→ p!

1Ω(k,r)|X=1
1

and

T2 : p?1Ω(k,r)|X=1
1
→ p!

2Ω(k,r)|X=1
p,1

and we obtain operators T1 : H0(X=1
p,1 ,Ω

(k,r)(−D)) → H0(X=1
1 ,Ω(k,r)(−D)) and T2 :

H0(X=1
1 ,Ω(k,r)(−D))→ H0(X=1

p,1 ,Ω
(k,r)(−D)). We let T = T1 ◦ T2. The operators T1 and

T2 can be decomposed in this setting into T1 = Tm1 + T et1 + T oo1 and T2 = Tm2 + T et2 + T oo2

(see section 7.4.2).

Lemma 11.1.2.1. — U = T on H0(X=1
1 ,Ω(k,r)) if k + r > 2(p+ 1), r ≥ 2 + (p− 1).

Proof. By definition, U = T et1 ◦T et2 . It is enough to prove that T oo1 = 0 and Tm1 = Tm2 = 0
and this follows from proposition 7.4.2.1.

11.1.3. Finiteness. — We are now ready to prove the finiteness of the ordinary cohomol-
ogy on X≥1

Kli(p)1.

Corollary 11.1.3.1. — 1. For all r ≥ 2 and k > p+ 1, the action of U on

RΓ(X≥1
Kli(p)1,Ω

(k,r)(−D))

is locally finite.

2. The natural map induced by pull back:

eRΓ(X≥1
1 ,Ω(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is a quasi-isomorphism.

3. There is a constant C independant of the prime to p level Kp such that for all
k ≥ C and r ≥ 3, the map

eRΓ(X1,Ω
(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is an isomorphism.
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4. The map

eHi(X1,Ω
(k,2)(−D))→ fHi(X≥1

Kli(p)1,Ω
(k,2)(−D))

is bijective for k ≥ C and i = 0 and injective for k ≥ C and i = 1.

5. For r ≥ 2 and k ≥ C, fRΓ(X≥1
Kli(p)1,Ω

(k,r)(−D)) is a prefect complex of Fp-vector
spaces of amplitude [0, 1].

Proof. The cohomology RΓ(X≥1
Kli(p)1,Ω

(k,r)(−D)) is computed by the complex :

H0(X=2
Kli(p)1,Ω

(k,r)(−D))→ colimnH0(X≥1
Kli(p)1,Ω

(k,r+(p−1)n)(−D)/(Ha)n)

By corollary 11.1.1.1, the action is locally finite on the first term. It is enough to
prove that it is locally finite on each H0(X≥1

Kli(p)1,Ω
(k,r+(p−1)n)(−D)/(Ha)n). The case

n = 1 follows from lemma 11.1.2.1 and lemma 8.1.1. In general, one argues by induction.
The map

eRΓ(X≥1
1 ,Ω(k,r)(−D))→ fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D))

is represented by the following map of complexes :

H0(X=2
Kli(p)1,Ω

(k,r)(−D)) // colimnH0(X≥1
Kli(p)1,Ω

(k,r+(p−1)n)(−D)/(Ha)n)

H0(X=2
1 ,Ω(k,r)(−D)) //

OO

colimnH0(X≥1
1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n)

OO

We need to prove that the vertical maps become isomorphisms after applying f
on the top and e on the bottom. For the left vertical map, this is corollary 11.1.1.2.
We remark that the right vertical map is actually an isomorphism. We need to prove
that it stays so after applying the projectors. We will see that for each n, the map
eH0(X≥1

1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n) → fH0(XKli(p)
≥1
1 ,Ω(k,r+(p−1)n)(−D)/(Ha)n) is an

isomorphism. For n = 1, this follows from lemma 11.1.2.1. The general case follows
easily by induction. Points 4 and 5 follow from proposition 8.2.1.

11.2. Finiteness of the ordinary cohomology over X≥1 and X≥1
Kli(p). — In the

following theorem we establish relations between the ordinary cohomology over X≥1 and
classical cohomology in weight (k, r) if k is large enough.

Theorem 11.2.1. — For k > p+ 1 and r ≥ 2 :

1. The Hecke operator U acts locally finitely on RΓ(X≥1
Kli(p),Ω

(k,r)(−D)).

2. The Hecke operator T acts locally finitely on RΓ(X≥1,Ω(k,r)(−D)).

3. The complexes RΓ(X≥1,Ω(k,r)(−D)) and RΓ(X≥1
Kli(p),Ω

(k,r)(−D)) only have co-
homology in degree 0, 1.

4. Let us denote by f the ordinary projector associated to U and by e the ordinary
projector associated to T . Then the natural map :

eRΓ(X≥1,Ω(k,r)(−D))→ fRΓ(X≥1
Kli(p),Ω

(k,r)(−D))

is a quasi-isomorphism.
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5. There is a constant C independent on the level Kp such that for k ≥ C and r ≥ 3,
the map

eRΓ(X,Ω(k,r)(−D))→ eRΓ(X≥1,Ω(k,r)(−D))

is a quasi-isomorphism.

6. For all k ≥ C,

eHi(X,Ω(k,2)(−D))→ eHi(X≥1,Ω(k,r)(−D))

is bijective for i = 0 and injective if i = 1.

7. For all k ≥ C and r ≥ 2, fRΓ(X≥1
Kli(p),Ω

(k,r)(−D)) is a prefect complex of Zp-
modules of amplitude [0, 1].

Proof. Over X≥1
Kli(p)n or X≥1

n , we have the following exact sequence of sheaves :

0→ Ω(k,r)(−D)→ colimlΩ
(k,r+lpn−1(p−1))(−D)→ colimlΩ

(k,r+lpn−1(p−1))(−D)/Halp
n−1 → 0

where the limit in the middle is over multiplication by powers of Hap
n−1

which lifts to a

section of H0(Xn, ω
pn−1(p−1)). The middle sheaf is also the restriction of Ω(k,r)(−D) to the

ordinary locus. This is an acyclic resolution of Ω(k,r)(−D) by flat Z/pnZ-sheaves. Indeed,
all sheaves are acyclic relatively to the minimal compactification and the middle and right
sheaves are supported over affine sub-schemes of the minimal compactification. Passing
to the limit over n we obtain an acyclic resolution of Ω(k,r)(−D) over X≥1

Kli(p) or X≥1. Let
us denote by M• and N• the complexes concentrated in degree [0, 1] that compute the

cohomologies RΓ(X≥1,Ω(k,r)(−D)) and RΓ(X≥1
Kli(p),Ω

(k,r)(−D)) using these resolutions.

They are objects of Cflat(Zp). By lemma 8.2.1, corollary 11.1.3.1 and lemma 2.1.2, we
deduce that the actions of T and U are locally finite on M• and N•. The points 4 and 5
follow from corollary 11.1.3.1 using proposition 2.2.2. The point 6 also follows by induction
on n from corollary 11.1.3.1. Finally, we deduce 7 by another application of proposition
2.2.2.

Corollary 11.2.1. — For k > p+ 1 the map

eH0(X,Ω(k,2)(−D)⊗Qp/Zp)→ fH0(X≥1
Kli(p),Ω

(k,r)(−D)⊗Qp/Zp)

is a quasi-isomorphism.

Proof. The map

eH0(X,Ω(k,2)(−D)⊗Qp/Zp)→ eH0(M ⊗LΛ,k Qp/Zp)

is an isomorphism since the complement of X≥1 in X is of codimension 2. The claim follows
from theorem 11.2.1 4.

11.3. The perfect complex. — We can finally construct a perfect complex over Λ and
obtain an Hida theory for higher cohomology. We specialize to r = 2 as this is the case of
interest.

Theorem 11.3.1. — Consider the complex RΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)).

1. The action of U is locally finite. Call f the associated projector.

2. The complex fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)) is a perfect complex of Λ-modules con-
centrated in degree [0, 1].
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3. For all k ≥ 0, there is a quasi-isomorphism :

fRΓ(X≥1
Kli(p),Ω

(k,2)(−D))→ fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))⊗LΛ,k Zp.

4. There is a constant C independant of the level Kp such that for all k ≥ C, the
canonical map

eHi(X,Ω(k,2)(−D))→ Hi
(
fRΓ(X≥1

Kli(p),F
κ ⊗ ω2(−D))⊗LΛ,k Zp

)
is bijective for i = 0 and injective for i = 1.

Proof. For all m ≥ n, we have the following acyclic resolution of the sheaf F κ
m,n⊗ω2(−D)

over X≥1
Kli(p)n :

0→ F κ
m,n ⊗ ω2(−D)→ colimlF

κ
m,n(−D)⊗ ω2+lpn−1(p−1)(−D)

→ colimlF
κ
m,n(−D)⊗ ω2+lpn−1(p−1)(−D)/Halp

n−1 → 0

Indeed, all theses sheaves are acyclic relatively to the minimal compactification by [46],
thm. 8.6 and the middle and right sheaves have affine support in the minimal com-
pactification. For all k ∈ Z≥0, we have an exact sequence of sheaves over X≥1

Kli(p)1 :

0 → KΩ(k,2)(−D) → Ω(k,2)(−D) → F k
1,1(−D) → 0 (see section 9.4). Using a resolution

as above for all sheaves in this exact sequence, we get a commutative diagram :

0 0

H0(XKli(p)
=2
1 ,F k

1,1 ⊗ ω2(−D)) //

OO

H0(XKli(p)
≥1
1 , colimF k

1,1 ⊗ ω2+l(p−1)(−D)/Hal)

OO

H0(X=2
Kli(p)1,Ω

(k,2)(−D)) //

OO

H0(X≥1
Kli(p)1, colimΩ(k,2+l(p−1))(−D)/Hal)

OO

H0(X=2
Kli(p)1,KΩ(k,2)(−D)) //

OO

H0(X≥1
Kli(p)1, colimKΩ(k,2+l(p−1))(−D)/Hal)

OO

0

OO

0

OO

Assume that k > p+ 1. Since U is locally finite on H0(X=2
Kli(p)1,Ω

(k,2)(−D)) and on

H0(X≥1
Kli(p)1, colimΩ(k,2+n(p−1))(−D)/Han),

it is locally finite on all the modules in the above diagram by lemma 2.1.1. Moreover, by
lemma 10.7.1, U acts by zero on the bottom horizontal complex. Applying the projector,
we obtain a quasi-isomorphism:

fRΓ(X≥1
Kli(p)1,Ω

(k,r)(−D))→ fRΓ(X≥1
Kli(p)1,F

κ
1,1 ⊗ ω2(−D))

For all m, the operator Um arises from the correspondence Cm which parametrizes
triples (G,H1, Gm) with (G,H1) ∈ X≥1

Kli(p)1 and G → Gm is an isogeny whose ker-
nel is a group Lm satisfying Lm ∩ H1 = {0} and moreover, if G is abelian, Lm is
an extension of an étale group scheme, locally isomorphic to Z/pmZ × Z/p2mZ by a
multiplicative group scheme, locally isomorphic to µpm . We have two projections z1 :
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Cm → X≥1
Kli(p)1 defined by z1(G,H1, Gm) = (G,H1) and z2 : C → X≥1

Kli(p)1 defined by

z2(G,H1, Gm) = (Gm, Im(H1)). Actually, z2 lifts to a map z2 : Cm → X≥1
Kli(p

m)1 defined
by z2(G,H1, Gm) = (Gm, H

′
m) where H ′m is the image of G[pm] in Gm.

As a result we have the following diagram :

RΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D)) //

Um

++

RΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D))

RΓ(X≥1
Kli(p)1,F k

1,1 ⊗ ω2(−D))
Um //

OO

RΓ(X≥1
Kli(p)1,F κ

1,1 ⊗ ω2(−D))

OO

It follows that U is locally finite on colimmRΓ(X≥1
Kli(p)1,F k

m,1 ⊗ ω2(−D)) and that
we have an isomorphism :

fcolimmRΓ(X≥1
Kli(p)1,F

k
m,1 ⊗ ω2(−D)) = fRΓ(X≥1

Kli(p)1,Ω
(k,r)(−D)).

We deduce from lemma 2.1.2 that U is locally finite on RΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)).
Moreover, proposition 2.2.2 and theorem 11.2.1 imply directly the points 3 and 4 of the
theorem.

In order to complete the proof of theorem 1.1 of the introduction, we still have to
obtain a control theorem for characteristic 0 classes of weight k ≥ 0. This will be obtained
at the end of the next part of this work in theorem 14.8.1.

PART III

HIGHER COLEMAN THEORY

12. Overconvergent cohomology

12.1. Notation. — We introduce certain notations that are specific to this part of the
work. In this section, the base ring for our constructions is O the ring of integers of Cp
rather than Zp. The p-adic valuation is normalized by v(p) = 1. For any rational number
w, we let pw ∈ O be an element of valuation w. If M is an O-module, we denote by
Mw = M/pwM . We let Adm be the category of admissible O-algebras. We recall that
an admissible O-algebra is a flat O-algebra which is the quotient of a convergent power
series ring O〈X1, · · · , Xs〉 by a finitely generated ideal. We let NAdm be the category of
normal admissible O-algebras.

12.2. Formal Siegel threefold and the Hodge-Tate period map. —

12.2.1. The Hodge-Tate period map. — We start by introducing several formal and ana-
lytic Siegel threefolds as in section 1.2 of [59]. Let Σ be a polyhedral decomposition which
is Γ-admissible and let X → Spec O be a toroidal compactification of the Siegel threefold
with spherical level at p and tame level Kp.

Let X be the associated analytic adic space over Spa(Cp,O). Let X be the formal
p-adic completion of X. We let X (pn)→ X be the adic Siegel threefold with full pn level
structure at p. Let X(pn) be the normalization of X in X (pn).

We denote by Y the complement of the boundary in X and by Y(pn) the complement
of the boundary in X(pn). Over Y(pn) we have a universal map (Z/pnZ)4 → G[pn] of
group schemes which is a symplectic isomorphism up to a similitude factor on the analytic
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generic fiber. We also have a Hodge-Tate period map G[pn] → ωG/p
nωG (we are using

the polarization to identify ωG and ωGt). We denote by HT : (Z/pnZ)4 → ωG/p
nωG the

composite of the two maps.
In [59], prop. 1.2 we show that the Hodge-Tate period map can be extended over

X(pn) to a morphism

HT : (Z/pnZ)4 → ωG/p
n.

