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Fluctuations for mean-field interacting

age-dependent Hawkes processes
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Abstract

The propagation of chaos and associated law of large numbers for mean-field
interacting age-dependent Hawkes processes (when the number of processes n
goes to +∞) being granted by the study performed in [9], the aim of the present
paper is to prove the resulting functional central limit theorem. It involves the
study of a measure-valued process describing the fluctuations (at scale n−1/2)
of the empirical measure of the ages around its limit value. This fluctuation
process is proved to converge towards a limit process characterized by a limit
system of stochastic differential equations driven by a Gaussian noise instead
of Poisson (which occurs for the law of large numbers limit).

Keywords: Hawkes process, central limit theorem, interacting particle systems,
stochastic partial differential equation, neural network.
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I Introduction

In the recent years, the self-exciting point process known as the Hawkes process [20]
has been used in very diverse areas. First introduced to model earthquake replicas
[24] or [31] (ETAS model), it has been used in criminology to model burglary [30],
in genomic data analysis to model occurrences of genes [19, 36], in social networks
analysis to model viewing or popularity [4, 12], as well as in finance [2, 3]. We refer
to [25] or [43] for more extensive reviews on applications of Hawkes processes.

Part of our analysis finds its motivation in the use of Hawkes processes for the
modelling in neuroscience. They are used to describe spike trains associated with
several neurons (see e.g. [11]). In that case, it is common to consider a multivariate
framework : multivariate Hawkes processes consist of multivariate point processes
(N1, . . . , Nn) whose intensities are respectively given for i = 1, . . . , n by

λi
t = Φ





n
∑

j=1

∫ t−

0
hj→i(t− z)N j(dz)



 , (1)

where Φ : R → R+ is called the intensity function and hj→i is the interaction func-
tion describing the influence of each point of N j on the appearance of a new point
onto N i, via its intensity λi. Notice that we implicitly assume here that there is no
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Fluctuations for mean-field Hawkes processes

influence of the possible points of N j that are before time 0.

In the present paper, as in [9], we study a generalization of multivariate Hawkes
process by adding an age dependence.

Definition I.1. For any point process N , we call predictable age process associated
with N , the process defined by

St− := t− sup{T ∈ N, T < t} = t− TNt−
, for all t > 0, (2)

and extended by continuity in t = 0. In particular, its value in t = 0 is entirely
determined by N ∩R− and is well-defined as soon as there is a point therein.

In comparison with the standard multivariate Hawkes processes (1), we add an
age dependence, as it is done in [9], by assuming that the intensity function Φ in (1)
(which is then denoted by Ψ to avoid confusion) may also depend on the predictable
age process (Si

t−)t≥0 associated with the point process N i, like for instance

λi
t = Ψ



Si
t−,

1

n

n
∑

j=1

∫ t−

0
h(t− z)N j(dz)



 . (3)

We refer to [9] where the neurobiological motivation for such a form of intensity is
given. Under suitable assumptions, it is shown in [9] that a multivariate point pro-
cess satisfying (3) exists and we call it an age dependent Hawkes process (ADHP).
Furthermore, ADHPs are well approximated, when the dimension n goes to infinity,
by i.i.d. limit point processes of the McKean-Vlasov type whose stochastic intensity
depends on the time t and on the age [9, Theorem IV.1.]. More precisely, the inten-
sity of the limit process associated with the framework (3), denoted by N , is given
by the following implicit formula λt = Ψ(St−,

∫ t
0 h(t − z)E

[

λz

]

dz) where (St−)t≥0

is the predictable age process associated with N .

As usual with McKean-Vlasov dynamics, the asymptotic evolution (when n goes
to infinity) of the distribution of the population at hand can be described as the
solution of a nonlinear partial differential equation (PDE). In our case, it is shown
that, starting from a density, the distribution of the limit predictable age process
(St−)t≥0, denoted by ut, admits a density for all time t ≥ 0 which is furthermore
the unique solution of the non-linear system











∂u (t, s)

∂t
+

∂u (t, s)

∂s
+Ψ(s,X(t)) u (t, s) = 0,

u (t, 0) =

∫

s∈R
Ψ(s,X(t)) u (t, s) ds,

(4)

with initial condition that u(0, ·) = u0 (the initial density of the age at time 0), where
for all t ≥ 0, X(t) =

∫ t
0 h(t− z)u(z, 0)dz [9, Proposition III.8.]. Such a form of PDE

system is known either as age-structure system or refractory density equation or
even von Foerster-McKendrick system. Here, the age is represented by the variable
s. We refer to [14] for a linear version of (4) and its theoretical connection with the
integrate and fire model, and to [17, 32, 33] for analytical studies of (4).

The relation between mean-field age dependent Hawkes processes and the PDE
system (4) is completed by the following law of large numbers (consequence of the
functional law of large numbers [9, Corollary IV.4.]):

µn
St−

:=
1

n

n
∑

i=1

δ
Sn,i
t−

−−−−−→
n→+∞

ut. (5)
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Moreover, the rate of this convergence is at least n−1/2. In light of this bound
obtained on the rate of convergence, the fluctuation process defined, for all t ≥ 0,
by ηnt =

√
n(µn

St−
− ut) is expected to describe, on the right scale, the second order

term appearing in the expansion of the mean-field approximation, the first order
term being given by the law of large numbers.

The study of the random fluctuations allows to go beyond the first order mean
field limit and its main drawback: propagation of chaos. It means independence
of the neurons’ activities which is unrealistic from the biological viewpoint [40, 15].
Hence, the derivation of the second order term is of great importance regarding neu-
ral networks modelling since it gives an approximation of the fluctuations coming
from the finiteness of the number of neurons n (finite size effects) [7, 8, 27]. A par-
tial but promising answer to this problematic is given by highlighting a stochastic
partial differential equation system which could be interpreted as an intermediate
modelling scale between the microscopic scale given by ADHP and the macroscopic
one given by (4).

Following the approach developed in [16], we prove in the present article that
the fluctuations satisfy a functional central limit theorem (CLT) in a suitable dis-
tributional space: the limit of the normalized fluctuations is described by means of
a stochastic differential equation in infinite dimension driven by a Gaussian noise
in comparison with the Poisson noise appearing in [9]. To do so, we regard the
fluctuation process ηn as taking values in a Hilbert space, namely the dual of some
Sobolev space of test functions. The index of regularity of the dual space, in one-to-
one correspondence with the regularity of the test functions in the Sobolev space, is
prescribed by the tightness property we are able to provide to the sequence (ηn)n≥1

and by the form of the generator of the limiting McKean-Vlasov dynamics identified
in [9]. Let us precise that this generator is the one associated with the renewal
dynamics of the system (4) as highlighted by Proposition II.4 given hereafter.

Although the choice of this index of regularity is rather constrained, the choice
of the domain supporting the Sobolev space is somewhat larger. Indeed, two options
are available, depending on the way we consider the process ηn, either over a finite
time horizon, namely (ηnt )0≤t≤θ for some θ ≥ 0, or in infinite horizon, namely (ηnt )t≥0.

In the first case, we may use the fact that there exists a compact Kθ (which is
growing with θ) such that ηnt is supported in Kθ for all t in [0, θ]. Hence, one could
regard, for all θ ≥ 0, the fluctuation process (ηnt )0≤t≤θ as a process with values in
the dual of a standard Sobolev space of functions with support in Kθ. The main
drawback of such an approach is that the space of trajectories within which the CLT
takes place depends on the time horizon θ. To bypass this issue, one may be willing
to work directly on the entire positive time line R+, but then, it is not possible
anymore to find a compact subset K supporting the measures ηnt , for all t ≥ 0, since
∪θ≥0Kθ = R+. A convenient strategy to sidestep this fact is to use a Sobolev space
supported by the entire R+. Yet, standard Sobolev spaces supported by R+ fail to
accommodate with our purpose, since, as made clear by the proof below, constant
functions are required to belong to the space of test functions. Therefore, instead of
a standard Sobolev space, we may use a weighted Sobolev space, provided that the
weight satisfies suitable integrability properties.

In order to state our CLT on the whole time interval, the second approach is
preferred. Furthermore, the weights of the Sobolev spaces are chosen to be poly-
nomial (see Section IV.1 below). This choice is quite convenient because Sobolev
spaces with polynomial weights are well-documented in the literature. In particular,
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results on the connection between spaces weighted by different powers, Sobolev em-
bedding theorems and Maurin’s theorem, are well-known. It is worth noting that,
provided that constant functions can be chosen as test functions, the precise value
of the power in the polynomial weight of the Sobolev space does not really matter
in our analysis: more generally, a different choice of family of weights would have
been possible and, somehow, it would have led to a result equivalent to ours. In this
regard, we stress, at the end of the paper, the fact that our result in infinite horizon
is in fact equivalent to what we would have obtained by implementing the first of the
two approaches mentioned above instead of the second one: roughly speaking, one
can recover our result by sticking together the CLTs obtained on each finite interval
of the form [0, θ], for θ ≥ 0; conversely, one can prove, from our statement, that, on
any finite interval [0, θ], the CLT holds true in the dual space of a standard Sobolev
space supported by Kθ.

The Hilbertian approach used in this article has been already implemented in
the diffusion processes framework [16, 23, 26, 28]. Let us mention here what are the
main differences between these earlier results and ours:

• Under general non-degeneracy conditions, the marginal laws of a diffusion
process are not compactly supported. The unboundedness of the support
imposes the choice of weighted Sobolev spaces even in finite time horizon. In
this framework, Sobolev spaces with polynomial weights are especially adapted
to carry solutions with moments that are finite up to some order only. In that
case, the choice of the power in the weight is explicitly prescribed by the
maximal order up to which the solution has a finite moment. As already
mentioned, this differs from our case: in the present article, the particles
(namely, the ages of the neurons) are compactly supported over any finite
time interval and thus, have finite moments of any order. Once again, this is
the reason why the choice of the power, and more generally of the weight, in
the Sobolev space is much larger.

• Unlike point processes, diffusion processes are time continuous. Also, their
generator is both local and of second order, whereas the generator for the
point process identified in the mean-field limit in [9] is both of the first order
and nonlocal. As a first consequence, the indices of regularity of the various
Sobolev spaces used in this paper differ from those used in the diffusive frame-
work. Also, the space of trajectories cannot be the same: although the limit
process in our CLT has continuous trajectories, we must work with a space of
càdlàg functions in order to accommodate with the jumps of the fluctuation
process. Surprisingly, jumps do not just affect the choice of the functional
space used to state the CLT (namely space of càdlàg versus space of continu-
ous functions) but it also dictates the metric used to estimate the error in the
Sznitman coupling between the age-dependent Hawkes process and its mean-
field limit (which is also a point process). Indeed, the standard trick used for
diffusion processes that consists in getting stronger estimates for the Sznitman
coupling by considering Lp-norms, for p > 2, is not adapted to point processes.
Therefore, we develop a specific approach by providing higher order estimates
of the error in the Sznitman coupling in the total variation sense. Up to our
knowledge, this argument is completely new.

Let us mention that the fluctuations of jump processes have been the object of pre-
vious publications [37, 41]. However, the CLTs are established in the fluid limit,
namely small jumps at high frequency so that the jumps vanish at the limit. The
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techniques developed in those articles are useless here since the framework of the
present article does not fall into the fluid limit framework: in our case, the limit
processes are also jump processes.

The present paper is organized as follows. The model is described in Section II.
Then, the main estimates required in this work are given in Section III. These can
be seen as the extension, to higher orders, of the estimates used in [9] to get the
bound n−1/2 on the rate of the convergence (5). These key estimates are used to
prove tightness for the distribution ηn in a Hilbert space that is the dual of some
weighted Sobolev space. Under regularity assumptions on the intensity function Ψ
and the interaction function h, we finally prove in Section V.2 the convergence of
the fluctuation process which states our CLT. Furthermore, its limit is characterized
by a system of stochastic differential equations, driven by a Gaussian process with
explicit covariance, and involving an auxiliary process with values in R (Theorem
V.12). Finally, the CLT is applied to give some justification to a stochastic partial
differential equation which can be seen as a better approximation than the PDE
system (4) in the mean-field limit.

General notations

• Statistical distributions are referred to as laws of random variables to avoid
confusion with distributions in the analytical sense that are linear forms acting
on some test function space.

• The space of bounded functions of class Ck, with bounded derivatives of each
order less than k is denoted by Ck

b .

• The space of càdlàg (right continuous with left limits) functions is denoted by
D.

• For µ a measure on E and ϕ a function on E, we denote 〈µ,ϕ〉 :=
∫

E ϕ(x)µ(dx)
when it makes sense.

• If a quantity Q depends on the time variable t, then we most often use the
notation Qt when it is a random process in comparison with Q(t) when it is a
deterministic function.

• We say that the quantity Qn(σ), which depends on an integer n and a pa-
rameter σ ∈ R

d, is bounded up to a locally bounded function (which does not
depend on n) by f(n), denoted by Qn(σ) .σ f(n), if there exists a locally
bounded function g : Rd → R+ such that, for all n, |Qn(σ)| ≤ g(σ)f(n).

• Throughout this paper, C denotes a constant that may change from line to
line.

II Definitions and propagation of chaos

In all the sequel, we focus on locally finite point processes, N , on (R,B(R)) that
are random countable sets of points of R such that for any bounded measurable
set A ⊂ R, the number of points in N ∩ A is finite almost surely (a.s.). The
associated points define an ordered sequence (Tn)n∈Z. For a measurable set A,
N(A) denotes the number of points of N in A. We are interested in the behaviour
of N on (0,+∞) and we denote t ∈ R+ 7→ Nt := N((0, t]) the associated counting
process. Furthermore, the point measure associated with N is denoted by N(dt). In
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particular, for any non-negative measurable function f ,
∫

R
f(t)N(dt) =

∑

i∈Z f(Ti).
For any point process N , we call age process associated with N the process (St)t≥0

given by
St = t− sup{T ∈ N, T ≤ t}, for all t ≥ 0. (6)

In comparison with the age process, we call predictable age process associated with
N the predictable process (St−)t≥0 given by

St− = t− sup{T ∈ N, T < t}, for all t > 0, (7)

and extended by continuity in t = 0.
We work on a filtered probability space (Ω,F , (Ft)t≥0,P) and suppose that the

canonical filtration associated with N , namely (FN
t )t≥0 defined by FN

t := σ(N ∩
(−∞, t]), is such that for all t ≥ 0, FN

t ⊂ Ft. Let us denote F := (Ft)t≥0. We
call F-(predictable) intensity of N any non-negative F-predictable process (λt)t≥0

such that (Nt −
∫ t
0 λsds)t≥0 is an F-local martingale. Informally, λtdt represents

the probability that the process N has a new point in [t, t + dt] given Ft−. Under
some assumptions that are supposed here, this intensity process exists, is essentially
unique and characterizes the point process (see [6] for more insights). In particular,
since N admits an intensity, for any t ≥ 0, the probability that t belongs to N is
null. Moreover, notice the following properties satisfied by the age processes:

• the two age processes are equal for all t ≥ 0 except the positive times T in N
(almost surely a set of null measure in R+),

• for any fixed t ≥ 0, St− = St almost surely (since N admits an intensity),

• and the value S0− = S0 is entirely determined by N ∩ R− and is well-defined
as soon as there is a point therein.

The exact behaviour of N ∩ R− is not of great interest in the present article.
We only assume that there is a point in it almost surely such that S0− = S0 is
well-defined. Furthermore, we assume that the random variable S0 admits u0 as a
probability density.

II.1 Parameters and list of assumptions

The definition of an age dependent Hawkes process (ADHP) is given bellow, but let
us first introduce the parameters of the model:

• a positive integer n which is the number of particles (e.g. neurons) in the
network (for i = 1, . . . , n, N i represents the occurrences of the events, e.g.
spikes, associated with the particle i);

• a probability density u0;

• an interaction function h : R+ → R;

• an intensity function Ψ : R+ × R → R+.

For sake of simplicity, all the assumptions made on the parameters are gathered
here:

(Au0∞): The probability density u0 is uniformly bounded with compact sup-
port so that there exists a constant C > 0 such that S0 ≤ C almost
surely (a.s.). The smallest possible constant C is denoted by MS0 .
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(

Ah
∞
)

: The interaction function h is locally bounded. Denote by, for all
t ≥ 0, h∞(t) := maxs∈[0,t] h(s) < +∞.

(

Ah
Höl

)

: There exist two positive constants denoted by Höl(h) and β(h) such
that for all t, s ≥ 0, |h(t) − h(s)| ≤ Höl(h)|t − s|β(h).

(

AΨ
y,C2

)

:
For all s ≥ 0, the function Ψs : y 7→ Ψ(s, y) is of class C2. Further-

more, ||∂Ψ∂y ||∞ := sups,y |∂Ψ∂y (s, y)| < +∞ and ||∂2Ψ
∂y2

||∞ < +∞. The

constant ||∂Ψ∂y ||∞ is denoted by Lip(Ψ).
(

AΨ
∞
)

: The function Ψ is uniformly bounded, that is ||Ψ||∞ < +∞.

(

AΨ
s,C2

b

)

:
For all y in R, the functions s 7→ Ψ(s, y) and s 7→ ∂Ψ

∂y (s, y) respectively

belong to C2
b and C1

b . Furthermore, the functions y 7→ ||Ψ(·, y)||C2
b
and

y 7→ ||∂Ψ∂y (·, y)||C1
b
are locally bounded1.

(

AΨ
s,C4

b

)

:
For all y in R, the function s 7→ Ψ(s, y) belongs to C4

b and y 7→
||Ψ(·, y)||C4

b
is locally bounded.

Remark II.1. Note that:

• Assumption (Ah
Höl) implies Assumption (Ah

∞),

• the assumptions regarding the intensity function Ψ are rather technical, nev-
ertheless Assumptions (AΨ

y,C2), (AΨ
∞) and (AΨ

s,C2
b

) are satisfied as soon as Ψ

belongs to C2
b . Furthermore, Assumption (AΨ

s,C4
b

) is satisfied if Ψ is in C4
b .

Let (ALLN) be satisfied if (Au0∞), (Ah
∞), (AΨ

y,C2) and (AΨ
∞) are satisfied. These

four assumptions also appear in [9], where they are used to prove propagation of
chaos as stressed below. Furthermore, let (ATGN) be satisfied if (ALLN) and (AΨ

s,C2
b

)

are satisfied. It is used in the present article to prove tightness of the fluctuations.
Finally, let (ACLT) be satisfied if (ATGN), (Ah

Höl) and (AΨ
s,C4

b

) are satisfied. It is used

in the present article to prove convergence of the fluctuations.
Notice that Assumption (Au0∞) implies that the age processes associated with N

are such that, almost surely,

for all t ≥ 0, St ≤ MS0 + t and St− ≤ MS0 + t. (8)

II.2 Already known results

Below is given the definition of an ADHP by providing its representation as a system
of stochastic differential equations (SDE) driven by Poisson noise.

Representation II.2. Let (Πi(dt, dx))i≥1 be some i.i.d. F-Poisson measures with
intensity 1 on R

2
+. Let (Si

0)i≥1 be some i.i.d. random variables distributed according
to u0.

Let (N i
t )

i=1,..,n
t≥0 be a family of counting processes such that, for i = 1, .., n, and

all t ≥ 0,

N i
t =

∫ t

0

∫ +∞

0
1
{

x ≤ Ψ

(

Si
t′−,

1

n

n
∑

j=1

(

∫ t′−

0
h(t′ − z)N j(dz)

)

)

}

Πi(dt′, dx), (9)

where (Si
t−)t≥0 is the predictable age process associated with N i. Then, (N i)i=1,..,n

is an age dependent Hawkes process (ADHP) with parameters (n, h,Ψ, u0).
1The definitions of the norms || · ||Ck

b

, for all k ≥ 0, can be found in Section IV.1
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Remark II.3. Note that an ADHP is in fact a (deterministic) measurable function
of the Poisson measures (Πi(dt, dx))i≥1. More classically, an ADHP can be charac-
terized by its stochastic intensity (3). Going back and forth between the definition via
the intensities (3) and Representation II.2 is standard (see [9, Section II.4] for more
insights). Furthermore, [9, Proposition II.4] gives that, under Assumption (ALLN),
there exists an ADHP (N i)i=1,..,n with parameters (n, h,Ψ, u0) such that t 7→ E[N1

t ]
is locally bounded.

Notice that, since the initial conditions (Si
0)i=1,..,n are i.i.d. and the Poisson

measures (Πi(dt, dx))i≥1 are i.i.d., the processes N i, i = 1, . . . , n, defined by (9) are
exchangeable.

Here, we give a brief overview of the results obtained in [9] in order to set the
context of the present article. We expect ADHPs to be well approximated, when n
goes to infinity, by i.i.d. solutions of the following limit equation,

∀t > 0, N t =

∫ t

0

∫ +∞

0
1
{

x ≤ Ψ

(

St′−,
∫ t′−

0
h(t′ − z)E

[

N(dz)
]

)

}

Π(dt′, dx), (10)

where Π(dt′, dx) is an F-Poisson measure on R
2
+ with intensity 1 and (St−)t≥0 is the

predictable age process associated with N where S0 is distributed according to u0.
Under Assumption (ALLN), [9, Proposition III.6] states existence and uniqueness

of the limit process N . In particular, there exists a continuous function λ : R+ → R

(which depends on the parameters h, Ψ and u0) such that if (N t)t≥0 is a solution of
(10) then E[N(dt)] = λ(t)dt. Let us define the deterministic function γ by, for all
t ≥ 0,

γ(t) :=

∫ t

0
h(t− z)λ(z)dz. (11)

Notice that γ(t′) is the integral term
∫ t′−
0 h(t′ − z)E[N (dz)] appearing in (10).

Furthermore, the limit predictable age process (St−)t≥0 is closely related to the
PDE system (4).

Proposition II.4 ([9, Proposition III.8]). Under Assumption (ALLN), the unique
solution u to the system (4) with initial condition that u0 is such that u(t, ·) is the
density of the age St− (or St since they are equal a.s.).

Once the limit equation is well-posed, following the ideas of Sznitman in [39], it
is easy to construct a suitable coupling between ADHPs and i.i.d. solutions of the
limit equation (10). More precisely, consider

• a sequence (Si
0)i≥1 of i.i.d. random variables distributed according to u0;

• a sequence (Πi(dt′, dx))i≥1 of i.i.d. F-Poisson measures with intensity 1 on R
2
+.

Under Assumption (ALLN), we have existence of both ADHPs and the limit process
N . Hence, one can build simultaneously:

- a sequence (indexed by n ≥ 1) (Nn,i)i=1,...,n of ADHPs with parameters (n, h,Ψ, u0)
according to Representation II.2 namely

Nn,i
t =

∫ t

0

∫ +∞

0
1{

x ≤ Ψ
(

Sn,i
t′−, γ

n
t′

)}Πi(dt′, dx) (12)

where Sn,i
0 = Si

0 and γnt′ := n−1
∑n

j=1

∫ t′−
0 h(t′ − z)Nn,j(dz),
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- and a sequence (N
i
t)
i≥1
t≥0 of i.i.d. solutions of the limit equation namely

N
i
t =

∫ t

0

∫ +∞

0
1{

x ≤ Ψ
(

S
i
t′−, γ(t

′)
)}Πi(dt′, dx), (13)

where S
i
0 = Si

0 and γ is defined by (11).

Moreover, denote by λn,i
t := Ψ(Sn,i

t− , γnt ) and λ
i
t := Ψ(S

i
t−, γ(t)) the respective

intensities of Nn,i and N
i
.

Remark II.5. Notice that the coupling above is based on the sharing of common ini-
tial conditions (Si

0)i≥1 and a common underlying randomness, that are the F-Poisson
measures (Πi(dt′, dx))i≥1. Note also that the sequence of ADHPs is indexed by the
size of the network n whereas the solutions of the limit equation which represent the
behaviour under the mean field approximation are not.