Following [59], prop. 1.10, there is a formal scheme X(pn)mod → X(pn) which is the
normalization of a blow up and which carries a rank 2-locally-free modification ωmodG ↪→ ωG
such that

1. p
1
p−1ωG ⊂ ωmodG ⊂ ωG,

2. the Hodge-Tate map factors through a surjective homomorphism :

(Z/pnZ)4 ⊗Z OX(pn)mod → ωmodG /p
n− 1

p−1ωmodG .

12.2.2. The canonical filtration. — We equip (Z/pnZ)4 with the canonical basis
(e1, e2, e3, e4). For all ε ∈ [0, n − 1

p−1 ] ∩ Q, we let X(pn, ε) → X(pn)mod be the for-

mal scheme where HT(e1) = 0 in ωmodG /pεωmodG . This is an open sub-scheme of an

admissible blow up of X(pn)mod.
Over X(pn, ε) we denote by Filcanε ⊂ (ωmodG )ε the coherent sub-sheaf generated by

HT(e2) and HT(e3).

Lemma 12.2.2.1. — The sheaf Filcanε is a locally free sheaf of rank one of OX(pn,ε)/p
ε-

modules and locally a direct summand in (ωmodG )ε.

Proof. We work locally over some open affine Spf R of X(pn, ε). So we can assume that
we have (ωmodG )ε(Spf R) ' R2

ε and the matrix of Hodge-Tate is given by(
0 a c e
0 b d f

)
in the canonical basis of (Z/pnZ)4. By symplecticity (the kernel of the map HT ⊗ 1 :
R4
ε → R2

ε is a Lagrangian sub-space) we get ad − bc = 0. The map HT ⊗ 1 is surjective
and therefore there is (locally on R) a 2× 2 minor which is invertible. Let us assume that
cf − de is a unit in Rε. Localizing further on R, we can assume that c, f or d, e are units
in Rε. Let us assume that c, f are units for example. We deduce that HT(e2) = a

cHT(e3)
and that Filcanε is generated by HT(e2), a direct factor is provided by the sub-module
generated by HT(e4).

The formal scheme X(pn, ε) is covered by the open sub-formal schemes X(pn, ε, e2)
and X(pn, ε, e3) which are respectively defined by the conditions HT(e2) generates Filcanε
and HT(e3) generates Filcanε .

12.2.3. The canonical quotient. — We denote by

Grcanε = coker(Filcanε → (ωmodG )ε)

Passing to the quotient we get canonical map

HT : (Z/pnZ)4/〈e1, e2, e3〉 ' Z/pnZ→ Grcanε

inducing an isomorphism

HT⊗ 1 : Z/pnZ⊗ (OX(pn,ε))ε → Grcanε .
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12.3. Flag varieties. — We let FLn → X(pn)mod be the flag variety parametrizing
locally free direct summands of rank one FilωmodG ⊂ ωmodG .

For all rational number 0 ≤ w ≤ ε, we denote by FLn,ε,w → FLn×X(pn)mod X(pn, ε)→
X(pn, ε) the admissible formal scheme parametrizing invertible sheaves FilωmodG ⊂ ωmodG
satisfying

(FilωmodG )w = Filcanw .

For all positive rational number w′ ≤ w, we also denote by FL+
n,ε,w,w′ → FLn,ε,w the

normal admissible formal scheme which parametrizes basis ρ : OFL+
n,ε,w,w′

' ωmodG /FilωmodG

such that ρw′ = (HT⊗ 1)w′ .

12.4. Group action. — Denote by GSp4 the formal p-adic completion of GSp4. Let
Kli ⊂ GSp4 be the Klingen parabolic of upper triangular matrices by block of size 1× 1,
2 × 2 and 1 × 1. There is a well defined action of GSp4(Z/pnZ) on X (pn), trivial over
X and it extends to an action on X(pn) by normality and on X(pn)mod (since X(pn)mod is
obtained by blowing up along ideals which are invariant under the group action and by
normlaization). It is clear that there is an induced action of Kli(Z/pnZ) on X(pn, ε). We
denote by XKli(p

n, ε) the quotient of X(pn, ε) by the finite group Kli(Z/pnZ).

We let Tw′ be the formal scheme in groups defined by Tw′(R) = Z×p (1 + pw
′
R) for all

R in Adm. We let T0
w′ be the connected component of the identity in Tw′ . For all R in

Adm, T0
w(R) = 1 + pwR. The group T0

w′ acts on FL+
n,ε,w,w′ (it acts on ρ) and the map

FL+
n,ε,w,w′ → FLn,ε,w is a T0

w′ torsor.

For all integers n ≥ w′ we let Tw′,n be the fiber product Tw′ ×Tw′/T
0
w′

Kli(Z/pnZ)

where the map Kli(Z/pnZ)→ Tw′/T
0
w′ is the composite of Kli(Z/pnZ)→ (Z/pnZ)× (given

by the last diagonal entry) and the natural projection (Z/pnZ)× → Tw′/T
0
w′ (recall that

w′ ≤ n).
The action of T0

w′ can be extended to an action of Tw′,n on FL+
n,ε,w,w′ , inducing the

action of Kli(Z/pnZ) on X(pn, ε).

12.5. Local description. — Let Spf R ↪→ X(pn, ε) be a Zariski open subset such that
we have ωmodG |Spf R = Rω1 ⊕Rω2 where ω1 lifts a basis of Filcan and ω2 lifts HT(e4).

Over Spf R, FL+
n,ε,w,w′ is identified with the set(

1 0
pwB(0, 1)R 1

)
× (1 + pw

′
B(0, 1)R)

with B(0, 1)R = Spf R〈X〉. We associate to the universal matrix(
1 0

pwX 1

)
× (1 + pw

′
X ′)

the flag FilωmodG = ω1 + pwXω2 and the trivialization ρ of the quotient GrωmodG given by

ρ(1) = (1 + pw
′
X ′).ω2.

12.6. Banach sheaves. — We construct in this section formal Banach sheaves of locally
analytic and overconvergent modular forms.

12.6.1. Formal Banach sheaves. — We recall some definitions taken from [3], def. A.1.1.1.
We let S be an admissible formal scheme. A formal Banach sheaf over S is a family
(Fn)n≥0 of quasi-coherent sheaves such that :

1. Fn is a sheaf of OS/p
n-modules,

2. Fn is flat over O/pn,
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3. For all 0 ≤ m ≤ n, we have isomorphisms Fn ⊗O O/pm ' Fm.

We can associate to (Fn)n a sheaf F over S equal to the inverse limit limn Fn (the
maps in the inverse limit are those provided by 3) above). The sheaf F clearly determines
the (Fn) and we identify F and the family (Fn) in the sequel. We say that a Banach sheaf
is flat if Fn is a flat OS/p

n-module for all n.

12.6.2. Formal Banach sheaf of overconvergent modular forms. — Let ε ∈]0, n− 1
p−1 ]∩Q

and 0 < w′ ≤ w ≤ ε be rational numbers. Let A be an object of Nadm. We assume that
we are given a continuous character κA : Z×p → A× which is w′-analytic in the sense that
it extends to a pairing κA : Tw′ × Spf A→ Gm.

We have a series of affine maps

π : FL+
n,ε,w,w′ → FLn,ε,w,w′ → X(pn, ε).

Let π1 : FL+
n,ε,w,w′ → FLn,ε,w. This map is a torsor under T0

w′ . We define an invertible

sheaf

LκA =
(
(π1)?OFL+

n,ε,w′,w
⊗̂OA

)T0
w

over FLn,ε,w × Spf A. The invariants are taken with respect to the diagonal action of T0
w.

Remark 12.6.2.1. — The sheaf LκA doesn’t depend on w′ for if we choose w′′ ∈ [w′, w],
we can view κA as a character of Tw′′ and perform a similar construction with FLn,ε,w,w′′
which will give the same sheaf.

Let π2 : FLn,ε,w → X(pn, ε). We define a formal Banach sheaf

GκA,w = (π2)?L
κA

over X(pn, ε)× SpfA.

Lemma 12.6.2.1. — The formal Banach sheaf GκA,w is flat.

Proof. Using a covering as in section 12.5, FL+
n,ε,w,w′ |Spf R is identified with the set of

matrices (
1 0

pwB(0, 1)R 1

)
× 1 + pw

′
B(0, 1)R

The action of T0
w is on the right term. It follows that GκA,w(Spf R× Spf A) ' R⊗̂A〈X〉.

Lemma 12.6.2.2. — For i ∈ {2, 3}, the restriction of the quasi-coherent sheaf GκA,w/pw

to X(pn, ε, ei) is an inductive limit of coherent sheaves which are extensions of the sheaf
OX(pn,ε,ei)/p

w.

Proof. Over X(pn, ε, ei), the vectors HT(ei), HT(e4) are a basis of (ωmodG )ε. We are
therefore in a situation similar to [3], main construction, section 4.5. The claim follows
from corollary 8.1.5.4 and corollary 8.1.6.4 of [3].

We let π3 : X(pn, ε) → XKli(p
n, ε) be the finite projection. The sheaf (π3)?G

κA,w is
Kli(Z/pnZ)-equivariant. We define a Banach sheaf

FκA,w =
(
(π3)?G

κA,w
)Tw,n

over XKli(p
n, ε)× Spf A.
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12.7. Analytic geometry. — The aim of this section is to translate some of our con-
structions in the setting of analytic adic spaces. One of the improvements in the analytic
setting is that the constructions can be performed for Klingen type level structure rather
than full level structure. It will be natural to work with Klingen level structure when we
consider Hecke operators.

12.7.1. Siegel analytic spaces. — We have an action of GSp4(Z/pnZ) on X (pn). We
denote by XKli(pn) the quotient of this space by the group Kli(Z/pnZ) ⊂ GSp4(Z/pnZ) of
matrices which are upper triangular by blocks of size 1× 1, 2× 2 and 1× 1.

Let Kli(Z/pnZ)+ be the subgroup of elements whose lower diagonal entry is trivial.
This is a normal subgroup of Kli(Z/pnZ) and the quotient Kli(Z/pnZ)/Kli(Z/pnZ)+ is
isomorphic to (Z/pnZ)×. We let XKli(pn)+ be the quotient of X (pn) by this group.

We denote by X (pn, ε) the analytic space associated to X(pn, ε). This is an open subset
of XKli(pn) stabilized by the action of the Klingen parabolic Kli(Z/pnZ) ⊂ GSp4(Z/pnZ)
on this space. We denote by XKli(pn, ε) ⊂ XKli(pn) the quotient by Kli(Z/pn) and by
XKli(pn, ε)+ ⊂ XKli(pn)+ the quotient by Kli(Z/pn)+ of X (pn, ε). We therefore have
diagrams for all n ∈ Z≥1 :

XKli(pn, ε) //

��

XKli(pn)

��
XKli(pn−1, ε) // XKli(pn−1)

and

XKli(pn, ε)+ //

��

XKli(pn)+

��
XKli(pn−1, ε)+ // XKli(pn−1)+

Over X we define a sheaf ωmod,+G of O+
X -modules for the étale topology. This is the

sub-sheaf of the sheaf ω+
G of integral differential forms at the origin of G, generated by the

image of the Hodge-Tate period map (compare with section 12.2.1).

Remark 12.7.1.1. — The sheaf ωmod,+G is really a sheaf on the étale site and does not
come from the analytic site.

The space XKli(pn, ε) has the following simple modular interpretation. It parametrizes
pairs (x,Hn) where x is a point of X and Hn ⊂ Gx[pn] is a finite flat group scheme locally
isomorphic to Z/pnZ, which is locally for the étale topology generated by an element e1

which satisfies HT(e1) = 0 in ωmod,+Gx
/pεωmod,+Gx

.
We can define sheaves for the étale topology

Filcanε = Im(HT⊗ 1 : H⊥n ⊗ O+
XKli(pn,ε) → (ωmod,+G )ε)

and
Grcanε = coker(HT⊗ 1 : H⊥n ⊗ O+

XKli(pn,ε) → (ωmod,+G )ε).

These are locally free sheaves of O+
XKli(pn,ε)/p

ε-modules (compare with section 12.2.2

and section 12.2.3).
The space XKli(pn, ε)+ → XKli(pn, ε) is the torsor of trivializations of HD

n . We let
ψ : Z/pnZ→ HD

n be the universal trivialization.
Over XKli(pn, ε)+ we have a canonical isomorphism

HT⊗ 1 : Z/pnZ⊗ (O+
XKli(pn,ε))ε → Grcanε
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obtained via the map ψ and the Hodge-Tate map for G[pn] (compare with section 12.2.3).

Remark 12.7.1.2. — We have obtained the analogue of paragraphs 12.2.2 and 12.2.3
in the analytic setting. We observe that in the analytic setting we are able to work
at the level of XKli(pn, ε) rather than X (pn, ε). The main reason being that the map
X (pn, ε) → XKli(pn, ε) is finite flat and étale away from the boundary while this fails for
the map X(pn, ε) → XKli(p

n, ε). It will turn out to be more natural later when we want
to define the action of the Hecke operator U to work at “Klingen” level.

12.7.2. Analytic flag varieties. — We let FL+
n,ε,w,w′ → FLn,ε,w → X (pn, ε) be the analytic

spaces associated to FLn,ε,w and FL+
n,ε,w,w′ .

Lemma 12.7.2.1. — The space FLn,ε,w descends to an open-subspace of the flag variety
FL → XKli(pn, ε) of ωG that we denote by FLKli,n,ε,w. This is the space of flags FilωG ⊂
ωG such that locally for the étale topology (FilωG ∩ ω+,mod

G )w = Filcanw .

Proof. Consider the map of analytic spaces : X (pn, ε)×XKli(pn,ε) FL → FL. This map is
finite flat. Moreover, FLn,ε,w ↪→ X (pn, ε)×XKli(pn,ε) FL is an admissible open subset. We
can therefore apply the descent of admissible opens of [14], lem. 4.2.4.

Let us denote by FL+ → XKli(pn, e1)+ the moduli space of flags FilωG of ωG together
with a trivialization ρ ∈ GrωG.

Lemma 12.7.2.2. — The space FL+
n,ε,w′,w descends to an open-subspace of FL+ →

XKli(pn, e1)+ that we denote by FL+
Kli,n,ε,w,w′. This is the space of flags FilωG ⊂ ωG

and trivialization ρ ∈ GrωG which satisfy the following condition :

— (FilωG ∩ ω+,mod
G )w = Filcanw ,

— The trivialization ρ reduces to the element HT(1) of Grcanw′ .