Then, standard computations mainly based on Grönwall lemma lead to the fol-
lowing estimates [9, Corollary IV.3]: for all i = 1, . . . , n and θ > 0,

E

[

sup
t∈[0,θ]

|Sn,i
t− − S

i
t−|
]

.θ P

(

(

Sn,i
t−

)

t∈[0,θ]
6=
(

S
i
t−
)

t∈[0,θ]

)

.θ n
−1/2. (14)

Finally, these estimates ensure the propagation of chaos property2 [9, Corollary
IV.4] and, in particular, the convergence (as n → +∞) of the empirical measure

µn
St

:= 1
n

∑n
i=1 δSn,i

t
towards the law of S

1
t for all t ≥ 0.

II.3 What next ? The purpose of the present paper

As a straight follow-up to the convergence of the empirical measure µn
St
, we are

interested in the dynamics of the fluctuations of this empirical measure around its

limit. For any t ≥ 0, S
1
t and S

1
t− have the same probability law since they are equal

almost surely. Furthermore, this law, denoted by ut admits the density u(t, ·) with
respect to the Lebesgue measure, where u is the unique solution of (4) according to
Proposition II.4, thus

〈ut, ϕ〉 =
∫ +∞

0
ϕ(s)u(t, s)ds.

The analysis of the coupling (Equation (14)) gives a rate of convergence at least
in n−1/2 so we want to find the limit law of the fluctuation process defined, for all
t ≥ 0, by

ηnt :=
√
n
(

µn
St

− ut
)

. (15)

Notice that ηnt is a distribution in the functional analysis sense on the state space
of the ages, i.e. R+, and is devoted to be considered as a linear form acting on test
functions ϕ by means of 〈ηnt , ϕ〉.

III Estimates in total variation norm

The bound (n−1/2) on the rate of convergence, given by (14), is not sufficient in
order to prove convergence or even tightness of the fluctuation process ηn. Some
refined estimates are necessary. For instance, when dealing with diffusions, one looks
for higher order moment estimates on the difference between the particles driven by

2For any fixed integer k, the processes (Sn,1
t )t≥0, . . . , (S

n,k
t )t≥0 are asymptotically independent.

9
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the real dynamics and the limit particles (see [16, 23, 26, 28] for instance). Here, we
deal with pure jump processes and, up to our knowledge, there is no reason why one
could obtain better rates for higher order moments. A simple way to catch this fact
is by looking at the coupling between the counting processes. Indeed, the difference

between two counting processes, say δn,it = |Nn,i
t −N

i
t|, takes value in N so that for

all p ≥ 1, (δn,it )p ≥ δn,it , and the moment of order p is greater than the moment of
order one.

In order to accommodate this fact, the key idea is to estimate the coupling (12)-
(13) in the total variation distance. Hence, the estimates needed in the next section
(and proved in the present section) are the analogous of higher order moments but
with respect to the total variation norm, i.e. the probabilities

χ(k)
n (θ) := P

(

(Sn,k′

t− )t∈[0,θ] 6= (S
k′

t−)t∈[0,θ] for every k′ = 1, ..., k
)

= P

(

(Sn,k′

t )t∈[0,θ] 6= (S
k′

t )t∈[0,θ] for every k′ = 1, ..., k
)

, (16)

for all positive integer k and real number θ ≥ 0.
The heuristics underlying the result stated below, in Proposition III.1, relies on

the asymptotic independence between the k age processes (Sn,k′

t− )t∈[0,θ], k
′ = 1, ..., k.

Indeed, if they were independent then we would have (remind (14)),

χ(k)
n (θ) =

k
∏

k′=1

P
(

(Sn,k′

t− )t∈[0,θ] 6= (S
k′

t−)t∈[0,θ]
)

= (χ(1)
n (θ))k .θ n

−k/2,

which is exactly the rate of convergence we find below.

Proposition III.1. Under Assumption (ALLN),

χ(k)
n (θ) .(θ,k) n

−k/2 and ξ(k)n (t) := E

[

|γnt − γ(t)|k
]

.(t,k) n
−k/2.

Remark III.2. In addition to the explanation given in the beginning of this section,
let us mention that the analogous to the higher moment estimates obtained for dif-
fusions is obtained here for the difference between γnt and γ(t). Indeed, as k grows,

the convergence of ξ
(k)
n (t) quickens. However, this gain in the rate of convergence

does not apply when looking at the difference between the ages Sn,1
t and S

1
t or the

difference between the intensities λn,1
t and λ

1
t (except if Ψ does not depend on the

age s).

Proof. The core of this proof lies on a trick using the exchangeability of the processes

in order to obtain Grönwall-type inequalities involving χ
(k)
n and ξ

(k)
n .

Denote by A△B the symmetric difference of the sets A and B. Then, for any

i ≤ n, let us define ∆n,i := Nn,i∆N
i
that is the set of points that are not common

to Nn,i and N
i
. From (12)-(13), one has

∆n,i
t =

∫ t

0

∫ +∞

0
1{

x ∈ [[λn,i
t′ , λ

i
t′ ]]
}Πi(dt′, dx),

where [[λn,i
t′ , λ

i
t′ ]] is the non empty interval which is either [λn,i

t′ , λ
i
t′ ] or [λ

i
t′ , λ

n,i
t′ ].

Then, the intensity of the point process ∆n,i is given by λ∆,n,i
t := |λn,i

t − λ
i
t|.

Note that, for all n ≥ 1 and i = 1, . . . , n, Sn,i
0− = S

i
0− so that the equality between

the processes (Sn,1
t− )t∈[0,θ] and (S

1
t−)t∈[0,θ] is equivalent to ∆n,1

θ− = 0. In particular,
one has

χ(k)
n (θ) ≤ E

[

k
∏

i=1

∆n,i
θ−

]

, (17)

10



Fluctuations for mean-field Hawkes processes

since counting processes take value in N. For any positive integers k and p, let us
denote, for all n ≥ k,

ε(k,p)n (θ) := E

[

k
∏

i=1

(

∆n,i
θ−

)p
]

.

Let us show, by induction on k, that

ε(k,p)n (θ) .(θ,k,p) n
−k/2 (18)

which will end the proof thanks to (17). First, note that the case k = 1 and p = 1
is already treated. Indeed, [9, Theorem IV.1] gives

ε(1,1)n (θ) =

∫ θ

0
E

[

|λn,1
t − λ

1
t |
]

dt .θ n
−1/2. (19)

Then, note that for any two positive integers p and q,

ε(k,p)n (θ) ≤ ε(k,q)n (θ) as soon as p ≤ q. (20)

This is due to the fact that counting processes take value in N. The rest of the proof
is divided in two steps: initialization and inductive step.

Step one. For k = 1 and p a positive integer, it holds that

(∆n,1
θ− )p =

p−1
∑

p′=0

(

p

p′

)∫ θ−

0
(∆n,1

t− )p
′

∆n,1(dt). (21)

Indeed, each time the process (∆n,1
t )t≥0 jumps (from ∆n,1

t− to ∆n,1
t− +1) then (∆n,1

t− )p

jumps from (∆n,1
t− )p to (∆n,1

t− + 1)p so the infinitesimal variation is

(∆n,1
t− + 1)p − (∆n,1

t− )p =

p−1
∑

p′=0

(

p

p′

)

(∆n,1
t− )p

′

.

The right-hand side of (21) involves integrals of predictable processes, that are
the (∆n,1

t− )p
′
, with respect to a point measure under which it is convenient to take

expectation.
More precisely, since (∆n,1

t− )p
′ ≤ (∆n,1

t− )p as soon as 0 < p′ ≤ p− 1, it holds that

ε(1,p)n (θ) = E

[

(∆n,1
θ− )p

]

≤ E

[
∫ θ

0
∆n,1(dt)

]

+ 2pE

[
∫ θ

0
(∆n,1

t− )p∆n,1(dt)

]

.

≤ ε(1,1)n (θ) + 2p
∫ θ

0
E

[

(∆n,1
t− )pλ∆,n,1

t

]

dt. (22)

Yet the intensity λ∆,n,1
t is bounded by ||Ψ||∞ and ε

(1,1)
n (θ) .θ n

−1/2, see (19), so

ε(1,p)n (θ) .(θ,p) n
−1/2 +

∫ θ

0
ε(1,p)n (t)dt,

and Lemma B.1 gives ε
(1,p)
n (θ) .(θ,p) n

−1/2.

11
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Step two. For all integers k ≥ 2 and p ≥ 1, one can generalize the argument used
to prove (21) in order to end up with

k
∏

i=1

(∆n,i
θ−)

p =

k
∑

j=1

p−1
∑

p′=0

(

p

p′

)∫ θ−

0

k
∏

i 6=j,i=1

(∆n,i
t−)

p(∆n,j
t− )p

′

∆n,j(dt), almost surely.

Hence, thanks to the exchangeability of the processes (∆n,i)i=1,...,n and the pre-
dictability of the integrated processes, we have

ε(k,p)n (θ) =

k
∑

j=1

p−1
∑

p′=0

(

p

p′

)

E





∫ θ

0

k
∏

i 6=j,i=1

(∆n,i
t− )p(∆n,j

t− )p
′

∆n,j(dt)





= k

p−1
∑

p′=0

(

p

p′

)∫ θ

0
E

[

(∆n,1
t− )p

′
k
∏

i=2

(∆n,i
t− )pλ∆,n,1

t

]

dt

≤ k

∫ θ

0
E

[

k
∏

i=2

(∆n,i
t−)

pλ∆,n,1
t

]

+ 2pE

[

(∆n,1
t− )p

k
∏

i=2

(∆n,i
t− )pλ∆,n,1

t

]

dt, (23)

where we used that (∆n,1
t− )p

′ ≤ (∆n,1
t− )p as soon as 0 < p′ ≤ p− 1.

On the one hand, using that λ∆,n,1
t ≤ ||Ψ||∞, the second expectation in (23) is

bounded by ||Ψ||∞ε
(k,p)
n (t).

On the other hand, we use (AΨ
y,C2) which gives the following bound on the inten-

sity,

λ∆,n,1
t ≤ Lip(Ψ)|γnt − γ(t)|+ ||Ψ||∞1

Sn,1
t− 6=S

1
t−

≤ Lip(Ψ)|γnt − γ(t)|+ ||Ψ||∞(∆n,1
t− )p.

Hence the first expectation in (23) is bounded by

Lip(Ψ)D(t) + ||Ψ||∞ε(k,p)n (t), (24)

with D(t) := E[
∏k

i=2(∆
n,i
t−)

p|γnt − γ(t)|]. The second term of (24) is convenient to
use a Grönwall-type lemma. To deal with the first term, we use a trick involving the
exchangeability of the particles. Indeed, using the exchangeability we can replace
each of the k − 1 terms (∆n,i

t−)
p in the expression of D(t) by the following sum

1

⌊nk ⌋

i⌊n
k
⌋

∑

ji=(i−1)⌊n
k
⌋+1

(∆n,ji
t− )p

without modifying the value of the expectation since the sums are taken on disjoined
indices. Hence, using for the second line a generalization of Hölder’s inequality with
k exponents equal to 1/k, we have

D(t) ≤ E





k
∏

i=2





1

⌊nk ⌋

i⌊n
k
⌋

∑

ji=(i−1)⌊n
k
⌋+1

(∆n,ji
t− )p



 |γnt − γ(t)|





≤









k
∏

i=2

E











1

⌊nk ⌋

⌊n
k
⌋

∑

j=1

(∆n,j
t− )p





k






1/k








ξ(k)n (t)1/k ≤ En,k,p(t)
k−1
k ξ(k)n (t)1/k,(25)

12



Fluctuations for mean-field Hawkes processes

with En,k,p(t) := E[((1/⌊nk ⌋)
∑⌊n

k
⌋

j=1(∆
n,j
t− )p)k]. Yet, computations given in Section

A.1 give the two following statements: there exists a constant C(k) which does not
depend on n or p such that

En,k,p(t) ≤ C(k)

(

k−1
∑

k′=1

nk′−kε(k
′,pk)

n (t) + ε(k,p)n (t)

)

, (26)

and ξ
(k)
n (t) satisfy the following bound,

ξ(k)n (t) .(t,k) n
−k/2 +

k−1
∑

k′=1

nk′−kε(k
′,k)

n (t) + ε(k,1)n (t). (27)

Then, using the induction hypothesis (18), that is for all 1 ≤ k′ ≤ k − 1 and for all

positive integer p, ε
(k′,p)
n (t) .(t,k,p) n

−k′/2, one has,
{

En,k,p(t) .(t,k,p)

∑k−1
k′=1 n

k′−kn−k′/2 + ε
(k,p)
n (t) .(t,k,p)n

−(k+1)/2 + ε
(k,p)
n (t)

ξ
(k)
n (t) .(t,k,p)n

−k/2 +
∑k−1

k′=1 n
k′−kn−k′/2 + ε

(k,1)
n (t) .(t,k,p)n

−k/2 + ε
(k,1)
n (t).

(28)

Gathering (23), (24), (25) and (28) gives (remind that ε
(k,1)
n (t) ≤ ε

(k,p)
n (t))

ε(k,p)n (θ) .(θ,k,p) n
−k/2 +

∫ θ

0
ε(k,p)n (t)dt,

and so the Grönwall-type Lemma B.1 gives ε
(k,p)
n (θ) .(θ,k,p) n

−k/2 which ends the
proof thanks to (17).

IV Tightness

The aim of this section is to prove tightness of the sequence of the laws of (ηn)n≥1

regarded as stochastic processes (in time) with values in a suitable space of distribu-
tions. Thus, we consider (ηnt )t≥0 as a random process with values in the dual space
of some well-chosen space of test functions. In Section IV.1, we give the definition
of these spaces of test functions. Following the Hilbertian approach developed in
[16], we work with weighted Sobolev Hilbert spaces. Finally, the tightness result is
stated in Theorem IV.11.

The following study takes benefit of the Hilbert structure of the Sobolev spaces
considered. Let us state here the Aldous tightness criterion for Hilbert space valued
stochastic processes (cf. [22, p. 34-35]) used in the present paper. Let H be a
separable Hilbert space. A sequence of processes (Xn)n≥1 in D(R+,H) defined
on the respective filtered probability spaces (Ωn,Fn, (Fn

t )t≥0,P
n) is tight if both

conditions below hold true:

(A1):
for every t ≥ 0 and ε > 0, there exists a compact set K ⊂ H such
that

sup
n≥1

P
n (Xn

t /∈ K) ≤ ε,

(A2):
for every ε1, ε2 > 0 and θ ≥ 0, there exists δ0 > 0 and an integer n0

such that for all (Fn
t )t≥0-stopping time τn ≤ θ,

sup
n≥n0

sup
δ≤δ0

P
n
(

||Xn
τn+δ −Xn

τn ||H ≥ ε1
)

≤ ε2.

13
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Note that (A1) is implied by the condition (A1′) stated below which is much easier
to ensue.

(A1′):
There exists a Hilbert space H0 such that H0 →֒K H and, for all
t ≥ 0,

sup
n≥1

E
n[||Xn

t ||2H0
] < +∞,

where the notation →֒K means that the embedding is compact and
E
n denotes the expectation associated with the probability P

n.

The fact that (A1′) implies (A1) is easily checked: by compactness of the embed-
ding, closed balls in H0 are compact in H so, Markov’s inequality gives (A1).

IV.1 Preliminaries on weighted Sobolev spaces

Here are listed some definitions and technical results about the weighted Sobolev
spaces used in the present article. To avoid confusion, let us stress the fact that the
test functions we use are supported in the state space of the ages, namely R+. For
any integer k and any real α in R+, we denote by Wk,α

0 := Wk,α
0 (R+) the completion

of the set of compactly supported (in R+) functions of class C∞ for the following
norm

||f ||k,α :=

(

k
∑

k′=0

∫

R+

|f (k′)(x)|2
1 + |x|2α dx

)1/2

,

where f (j) denotes the jth derivative of f . Then, Wk,α
0 equipped with the norm

|| · ||k,α is a separable Hilbert space and we denote (W−k,α
0 , || · ||−k,α) its dual space.

Notice that
{

if k′ ≥ k, then ||.||k,α ≤ ||.||k′,α and ||.||−k′,α ≤ ||.||−k,α,

if α′ ≥ α, then Wk,α
0 →֒ Wk,α′

0 and W−k,α′

0 →֒ W−k,α
0 ,

(29)

where the notation →֒ means that the embedding is continuous.
Let Ck,α be the space of functions f on R+ with continuous derivatives up to

order k such that, for all k′ ≤ k, supx∈R+
|f (k′)(x)|/(1 + |x|α) < +∞. We equip this

space with the norm

||f ||Ck,α :=

k
∑

k′=0

sup
x∈R+

|f (k′)(x)|
1 + |x|α .

Recall that Ck
b is the space of bounded functions of class Ck with bounded derivatives

of every order less than k. Notice that Ck
b = Ck,0 as normed spaces. Denote by C−k

b its
dual space. For any α > 1/2 and any integer k (so that

∫

R+
1/(1+ |x|2α)dx < +∞),

we have Ck
b →֒ Wk,α

0 , i.e. there exists a constant C such that

|| · ||k,α ≤ C|| · ||Ck
b
. (30)

We recall the following Sobolev embeddings (see [16, Section 2.1.]):

(i) Sobolev embedding theorem: Wm+k,α
0 →֒ Ck,α for m ≥ 1, k ≥ 0 and α in R+,

i.e. there exists a constant C such that

||f ||Ck,α ≤ C||f ||m+k,α. (31)

(ii) Maurin’s theorem: Wm+k,α
0 →֒H.S. Wk,α+β

0 for m ≥ 1, k ≥ 0, α in R+ and
β > 1/2, where H.S. means that the embedding is of Hilbert-Schmidt type3.

3Here, it means that
∑

j≥1 ||ϕj ||
2
k,α+β < +∞ if (ϕj)j≥1 is an orthonormal basis of Wm+k,α

0 .
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In particular, the embedding is compact and there exists a constant C such
that

||f ||k,α+β ≤ C||f ||k+m,α. (32)

Hence, the following dual embeddings hold true:

{

W−k,α
0 →֒ C−k

b , for k ≥ 0 and α > 1/2, (dual embedding of (30))

W−k,α+β
0 →֒H.S. W−(m+k),α

0 , for m ≥ 1, k ≥ 0, α in R+ and β > 1/2.
(33)

In some of the proofs given in the next section, we consider an orthonormal basis
(ϕj)j≥1 of Wk,α

0 composed of C∞ functions with compact support. The existence
of such a basis follows from the fact that the functions of class C∞ with compact
support are dense in Wk,α

0 . Furthermore, if (ϕj)j≥1 is an orthonormal basis of

Wk,α
0 and w belongs to W−k,α

0 , then ||w||2−k,α =
∑

j≥1 〈w,ϕj〉2 thanks to Parseval’s
identity. Let us precise that we stick with the notation (ϕj)j≥1 even if the space

Wk,α
0 (in particular the regularity k) may differ from page to page.
The three lemmas below are useful throughout the analysis.

Lemma IV.1. For every test function ϕ in W2,α
0 , ||ϕ′||1,α ≤ ||ϕ||2,α. If f belongs

to Ck
b for some k ≥ 1 then, for any fixed α in R+, there exists a constant C such

that for every test function ϕ in Wk,α
0 , ||fϕ||k,α ≤ C||f ||Ck

b
||ϕ||k,α.

Proof. The first assertion follows from the definition of || · ||2,α, and the second one
follows from Leibniz’s rule and the definition of || · ||k,α.

Let us denote R (for reset) the linear mapping defined by Rϕ := ϕ(0) − ϕ(·)
where ϕ is some test function. This mapping naturally appears in our problem since
the age process jumps to the value 0 at each point of the underlying point process,
as it appears below in Proposition IV.5.

Lemma IV.2. For any integer k ≥ 1 and α > 1/2, the linear mapping R is contin-

uous from Wk,α
0 to itself.

Proof. The function Rϕ only differs from ϕ by a constant so the derivatives of Rϕ
are equal to the derivatives of ϕ. Hence, using the convexity of the square function,
we have

||Rϕ||2k,α ≤
∫

R+

2|ϕ(0)|2
1 + |x|2α dx+

∫

R+

2|ϕ(x)|2
1 + |x|2α dx+

k
∑

k′=1

∫

R+

|ϕ(k′)(x)|2
1 + |x|2α dx

≤ 2

∫

R+

1

1 + |x|2α dx|ϕ(0)|
2 + 2||ϕ||2k,α.

Yet, |ϕ(0)| ≤ ||ϕ||C0,α ≤ C||ϕ||k,α by (31) and
∫

R+
1/(1 + |x|2α)dx < +∞, for any

fixed α > 1/2, so that ||Rϕ||2k,α ≤ C||ϕ||2k,α.

Lemma IV.3. For any fixed α in R+ and x, y in R, the mappings δx and Dx,y :

W1,α
0 → R, defined by δx(ϕ) := ϕ(x) and Dx,y(ϕ) := ϕ(x) − ϕ(y) are linear contin-

uous. In particular, for all α in R+, there exist some positive constants C1 and C2

such that, if x and y are bounded by some constant M , i.e. |x| ≤ M and |y| ≤ M ,
then

{

||δx||−2,α ≤ ||δx||−1,α ≤ C1(1 +Mα),

||Dx,y||−2,α ≤ ||Dx,y||−1,α ≤ C2(1 +Mα).
(34)
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Proof. Remark that |Dx,y(ϕ)| ≤ |ϕ(x)|+ |ϕ(y)| = |δx(ϕ)|+ |δy(ϕ)|. Hence, it suffices
to show that there exists some positive constant C such that ||δx||−1,α ≤ C(1+ |x|α).
Yet, |δx(ϕ)| = |ϕ(x)| ≤ ||ϕ||C0,α(1 + |x|α) ≤ C||ϕ||1,α(1 + |x|α) by (31).

Remark IV.4. At this point, let us mention two reasons why weighted Sobolev
spaces are more appropriate than standard (non-weighted) Sobolev spaces of func-
tions on R+:

• we want to be able to consider functions of Ck
b as test functions: indeed, Ψ

must be considered as a test function, in Equation (55) below for instance, yet
we do not want Ψ to be compactly supported with respect to the age s or even to
rapidly decrease when s goes to infinity. The natural space to which Ψ belongs
is some Ck

b space,

• in order to ensue criterion (A1′), a compact embedding is required but Maurin’s
theorem does not apply for standard Sobolev spaces on R+ (see [1, Theorem
6.37]).

In order to apply Lemma IV.2 and to satisfy the first point in the remark above,
the weight α is assumed to be greater than 1/2 in all the next sections so that (30)
holds true.

IV.2 Decomposition of the fluctuations

Here, we give a semi-martingale representation of ηn used to simplify the study of
tightness (recall that R is defined above in Lemma IV.2).

Proposition IV.5. Under Assumption (ALLN), for every test function ϕ in C1
b and

t ≥ 0,

〈ηnt , ϕ〉 − 〈ηn0 , ϕ〉 =
∫ t

0

(

〈ηnz , Lzϕ〉+An
z (ϕ)

)

dz +Mn
t (ϕ), (35)

with Lzϕ(s) = ϕ′(s) + Ψ(s, γ(z))Rϕ(s) for all z ≥ 0 and s in R, where γ is defined
by (11), and























Mn
t (ϕ) := n−1/2

n
∑

i=1

∫ t

0
Rϕ(Sn,i

z−)
(

Nn,i(dz)− λn,i
z dz

)

,

An
z (ϕ) := n−1/2

n
∑

i=1

Rϕ(Sn,i
z−)

(

λn,i
z −Ψ(Sn,i

z−, γ(z))
)

.

(36)

Furthermore, for any ϕ in C1
b , (M

n
t (ϕ))t≥0 is a real valued F-martingale with angle

bracket given by

< Mn(ϕ) >t=
1

n

n
∑

i=1

∫ t

0
Rϕ

(

Sn,i
z−
)2

λn,i
z dz. (37)

Remark IV.6. To avoid confusion, let us mention that (36) defines Mn
t and An

z

as distributions acting on test functions. More precisely, we show below that they
can be seen as distributions in W−2,α

0 (Proposition IV.7). However, we do not use
the notation for the dual action 〈·, ·〉 to avoid tricky notation involving several angle
brackets in (37) for instance.