Proof. This is another application of [14], lem. 4.2.4.

Let us denote by Tw′ , T 0
w′ , Tw′,n the analytic fibers of Tw′ and T0

w′ and Tw′,n. We
denote by L κA the invertible sheaf over FLn,ε,w × Spa(A[1/p], A) associated to LκA . We
denote by G κA,w the Banach sheaf generic fiber of GκA,w over X (pn, ε) × Spa(A[1/p], A)
(see [3], def. A.2.1.2 and prop. A.2.2.3). We finally denote by F κA,w the Banach sheaf
associated to FκA,w over XKli(pn, ε) × Spa(A[1/p], A). A more direct definition of F κA,w

is the following

F κA,w = (π?OFL+
Kli,n,ε,w,w′

⊗̂A)Tw′,n

where π : FL+
Kli,n,ε,w,w′ → XKli(p

n, ε) is the projection.

12.8. Overconvergent cohomology. — We are now ready to define overconvergent,
locally analytic cohomology.

12.8.1. Definitions. — The n, ε-overconvergent, w-analytic cohomology of weight (κA, r)
is the cohomology :

C(n, ε, w, κA, r) : RΓ(XKli(pn, ε),F κA,w ⊗ ωr).
There is also a cuspidal version :

Ccusp(n, ε, w, κA, r) : RΓ(XKli(pn, ε),F κA,w ⊗ ωr(−D)).

There are obvious maps C(n, ε, w, κ, r) → C(n′ε′, w′, κ, r) for n′ ≥ n, ε′ ≥ ε, w′ ≥ w
(and w ≤ ε, w′ ≤ ε′, ε ≤ n− 1

p−1 , ε′ ≤ n′ − 1
p−1).
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We may define the overconvergent, locally analytic degree i cohomology of weight
(κA, r) to be

Hi(†, κA, r) = colimn,ε,w→∞Hi(XKli(pn, ε),F κA,w ⊗ ωr)
and similarly for the cuspidal version :

Hi
cusp(†, κA, r) = colimn,ε,w→∞Hi(XKli(pn, ε),F κA,w ⊗ ωr(−D)).

12.8.2. Another interpretation. — Here is another way to think about these cohomology
groups in terms of coherent cohomology. Thanks to section 12.5, we observe that FLn,ε,w
is locally affine over X (pn, ε) : this means that there is a covering of X (pn, ε) by affinoid
spaces such that the fiber of FLn,ε,w over each such affinoid is affinoid (be careful that we
don’t claim that the fibers over all affinoids are affinoids !). The sheaf G κA,w comes from
the line bundle L κA over FLn,ε,w by pushforward via the map π2 : FLn,ε,w → X (pn, ε).
Since Ri(π2)?L κA = 0 for i > 0, we obtain that

RΓ(X (pn, ε),G κA,w ⊗ ωr) = RΓ(FLn,ε,w,L κA ⊗ ωr)

and

RΓ(XKli(pn, ε),F κA,w ⊗ ωr) = RΓ(Kli(Z/pnZ),RΓ(FLn,ε,w,L κA ⊗ ωr)).

Similar statements hold for cuspidal cohomology.

Proposition 12.8.2.1. — These cohomologies are represented by bounded complexes of
projective Banach A[1/p]-modules.

Proof. We only treat the non-cuspidal version. We take a covering U of FLn,ε,w by
affinoids such that the sheaf L κA is isomorphic to A⊗̂OOU over each U ∈ U . Refin-
ing U by adding all the Kli(Z/pnZ)-translates of each opens, we can assume that U is
Kli(Z/pnZ)-stable. The U-Chech complex of the sheaf L κA ⊗ ωr is a bounded complex
of projective Banach A[1/p]-modules which computes RΓ(XKli(pn, ε),G κA,w ⊗ ωr). The
group Kli(Z/pnZ) acts on this complex and the direct factor of invariants computes the
cohomology RΓ(XKli(pn, ε),F κA,w ⊗ ωr).

12.9. Cohomological vanishing. — The main result of this section is a cohomological
vanishing.

Proposition 12.9.1. — The cuspidal overconvergent locally analytic cohomology
Hi
cusp(†, κA, r) vanishes for i > 1.

The proof of this proposition follows [3] section 8 closely. The strategy is to compute
this cohomology on the minimal compactification. The cohomological vanishing results
from two facts :

1. that the relative cuspidal cohomology between toroidal and minimal compactifi-
cation vanishes in higher degree,

2. that the pushforward of our overconvergent sheaves to the minimal compactifica-
tion are supported on open sub-sets that can be covered by two affines.

12.9.1. The minimal compactification. — We let X? be the minimal compactification of
Y. There is a natural map X(pn)→ X? and we define X(pn)? to be the Stein factorization
of this map. In [59], we proved that the determinant of the Hodge-Tate map :

Λ2HT : Λ2((Z/pnZ)4)→ detωG/p
n

descends from X(pn) to X?(pn).
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In [59] section 1.8 we have introduced a formal scheme X(pn)?−mod → X(pn)?. This
space is the normalization of a blow up and it carries a locally free modification detωmodG ⊂
detωG such that :

1. p
2
p−1 detωG ⊂ detωmodG ⊂ detωG

2. The Hodge-Tate map factorizes into a surjective map :

Λ2HT : Λ2((Z/pnZ)4)⊗ OX(pn)?−mod → detωmodG /p
n− 2

p−1 .

By the universal property of blow-up and normalization, there is a map X(pn)mod →
X(pn)?−mod such that the pull back of detωmodG is det of ωmodG and the pull back of the

map Λ2HT : Λ2((Z/pnZ)4) → detωmodG /p
n− 2

p−1 agrees with Λ2 applied to the map HT :

(Z/pnZ)4 → ωmodG /p
n− 2

p−1 .

Let ε ∈ [0, n− 2
p−1 ]∩Q. We let X(pn, ε)? be the formal scheme where HT(e1)∧HT(e2) =

HT(e1) ∧HT(e3) = HT(e1) ∧HT(e4) = 0 mod pε.

Lemma 12.9.1.1. — There is a cartesian diagram :

X(pn, ε) //

��

X(pn)mod

��
X(pn, ε)? // X(pn)?−mod

Proof. It suffices to prove that the condition HT(e1) ∧ HT(e2) = HT(e1) ∧ HT(e3) =
HT(e1) ∧ HT(e4) = 0 mod pε is equivalent to the condition HT(e1) = 0 mod pε. The
reverse implication is obvious so let us prove the direct implication. We can work locally
over Spf R ↪→ X(pn)mod and assume that (ωG)ε ' R2

ε . The matrix of HT is given in the
canonical basis of (Z/pnZ)4 by (

a b c d
e f g h

)
and the ideal generated by the 2× 2 minors is Rε.

By assumption, af − eb = ag − ec = ah − ed = 0. By symplecticity, bg − fc = 0.
Therefore, after localizing R and possibly permuting e2 and e3, we may assume that ch−gd
is a unit. Therefore, there are linear combinations of HT(e3) and HT(e4) wich are equal
to (

1
0

)
and

(
0
1

)
and since HT(e1) ∧HT(e3) = HT(e1) ∧HT(e4) = 0 mod pε we deduce that HT(e1) = 0
mod pε.

We denote X(pn, ε, e2)? and X(pn, ε, e3)? the open formal schemes of X(pn, ε)? where
the sheaf detωmodG is generated by HT(e4) ∧HT(e2) and HT(e4) ∧HT(e3).

We have cartesian diagrams :

X(pn, ε, ei) //

��

X(pn)mod

��
X(pn, ε, ei)

? // X(pn)?−mod

for i ∈ {2, 3}.
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By [66], p. 72 (see also [59], thm. 1.16), there is an integer N such that for all n ≥ N
there is a formal scheme X(pn)?−HT and a projective map X(pn)?−mod → X(pn)?−HT such
that :

1. X(pn)?−HT is a normal admissible formal scheme with generic analytic adic fiber
X (pn)?,

2. The invertible sheaf detωmodG descends to an ample invertible sheaf detωmodG over
X(pn)?−HT ,

3. For all ε > 0, there is n(ε) ≥ N such that for all n ≥ n(ε) we have sections
si,j ∈ H0(X(pn)?−HT , detωmodG ) for 1 ≤ i, j ≤ 4 such that si,j = HT(ei)∧HT(ej) ∈
detωmodG /pε.

Let ε > 0 and let n ≥ n(ε). Let us define X(pn, ε, ei)
?−HT → X(pn)?−HT by the

conditions :
— si,4 6= 0,

— s1,j ∈ pε detωmodG , ∀1 ≤ j ≤ 4

Lemma 12.9.1.2. — The formal scheme X(pn, ε, ei)
?−HT is affine and the map

X(pn, ε, ei)
?−mod → X(pn, ε, ei)

?−HT

is a projective map and is an isomorphism on the generic fiber.

Proof. The open formal sub-scheme of X(pn)?−HT defined by si,4 6= 0 is affine since

detωmodG is ample. Let us denote by A its ring of functions. Observe that detωmodG is trivial

over Spf A, generated by si,4. The formal scheme defined by the equation s1,j ∈ pε detωmodG
is

Spf A〈 s1,j

si,4pε
, 1 ≤ j ≤ 4〉

and is again affine. The final claim follows from the obvious equality

X(pn, ε, ei)
? = X(pn)?−mod ×X(pn)?−HT X(pn, ε, ei)

?−HT .

12.9.2. Vanishing. — A formal Banach sheaf F over an admissible formal scheme S is
small if F1 can be written has an inductive limit of coherent sheaves colimj∈NF1,j and there
exists a coherent sheaf G over S such that the quotients F1,j/F1,j+1 are direct summands
of G . We now recall a vanishing result of [3], thm. A.1.2.2 :

Theorem 12.9.2.1. — Let S be an admissible formal scheme. Assume that S admits a
projective map S→ S′ to an affine admissible formal scheme which is an isomorphism of
the associated analytic adic spaces over Spa(Cp,O). Let F be a small Banach sheaf over
S. Let U be an affine cover of S. Then the Chech complex

Chech(U,F)⊗O Cp
is acyclic in positive degree.

We denote by π : X(pn, ε) → X(pn, ε)? the projection. The following proposition is
the analogue of [3], proposition 8.2.2.4 (see also [47]) :

Proposition 12.9.2.1. — We have the vanishing Riπ?OX(pn,ε)(−D) for all i ≥ 1.

Proof. The formal scheme X(pn, ε) carries a stratification indexed by a subset of the set
of all Lagrangian locally direct factors W of V = Z4. We are going to describe briefly this
stratification, based on the analogous description of the stratification of X(pn)mod given in
proposition 4.9 of [59]. The case W = {0} corresponds to the open and dense stratum with
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complement the boundary D. This stratum maps isomorphically to its image in X(pn, ε)?.
We now deal with the case W is one dimensional. First of all there is a one dimensional
affine formal scheme XW (pn, ε) constructed as follows. We start with the formal affine
modular curve XW of some prime-to-p level determined by W and the tame level Kp.
Then we can construct a normal formal scheme XW (pn) and a finite map XW (pn)→ XW
by adding a full level structure of level pn. We then perform a blow up and a normalization
to define XW (pn)mod which carries a locally free modification of the conormal sheaf of the
universal elliptic curve. We finally consider a formal scheme XW (pn, ε) → XW (pn)mod

which is an open sub-scheme of a blow up defined by a condition on the Hodge-Tate
period map.

Over XW (pn, ε) we have an elliptic curve BW (pn, ε) → XW (pn, ε), isogenous to the
universal elliptic curve. There is a Gm-torsor MW (pn, ε) → BW (pn, ε) isogenous to the
torsor of trivializations of OBW (pn,ε)(−2O) (where O is the identity section of the elliptic

curve) and a relative toroidal embedding MW (pn, ε) ↪→ MW (pn, ε) (obtained by adjoin-
ing to the Gm-torsor the 0 element). The complement of MW (pn, ε) ↪→ MW (pn, ε) is
BW (pn, ε). The W -stratum in X(pn, ε) is BW (pn, ε) and the completion of X(pn, ε) along
BW (pn, ε) is isomorphic to the completion of MW (pn, ε) along BW (pn, ε).

The morphism π restricts to a morphism BW (pn, ε)→ X(pn, ε)? and factors through
BW (pn, ε) → XW (pn, ε) → X(pn, ε)? where XW (pn, ε) → X(pn, ε)? is finite (compare with
[59], lem. 4.4 and thm. 4.7).

In the case W is two dimensional, the boundary component is included in the or-
dinary locus and the maps X(pn, ε) → X(pn)mod → X(pn) restrict on the ordinary locus
respectively to an open immersion and an isomorphism. The description of the boundary
component is given in [59], thm 4.1. We recall that there is a formal torus TW isogenous
to the p-adic completion of Hom(Sym2V/W⊥,Gm), a TW -torsor MW (pn, ε), a relative
toroidal embedding MW (pn, ε) ↪→ MW (pn, ε), a closed codimension 1 formal sub-scheme
ZW (pn, ε) ↪→MW (pn, ε) in the complement of MW (pn, ε) and an arithmetic subgroup ΓW
of GL(W ) such that the closed W -stratum is isomorphic to ZW (pn, ε)/ΓW and the com-
pletion of X(pn, ε) along ZW (pn, ε)/ΓW is isomorphic to the completion of MW (pn, ε)/ΓW
along ZW (pn, ε)/ΓW . Lastly, the image of ZW (pn, ε)/ΓW in X(pn, ε)? is a closed formal
sub-scheme, finite over Spf O.

By the theorem on formal functions, the vanishing theorem is equivalent to :

1. Hi(MW (pn, ε)/ΓW ,OMW (pn,ε)/ΓW
(−ZW (pn, ε)/ΓW )) = 0 for all i > 0 and W two

dimensional,

2. Hi( ̂MW (pn, ε)
x

,OMW (pn,ε)(−BW (pn, ε)) for all i > 0, W one dimensional, x ∈

XW (pn, ε) a closed point. We have denoted by ̂MW (pn, ε)
x

the completion of
̂MW (pn, ε)

x

along the fiber of the map BW (pn, ε)→ XW (pn, ε) at x.

We are therefore in a similar situation to [3], proposition 8.2.2.4, or to [47], sect. 4.
One can conclude by repeating the arguments of these papers.