The proof of Proposition IV.5 relies on the integrability properties of the stochas-
tic intensity and is given in Appendix A.2.
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IV.3 Estimates in dual spaces

Below are stated estimates of the terms ηn, An andMn - appearing in (35) - regarded
as distributions. More precisely, the estimates given in this section are stated in
terms of the norm on either W−1,α

0 or W−2,α
0 for any α > 1/2 (in comparison with

W−2,2
0 and W−4,1

0 in [23] for instance). Usually, like in [16, 23, 26, 28], the weight
is linked to the maximal order of the moment estimates obtained on the positions
of the particles. Here, the age processes are bounded in finite time horizon (remind
(8)) so the weight α of the Sobolev space can be taken as large as wanted. The
weighted Sobolev spaces are nevertheless interesting here since, in particular, the
distribution ηnt belongs to W−1,α

0 for all t ≥ 0 (see Proposition IV.7 below). We
refer to the introductory discussion in Section I for complements on the usefulness
of the weights.

We first give estimates in the smaller space W−1,α
0 . This is later used in order

to prove tightness (remember condition (A1′) of the Aldous type criterion stated on
page 14).

Proposition IV.7. Under Assumption (ALLN), for any α > 1/2 and θ ≥ 0, the
following statements hold true:

(i) the sequence (ηn)n≥1 is such that,

sup
n≥1

sup
t∈[0,θ]

E
[

||ηnt ||2−1,α

]

< +∞, (38)

(ii) the process (Mn
t )t≥0, defined by (36), is an F-martingale which belongs to

D(R+,W−1,α
0 ) almost surely. Furthermore, for any θ ≥ 0,

sup
n≥1

E

[

sup
t∈[0,θ]

||Mn
t ||2−1,α

]

< +∞. (39)

(iii) the sequence (An)n≥1, defined by (36), is such that,

sup
n≥1

sup
t∈[0,θ]

E
[

||An
t ||2−2,α

]

< +∞. (40)

(iv) under (AΨ
s,C2

b

), for any z in R+, the application Lz defined in Proposition IV.5

is a linear continuous mapping from W2,α
0 to W1,α

0 and, for all ϕ in W2,α
0 ,

sup
z∈[0,θ]

||Lzϕ||21,α
||ϕ||22,α

< +∞. (41)

The proof of Proposition IV.7 is given in Appendix A.3 and mainly relies on the
estimates given in Lemma IV.3. However, let us mention that:

• the following expansion is used in the proof of (iii) as well as in Section V.1:
using that λn,i

t = Ψ(Sn,i
t− , γnt ) and (AΨ

y,C2), it follows from Taylor’s inequality

that for ϕ in W2,α
0 ,

An
t (ϕ) =

1

n

n
∑

i=1

Rϕ(Sn,i
t− )

∂Ψ

∂y
(Sn,i

t− , γ(t))
(√

n(γnt − γ(t)) +
√
nrn,it

)

, (42)

17
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with the rests satisfying |rn,it | ≤ sups,y |∂
2Ψ
∂y2

(s, y)||γnt − γ(t)|2/2. This upper-

bound does not depend on ϕ. Let us denote Γn
t− :=

√
n(γnt − γ(t)) and

R
n,(1)
t (ϕ) :=

1

n

n
∑

i=1

(

Rϕ(Sn,i
t− )

∂Ψ

∂y
(Sn,i

t− , γ(t))
√
nrn,it

)

,

so that (42) rewrites as

An
t (ϕ) =

〈

µn
St
,
∂Ψ

∂y
(·, γ(t))Rϕ

〉

Γn
t− +R

n,(1)
t (ϕ). (43)

• Lemma IV.1 and the following properties are used to prove point (iv): under
Assumption (AΨ

s,C2
b

), the functions

t 7→ ||Ψ(·, γ(t))||C2
b
and t 7→

∥

∥

∥

∥

∂Ψ

∂y
(·, γ(t))

∥

∥

∥

∥

C1
b

are locally bounded, (44)

since t 7→ γ(t) is locally bounded. In the same way, under Assumption (AΨ
s,C4

b

),

the function
t 7→ ||Ψ(·, γ(t))||C4

b
is locally bounded. (45)

Proposition IV.7, combined with the first line of Equation (33), gives that ηn,
An and Mn belong to W−2,α

0 . Hence, we may consider the following decomposition

in W−2,α
0 ,

ηnt − ηn0 =

∫ t

0
L∗
zη

n
z dz +

∫ t

0
An

z dz +Mn
t , (46)

where L∗
z is the adjoint operator of Lz.

Remark IV.8. As a corollary of Proposition IV.7-(iv), one has, for all α > 1/2,
all w in W−1,α

0 and all θ ≥ 0,

sup
z∈[0,θ]

||L∗
zw||2−2,α

||w||2−1,α

< +∞. (47)

Indeed, both ||L∗
zw||2−2,α ≤ sup||ϕ||2,α=1 ||Lzϕ||21,α||w||2−1,α and Equation (41) give the

result.
Furthermore, the Doob-Meyer process (<<Mn>>t)t≥0 associated with the square

integrable F-martingale (Mn
t )t≥0 satisfies the following: for any t ≥ 0, <<Mn>>t is

the linear continuous mapping from W2,α
0 to W−2,α

0 given, for all ϕ1, ϕ2 in W2,α
0 ,

by

〈<<Mn>>t(ϕ1), ϕ2〉 =
1

n

n
∑

i=1

∫ t

0
Rϕ1(S

n,i
z−)Rϕ2(S

n,i
z−)λ

n,i
z dz.

This last equation can be retrieved thanks to the polarization identity from (37).

Yet, to give sense to Equation (46), we need the lemma stated below.

Lemma IV.9. Under (ATGN), the integrals
∫ t
0 L

∗
zη

n
z dz and

∫ t
0 A

n
z dz are almost surely

well defined as Bochner integrals in W−2,α
0 for any α > 1/2. In particular, the

functions t 7→
∫ t
0 L

∗
zη

n
z dz and t 7→

∫ t
0 A

n
z dz are almost surely strongly continuous in

W−2,α
0 .

Proof. Since W−2,α
0 is separable, it suffices to verify that (see Yosida [42, p. 133]):
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(i) for every ϕ in W2,α
0 , the functions z 7→ 〈L∗

zη
n
z , ϕ〉 = 〈ηnz , Lzϕ〉 and z 7→ An

z (ϕ)
are measurable,

(ii) the integrals
∫ t
0 ||L∗

zη
n
z ||−2,αdz and

∫ t
0 ||An

z ||−2,αdz are finite almost surely.

The first condition is immediate. The second one follows from the controls we
have shown.

Indeed, on the one hand, it follows from Equation (47) that
∫ t
0 ||L∗

zη
n
z ||−2,αdz .t

∫ t
0 ||ηnz ||−1,αdz and Proposition IV.7-(i) implies E[

∫ t
0 ||ηnz ||−1,α+1dz] < +∞ so that

∫ t
0 ||L∗

zη
n
z ||−2,αdz is finite a.s.

On the other hand, Proposition IV.7-(iii) gives that E[
∫ t
0 ||An

z ||−2,αdz] is finite

and so
∫ t
0 ||An

z ||−2,αdz is finite a.s.

Now, using the decomposition (46) we are able to somehow exchange the expec-
tation with the supremum in the control of η, i.e. Equation (38).

Proposition IV.10. Under (ATGN), for every α > 1/2 and θ ≥ 0,

sup
n≥1

E

[

sup
t∈[0,θ]

||ηnt ||2−2,α

]

< +∞, (48)

and t 7→ ηnt belongs to D(R+,W−2,α
0 ) almost surely.

Proof. Starting from (46), we have by convexity of the square function

sup
t∈[0,θ]

||ηnt ||2−2,α ≤ 4
[

||ηn0 ||2−2,α + θ

∫ θ

0
(||L∗

zη
n
z ||2−2,α + ||An

z ||2−2,α)dz+ sup
t∈[0,θ]

||Mn
t ||2−2,α

]

.

We deduce from Equation (41) that
∫ θ
0 E[||L∗

zη
n
z ||2−2,α]dz .θ

supz∈[0,θ] E[||ηnz ||2−1,α]. Hence, taking the expectation in both sides of the in-
equality above and applying Proposition IV.7 (remind (33)), we get (48). Starting
from (46) and using that the integrals are continuous from Lemma IV.9 and Mn is
càdlàg from Proposition IV.7-(ii), it follows that ηn is càdlàg.

IV.4 Tightness result

Using the estimates proved in Section IV.3, the tightness criterion stated on page
13 can be checked.

Theorem IV.11. Under (ATGN), for any α > 1/2, the sequences of the laws of
(Mn)n≥1 and of (ηn)n≥1 are tight in the space D(R+,W−2,α

0 ).

Proof. Condition (A1′) with H0 = W−1,α+1
0 and H = W−2,α

0 is satisfied for both pro-
cesses as a consequence of embedding (33) (remind that Hilbert-Schmidt operators
are compact) and Proposition IV.7.

On the one hand, condition (A2) holds for (Mn)n≥1 as soon as it holds for the
trace of the processes (<<Mn>>)n≥1 given below (46) [22, Rebolledo’s theorem, p.
40]. Let (ϕk)k≥1 be an orthonormal basis of W2,α

0 . Let θ ≥ 0, δ0 > 0 and δ ≤ δ0.
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Furthermore, let τn be an F-stopping time smaller than θ.

|Tr<<Mn>>τn+δ − Tr<<Mn>>τn |

=

∣

∣

∣

∣

∣

∣

∑

k≥1

〈<<Mn>>τn+δ(ϕk), ϕk〉 − 〈<<Mn>>τn(ϕk), ϕk〉

∣

∣

∣

∣

∣

∣

≤
∑

k≥1

1

n

n
∑

i=1

∫ τn+δ

τn

[Rϕk

(

Sn,i
z−
)

]2λn,i
z dz ≤ ||Ψ||∞

1

n

n
∑

i=1

∫ τn+δ

τn

∑

k≥1

Rϕk

(

Sn,i
z−
)2

dz.

Noticing that Rϕk(S
n,i
z−) = D

0,Sn,i
z−

(ϕk) and then using Lemma IV.3 and the fact that

the ages Sn,i
z− are upper bounded by MS0 + z+ ≤ MS0 + θ + δ0 (thanks to (Au0∞),

remind (8)), it follows that

E [|Tr<<Mn>>τn+δ − Tr<<Mn>>τn |] ≤ δ0||Ψ||∞(C2)
2 (1 + (MS0 + θ + δ0)

α)2 .

This last bound is arbitrarily small for δ0 small enough which gives condition (A2)
thanks to Markov’s inequality.

On the other hand, using decomposition (46) and the fact that (Mn)n≥1 is tight,
it suffices to show the tightness of the remaining terms (Rn

t = ηn0 +
∫ t
0 L

∗
zη

n
z dz +

∫ t
0 A

n
z dz)n≥1 in order to show tightness of (ηn)n≥1. Yet, using Equation (47), we

have

||Rn
τn+δ −Rn

τn ||2−2,α =

∥

∥

∥

∥

∫ τn+δ

τn

L∗
zη

n
z +An

z dz

∥

∥

∥

∥

2

−2,α

≤ 2δ

∫ τn+δ

τn

(||L∗
zη

n
z ||2−2,α+||An

z ||2−2,α)dz ≤ 2δ0

∫ θ+δ0

0
(C||ηnz ||2−1,α+1+||An

z ||2−2,α)dz,

where C depends on θ and δ0. Then, Proposition IV.7 implies that
supn≥1 E[||Rn

τn+δ − Rn
τn ||2−2,α] ≤ Cδ0 for δ0 small enough. Finally, Markov’s in-

equality gives condition (A2) for (R
n)n≥1 and so the tightness of (ηn)n≥1.

Remark IV.12. For any α > 1/2, every limit (with respect to the convergence in
law) M (respectively η) in D(R+,W−2,α

0 ) of the sequence (Mn)n≥1 (resp. (ηn)n≥1)
satisfies

E

[

sup
t∈[0,θ]

||Mt||2−2,α

]

< +∞
(

resp. E

[

sup
t∈[0,θ]

||ηt||2−2,α

]

< +∞
)

. (49)

Moreover, the limit laws are supported in C(R+,W−2,α
0 ).