Lemma 12.9.2.1. — Let ε > 0. There exists n(ε) such that for all n ≥ n(ε),
RΓ(X (pn, ε),G κA,w ⊗ ωr(−D)) is concentrated in degree 0 and 1.

Proof. We let π : X(pn, ε) → X(pn, ε)? denote the usual projection. By lemma 12.6.2.2,
proposition 12.9.2.1 and proposition A.1.3.1 of [3], π?G

κA,w ⊗ ωr(−D) is a small formal
Banach sheaf over X(pn, ε)? and Riπ?G

κA,w ⊗ ωr(−D) = 0 for all i > 0.
Let us take an affine covering Vi of X(pn, ε, ei)

? and an affine covering Ui of
FLn,ε,w|X(pn,ε,ei)? which refines the inverse image of Vi in FLn,ε,w|X(pn,ε,ei)? for i ∈ {2, 3}.
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Since Riπ?G
κA,w ⊗ ωr(−D) = 0 for all i > 0 we deduce that the map

Chech(Vi, π?G
κA,w ⊗ ωr(−D))→ Chech(Ui,L

κA ⊗ ωr(−D))

is a quasi-isomorphism.
We deduce from thm 12.9.2.1 that Chech(Ui,L

κA ⊗ ωr(−D))[1/p] is concentrated
in degree 0. We now consider the Chech complex associated to the covering U = U2 ∪
U3 of FLn,ε,w for the sheaf LκA(−D)). Then Chech(U,LκA ⊗ ωr(−D))[1/p] computes
RΓ(FLn,ε,w,L κA ⊗ωr(−D)). But this Cech complex is quasi-isomorphic to the complex:

H0(X (pn, ε, e2)?, π?G
κA ⊗ ωr(−D))⊕H0(X (pn, ε, e3)?, π?G

κA ⊗ ωr(−D))

−→ H0(X (pn, ε, e2)? ∩ X (pn, ε, e3)?, π?G
κA ⊗ ωr(−D))

and has therefore cohomology in degree 0 and 1.

Corollary 12.9.2.1. — Let ε > 0. There exists n(ε) such that for all n ≥ n(ε),
RΓ(XKli(pn, ε),F κA,w ⊗ ωr(−D)) is concentrated in degree 0 and 1.

Proof. This follows from the formula

Hi(XKli(pn, ε),F κA,w ⊗ ωr(−D)) = H0(Kli(Z/pn),Hi(X (pn, ε),G κA,w ⊗ ωr(−D))).

13. Finite slope families

13.1. Review of spectral theory. — We quickly review the notion of slope decompo-
sition and the construction of spectral varieties.

13.1.1. Slope decomposition. — The valuation on Qp is normalized by v(p) = 1 as usual.
Let k be a complete non-archimedean field extension of Qp for a valuation extending the
p-adic valuation. Let M be a vector space over k and let U be an endomorphism of the
vector space M . Let h ∈ Q. A h-slope decomposition of M with respect to U is a direct
sum decompostion of k-vector spaces M = M≤h ⊕M>h such that:

1. M≤h and M>h are stable under the action of U .

2. M≤h is finite dimensional over k.

3. All the eigenvalues of U acting on M≤h are of valuation less or equal to h.

4. For any polynomialQ with roots of valuation strictly greater than h, the restriction
of Q?(U) to M>h is an invertible endomorphism. Here Q? is the reciprocal of Q.

By [75], coro. 2.3.3, if such a slope decomposition exists, it is unique. If M has h-slope
decomposition for all h ∈ Q, we simply say that M has slope decomposition. In this
situation we can obviously define sub-modules M=h and M<h of M for all h ∈ Q.

13.1.2. Spectral varieties. — Let A be a Tate algebra over k. We let Ban(A) be the
category of Banach modules over A. A Banach module is called projective if it is a direct
factor of an orthonormalizable Banach module. We let Kproj(A) be the category whose
objects are bounded complexes of projective Banach modules over A and morphisms are
homotopy classes of morphisms of complexes. Let M• ∈ Kproj(A). An element U ∈
EndKproj(A)(M

•) is compact if it has a representative Ũ ∈ EndA(M•) whose restriction to

each Mk is compact.
Given a compact representative Ũ , we can define by [12], Part A, the characteristic

series P̃ (X) = det(1−XŨ |M•) =
∏
k det(1−XŨ |Mk). This characteristic series is entire:

it defines a function on A1×Spa(A,A+). We denote by Z̃ ↪→ A1×Spa(A,A+) the spectral
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variety which is the closed subspace defined by P̃ (X). It depends on Ũ . Over Z̃ we have a
complex of coherent sheavesM•. It is the universal eigen-subspace of M• for the action of
Ũ . There is a covering of Z̃ by opens U which are finite over their image V in Spa(A,A+)
and such that M•|U is a perfect complex of OV -module.

The cohomology groups H•(M•) are coherent sheaves over Z̃. Let I ⊂ OZ̃ be

the annihilator of this graded module. We let Z = V (I ) ⊂ Z̃ be the spectral variety

associated to U and M•. It doesn’t depend on the choice of Ũ . It comes equipped with a
graded coherent sheaf H•(M•).
13.1.3. Euler characteristic. — Let M• be a complex of Banach modules and U be a
compact operator as above. If x : Spa(K,OK) → Spa(A,A+) is a rank one point, it
follows from [67] that the space H i(Mx) has a slope decomposition. We have :

Proposition 13.1.3.1. — For all h ∈ Q, the Euler-Characteristic function

x 7→
∑
i

(−1)i dimH i(M•x)=h

is a locally constant function of the rank one points of Spa(A,A+).

Proof. This follows from the equality∑
i

(−1)i dimH i(M•x)=h =
∑
i

(−1)i dim(M i
x)=h

and the local constancy of dim(M i
x)=h (see [12], Part A).

13.2. The U-operator on overconvergent cohomology. — We construct the U -
operator in the setting of overconvergent cohomology. The construction is parallel to
section 10.

13.2.1. The cohomological correspondence C. — Let YKli(pn) be the open subspace of
XKli(pn) where the semi-abelian scheme is an abelian scheme. There is a Hecke corre-
spondence t1 : C|YKli(pn) → YKli(pn) where C|YKli(pn) is the moduli space of (G,Hn, L)

where (G,Hn) ∈ YKli(pn) and L ⊂ G[p2] is a totally isotropic subgroup which is locally for
the étale topology isomorphic to (Z/pZ)2 ⊕ Z/p2Z and L ∩Hn = {0}. The map t1 sends
(G,Hn, L) to (G,H). There is a map t2 : Cn|YKli(pn) → YKli(pn+1) defined by mapping

(G,Hn, L) to (G/L, p−1Hn + L/L).
By the theory of toroidal compactification (see [44] for instance), there exist a polyhe-

dral cone decompositions Σ′ and toroidal compactifications of C|YKli(pn) which we denote

by CΣ′ or simply C and maps t1 : CΣ′ → XKli(pn)Σ and t2 : CΣ′ → XKli(pn+1)Σ which
extend the maps t1 and t2 previously defined. We drop Σ and Σ′ from the notations if not
necessary. We also recall that the map (t1)?OC → R(t1)?OC is a quasi-isomorphism.

Lemma 13.2.1.1. — Let Cε = C ×t1,XKli(pn) XKli(pn, ε). Then Cε factorizes to a corre-
spondence

Cε
t2

xx

t1

$$
XKli(pn+1, ε+ 1) XKli(pn, ε)

Proof. All adic spaces are topologically of finite type, so it is enough to check that the
map t2 has the expected factorization for rank one points. Let (K,OK) be a rank one

point of Cn corresponding to an isogeny ξ : G → G1. Let ˆ̄K be the completion of an
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algebraic closure of K. Over O ˆ̄K
, we have a commutative diagram (where Tp is the Tate

module and HT is the Hodge-Tate map) :

Tp(G)
ξ //

HT
��

Tp(G1)

HT
��

ωmodG

ξD // ωmodG1

(In case G and G1 have bad reduction, one can interpret Tp(G) and Tp(G1) as the Tate
modules of the corresponding 1-motives.) We take a basis of Tp(G) ' Z4

p and Tp(G1) ' Z4
p

lifting the basis of G[pn] and G1[pn] provided by the moduli problems. For suitable basis
of ωG and ωG1 respecting the canonical filtration, this diagram is isomorphic to

Z4
p

[1,p,p,p2]//

p1

��

Z4
p

p2

��
O2

ˆ̄K

[p,p2] // O2
ˆ̄K

where [1, p, p, p2] and [p, p2] represent diagonal matrices. Moreover, by definition p1(e1) ∈
pεO2

ˆ̄K
. We deduce at once that the group generated by the image [1, p, p, p2](e1) in G1[pn+1]

is independant of choices and that p2([1, p, p, p2](e1)) ∈ pεpO2
ˆ̄K
. Therefore, at the level of

points, we have proved that t2(Cε) factors through XKli(pn+1, ε+ 1).

13.2.2. Action on the sheaf. — In this section we prove that for all positive rational w ≤ ε
we can define over the correspondence Cε a natural map

t?2F
κA,w+1 → t?1F

κA,w

Over the correspondence Cε we consider the universal isogeny ξ : G → G1 and its dif-
ferential ξ? : ωG1 → ωG. Therefore we get a map t?1FL → t?2FL obtained by FilωG 7→
(ξ?)−1FilωG.

Lemma 13.2.2.1. — The map t?1FL → t?2FL restricts to a map

t?1FLKli,n,ε,ω → t?2FLKli,n+1,ε+1,ω+1

Proof. It is enough to check this on rank one points. Let (K,OK) be a rank one point of
Cε corresponding to an isogeny ξ : G→ G1. As in the proof of lemma 13.2.1.1, we obtain
over O ˆ̄K

a commutative diagram :

Tp(G)
ξ //

HT
��

Tp(G1)

HT
��

ωmodG

ξD // ωmodG1
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isomorphic to

Z4
p

[1,p,p,p2]//

p1

��

Z4
p

p2

��
O2

ˆ̄K

[p,p2] // O2
ˆ̄K

Let FilωmodG be a flag. We may assume that it is generated by a vector HT(e2)+αpwHT(e4)
with α ∈ O ˆ̄K

(up to changing e2 and e3). Its image via ξD is the line generated by

pHT(e2) + αpwp2HT(e4) or equivalently HT(e2) + αpw+1HT(e4).

Corollary 13.2.2.1. — We have a map ξ? : t?2F
κA,w+1 → t?1F

κA,w.

Proof. Let Spa(R,R+) → Cε be a point. Let ξ : G → G1 be the associated isogeny. To
(FilωG, ρG : R ' Gr(ωG)) ∈ FL+

Kli,n,ε,w,w′ we associate (ξ?)−1FilωG and a trivialization

(ξ?)−1ρG : R ' Gr(ωG) ' Gr(ωG1). This defines a point on FL+
Kli,n+1,ε+1,w+1,w′ . Given a

section s ∈ t?2F κA,w+1, we set ξ?s(FilωG, ρG) = s((ξ?)−1FilωG, (ξ
?)−1ρG).

13.2.3. The action of U on overconvergent cohomology. — We now get an operator U as
the composite

RΓ(XKli(pn, ε),F κA,w⊗ωr)→ RΓ(XKli(pn+1, ε+1),F κA,w+1⊗ωr)→ RΓ(Cε, t
?
2F

κA,w+1⊗ωr)

ξ? 1
pr→ RΓ(Cε, t

?
1F

κA,w⊗ωr)→ RΓ(XKli(pn, ε), (t1)?t
?
1F

κA,w⊗ωr)
1
p3

Tr

→ RΓ(XKli(pn, ε),F κA,w⊗ωr)
and similarly on cuspidal cohomology. The map ξ? is the tensor product of the map

of corollary 13.2.2.1 and the obvious map t?2ω
r → t?1ω

r.

Remark 13.2.3.1. — Note the normalization of the map ξ? and of the Trace map.

13.2.4. Compacity. — We prove the compacity of the operator U .

Lemma 13.2.4.1. — The natural map

RΓ(XKli(pn, ε),F κA,w ⊗ ωr)→ RΓ(XKli(pn+1, ε+ 1),F κA,w+1 ⊗ ωr)

is compact. A similar statement holds for cuspidal cohomology.

Proof. We have an obvious injective map FLn+1,ε+1,w+1 → X (pn+1)×X (pn) FLn,ε,w. All
these spaces are open sub-spaces of the the proper analytic spaces FL which parametrizes
flags in ωG over X (pn+1). It follows from the definitions that the closure of FLn+1,ε+1,w+1

is contained in X (pn+1)×X (pn) FLn,ε,w.
Let U = {Ui}i∈I be an affinoid covering of FLn+1,ε+1,w+1. We may assume that this

covering is stable under the action of Kli(Z/pn+1Z). By [48], thm. 5.1, for each Ui ∈ U we
can find an affinoid open U ′i ⊂ XKli(pn+1) ×XKli(pn) FLn,ε,w such that Ui ⊂ U ′i . We may

refine {U ′i} by adding all translates under the action of Kli(Z/pn+1Z) so we can suppose
that U ′ = {U ′i} is stable under the action of Kli(Z/pnZ). We let T = ∪iU ′i.

The cohomology RΓ(T ,L κA⊗ωr) is represented by the Chech complex Ch(U ′,L κA⊗
ωr). Similarly, the cohomology RΓ(FLn+1,ε+1,w+1,L κA⊗ωr) is represented by the Chech
complex Ch(U ,L κA ⊗ ωr). The map Ch(U ′,L κA ⊗ ωr)→ Ch(U ,L κA ⊗ ωr) is compact.
It follows that the map of the proposition is compact as it can be factored into :

RΓ(XKli(pn, ε),F κA,w ⊗ ωr)→
(
Ch(U ′,L κA ⊗ ωr)

)Kli(Z/pn+1Z)
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→
(
Ch(U ,L κA ⊗ ωr)

)Kli(Z/pn+1Z)

= RΓ(XKli(pn+1, ε+ 1),F κA,w+1 ⊗ ωr).

Corollary 13.2.4.1. — The operator U is compact.

Proof. It is the composition of several continuous maps and one of the maps is compact.

Corollary 13.2.4.2. — The restriction maps C(n, ε, w, κA, r) → C(n′, ε′, w′, κA, r) for
n′ ≥ n, ε′ ≥ ε, w′ ≥ w induces an isomorphism on the finite slope part for U . A similar
statement holds for cuspidal cohomology.

Proof. Without loss of generality, we can assume that n′ ≤ n+ 1, w′ ≤ w+ 1, ε′ ≤ ε+ 1.
The map U : Hi(C(n′, ε′, w′, κA, r))→ Hi(C(n′, ε′, w′, κA, r)) factors canonically into

Hi(C(n′, ε′, w′, κA, r))
Ũ→ Hi(C(n, ε, w, κA, r))

res→ U : Hi(C(n′, ε′, w′, κA, r)).

where the second map is the obvious restriction map. Given a finite slope class
f ∈ Hi(C(n′, ε′, w′, κA, r)), there is by definition (locally on A) a non-zero polynomial
P (X) ∈ A[X] with P (0) = 0 such that f = P (U)f . We define the extension of f to

Hi(C(n, ε, w, κA, r)) to be P (Ũ)f . This provides a map ext : Hi(C(n′, ε′, w′, κA, r))
fs →

Hi(C(n, ε, w, κA, r)) on finite slope classes. We call res the map of the proposition. It is
clear that ext ◦ res = Id and res ◦ ext = Id on finite slope classes.

Remark 13.2.4.1. — This corollary allows us to identify finite slope cohomology classes
in Hi(†, κA, r) with classes of prescribed radius of convergence and analyticity.

13.3. Classicity at the level of the sheaf. — Let (k, r) ∈ Z≥0 × Z≥0. There is a
natural map going from overconvergent cohomology of the classical sheaf to overconvergent
locally analytic cohomology.

RΓ(XKli(pn, ε),Ω(k,r))→ RΓ(XKli(pn, ε),F (k,w) ⊗ ωr)
and similarly for cuspidal cohomology. The goal of this section is to prove that on the
small slope part, this map is a quasi-isomorphism.

13.3.1. Slopes. — The aim of this paragraph is to bound the possible slopes for U on
overconvergent cohomology.

Proposition 13.3.1.1. — Let κ : Z×p → O× be a w-analytic character. The operator U

has slopes ≥ −3 on Hi(†, κ, r) or Hi
cusp(†, κ, r). Moreover it has slopes ≥ 0 in degree 0.

Proof. The Banach sheaf F κ,w is a sub-sheaf of the structural sheaf OFLKli,n,ε,w,w′ and we

let F κ,w,++ be the sheaf F κ,w ∩ O++
FLKli,n,ε,w,w′

(we recall that the superscript ++ stands

for topologically nilpotent sections).
The map

t?2F
κ,w+1 → t?1F

κ,w

arises from a map of spaces

t?1FLKli,n,ε,ω → t?2FLKli,n+1,ε,ω+1

therefore, it respects the integral structure and induces a map :

t?2F
κ,w+1,++ → t?1F

κ,w,++

Next, the differential of the universal isogeny induces ξ? : t?2ω
r → t?1ω

r and factors
through ξ? : t?2(ω++)r → prt?1(ω++)r by lemma 14.3.1, 2. By proposition 14.4.1.1 we
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have that Ri(t1)?O
++
Cε

= (t1)?OCε = 0 for all i > 0. Finally, the trace map Tr :

(t1)?OCε → OXKli(pn,ε) restricts to Tr : (t1)?O
++
Cε
→ O++

XKli(pn,ε) Therefore there is a map

p3U : RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r) → RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r) fiting
in the commutative diagram :

RΓ(XKli(pn, ε),F κA,w ⊗ ωr)
p3U // RΓ(XKli(pn, ε),F κA,w ⊗ ωr)

RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r)
p3U //

OO

RΓ(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r)

OO

We now consider an affinoid covering U of XKli(pn, ε) (chosen such that for all U ∈ U , one
has FLKli,n,ε,w is affinoid). The Cech complex C• associated to U of the sheaf F κA,w⊗ωr
computes the cohomology RΓ(XKli(pn, ε),F κA,w ⊗ ωr). This is a bounded complex of

Banach spaces and we can lift the U operator to a compact endomorphism Ũ of C•. Let
a be rational number and let (C•)=a be the associated direct factor of C• computing the
slope a cohomology. This is a perfect complex of Cp vector spaces and the projection
C• → (C•)=a is continuous. We now consider the Chech complex C•,++ of U of the sheaf
F κA,w,++ ⊗ (ω++)r. This is a sub-complex of C• of open and bounded O-modules. Its
image (C•,+)=a under the continuous projection C• → (C•)=a is open and bounded.
Therefore, the image of Hi(C•,++) in Hi(C•)=a is bounded.

We now consider the chain of maps :

Hi(C•,++)→ Hi(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r)→ Hi(C•)→ Hi(C•)=a

We now deduce from lemma 3.2.2 that the map

Hi(C•,++)→ Hi(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r)

has kernel and co-kernel of bounded p-torsion. It follows that the image of

Hi(XKli(pn, ε),F κA,w,++ ⊗ (ω++)r)

in Hi(C•)=a is open and bounded. It follows that in Hi(C•)=a, the operator p3U stabilizes
an open and bounded sub-module. Therefore, we deduce that a+ 3 ≥ 0.

On degree 0 cohomology we can embed the module in the space of p-adic modular
forms and the claim follows from the fact that our U -operator stabilizes the integral
structure on p-adic modular forms.

Remark 13.3.1.1. — Although we believe only non-negative slopes can occur in all co-
homological degree, it is difficult to improve the above argument. The reason is that the
trace map is normalized by a factor p−3. This normalization doesn’t preserve integrality
in general.

13.3.2. Classicity for the sheaf. — For all (k, r) ∈ Z≥0×Z we have a classical sheaf Ω(k,r).

Lemma 13.3.2.1. — There is a canonical map of sheaves over XKli(pn, ε) :

Ω(k,r) → F k,w ⊗ ωr

Proof. Remark that Ω(k,r) = Ω(k,0) ⊗ ωr. It suffices to construct the map for r = 0.
Let FL → XKli(pn, ε) be the analytic flag variety parametrizing flags FilωG ⊂ ωG. Let
FL+ → FL be the Gm-torsor parametrizing trivializations of Gr(ωG). We denote by

f : FL+ → XKli(pn, ε) the structural map. Then by definition Ω(k,0) = f?OFL+ [−k]
where [−k] means the subsheaf of f?OFL+ where Gm acts via the character −k. There
is an obvious map i : FL+

n,ε,w,w′ → FL
+, equivariant for the action of Tw′,n on the left
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and Gm on the right (under the map Tw′,n → Gm). Taking the −k invariants part of
i? : OFL+ → OFL+

Kli,n,ε,w,w′
provides a map

Ω(k,0) ↪→ F k,w

For the next proposition, we shall denote F k,w− the inductive limit colimw′<wF k,w′ .

Proposition 13.3.2.1. — Let (k, r) be an algebraic weight. Then we have an exact se-
quence over XKli(pn, e1) :

0→ Ω(k,r) d0→ F k,w− ⊗ ωr d1→ F−2−k,w− ⊗ ωk+r+1 → 0

Proof. See [3], prop. 7.2.1. This is a relative version of the locally analytic BGG
resolution.

We let C(n, ε, w−, k, r) = colimw′<wC(n, ε, w, k, r).

Corollary 13.3.2.1. — There is an exact triangle :

RΓ(XKli(p
n, ε),Ω(k,r))→ C(n, ε, w−, k, r)→ C(n, ε, w−,−2− k, k + r + 1)

+1→

A similar statement holds for cuspidal cohomology.

13.3.3. Equivariance of the BGG resolution. — We will now prove that certain n, ε-
overconvergent and w-analytic cohomology classes are in fact n, ε-overconvergent coho-
mology classes of a classical sheaf.

Proposition 13.3.3.1. — The following diagram is commutative:

RΓ(XKli(pn, ε),F k,w+ ⊗ ωr) U //

d1
��

RΓ(XKli(pn, ε),F k,w+ ⊗ ωr)

d1
��

RΓ(XKli(pn, ε),F−2−k,w+ ⊗ ωk+r+1)
p−k−1U// RΓ(XKli(pn, ε),F−2−k,w+ ⊗ ωk+r+1)

Proof. See [3], prop. 7.2.3.

Corollary 13.3.3.1. — 1. The maps Hi(XKli(pn, ε),Ω(k,r))<k−2 → Hi(XKli(pn, ε),F (k,w)⊗
ωr)<k−2 and Hi(XKli(pn, ε),Ω(k,r)(−D))<k−2 → Hi(XKli(pn, ε),F (k,w)⊗ωr(−D))<k−2

are isomorphisms.

2. The maps H0(XKli(pn, ε),Ω(k,r))<k+1 → H0(XKli(pn, ε),F (k,w) ⊗ ωr)<k+1 and

H0(XKli(pn, ε),Ω(k,r)(−D))<k+1 → H0(XKli(pn, ε),F (k,w)⊗ωr(−D))<k+1 are iso-
morphisms.

3. The maps H1(XKli(pn, ε),Ω(k,r))<k+1 → H1(XKli(pn, ε),F (k,w) ⊗ ωr)<k+1 and

H1(XKli(pn, ε),Ω(k,r)(−D))<k+1 → H1(XKli(pn, ε),F (k,w) ⊗ ωr(−D))<k+1 are in-
jective.

Proof. This follows from proposition 13.3.1.1, proposition 13.3.3.1, and corollary 13.3.2.1.
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13.4. The spectral variety. — LetW = Spa(Λ,Λ)×Spa(Cp,O) be the analytic weight
space in characteristic zero where we recall that Λ = Zp[[Z×p ]] is the one dimensional
Iwasawa algebra. We can write W as an increasing union of affinoids Spa(Al[1/p], Al).
We let κAl : Z×p → A×l be the universal character. We can apply the formalism of section
13.1.2 to the cohomology Ccusp(n, ε, w, κAl , 2) (for, n, ε, w large enough) and the compact
U -operator acting on it. We obtain a complex Ccusp(Al) over Spa(Al[1/p], Al) × Gm of
finite slope cuspidal overconvergent cohomology of weight (κAl , 2) which is concentrated
in degree 0 and 1. We observe that Ccusp(Al) is independant of n, ε, w as the operator
U improves convergence and analyticity (see corollary 13.2.4.2 and the remark below the
proof).

Moreover, for all κ : Spa(Cp,O)→ Spa(Al[1/p], Al) and α−1 ∈ C×p providing a point

(κ, α−1) : Spa(Cp,O)→ Spa(Al[1/p], Al)×Gm , we have isomorphisms :

Hi((κ, α−1)?Ccusp(Al)) = Hi
cusp(κ, r)[U = α].

The annihilator of H•(Ccusp(Al)) is a coherent ideal Il ⊂ OSpa(Al[1/p],Al)×Gm and the
associated closed sub-space is the spectral variety Zl. The map Zl → Spa(Al[1/p], Al) is
quasi-finite and locally finite.

For all l, the spectral varieties Zl glue to Z → W and there is a universal graded
coherent module H•(Ccusp) over Z supported in degree 0 and 1.

We deduce the following proposition:

Proposition 13.4.1. — The function defined on N ↪→W :

k 7→ dimC H1
cusp(†, k, 2)=0 − dimC H0

cusp(†, k, 2)=0

is locally constant.

Proof. This is a corollary of the discussion above and proposition 13.1.3.1.

14. Small slope cohomology classes are classical

14.1. Neighborhoods of the ordinary locus in XKli(p). — We recall that XKli(p)
is the analytic Siegel threefold of Klingen level at p. There is a universal chain of isogenies
G→ G′ → G where G→ G′ is a degree p3 isogeny and the composition of the two isogenies
is multiplication by p. We let H be the group scheme Ker(G → G′)⊥ (the orthogonal is
for the Weil pairing). When G is an abelian scheme, H is a finite flat group scheme of
order p. We let G′′ = G/H. We denote by ω+

G the invertible sheaf of O+
XKli(p) modules

of integral differential form at the unit section on G (a similar notation applies to G′′).
Let δH ∈ det ω+

G ⊗ det−1 ω+
G′′ be the determinant of the map ω+

G′′ → ω+
G induced by the

isogeny G → G′′. We recall that for all rank 1 point x : Spa(K,OK) → XKli(p) with
associated valuation vx normalized by vx(p) = 1, we have vx(δH) = degHx ∈ [0, 1] in the
sense of [19] whenever Hx is a finite flat group scheme whose schematic closure is a finite
flat subgroup scheme of G over Spf OK .

We let XKli(p)ε ⊂ XKli(p) be the locus where |δH | ≥ |pε|. This is another way to
measure the distance to the p-rank one locus that is more adapted to the arguments of this
part of the work. Before proceeding, we make a comparison with the spaces XKli(pn, ε)
intoduced in section 12.7.1.

Lemma 14.1.1. — The natural map XKli(pn, ε)→ XKli(p) factorizes through XKli(p)1− 2
n

(ε+ 1
p−1

).
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Proof. It is enough to do the proof over rank 1 points. Let G → Spec OK be a semi-
abelian surface. Let Hn ⊂ G[pn] be the group generated by e1. There is a commutative
diagram :

0 // Hn

��

// G[pn]

��
0 // ωHD

n
// ωG/p

nωG

The group ωHD
n

is generated by two elements and the cokernel of HT⊗1 : Hn⊗OK →
ωHD

n
is killed by p

1
p−1 . Since the map Hn → ωmodG /pε is zero, we deduce that ωHD

n
is killed

by p
1
p−1

+ε
. Since it is generated by 2 elements we deduce that degHD

n ≤ 2(ε+ 1
p−1).

The goup Hn has degree at least n − 2(ε + 1
p−1). Morover the maps pk−1 :

Hn[pk]/Hn[pk−1]→ Hn[pn−1] = H1 are generic isomorphisms. Therefore, using [19], coro.
3 on p. 10, we deduce that degH1 ≥ 1

n degHD
n ≥ 1− 2

n(ε+ 1
p−1).

Lemma 14.1.2. — We have XKli(p)ε ⊂ XKli(p, 1− 1
p−1) for all ε ≥ 1− 1

p .

Proof. This is an easy computation using Oort-Tate theory [54].