Proof. Let us first show that the limit points are continuous. According to [5,
Theorem 13.4.], it suffices to prove that for all θ ≥ 0, the maximal jump size of Mn

and ηn on [0, θ] converge to 0 almost surely in order to prove the last point. Yet, for
all ϕ in W2,α

0 ,

∆Mn
t (ϕ) := |Mn

t (ϕ)−Mn
t−(ϕ)| =

1√
n

n
∑

i=1

D
0,Sn,i

t−
(ϕ)1t∈Nn,i ,

where we use the definition of Mn
t (ϕ) given by (36) for ϕ in C1

b and a density

argument to extend it to ϕ in W2,α
0 , and

〈∆ηnt , ϕ〉 := | 〈ηnt , ϕ〉 −
〈

ηnt−, ϕ
〉

| = 1√
n

n
∑

i=1

D
0,Sn,i

t−
(ϕ)1t∈Nn,i
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where we used the fact that (ut)t≥0 is continuous in W−2,α
0 (see Lemma B.2).

Since almost surely there is no common point to any two of the point processes
(Nn,i)i=1,...,n, there is, almost surely, for all t ≥ 0, at most one of the 1t∈Nn,i which
is non null. Then, Lemma IV.3 implies

{

supt∈[0,θ] ||∆Mn
t ||−2,α ≤ 1√

n
C2(1 + (MS0 + θ)α),

supt∈[0,θ] ||∆ηnt ||−2,α ≤ 1√
n
C2(1 + (MS0 + θ)α),

which gives the desired convergence to 0.
Finally, the two statements of Equation (49) are consequences of Propositions

IV.7-(ii) (remind (33)) and IV.10 where we use the previous step and the fact that
the mapping g 7→ supt∈[0,θ] ||gt||2−2,α from D(R+,W−2,α

0 ) to R is continuous at every

point g0 in C(R+,W−2,α
0 ).

V Characterization of the limit

The aim of this section is to prove convergence of the sequence (ηn)n≥1 by iden-
tifying the limit fluctuation process η as the unique solution of a SDE in infinite
dimension. We first prove, in Section V.1, that every possible limit process η satis-
fies a certain SDE (Theorem V.6). Then, we show, in Section V.2, that this SDE
uniquely characterizes the limit law, which completes the proof of the convergence
in law of (ηn)n≥1 to η.

V.1 Candidate for the limit equation

In this section, the limit version of Equation (46) is stated. Apart from ηn, there
are two random processes in (46) that are An and Mn. The following notation
encompasses the source of the stochasticity of both An and Mn and is mainly used
in order to track the correlations between those two quantities: for all n ≥ 1, let
W n be the W−1,α

0 -valued martingale defined, for all t ≥ 0 and ϕ in W1,α
0 , by

W n
t (ϕ) :=

1√
n

n
∑

i=1

∫ t

0
ϕ(Sn,i

z−)(N
n,i(dz)− λn,i

z dz).

Notice that Mn
t (ϕ) = W n

t (Rϕ). Furthermore, as for Mn, the Doob-Meyer pro-
cess (<<W n>>t)t≥0 associated with (W n

t )t≥0 satisfies the following: for any t ≥ 0,
<<W n>>t is the linear continuous mapping from W2,α

0 to W−2,α
0 given, for all ϕ1

and ϕ2 in W2,α
0 , by

〈<<W n>>t(ϕ1), ϕ2〉 =
1

n

n
∑

i=1

∫ t

0
ϕ1(S

n,i
z−)ϕ2(S

n,i
z−)λ

n,i
z dz. (50)

All the results given for Mn in the previous section can be extended to W n. In
particular,

the sequence (W n)n≥1 is tight in D(R+,W−2,α
0 ). (51)

Next, we prove that it converges towards the Gaussian process W defined below.

Definition V.1. For any α > 1/2, let W be a continuous centred Gaussian process
with values in W−2,α

0 with covariance given, for all ϕ1 and ϕ2 in W2,α
0 , for all t and
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t′ ≥ 0, by

E [Wt(ϕ1)Wt′(ϕ2)] =

∫ t∧t′

0
〈uz, ϕ1ϕ2Ψ(·, γ(z))〉 dz

=

∫ t∧t′

0

∫ +∞

0
ϕ1(s)ϕ2(s)Ψ(s, γ(z))u(z, s)dsdz, (52)

where u is the unique solution of (4).

Remark V.2. We refer to the PhD manuscript of the author [10] for the existence
and uniqueness in law of such a process W . Yet, let us mention here that the process
W defined above does not depend on the weight α in the sense that the definition is
consistent with respect to the weights. Indeed, say Wα and W β are two processes is
the sense of Definition V.1 with values in W−2,α

0 and W−2,β
0 respectively. Assume

for instance that β > α. Then, W β can be seen as a process with values in W−2,α
0 via

the canonical embedding W−2,β
0 →֒ W−2,α

0 . Yet, the covariance structure (52) does
not depend on the weights α and β so W β is also a Gaussian process with values
in W−2,α

0 with the prescribed covariance and the uniqueness in law guaranties the

equality of the laws of Wα and W β as C(R+,W−2,α
0 )-valued random variables.

Proposition V.3. Under (ATGN), for any α > 1/2, the sequence (W n)n≥1 of pro-
cesses in D(R+,W−2,α

0 ) converges in law to W .

The proof of Proposition V.3 is given in Appendix A.4. It relies on the con-
vergence of the bracket (50) towards the covariance (52) and an application of Re-
bolledo’s central limit theorem (the maximum size of the jumps is bounded up to a
constant by n−1/2 and so goes to 0).

Denote by 1 : R+ → R the constant function equal to 1 (which belongs to W2,α
0

since we assume α > 1/2) and note that W n
t (1) is the rescaled canonical martingale

associated with the system of age-dependent Hawkes processes, namely

W n
t (1) =

√
n

(

1

n

n
∑

i=1

Nn,i
t −

∫ t

0
λn,i
z dz

)

.

Now, let us expand the decomposition (46) in order to get a closed equation. Let us
recall the expansion of An given by (43), that is

An
t (ϕ) =

〈

µn
St
,
∂Ψ

∂y
(·, γ(t))Rϕ

〉

Γn
t− +R

n,(1)
t (ϕ),

with Γn
t− =

√
n(γnt − γ(t)) and the rest term:

R
n,(1)
t (ϕ) :=

1

n

n
∑

i=1

(

Rϕ(Sn,i
t− )

∂Ψ

∂y
(Sn,i

t− , γ(t))
√
nrn,it

)

.

Below, we use the fact that this rest term converges to 0 in L1 norm: indeed, recall
that

|rn,it | . |γnt − γ(t)|2 (53)

and, thanks to Proposition III.1,

E
[

|γnt − γ(t)|2
]

.t n
−1.

Since Γn
t− (as part of An

t (ϕ)) only appears in (46) as an integrand and is only
discontinuous on a set of Lebesgue measure equal to zero, we can replace it by its
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càdlàg version denoted by Γn
t . Let us consider the decomposition Γn

t = Υ1
t+Υ2

t +Υ3
t ,

with










































Υ1
t :=

√
n

∫ t

0
h(t− z)

(

1

n

n
∑

i=1

Nn,i(dz) − λn,i
z dz

)

=

∫ t

0
h(t− z)dW n

z (1),

Υ2
t :=

√
n

∫ t

0
h(t− z)

1

n

n
∑

i=1

(λn,i
z −Ψ(Sn,i

z−, γ(z)))dz,

Υ3
t :=

√
n

∫ t

0
h(t− z)

1

n

n
∑

i=1

(Ψ(Sn,i
z−, γ(z)) − λ(z))dz =

∫ t

0
h(t− z) 〈ηnz ,Ψ(·, γ(z)〉 dz,

where we used, in the last line, the fact that µn
Sz−

= µn
Sz

for almost every z in R+,

and λ(z) = 〈uz,Ψ(·, γ(z))〉.
Based on Assumption (AΨ

y,C2), as for Equation (42), one can give the Taylor
expansion of the term

Υ2
t =

√
n

∫ t

0
h(t− z)

1

n

n
∑

i=1

(Ψ(Sn,i
z−, γ

n
z )−Ψ(Sn,i

z−, γ(z)))dz.

On the one hand, gathering the decomposition (35) with (43) and on the other
hand gathering Γn

t = Υ1
t+Υ2

t+Υ3
t with the Taylor expansion of Υ2

t give that (η
n,Γn)

satisfies the following closed system for all ϕ in W2,α
0 ,

〈ηnt , ϕ〉 − 〈ηn0 , ϕ〉 =
∫ t

0
〈ηnz , Lzϕ〉 dz +

∫ t

0

〈

µn
Sz
,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γn
z dz

+

∫ t

0
Rn,(1)

z (ϕ)dz +W n
t (Rϕ), (54)

Γn
t =

∫ t

0
h(t− z)

〈

µn
Sz
,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z dz +

∫ t

0
h(t− z)Rn,(2)

z dz

+

∫ t

0
h(t− z) 〈ηnz ,Ψ(·, γ(z)〉 dz +

∫ t

0
h(t− z)dW n

z (1), (55)

where the rest term R
n,(2)
z is defined by

Rn,(2)
z :=

1√
n

n
∑

i=1

∂Ψ

∂y
(Sn,i

t− , γ(t))rn,it .

Once again, notice that Γn
z−, which naturally appears in the first integral term of

(55), is replaced by its càdlàg version Γn
z since they are equal except on a null mea-

sure set.

Let us denote V n
t :=

∫ t
0 h(t − z)dW n

z (1) and Vt :=
∫ t
0 h(t − z)dWz(1). The

convergence of the sources of stochasticity in the system (54)-(55) is stated in the
following corollary of Proposition V.3.

Corollary V.4. Under (ATGN) and (Ah
Höl), the following convergence in law holds

true in D(R+,W−2,α
0 × R),

(

R∗W n
t , V

n
t

)

t≥0
⇒
(

R∗Wt, Vt

)

t≥0
,

where R∗ denotes the adjoint of R.
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The proof of Corollary V.4 uses Billingsley tightness criterion for real-valued
stochastic processes and is given in Appendix A.5.

Before taking the limit n → +∞ in the system (54)-(55), we state the tightness
of (Γn)n≥1. Nevertheless, let us first mention that we use the following estimates:
as a consequence of Proposition III.1, for all k ≥ 0 and θ ≥ 0,

sup
t∈[0,θ]

E

[

|Γn
t |k
]

< +∞, (56)

since supt∈[0,θ] E
[

|Γn
t |k
]

= supt∈[0,θ] E
[

|Γn
t−|k

]

because the underlying point pro-
cesses admit intensities so that there is almost surely no jump at time θ.

Proposition V.5. Under (ATGN) and (Ah
Höl), the sequence of the laws of (Γn)n≥1

is tight in D(R+,R). Furthermore, the possible limit laws are supported in C(R+,R)
and satisfy, for all k ≥ 0,

sup
t∈[0,θ]

E

[

|Γt|k
]

< +∞, (57)

The proof of Proposition V.5 uses Aldous tightness criterion for real-valued
stochastic processes and is given in Appendix A.6.

Both sequences (ηn)n≥1 and (Γn)n≥1 are tight with continuous limit trajectories.
Tightness of (ηn,Γn)n≥1 hence follows and we are now in position to give the system
satisfied by any limit (η,Γ).

Theorem V.6. Under (ATGN) and (Ah
Höl), for all α > 1/2, any limit (η,Γ) of

the sequence (ηn,Γn)n≥1 is a solution in C(R+,W−2,α
0 × R) of the following system

(formulated in W−3,α
0 × R),

∀ϕ ∈ W3,α
0 , 〈ηt, ϕ〉 − 〈η0, ϕ〉 =

∫ t

0
〈ηz, Lzϕ〉 dz +

∫ t

0

〈

uz,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γzdz

+Wt(Rϕ), (58)

Γt =

∫ t

0
h(t− z) 〈ηz,Ψ(·, γ(z)〉 dz +

∫ t

0
h(t− z)

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

Γzdz

+

∫ t

0
h(t− z)dWz(1). (59)

The proof of Theorem V.6 consists in proving continuity properties to apply the
continuous mapping theorem. It is given in Appendix A.7.

Remark V.7. The linear operator Lz appearing in (54) and (58) reduces the reg-
ularity of the test functions by 1. Hence, if we consider Equation (54) for test
functions ϕ in W2,α

0 then we must consider ηn as taking values in W−1,α
0 when deal-

ing with the integral term
∫ t
0 〈ηnz , Lzϕ〉 dz. Yet (ηn)n≥1 is not tight in this space.

Thus we consider (54) for test functions in W3,α
0 so that every term is tight. That

is why the limit equation (58) is formulated in W−3,α
0 . However, the limit process η

takes values in the smaller space W−2,α
0 .

Remark V.8. The initial condition η0 of the system (58)-(59) is determined by the
initial density u0. It is an infinite dimensional gaussian random variable. Indeed, η0
is well defined as the limit in W−3,α

0 of ηn0 . The sequence (ηn0 )n≥1 is tight in W−3,α
0
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(it is tight in W−2,α
0 and there is a continuous embedding of W−2,α

0 into W−3,α
0 )

and for any ϕ in W3,α
0 , we have the convergence of the real-valued random variables

〈ηn0 , ϕ〉 =
√
n
〈

µn
S0

− u0, ϕ
〉

by applying the standard central limit theorem since the
initial conditions are i.i.d.

V.2 Uniqueness of the limit law

The next step in order to prove convergence of the sequence (ηn,Γn)n≥1 is to prove
uniqueness of the solutions of the limit system (58)-(59). Since the system is linear,
the standard argument is to consider the system satisfied by the difference between
two solutions and show that its unique solution is trivial. Let (η,Γ) and (η̂, Γ̂) be
two solutions associated with the same “noise” W and the same initial condition η0.
Denote by η̃ := η − η̂ and Γ̃ := Γ − Γ̂ the differences. Then, (η̃, Γ̃) is a solution of
the following system

∀ϕ ∈ W3,α
0 , 〈η̃t, ϕ〉 −

∫ t

0
〈η̃z, Lzϕ〉 dz −

∫ t

0

〈

uz,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γ̃zdz = 0, (60)

Γ̃t −
∫ t

0
h(t− z) 〈η̃z,Ψ(·, γ(z)〉 dz −

∫ t

0
h(t− z)

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

Γ̃zdz = 0. (61)

The standard follow-up is to use Grönwall’s lemma. Let us show here why it is not
sufficient in our case. For instance, assume we want to prove that ||η̃||−3,α = 0:
heuristically, when applied to (61), Grönwall’s argument gives that |Γ̃t| is bounded
by some locally bounded function of t times the integral

∫ t
0 ||η̃z||−3,αdz. However,

even if we use this bound for Γ̃ in (60), Grönwall’s argument cannot be applied since
the term

∫ t
0 〈η̃z, Lzϕ〉 dz involves ||η̃z ||−2,α which is greater than the desired norm

||η̃z||−3,α. This problem cannot be bypassed by upgrading the regularity as we have
done before to deal with the fact that the operator Lz reduces the regularity of the
test functions.

Since the main limitation comes from the differential part of the operator Lz, let
us consider Lz as the sum of the first order differential operator plus a perturbation.
More precisely, let L : ϕ 7→ ϕ′ and Gt : ϕ 7→ Ψ(·, γ(t))Rϕ so that Lt = L+Gt. Let us
present here the heuristics behind the argument we use to bypass the issue induced
by the differential operator L: instead of studying the time derivative d

dt 〈η̃t, ϕ〉 in

(60), the idea is to find some family of test functions (ϕt)t≥0 such that
〈

η̃t,
d
dtϕt

〉

=

−〈η̃t,Lϕt〉; thus the differential operator L vanishes in d
dt 〈η̃t, ϕt〉 and Grönwall’s

argument can be applied.
More precisely, let us introduce the shift operators τt : ϕ 7→ ϕ(· + t) for all

t ≥ 0. Notice that these shift operators are linked with the method of characteristics
applied to a transport equation with constant speed equal to 1 which is exactly the
dynamics described by the differential operator L. Below are given some bounds for
the operators L, Gt and τt when acting on the space C4

b .

Lemma V.9. Let ϕ be in C4
b . Assume that t 7→ ||Ψ(·, γ(t))||C4

b
is locally bounded.

Then, ||Lϕ||C3
b
≤ ||ϕ||C4

b
, for all t ≥ 0, ||τtϕ||C4

b
= ||ϕ||C4

b
and

t 7→
||Gtϕ||C4

b

||ϕ||C4
b

is locally bounded.

Proof. The first two assertions follow from the definition of the norms || · ||Ck
b
. The

third and last one follows from Leibniz rule.
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Remark V.10. From now on, the test functions are considered in C4
b . Thus, we

prove that η is characterized by the limit equation as a process with values in the
dual space C−4

b . Nevertheless, since C4
b is dense in W3,α

0 , it is also characterized by

the limit equation as a process with values in W−3,α
0 for instance.

Let t ≥ t′ and s in R. Then,

∫ t

t′
τt−zϕ

′(s)dz =

∫ t

t′
ϕ′(s + t− z)dz = ϕ(s + t− t′)− ϕ(s) = τt−t′ϕ(s)− ϕ(s).

Moreover, since τt and L commute, one has

τt−t′ϕ(s)− ϕ(s) =

∫ t

t′
L(τt−zϕ)(s)dz.

Yet, Lemma V.9 gives that ||L(τt−zϕ)||C3
b
≤ ||ϕ||C4

b
thus

∫ t
t′ Lτt−zϕdz makes sense as

a Bochner integral in C3
b as soon as ϕ is in C4

b . Hence, in the proof below we use the
following statement: for all ϕ in C4

b ,

τt−t′ϕ− ϕ =

∫ t

t′
L(τt−zϕ)dz, as points in C3

b . (62)

Proposition V.11. Under (ACLT), the system (58)-(59) has no more than one
solution in C(R+,W−2,α

0 × R) once the initial condition η0 and the “noise” W are
fixed.

Proof. Let (η,Γ) and (η̂, Γ̂) be two solutions of (58)-(59) in C(R+,W−2,α
0 × R) as-

sociated with the the same “noise” W and the same initial condition η0. Denote by
η̃ := η − η̂ and Γ̃ := Γ − Γ̂ the differences. Since α > 1/2, we have W−2,α

0 ⊂ C−4
b

(remind (33)) so η̃ belongs to C−4
b and we will prove that ||η̃||C−4

b
= 0.

Starting from (61), one has

|Γ̃t| ≤ h∞(t)||Ψ(·, γ(t))||C4
b

∫ t

0
||η̃z||C−4

b
dz + h∞(t)Lip(Ψ)

∫ t

0
|Γ̃|zdz,

and Lemma B.1 gives |Γ̃t| .t

∫ t
0 ||η̃z||C−4

b
dz. Now, let ϕ be in C4

b and use (62) and

the fact that η̃ is in W−2,α
0 ⊂ C−3

b to get 〈η̃t, ϕ〉 = D1 −D2 where































D1 :=

∫ t

0
〈η̃t′ , (L +Gt′)(τt−t′ϕ)〉 dt′ +

∫ t

0

〈

ut′ , Rτt−t′ϕ
∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dt
′.

D2 :=

∫ t

0

〈

η̃t′ , (L +Gt′)(

∫ t

t′
L(τt−zϕ)dz)

〉

dt′

+

∫ t

0

〈

ut′ , R

∫ t

t′
L(τt−zϕ)dz

∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dt
′.

(63)

The linearity of the operators allows to write D2 = D2,A +D2,B with















D2,A :=

∫ t

0

∫ t

t′
〈η̃t′ , (L+Gt′)(L(τt−zϕ))〉 dzdt′

D2,B :=

∫ t

0

∫ t

t′

〈

ut′ , RLτt−zϕ
∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dzdt
′.

Then, the idea is to use Fubini’s theorem to exchange the two integrals
∫ t
0 and

∫ t
t′ .
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On the one hand,

∫ t

0

∫ t

t′
|〈η̃t′ , (L+Gt′)(L(τt−zϕ))〉|dzdt′ ≤

∫ t

0

∫ t

t′
||η̃t′ ||C−2

b
||(L+Gt′)(L(τt−zϕ))||C2

b
dzdt′.

Notice that supt′∈[0,t] ||η̃t′ ||C−2
b

≤ C(supt′∈[0,t] ||ηt′ ||−2,α + supt′∈[0,t] ||η̂t′ ||−2,α) < +∞
since η and η̂ takes values in C(R+,W−2,α

0 ) and that, thanks to Lemma V.9, for all
t′ ≤ t, ||(L +Gt′)(L(τt−zϕ))||C2

b
.t ||ϕ||C4

b
< +∞. Hence, Fubini’s theorem gives

D2,A =

∫ t

0

∫ z

0
〈η̃t′ , (L +Gt′)(L(τt−zϕ))〉 dt′dz. (64)

On the other hand,

∫ t

0

∫ t

t′

∣

∣

∣

〈

ut′ , RLτt−zϕ
∂Ψ

∂y
(·, γ(t′))

〉

∣

∣

∣|Γ̃t′ |dzdt′ ≤ 2Lip(Ψ)

∫ t

0

∫ t

t′
||L(τt−zϕ)||∞|Γ̃t′ |dzdt′.

Remark that ||L(τt−zϕ)||∞ ≤ ||ϕ||C4
b
and supt′∈[0,t] |Γ̃t| ≤ supt′∈[0,t] |Γt|+supt′∈[0,t] |Γ̂t| <

+∞ since Γ and Γ̂ takes values in C(R+,R). Hence, Fubini’s theorem gives

D2,B =

∫ t

0

∫ z

0

〈

ut′ , RLτt−zϕ
∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dt
′dz. (65)

Now, for any z in [0, t], Equation (60) with ϕ = L(τt−zϕ) (it is a valid test
function since it belongs to C3

b ⊂ W3,α
0 ) gives

〈η̃z,L(τt−zϕ)〉 =
∫ z

0
〈η̃t′ , (L +Gt′)(L(τt−zϕ))〉 dt′

+

∫ z

0

〈

ut′ , RLτt−zϕ
∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dt
′.

Gathering the equation above with (64) and (65) gives

D2 =

∫ t

0
〈η̃z,L(τt−zϕ)〉 dz,

which is exactly the term driven by L in the definition of D1 (63) so that, coming
back to D1 −D2, we have

D1 −D2 = 〈η̃t, ϕ〉 =
∫ t

0
〈η̃t′ , Gt′(τt−t′ϕ)〉 dt′ +

∫ t

0

〈

ut′ , Rτt−t′ϕ
∂Ψ

∂y
(·, γ(t′))

〉

Γ̃t′dt
′.

Hence, using the bound we proved on Γ̃, we have for all ϕ in C4
b ,

| 〈η̃t, ϕ〉 | .t

∫ t

0
||η̃t′ ||C−4

b
||Gt′(τt−t′ϕ)||C4

b
dt′ + 2||ϕ||C4

b
Lip(Ψ)

∫ t

0

∫ t′

0
||η̃z ||C−4

b
dz,

and so ||η̃t||C−4
b

.t

∫ t
0 ||η̃t′ ||C−4

b
dt′ and Lemma B.1 gives that for all t ≥ 0, ||η̃t||C−4

b
= 0

thus |Γ̃t| = 0 thanks to the bound we proved on Γ̃. Finally, since C4
b is dense in W2,α

0 ,

we have ||η̃t||−2,α = 0. Thus, we have (η,Γ) = (η̂, Γ̂) in C(R+,W−2,α
0 × R).

We are now in position to conclude with the convergence of (ηn,Γn)n≥1.

Theorem V.12. Under (ACLT), for any α > 1/2, the sequence (ηn,Γn)n≥1 con-
verges in law in D(R+,W−2,α

0 ×R) to the unique solution of the system (58)-(59) in

C(R+,W−2,α
0 × R).
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Proof. Since (ηn,Γn)n≥1 is tight (Theorem IV.11 and Proposition V.5), let (η,Γ) be
a limit point. According to Theorem V.6, (η,Γ) is a solution of the limit system
(58)-(59) in C(R+,W−2,α

0 × R). Finally, the law of (η,Γ) is uniquely characterized
by the limit system (Proposition V.11 gives path-wise uniqueness and so Yamada-
Watanabe theorem gives weak uniqueness by the same argument as [35, Theorem
IX.1.7(i)]) and uniqueness of the limit law implies convergence of (ηn,Γn)n≥1.