14.2. The correspondences Cn. — Let YKli(p) be the open subspace of XKli(p) where
the semi-abelian scheme is an abelian scheme. For all n ∈ N, there is a Hecke correspon-
dence tn,1, tn,2 : Cn|YKli(p) → YKli(p) where Cn|YKli(p) is the moduli space of (G,H,Ln)
where (G,H) ∈ YKli(p) and Ln ⊂ G[pn] is a totally isotropic subgroup which is locally
for the étale topology isomorphic to (Z/pnZ)2⊕Z/p2nZ and Ln ∩H = {0}. The map tn,1
sends (G,H,Ln) to (G,H). The map tn,2 sends (G,H,Ln) to (G/Ln, H+Ln/Ln). We re-
mark that Cn|YKli(p) is simply obtained by iterating n times the correspondence C1|YKli(p)
(which is the correspondence C|YKli(p) considered in section 13.2.1).

There exist smooth polyhedral cone decompositions Σ and Σ′ and toroidal com-
pactifications of Cn|YKli(p) which we denote by Cn,Σ′ or simply Cn, of YKli(p) which
we denote by XKli(p)Σ or simply by XKli(p), and maps tn,1 : Cn,Σ′ → XKli(p)Σ and
tn,2 : Cn,Σ′ → XKli(p)Σ which extend the maps tn,1 and tn,2 previously defined.

14.3. Variation of the degree. — Over Cn we have an isogenyG→ Gn with kernel Ln.
The differential of this isogeny provides a map (Ω1

Gn/Cn
)+ → (Ω1

G/Cn
)+ where (Ω1

Gn/Cn
)+ ⊂

Ω1
Gn/Cn

is the locally free O+
Cn

module of integral differentials. Taking the determinant

yields a section δLn ∈ det(Ω1
G/Cn

)+ ⊗ det−1(Ω1
Gn/Cn

)+.

When we have a rank one point x : Spa(K,OK)→ Cn, with associated valuation vx
normalized by vx(p) = 1, we can define the degree degLn|x = vx(δLn) where vx(δLn) means
the valuation of δLn(x) computed in any local trivialization of the sheaf det(Ω1

G/Cn
)+ ⊗

det−1(Ω1
Gn/Cn

)+. When G|x is an abelian scheme and extends to an abelian scheme G over

Spf OK , this is the also degree of the schematic closure of Ln|x in G defined in [19]. In
general, G|x can be uniformized as the quotient of a semi-abelian scheme G0 by a lattice.
The semi-abelian scheme G0 extends to a semi-abelian scheme G0 over Spf OK . In this
case, degLn|x = degLn|x ∩G0.

Lemma 14.3.1. — Let x : Spa(K,OK)→ C1 be a rank 1 point corresponding to a triple
(G,H,L = L1). Then we have :
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1. degH + degL[p] ≤ 2,

2. degL[p]/pL = 1,

3. degL/L[p] ≤ deg pL,

4. deg(G[p] + L)/L = 1− degL/L[p],

5. deg(G[p] + L)/L ≥ degH. In case of equality, H is either of multiplicative or
étale type.

Proof. It is enough to prove all the points when G is an abelian scheme, by Zariski density.
The first point follows from the fact that there is a generic isomorphism : H×L[p]→ G[p]
and properties of the degree [19], coro. 3 on p. 10.

Using the lemma below the proof, we deduce that the perfect Weil pairing on G[p]
induces a perfect pairing between L[p] and G[p]/pL which restricts to a perfect pairing on
L[p]/pL. As a result L[p]/pL ' (L[p]/pL)D. We deduce from [19], lem. 4 on p. 9 that we
have degL[p]/pL+ degL[p]/pL = 2 and it follows that degL[p]/pL = 1.

The map given by multiplication by p : L/L[p] → pL is a generic isomorphism. It
follows from [19], coro. 3 on p. 10 that degL/L[p] ≤ deg pL.

As before, the perfect Weil pairing on G[p2] induces a pairing between L and G[p2]/L
which restricts to a pairing between (G[p] + L)/L and L/L[p]. It follows that deg(G[p] +
L)/L+ degL/L[p] = 1.

The map H → (G[p]+L)/L is a generic isomorphism. As a result, degH ≤ deg(G[p]+
L)/L. In case of equality, we deduce that degH+degL[p] = 2 and that the mapH⊕L[p]→
G[p] is an isomorphism. The group H is a direct factor of truncated Barsotti-Tate group
of level 1, therefore it is a truncated Barsotti-Tate group of level 1. Since it is of order p,
we deduce that H is either of étale or multiplicative type.

In the course of the proof of the above lemma, we have used the following easy lemma
whose proof is left to the reader :

Lemma 14.3.2. — Let J be a finite flat group scheme over OK . Let MK ⊂ JK be a
subgroup and let M be the schematic closure of MK . Let M⊥K be the orthogonal of MK in

JDK . Let M⊥ be the schematic closure of M⊥K . Then JD/M⊥ = MD.

Corollary 14.3.1. — In the setting of lemma 14.3.1, let ε ∈ R and assume that degL ≤
3− 2ε. Then deg(G[p] + L)/L ≥ ε.

Proof. Remark that degL = deg pL + degL[p]/pL + degL/L[p], so that degL ≥ 1 +
2 degL/L[p]. It follows from lemma 14.3.1 that degL/L[p] ≤ 1 − ε and the claim follows
from the formula deg(G[p] + L)/L = 1− degL/L[p].

Corollary 14.3.2. — Let [a, b] ⊂]0, 1[. There exists r(a, b) > 0 such that for all ε ∈ [a, b]
we have U(XKli(p)ε) ⊂ XKli(p)ε+r(a,b).

Proof. This follows from lemma 14.3.1, 5. and the maximum principle. See [58], prop.
2.3.6.

14.4. Cohomological correspondences in the analytic setting. —

14.4.1. Basic vanishing. — In this section we establish a vanishing result for coherent
cohomology with respect to the change of polyhedral cone decomposition and also a van-
ishing result for higher direct images of the correspondence. These results will allow us to
consider safely the action of Hecke operators on cohomology.
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Proposition 14.4.1.1. — 1. Let Σ and Σ′ be smooth polyhedral cone decom-
positions. Consider the map πΣ′,Σ : XKli(p)Σ′ → XKli(p)Σ. We have

R(πΣ′,Σ)?OXKli(p)Σ′
= OXKli(p)Σ

and R(πΣ′,Σ)?O
++
XKli(p)Σ′

= O++
XKli(p)Σ

.

2. Let tn,1 : Cn → XKli(p). Then we have R(tn,1)?OCn = (tn,1)?OCn and
R(tn,1)?O

++
Cn

= (tn,1)?O
++
Cn

.

Proof. The points 1 and 2 for the structural sheaves (not the ++ version) follow from
standard computations and the comparison theorem stated in [65], thm. 9.1. We now
proceed to deduce 1 and 2 for the “++” sheaves. Let σ ⊂ Σ be a cone. Then, Σ′ ∩ σ is
a refinement of σ. Associated to σ is a boundary component Zσ ↪→ XKli(p)Σ. Its inverse
image in XKli(p)Σ′ is a union of boundary stratum Zσ∩Σ′ .

We have local charts

Mσ∩Σ
π //Mσ

Zσ∩Σ
//

OO

Zσ

OO

and there is an isomorphism :

M̂σ∩Σ′
Zσ∩Σ′ π // M̂σ

Zσ

̂XKli(p)Σ′
Zσ∩Σ′

OO

πΣ′,Σ // ̂XKli(p)Σ

Zσ

OO

There is a Kuga-Sato variety B, a split torus T and a natural mapMσ → B such that
Mσ∩Σ →Mσ is locally isomorphic over B to TΣ′ ×B → Tσ ×B. By proposition 3.4.1, we
deduce that Rπ?O

++
Mσ∩Σ

= O++
Mσ

.

By proposition 3.3.1, this implies that Rπ?O
++
Zσ∩Σ

/pn = O++
Zσ /p

n. This implies in turn
that

R(πΣ,Σ′)?O
++
XKli(p)Σ

/pn = O++
XKli(p)Σ′

/pn.

We have a long exact sequence :

· · · → Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

p→ Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

→ Ri(πΣ′,Σ)?O
++
XKli(p)Σ′

/p→ · · ·

We look at the sequence for i = 0. Since (πΣ′,Σ)?O
++
XKli(p)Σ′

/p = O++
XKli(p)Σ

/p

and O++
XKli(p)Σ

↪→ (πΣ,Σ′)?O
++
XKli(p)Σ′

, we deduce that the map (πΣ′,Σ)?O
++
XKli(p)Σ′

→
(πΣ′,Σ)?O

++
XKli(p)Σ′

/p is surjective.

This implies that for all i > 0, multiplication by p is an isomorphism on
Ri(πΣ′,Σ)?O

++
XKli(p)Σ′

. As a result, Ri(πΣ,Σ′)?O
++
XKli(p)Σ′

= Ri(πΣ′,Σ)?OXKli(p)Σ′
. The

later vanishes. We also deduce easily that (πΣ′,Σ)?O
++
XKli(p)Σ′

= O++
XKli(p)Σ

.

We next deal with point 2.. We have Cn = Cn,Σ′ and XKli(p) = XKli(p)Σ for two
smooth polyhedral decompositions Σ and Σ′ (for different integral structures). Actually
we can use Σ to produce a toroidal compactification Cn,Σ which is not going to be smooth
(because of the change of integral structure). We then have a factorization of tn,1 into

Cn,Σ′
f→ Cn,Σ

g→ XKli(p)Σ. As in point 1, we show that Rf?O
++
Cn,Σ′

= O++
Cn,Σ

(notice that

the smoothness of Σ was not used in the proof of 1). On the other hand, the morphism g
is finite and has no higher cohomology.
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14.4.2. Cohomological correspondences for classical sheaves. — Let F be any of Ω(k,r)

or Ω(k,r)(−D). We can define an unnormalized analytic cohomological correspondence
(tn,1)?t

?
n,2F → F by taking (for instance) the analytification of the algebraic cohomo-

logical correspondence. We normalize this map by dividing by the factor pn(3+r) and call
it Un. This normalization is consistent with section 10.4. Restricting this map to F++

provides a map Un : (tn,1)?t
?
n,2F

++ → p−3n F++. The reason the map lands in p−3nF++

instead of p−3n−nrF++ is that the kernel Ln of the isogeny G → Gn has degree at least
one by lemma 14.3.1, 2.

Remark 14.4.2.1. — When we work on the analytic space, we cannot expect the co-
homological correspondence to have a better integral property than the integral property
stated above. The cohomological correspondence has a better integral property on the
formal scheme ordinary locus (see sect. 10.4).

We denote by Un : RΓ(XKli(p),F )→ RΓ(XKli(p),F ) and Un : RΓ(XKli(p),F++)→
RΓ(XKli(p), p−3nF++) the corresponding maps on cohomology. Obviously, Un is the
n-th iterate of U = U1.

14.5. Analytic continuation. — Let ε′ and ε be such that tn,2t
−1
n,1(XKli(p)ε′) ⊂

XKli(p)ε. Then we get a map :

Unε,ε′ : RΓ(XKli(p)ε,F )→ RΓ(XKli(p)ε′ ,F ).

On the other hand, if ε′ ≥ ε, we have a restriction map

resε,ε′ : RΓ(XKli(p)ε,F )→ RΓ(XKli(p)ε′ ,F )

induced by the inclusions XKli(p)ε ↪→ XKli(p)ε′ . When it makes sense, we have Unε,ε′ ◦
resε′′,ε = Unε”,ε′ and resε′,ε′′ ◦ Unε,ε′ = Unε,ε′′ . We often write Un instead of Unε,ε′ and res
instead of resε,ε′ if the context is clear.

Proposition 14.5.1. — Let f ∈ Hi(XKli(p)ε,F) with ε < 1. We assume that Uf = af
with a 6= 0. Then for all ε > ε′ > 0, there is a unique section g ∈ H0(XKli(p)ε′ ,F) such
that Ug = ag and resε′,εg = f

Proof. Let [c, d] ⊂]0, 1[ such that ε, ε′ ∈ [c, d] and let n such that nr(c, d) + ε′ ≥ ε (see
coro 14.3.2). We consider the operator a−nUn : Hi(XKli(p)ε,F ) → Hi(XKli(p)ε′ ,F ) and
we set g = a−nUnf .

The following diagram commutes :

Hi(XKli(p)ε,F )
Un //

��

Hi(XKli(p)ε′ ,F )
U // Hi(XKli(p)ε′ ,F )

��
Hi(XKli(p)ε,F )

U // Hi(XKli(p)ε,F )
Un // Hi(XKli(p)ε′ ,F )

and we deduce that Ug = ag. Moreover, since we can factor a−nUn : Hi(XKli(p)ε′ ,F )→
Hi(XKli(p)ε′ ,F ) into

Hi(XKli(p)ε′ ,F )
res→ Hi(XKli(p)ε,F )

a−nUn→ Hi(XKli(p)ε′ ,F )

we deduce that g is unique.

We can slightly improve the last proposition, in the spirit of [35].
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Proposition 14.5.2. — Let f ∈ Hi(XKli(p)ε,F) with ε < 1. Let P = Xm+am−1X
m−1+

· · · + a0 ∈ O[X] be a polynomial of degree m with a0 6= 0. We assume that P (U)f = 0.
Then for all ε > ε′ > 0, there is a unique section g ∈ H0(XKli(p)ε′ ,F) such that P (U)g = 0
and resε′,εg = f .

Proof. Let Q = −a−1
0 (Xm+am−1X

m−1 + · · ·+a1X). Then Q(U)f = f and g = Q(U)nf
for n large enough.

Remark 14.5.1. — Using lemmas 14.1.1, 14.1.2, corollary 13.2.4.2 and the above propo-
sition we deduce that we can think of finite slope sections on Hi(XKli(pn, ε),Ω(k,r)) for any

ε > 0 and n as sections of Hi(XKli(p)ε′ ,Ω(k,r)) for any ε′ > 0 and similarly for cuspidal
cohomology.

14.6. More analytic continuation. — We show that we can improve the last propo-
sition if we work with torsion coefficients.

Proposition 14.6.1. — Let 0 < ε < ε′. There is a map Unε,0 fitting in the following
commutative diagram of normalized cohomological correspondences :

(tn,1)?(tn,2)?(F++|XKli(p)ε)
Unε,ε//

Unε,0

++

F/pn(2r+k−3−2ε′(r+k))F++|XKli(p)ε

(tn,1)?(tn,2)?(F++)
Un //

OO

F/pn(2r+k−3−2ε′(r+k))F++

OO

Before giving the proof we need the following lemma.

Lemma 14.6.1. — Let x : Spa(K,OK)→ Cn be a point. Assume that |δLn |x ≤ |p3n−α|x.
The map Ω+

G/Ln
|x → Ω+

G|x factorizes through pn−αΩ+
G|x. The map

SymkΩ+
G/Ln

⊗ detrΩ+
G/Ln

|x → SymkΩ+
G ⊗ detrΩ+

G|x
factorizes through pk(n−α)+r(3n−α)SymkΩ+

G ⊗ detrΩ+
G|x

Proof. We fix an isomorphism between Ω+
G/Ln

|x → Ω+
G|x and O2

K
M→ O2

K with M a

diagonal matrix with coefficients m1,m2. We have |m1m2|x ≤ |p3n−α|x. But on the other
hand, |mi|x ≥ |p2n|x since Ln ⊂ G[p2n]. We deduce that |mi|x ≤ |pn−α|x.

Proof.[of proposition] Let x ∈ XKli(p). It have to find a neighborhood U of x in XKli(p)
and to construct a canonical map :

t?n,2F
++|XKli(p)ε(t

−1
n,1U)→ F/pn(2r+k−3−2ε′(r+k))F++(U)

Pick ε′′ ∈]ε, ε′[ such that for all y = (G,H,Ln) ∈ t−1
n,1(x) we have |δLn |y 6= |pn(3−2ε′′)|y.

This is possible since the fiber of tn,1 is finite away from the boundary. At the boundary,
it is easy to see that there are only finitely many possibilities for |δLn |y.

It follows that there exists a neighborhood U of x and a disjoint decomposition of
t−1
n,1(U) = V

∐
W where for all (G,H,Ln) ∈ W , we have |δLn | > |pn(3−2ε′′)| and for all

(G,H,Ln) ∈ V , we have |δLn | < |pn(3−2ε′′)|.
We have a map Un : t?n,2F

++(V )⊕t?n,2F++(W )→ F (U). The image of t?n,2F
++(V )

in F (U) lands in pn(2r+k−3−2ε′′(r+k))F++(U) by the above lemma 14.6.1. We deduce a
factorization

Un : (tn,1)?t
?
n,2F

++(U)→ t?n,2F
++(W )→ F (U)/pn(2r+k−3−2ε′′(r+k))F++(U).
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Moreover tn,2(W ) ⊂ XKli(p)ε by corollary 14.3.1, so that t?n,2F
++(W ) = t?n,2F

++|XKli(p)ε(W ).
We can construct the expected map as the composition :

t?n,2F
++|XKli(p)ε(t

−1
n,1U)→ t?n,2F

++(W )→ F/pn(2r+k−3−2ε′(r+k))F++(U)

It clearly doesn’t depend on the choice of ε′′.

Corollary 14.6.1. — Let ε > 0. Let f ∈ Hi(XKli(p)ε,F ) be a form satisfying Uf = af .
Assume v(a) < 2r + k − 3. There is a projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnF++)

which satisfies U(fn) = a(fn) and such that res0,ε(fn) is the image of f in

lim
n

Hi(XKli(p)ε,F/pnF++).

Remark 14.6.1. — The U operator induces maps

Hi(XKli(p),F/pnF++)→ Hi(XKli(p),F/pn−3F++).

It follows that it acts on limn Hi(XKli(p),F/pnF++).

Proof. Let ε′ > 0 be such that α = 2r+k−3−2ε′(r+k)−v(a) > 0. We can assume that
0 < ε < ε′ and that f ∈ Hi(XKli(p)ε,F ) satisfies Uf = af by proposition 14.5.1. The map
XKli(p)ε ↪→ XKli(p) is affine (there is a covering of XKli(p) by affinoids, such that the fiber
over these affinoids is affinoid). It follows that Hi(XKli(p)ε,F ) = Hi(XKli(p),F |XKli(p)ε).

After rescaling f we may assume that f comes from a section (still denoted f)
in Hi(XKli(p),F++|XKli(p)ε) and that Uf ∈ Hi(XKli(p), p−3F++|XKli(p)ε) is the im-

age of af in Hi(XKli(p), p−3F++|XKli(p)ε). We define the sections fn = a−nUnε,0f ∈
Hi(XKli(p),F/pnαF++).

Consider the following commutative diagram :

Hi(XKli(p),F++|XKli(p)ε)
a−nUnε,0 //

a−1U
��

Hi(XKli(p),F/pnαF++)

��
Hi(XKli(p)ε, p−3−v(a)F++|XKli(p)ε)

a−n−1Un−1
ε,0 // Hi(XKli(p),F/p(n−1)α−3−v(a)F++)

Hi(XKli(p),F++|XKli(p)ε)
a−n−1Un−1

ε,0 //

OO

Hi(XKli(p),F/p(n−1)αF++)

OO

where the vertical maps going from the bottom to the middle line are the obvious ones.
Since the image of f ∈ Hi(XKli(p),F++|XKli(p)ε) is the same via any of the two left vertical

maps, we deduce that fn = fn−1 in Hi(XKli(p),F/p(n−1)α−3−v(a)F++).
Consider the following commutative diagram :

Hi(XKli(p),F/pnαF++)

U

++
Hi(XKli(p),F++|XKli(p)ε)

a−nUn
33

U

++

Hi(XKli(p),F/pnα−3F++)

Hi(XKli(p), p−3F++|XKli(p)ε)

a−nUn
33
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It follows that Ufn = afn in Hi(XKli(p),F/pnα−3F++).
As a conclusion, we obtain a projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnα−3−v(a)F++) = lim
n

Hi(XKli(p),F/pnF++)

which satisfies U(fn) = a(fn). By construction, res0,ε(fn) is the image of f in
limn Hi(XKli(p)ε,F/pnF++).

We can again slightly improve the above corollary :

Corollary 14.6.2. — Let f ∈ Hi(XKli(p)ε,F ). Let P = Xm + am−1X
m−1 + · · ·+ a0 ∈

O[X] be a polynomial of degree m. We assume that P (U)f = 0 and that for all the roots
a of P in Q̄p, we have v(a) < 2r + k − 3. There is a projective system

(fn) ∈ lim
n

Hi(XKli(p),F/pnF++)

which satisfies P (U)(fn) = 0 and such that res0,ε(fn) is the image of f in

lim
n

Hi(XKli(p)ε,F/pnF++).

Proof. We let Q = −a−1
0 (Xm + am−1X

m−1 + · · · + X). Then Q(U)f = f and we let
fn = Q(U)nf as in the proof of corollary 14.6.1.

14.7. Classicity of overconvergent cohomology. — We are now ready to state our
main result on the classicity of small slope cohomology classes.

Lemma 14.7.1. — For any slope h, the map Hi(XKli(p)ε,F )≤h → limn Hi(XKli(p)ε,F/pnF+)
is injective.

Proof. Let I be a finite set and U = {Ui}i∈I and U ′ = {U ′i}i∈I be two finite affinoid

coverings of XKli(p). We assume that U ′i ⊂ Ui. Such a covering exists because XKli(p) is
proper. Let Uε = {Ui,ε} be the finite affinoid covering U ∩XKli(p)ε. Let ε < ε′ be such that
U(XKli(p)ε′) ⊂ XKli(p)ε. Let Uε′ = {Ui,ε′} be the covering U ′ ∩XKli(p)ε′ . For all i ∈ I, we

have Ui,ε′ ⊂ Ui,ε.The U operator is defined as the composite

RΓ(XKli(p)ε,F )
res→ RΓ(XKli(p)ε′ ,F )

Uε,ε′→ RΓ(XKli(p)ε,F ).

We can represent RΓ(XKli(p)ε,F ) by the Chech complex M• = Ch(Uε,F ) and
RΓ(XKli(p)ε′ ,F ) by N• = Ch(Uε′ ,F ). The map U can be represented by

Ũ : M•
res→ N•

Ũε′,ε→ M•

which is compact. We have a direct summand (M•)≤h which is a complex of finite di-
mensional vector spaces and Hi(XKli(p)ε,F )≤h = Hi((M•)≤h). Denote by V the image
of Hi(XKli(p)ε,F+) in Hi(XKli(p)ε,F ). We have to prove that Hi(XKli(p)ε,F )≤h ∩ V is
bounded. Since the natural map Hi

Uε(XKli(p)ε,F
+) → Hi(XKli(p)ε,F+) has cokernel of

bounded torsion by lemma 3.2.2, we can replace V by V ′ the image of Hi
Uε(XKli(p)ε,F

+)

in Hi(XKli(p)ε,F ). Let Z i((M•)≤h) ⊂ M i. This is a finite dimensional vector space.

We denote by M+• the Chech complex Ch•Uε(F
+). Then M+i is bounded in M i. It

follows that M+i ∩ Z i((M•)≤h) is bounded and thus a lattice. As a result, its image in
Hi(XKli(p)ε,F )≤h (which is Hi(XKli(p)ε,F )≤h ∩ V ′) is bounded.
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Theorem 14.7.1. — The map

Hi(XKli(p),Ω(k,r))<k+2r−3 → Hi(XKli(p)ε,Ω(k,r))<k+2r−3

is bijective. A similar statement holds for cuspidal cohomology

Proof. Denote by res the map of the corollary. We first exhibit a map ext :
Hi(XKli(p)ε,Ω(k,r))<k+2r−3 → Hi(XKli(p)ε,Ω(k,r))<k+2r−3 in the other direction. Given

f ∈ Hi(XKli(p)ε,Ω(k,r))<k+2r−3, we obtain (fn) ∈ limn Hi(XKli(p),Ω(k,r)/pn(Ω(k,r))+) by
corollary 14.6.2. Since

lim
n

Hi(XKli(p),Ω(k,r)/pn(Ω(k,r))+) = Hi(XKli(p),Ω(k,r))

by proposition 3.2.1, this defines the map ext. Using lemma 14.7.1, we deduce that
res ◦ ext = id. Unravelling the construction of ext, we deduce that ext ◦ res = id.

Corollary 14.7.1. — 1. The map Hi(XKli(p),Ω(k,r))<min{k+2r−3,k−2} → Hi(†, k, r)<min{k+2r−3,k−2}

is an isomorphism. A similar statement holds for cuspidal cohomology.

2. The map H0(XKli(p),Ω(k,r))<min{k+2r−3,k+1} → H0(†, k, r)<min{k+2r−3,k+1} is an
isomorphism and a similar statement holds for cuspidal cohomology.

3. The map H1(XKli(p),Ω(k,r))<min{k+2r−3,k+1} → H1(†, k, r)<min{k+2r−3,k+1} is in-
jective and a similar statement holds for cuspidal cohomology.

Proof. This is a combination of theorem 14.7.1 and corollary 13.3.3.1 (see also remark
14.5.1).

14.8. Application to ordinary cohomology. — We are now able to deduce a classic-
ity theorem for ordinary classes in ordinary cohomology. We recall that f is the ordinary
projector attached to U .

Theorem 14.8.1. — The map

fRΓ(XKli(p),Ω
(k,r)(−D))⊗Zp Qp → fRΓ(X≥1

Kli(p),Ω
(k,r)(−D))⊗Zp Qp

is an isomorphism for all k ≥ 0 and r ≥ 2.

Proof. The map fRΓ(XKli(p),Ω
(k,r)(−D)) ⊗Zp Qp → fRΓ(XKli(p)ε,Ω(k,r)(−D))

is a quasi-isomorphism for all k by theorem 14.7.1. We are left to prove that
fRΓ(XKli(p)ε,Ω(k,r)(−D)) → fRΓ(X≥1

Kli(p),Ω
(k,r)(−D)) ⊗LZp Qp is an isomorphism

for k ≥ 0.
Both complexes are concentrated in degree 0 and 1. We actually have a factorization

fH1(XKli(p)ε,Ω(k,r)(−D))→ fH1
cusp(†, k, r)→ fH1(X≥1

Kli(p),Ω
(k,r)(−D))[1/p]

where the first map is injective by corollary 13.3.3.1.

Call di(k) = dim fHi(X≥1
Kli(p),Ω

(k,r)(−D))⊗Qp and d†i (k) = dim fHi
cusp(†, k, r). We

have d†0(k) ≤ d0(k) because there is an obvious injection fH0(XKli(p)ε,Ω(k,r)(−D)) =

fH0(†, k, r) → fH0(X≥1
Kli(p),Ω

(k,r)(−D)) ⊗ Qp. We claim that there is a surjection

fH1(XKli(p)ε,Ω(k,r)(−D))=0 → fH1(X≥1
Kli(p),Ω

(k,r)(−D)) ⊗ Qp. We can prove this as
follows. Let X ?Kli(p) be the minimal compactification. Let π : XKli(p) → X ?Kli(p) be the

projection. Then Rπ?Ω
(k,r)(−D) = π?Ω

(k,r)(−D). The image X ?Kli(p)≥1 of XKli(p)≥1

in the minimal compactification is covered by two affines (call them U1 and U2). The

cohomology RΓ(XKli(p)≥1,Ω(k,r)(−D)) is represented by the complex :

H0(U1,Ω
(k,r)(−D))⊕H0(U2,Ω

(k,r)(−D))→ H0(U1 ∩ U2,Ω
(k,r)(−D))
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while the cohomology colimε→1RΓ(XKli(p)ε,Ω(k,r)(−D)) is represented by the sub-complex
of overconvergent sections :

H0(U1,Ω
(k,r),†(−D))⊕H0(U2,Ω

(k,r),†(−D))→ H0(U1 ∩ U2,Ω
(k,r),†(−D)).

We deduce that the map colimε→1H1(XKli(p)ε,Ω(k,r)(−D)) → H1(X≥1
Kli(p),Ω

(k,r)(−D))⊗
Qp has dense image. If we apply the ordinary projector, we get a surjection since the

ordinary part is finite dimensional. Since H1(XKli(p)ε,Ω(k,r)(−D))=0 is independent of

ε ∈]0, 1[, we conclude that H1(XKli(p)ε,Ω(k,r)(−D))=0 → fH1(X≥1
Kli(p),Ω

(k,r)(−D)) ⊗ Qp

is a surjection. It follows that d†1(k) ≥ d1(k) for all k ≥ 0. For k larger than C + 3,

it follows from theorem 11.2.1, corollary 14.7.1 and corollary 13.3.3.1 that d†0(k) = d0(k)

and that d†1(k) ≤ d1(k). We deduce that for all k ≥ C, d1(k) − d0(k) = d†1(k) − d†0(k).

The euler characteristics d1(k)− d0(k) and d†1(k)− d†0(k) are locally constant functions of

k ∈ Z≥0 by theorem 11.3.1 and proposition 13.4.1. This finally forces d1(k) = d†1(k) and

d0(k) = d†0(k) for all k ≥ 0.

We have thus established that fH1
cusp(†, k, r) → fH1(X≥1

Kli(p),Ω
(k,r)(−D))[1/p] is

an isomorphism. Since fH1(XKli(p)ε,Ω(k,r)(−D)) → fH1
cusp(†, k, r) is injective and

fH1(XKli(p)ε,Ω(k,r)(−D))→ fH1(X≥1
Kli(p),Ω

(k,r)(−D))⊗Qp is surjective we deduce that
in the chain

fH1(XKli(p)ε,Ω(k,r)(−D))→ fH1
cusp(†, k, r)→ fH1(X≥1

Kli(p),Ω
(k,r)(−D))[1/p],

all maps are isomorphisms.

PART IV

EULER-CHARACTERISTIC

15. Vanishing of Euler characteristic

15.1. Action of the Hecke algebra. — We construct an action of the Hecke algebra
on the cohomology of our p-adic sheaves.

Let ` be a prime. We have introduced the spherical Hecke algebra H` =
Z[T`,0, T

−1
`,0 , T`,1, T`,2] in section 5.1.3.

Let K =
∏
`K` ⊂ GSp4(Af ) be a compact open subgroup. We assume that Kp =

GSp4(Zp).

Proposition 15.1.1. — Let ` 6= p be a prime such that K` = GSp4(Z`). We have

operators T`,0, T`,1 and T`,2 acting on RΓ(XKli(p)
≥1
K ,Fκ ⊗ ω2(−D)).

Proof. We suppress the subscript K from the notations in this proof. For certain choices
of polyhedral cone decompositions that we suppress from the notation, we can define Hecke
correspondences attached to the double class T`,i (see [16], p. 253) :

C`,i
p2

}}

p1

!!
X X
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Denote by C`,i the formal completion of C`,i. We can form the fiber product D`,i =

C`,i ×p1,X X≥1
Kli(p). The second projection p2 : D`,i → X can be lifted naturally to p2 :

D`,i → X≥1
Kli(p).

Since the universal isogeny associated to the double class T`,i is étale, we have a
canonical isomorphism :

p?2F
κ ⊗ ω2(−D)→ p?1F

κω2(−D)

The formal schemes X≥1
Kli(p) and D`,1 are smooth, and as a result there is a funda-

mental class p?1OX≥1
Kli(p)

→ p!
1OX≥1

Kli(p)
. We can thus form an un-normalized cohomological

correspondence T ′`,i : p?2F
κ ⊗ ω2(−D) → p?1F

κω2(−D). We shall set T`,2 = `−3T ′`,2 and

T`,i = `−6T ′`,i.

15.2. Euler characteristic. — Let K =
∏
`K` ⊂ GSp4(Af ) be a compact open

subgroup. We assume that Kp = GSp4(Zp). Let N be the product of primes ` such

that K` 6= GSp4(Z`). Let ρ : GQ → GSp4(Fp) be a Galois representation, unram-
ified away from the primes ` not dividing pN . We assume that ρ is absolutely irre-
ducible. We let m be the associated maximal ideal of the abstract Hecke algebra HNp and
Θm : HNp → Fp the corresponding morphism. The map Θm is thus defined by the rule
Θm(Q`(X)) = det

(
1−Xρ(Fob`)

)
.

The algebra HNp acts on the perfect complex fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)). The Λ-

sub-algebra of End
(
fRΓ(X≥1

Kli(p),F
κ ⊗ ω2(−D))

)
generated by HNp is a finite Λ-algebra.

In particular it is semi-local. We can define a direct factor (which may be trivial if ρ̄ is

not modular) of fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D)) associated to the maximal ideal m (see [38],
lemma 2.12) :

fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))m.

Theorem 15.2.1. — The Euler characteristic of the perfect complex

fRΓ(X≥1
Kli(p),F

κ ⊗ ω2(−D))m

is equal to 0.

Remark 15.2.1. — We conjecture that the support over Λ of ⊕1
i=0fHi(X≥1

Kli(p),F
κ ⊗

ω2(−D))m has dimension less or equal to 1 if the representation ρ̄ has big enough image.
Compare with conjecture 7.2 in [38].

The proof of this theorem will be given in section 15.2.5 below. Before giving the
proof we need to collect a certain number of results concerning automorphic forms.

15.2.1. Limits of discrete series. — Given λ = (λ1, λ2; c) ∈ X(T) + (2, 1; 0) ⊂ X(T)C
which satisfies λ1 > λ2 ≥ −λ1 and a Weyl chamber C positive for λ we have a (limit of)
discrete series π(λ,C) (see [26], 3.3).

Let Z be the center of the enveloping algebra U(g). By Harris-Chandra isomorphism,
Z ' C[Y (T)]W where W is the Weyl group. The infinitesimal character of π(λ,C) is the
Weyl group orbit of λ.

Si λ2 6= 0 and λ2 6= −λ1, λ determines uniquely C and π(λ,C) is a discrete series.
The case of interest to us is λ2 = 0 and λ1 > 0. We now make these hypothesis. Under
these assumptions, there are two choices for C. The natural choice (C is the chamber
corresponding to the upper triangular Borel) provides a limit of discrete series that we
denote by π(λ)h (it contains the holomorphic and anti-holomorphic limits of discrete series
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of the derived group). The other choice of C provides another limit of discrete series that
we denote by π(λ)g.

Using the identification ĜSp4 ' GSp4(C), we can think of the infinitesimal character
of π(λ)g or π(λ)h as a Weyl group orbit of the cocharacter C→ t = Y (T)⊗C which maps
1 to diag(λ1 + c

2 , λ+ c
2 ,

c
2 ,

c
2).

15.2.2. Cohomology of limits of discrete series. — Consider the character (λ1 + 1, 2; c) ∈
X(T). This character is dominant for the Levi MSi ' GL2 × Gm of the Siegel parabolic
PSi ⊂ GSp4 which stabilizes the space 〈e1, e2〉. Associated to this character is a complex
irreducible representation of PSi of highest weight (λ1+1, 2; c) that we denote by V(λ1+1,2;c).

Recall that we have a map h : ResC/R → GSp4|R given by h(a + ib) = a12 + bJ and
that K∞ ⊂ GSp4(R) is the centralizer of the image of h. We let g be the complex Lie
algebra of GSp4. We have the Cartan decomposition g = k⊕p. Since k is also the complex
lie algebra of MSi, the representation V(λ1+1,2;c) can also be viewed as a representation of
k and K∞. Let W be a (g,K∞)-module. Then one can define the (p,K∞)-cohomology of
W , denoted by H•(p,K∞;W ) (see [28], sect. 4.1.1).

Theorem 15.2.2.1 ([4], thm. 3.2.1, sect. 4.2). — 1. We have
— Hi(p,K∞;π(λ)h⊗V(λ1+1,2;c)) = C if i = 0 and Hi(p,K∞;π(λ)h⊗V(λ1+1,2;c)) = 0

otherwise.
— Hi(p,K∞;π(λ)g⊗V(λ1+1,2;c)) = C if i = 1 and Hi(p,K∞;π(λ)g⊗V(λ1+1,2;c)) = 0

otherwise.

2. There is a constant R such that if λ1 ≥ R and π∞ in an irreducible, essentially
unitary representation of GSp4(R) and
— if H0(p,K∞;π∞ ⊗ V(λ1+1,2;c)) 6= 0 then π∞ ' π(λ)h,

— if H1(p,K∞;π∞ ⊗ V(λ1+1,2;c)) 6= 0 then π∞ ' π(λ)g.

15.2.3. Representing cohomology classes by automorphic forms. — We let SK be the
Siegel threefold of level K over C. We fix a toroidal compactification StorK,Σ of SK . Recall

that λ = (λ1, 0; c) ∈ X(T) + (2, 1; 0). We set k = λ1 − 1. We also fix the central character
c to be −λ1 + 3. This the “correct” normalization for the Hecke operators. We denote by

H
i
(StorK,Σ,Ω

(k,2)) the image of Hi(StorK,Σ,Ω
(k,2)(−D)) in Hi(StorK,Σ,Ω

(k,2)).

Theorem 15.2.3.1 ([28], coro. 5.3.2). — For every integer k ≥ R − 1 (see thm.
15.2.2.1, 2.), we have

H
0
(StorK,Σ,Ω

(k,2)) = ⊕πf (πKf )m
h(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that

πf ⊗ π(λ)h is cuspidal automorphic and mh(πf ) is the multiplicity of πf ⊗ π(λ)h.
Similarly,

H
1
(StorK,Σ,Ω

(k,2)) = ⊕πf (πKf )m
g(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that
πf ⊗ π(λ)g is cuspidal automorphic and mg(πf ) is the multiplicity of πf ⊗ π(λ)g.

We fix an isomorphism Qp ' C. Thanks to this isomorphism, we can make sense of

the localized cohomology groups Hi(StorK,Σ,Ω
(k,2)(−D))m.

Corollary 15.2.3.1. — For k ≥ R− 1, we have

H0(StorK,Σ,Ω
(k,2)(−D))m = ⊕πf (πKf )m

h(πf )
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where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)h is cuspidal automorphic and mh(πf ) is the multiplicity of πf ⊗ π(λ)h and the char-

acter Θπf : HNp → C is congruent to Θm.
Similarly,

H1(StorK,Σ,Ω
(k,2)(−D)) = ⊕πf (πKf )m

g(πf )

where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)g is cuspidal automorphic and mg(πf ) is the multiplicity of πf ⊗ π(λ)g and the char-

acter Θπf : HNp → C is congruent to Θm.

Proof. In order to deduce the corollary from theorem 15.2.3.1, we need to prove that
the natural map H1(StorK,Σ,Ω

(k,2)(−D))m → H1(StorK,Σ,Ω
(k,2)) is injective. We have a short

exact sequence :

H0(StorK,Σ,Ω
(k,r))→ H0(StorK,Σ,Ω(k,r) ⊗ OD)→ H1(StorK ,Ω(k,r)(−D))

We shall prove that the cohomology group H0(StorK,Σ,Ω
(k,2) ⊗OD)m is zero. Let S?K be the

minimal compactification. Recall that there is a stratification

S?K = SK
∐

S
(1)
K

∐
S

(0)
K .

where S
(1),?
K = S

(1)
K

∐
S

(0)
K is a union of compactified modular curves. Let π : StorK,Σ →

S?K be the projection. There is an induced projection D → S
(1),?
K . One computes that

π?Ω
(k,2)|D = ωk+2(−cusp) if k 6= 0 and ω2 when k = 0, where ωk+2 is the usual sheaf of

modular forms of weight k + 2 on the modular curve.
Let ` be a prime that is prime to the level K. We let T`,2 be the corresponding

Hecke operator. We let T` be the usual Hecke operator on modular forms for the group

GL2/Q. On H0(StorK,Σ,Ω(k,2) ⊗ OD) ' H0(S
(1),?
K , ωk+2(−cusp)) (resp. ' H0(S

(1),?
K , ω2) if

k = 2), we have the formula T`,2 = 2T` by [20], IV, satz 4.4. Let f be an eigenform

in H0(S
(1),?
K , ωk+2), with associated Galois representation ρf : GQ → GL2(Qp). Then,

associated to the character Θf : HNp → Qp, we have the reducible 4-dimensional Galois
representation ρf ⊕ ρf which is not congruent to ρ.

15.2.4. An application of Arthur’s results. — We use here Arthur’s classification for GSp4

as announced in [1].

Proposition 15.2.4.1. — Let πf be an admissible irreducible representation of G(Af )

which is unramified at primes ` not dividing Np. Let Θπf : HNp → Qp be the associated
character of the Hecke algebra. Assume that Θπf is congruent to Θm. Let λ = (λ1, 0; c) ∈
X(T) + (2, 1; 0) with λ1 > 0.

Then πf⊗π(λ)h is automorphic if and only if πf⊗π(λ)g is automorphic and moreover,

mh(πf ) = mg(πf ) = 1.

Proof. Assume that πf ⊗ π(λ)h is automorphic (the argument would be the same if we
assumed that πf ⊗ π(λ)g is automorphic). Let Π be the associated global A-packet. We
claim that Π is of generic type in the sense of [1], classification theorem on p. 78. Hence
Π is stable and tempered. It follows that Π∞ is an L-packet, and this is {π(λ)g, π(λ)h}
(see [4], prop. 5.3.7). The conclusion follows. In order to see that Π is of generic type, we
first observe that since π(λ)h is a limit of discrete series, then Π can either be of generic,
Yoshida or Saito-Kurokawa type (compare [64], sect. 1.1 and 1.2 with the description
of the parameters attached to π(λ)h in [63], p.11). In the last two cases, the associated
Galois representation is reducible, while ρ is irreducible.
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15.2.5. Proof of theorem 15.2.1. — In order to prove the theorem, we can specialize at a
very large weight k. Then fRΓ(X≥1

Kli(p),F
κ⊗ω2(−D))m⊗Λ,kQp = eRΓ(XK ,Ω

(k,2)(−D))m
by theorem 11.3.1. The cohomology is concentrated in degree 0 and 1. Extending the
scalars to Qp we can express the cohomology in automorphic terms using corollary 15.2.3.1
and proposition prop 15.2.4.1 :

eH0(XK ,Ω
(k,2)(−D))m ⊗Qp = ⊕πf e(π

K
f ) = eH1(XK ,Ω

(k,2)(−D))m ⊗Qp

where πf runs over all irreducible admissible representations of GSp4(Af ) such that πf ⊗
π(λ)h is cuspidal automorphic, the character Θπf : HNp → C is congruent to Θm. The

projector e acts on π
Kp
p .
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Math. I.H.E.S, 4, 8, 11, 17, 20, 24, 28, 32, 1961-67.

[1] J. Arthur, Automorphic forms for GSp4, Contributions to Automorphic Forms, Geometry,
and Number Theory : A Volume in Honor of Joseph Shalika.
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[42] G. Laumon, sur la catégorie dérivée des D-modules filtrés, Algebraic geometry, Lecture
Notes in Mathematics, 151-237.



94 Higher coherent cohomology and p-adic modular forms of singular weight

[43] G. Laumon, Fonctions zêtas des variétés de Siegel de dimension trois, Formes Automorphes
(II), le cas du groupe GSp(4), p. 1 à 67, Astérisque 302, SMF, 2005.
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