Remark V.13. As mentioned in the introduction, considering processes over finite
time horizons would have lead to equivalent results. This claim is based on the fact
that the limit equation (58) is independent of the values of the test function ϕ outside
the support Kt of η

n
t . Indeed,

• on the one hand, the test function ϕ appears in the drift term, more precisely
∫ t
0

〈

uz,
∂Ψ
∂y (·, γ(z))Rϕ

〉

Γzdz, evaluated against the measure uz which is sup-

ported in Kt;

• on the other hand, the covariance structure of the Gaussian process W implies
this independence property for Wt(Rϕ).

In that sense, the convergence stated for the whole positive time line R+ in Theorem
V.12 implies that the central limit theorem also holds true for the process (ηnt )0≤t≤θ

as taking values in the dual of a standard Sobolev space of functions supported by
Kθ. Conversely, the limit equation is consistent in time in the sense that one can
recover our result by sticking together the CLTs obtained for the finite time horizon
processes (ηnt )0≤t≤θ.

VI Application to the “almost” derivation of an SPDE

This section focuses on a system of stochastic partial differential equations (SPDE),
introduced and studied in [13] where some qualitative properties are discussed. The
SPDE is a noisy version of the PDE system (4) and is expected to be a more precise
approximation of the age-dependent Hawkes processes in a mean-field framework.
The SPDE system associated with the system size n is the following



























∂ũn (t, s)

∂t
+

∂ũn (t, s)

∂s
+Ψ(s,Xn

t ) ũ
n (t, s) +

√

Ψ(s,Xn
t ) ũ

n (t, s)

n
ζ(t, s) = 0,

ũn (t, 0) =

∫

s∈R
Ψ(s,Xn

t ) ũ
n (t, s) +

√

Ψ(s,Xn
t ) ũ

n (t, s)

n
ζ(t, s)ds,

(66)

where for all t ≥ 0, Xn
t =

∫ t
0 h(t− z)ũn(z, 0)dz and ζ(t, s) is a Gaussian space-time

white-noise. The important thing to note about ζ is that the W−2,α
0 -valued process

defined by, for all t ≥ 0 and ϕ in W2,α
0 ,

∫ t

0

∫ +∞

0
ϕ(s)

√

Ψ(s, γ(z))u(z, s)ζ(z, s)dsdz,

is a Gaussian process with the same law as W defined in Definition V.1.
Hence, at a first sight, there are some similarities between the system above and

the limit system obtained for the fluctuation process, i.e. (58)-(59). Let us give here
some heuristics: assume that u, the solution of the PDE system (4), and ũn are close
to each other, and similarly for the auxiliary variables X(t) and Xn

t , then
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• the “non-noisy” spiking dynamics term Ψ (s,Xn
t ) ũ

n (t, s) is close to the mean-
field spiking dynamics, appearing in the operator Lt in the limit system (58)-
(59), modulo an error term which is expected to appear, in a linear approxi-
mation, as the term involving the derivative ∂Ψ

∂y in (58);

• the covariance structure of the Gaussian process W , appearing in the limit sys-
tem (58)-(59), is close to the covariance structure of the noise term appearing
in the SPDE system above.

What is proposed in this section is to consider the second-order approximation of
the empirical measure given by the central limit theorem, namely ûnt = ut+n−1/2ηt
where ut = u(t, ·) is the probability distribution solution of (4), and show that is is
an “almost” solution of the SPDE system in some sense defined below. Up to our
knowledge, this kind of result is novel and deserves to be developed in this article.

Let us remind that this section is devoted to an application of the CLT so
Assumption (ACLT) is supposed to hold true below. Furthermore, the stronger as-
sumption that Ψ is in C4

b is made.

VI.1 Theoretical frame for the SPDE

Up to our knowledge, there is no theoretical frame well established for the SPDE
system (66). A pathwise notion of solution seems to be hard to handle because of
the square root term appearing in front of the Gaussian white noise. In particular,
it is not trivial to show that the argument of the square root remains non negative.
That is why we propose the following notion of solution.

Definition VI.1. The measure-valued process (ũnt )t≥0 is a solution of (66) if it
satisfies: for all ϕ in C∞

b ,

〈ũnt , ϕ〉 − 〈ũn0 , ϕ〉 =
∫ t

0

〈

ũnz , L̃
n
zϕ
〉

dz + W̃ n
t (Rϕ), (67)

where W̃ n is a Gaussian process with Doob-Meyer process given by,

〈

<<W̃ n>>t(ϕ1), ϕ2

〉

=
1

n

∫ t

0
〈ũnz , ϕ1ϕ2Ψ(·, γ̃nz )〉 dz, (68)

and L̃n
zϕ := ϕ′ +Ψ(·, γ̃nt )ϕ with

γ̃nt =

∫ t

0
h(t− z) 〈ũnz ,Ψ(·, γ̃nz )〉 dz +

∫ t

0
h(t− z)dW̃ n

z (1). (69)

The well-posedness of such definition is not addressed here. We only stress the
fact that ûn is an “almost” solution in some sense related to Definition VI.1.

VI.2 Weak sense dynamics for the second-order approximation

To catch the dynamics of ûn, we somehow want to add up the dynamics of u, given
by the PDE system (4), and the dynamics of η, given by the limit system. These two
are formulated by different means, the main difference being that the PDE formu-
lation involves (in the weak sense) bivariate test functions whereas the formulation
for η involves univariate test functions: we turn to the second one in order to get a
system like (67)-(69).
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On the one hand, the dynamics of η is given by the limit equation (58) that we
remind here: for all ϕ in W3,α

0 ,

〈ηt, ϕ〉 − 〈η0, ϕ〉 =
∫ t

0
〈ηz, Lzϕ〉 dz +

∫ t

0

〈

uz,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γzdz +Wt(Rϕ).

On the other hand, the dynamics of u is given (see [9, Theorem III.5.]) by the
weak sense formulation of the PDE system (4) (which is driven by the generator
Lt): for all φ in C∞

c,b(R
2
+),

∫

R2
+

(

∂φ

∂t
(t, s) + Lt(φ(t, ·))

)

u (t, s) dtds+

∫

R+

φ(0, s)u0(s)ds = 0 (70)

where the test function space C∞
c,b(R

2
+) is defined as follows,

C∞
c,b(R

2
+)

The function φ belongs to C∞
c,b(R

2
+) if

• φ is continuous, uniformly bounded,
• φ has uniformly bounded derivatives of every order,
• there exists T > 0 such that φ(t, s) = 0 for all t > T and s ≥ 0.

Then, taking φ(t, s) that converges to a product function of the form ϕ(s)1t≤T ,
we get that for all ϕ in C∞

b (R+),

〈uT , ϕ〉 − 〈u0, ϕ〉 =
∫ T

0
〈ut, Ltϕ〉 dt. (71)

Combining (71) with the limit equation (58), we prove that ûn satisfies: for all ϕ in
C∞
b (R+),

〈ûnt , ϕ〉 − 〈ûn0 , ϕ〉 =
∫ t

0
〈ûnz , Lzϕ〉 dz + n−1/2

∫ t

0

〈

uz,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γzdz

+ n−1/2Wt(Rϕ).

This last equation can be rewritten, with anything new but some notation, as a
system in the flavour of (67)-(69) as stated in the proposition below.

Proposition VI.2. The process ûn satisfies: for all ϕ in C∞
b ,

〈ûnt , ϕ〉 − 〈ûn0 , ϕ〉 =
∫ t

0

〈

ûnz , L̂
n
zϕ
〉

dz + Ŵ n
t (Rϕ) + rnt (ϕ), (72)

where Ŵ n is a Gaussian process with Doob-Meyer process given by,

DMt(ϕ1, ϕ2) :=
〈

<<Ŵ n>>t(ϕ1), ϕ2

〉

=
1

n

∫ t

0
〈uz, ϕ1ϕ2Ψ(·, γ(z))〉 dz, (73)

and L̂n
zϕ := ϕ′ +Ψ(·, γ̂nt )ϕ with

γ̂nt =

∫ t

0
h(t− z) 〈ûnz ,Ψ(·, γ̂nz )〉 dz +

∫ t

0
h(t− z)dŴ n

z (1). (74)

The following notation is used above: Ŵ n := n−1/2W where W is the Gaussian
process of Definition V.1 and

rnt (ϕ) :=

∫ t

0

〈

ûnz , (Lz − L̂n
z )ϕ
〉

+

〈

uz,
∂Ψ

∂y
(·, γ(z))Rϕ

〉

Γz√
n
dz. (75)
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Remark VI.3. The process (γ̂nt )t≥0 is characterized by the fixed point equation (74)
(see Lemma A.1).

Comparing (67)-(69) with (72)-(74), the only differences between the two systems
are, the additional term rnt (ϕ) in (72), and the substitution of the Doob-Meyer
process associated with the noise term: it should be given by

D̂Mt(ϕ1, ϕ2) :=
1

n

∫ t

0
〈ûnz , ϕ1ϕ2Ψ(·, γ̂nz )〉 dz. (76)

As stated below, these two differences are negligeable, as n → +∞, with respect to
the other terms of the system that are at least of order n−1/2.

Proposition VI.4. The distribution of the process ûn is an “almost” solution of
(67)-(69) in the sense that: the rest term in (72) is negligible since

E [|rnt (ϕ)|] .t n
−1||ϕ||2,1,

and the covariance structures are “almost” the same since

E

[∣

∣

∣
DMt(ϕ1, ϕ2)− D̂Mt(ϕ1, ϕ2)

∣

∣

∣

]

.t n
−3/2||ϕ1||3,1||ϕ2||3,1.

The proof of Proposition VI.4 relies on some refined versions of already estab-
lished estimates and is given in Appendix A.8. The main difficulty and difference
in comparison with the preceding sections is that ûnt is not a probability measure,
unlike ut and µn

t . However, this difficulty is bypassed in the proof by means of the
following estimates.

Lemma VI.5. For any ϕ in C2
b (R+), we have

| 〈ûnt , ϕ〉 | ≤
(

1 +
C√
n
||ηt||−2,1

)

||ϕ||C2
b
.

We mainly use this estimate with the intensity function Ψ: for all y1, y2,






| 〈ûnt ,Ψ(·, y1)〉 | ≤
(

1 + C√
n
||ηt||−2,1

)

||Ψ||C2
b
,

| 〈ûnt ,Ψ(·, y1)−Ψ(·, y2)〉 | ≤
(

1 + C√
n
||ηt||−2,1

)

||Ψ||C3
b
|y1 − y2|.

(77)

The second line of (77) is very useful to use some kind of Lipschitz control even
when integrating with respect to ûnt , which is not as direct as in the case when the
integration is done with respect to a probability measure.

Proof. The first assertion is a direct consequence of the definition of ûn and the
embedding (30). Since Ψ is in C4

b (R+ × R), the next ones are direct from

{

||Ψ(·, y1)||C2
b
(R+) ≤ ||Ψ||C2

b
(R+×R),

||Ψ(·, y1)−Ψ(·, y2)||C2
b
(R+) ≤ ||Ψ||C3

b
(R+×R)|y1 − y2|.

To conclude, let us remind that we have shown how a second-order approximation
of the empirical measure µn

t , namely ûnt since
√
n(µn

t −ûnt ) goes to 0 as a consequence
of Theorem V.12, can be considered as an “almost” solution of the SPDE (66). The
next step would be to prove that the/any solution of the SPDE is a second order
approximation of µn

t . To address such a question, we would first need a suitable
theoretical framework to treat the well-posedness of the SPDE. This is the subject
of a future work.
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A Proofs

A.1 Proofs linked with Proposition III.1

Proof of (26). For simplicity, we show that, for every m ≤ n, there exists a
constant C which is independent of n, p and m such that

E











1

m

m
∑

j=1

(∆n,j
t− )p





k





≤ C

(

k−1
∑

k′=1

mk′−kε(k
′,pk)

n (t) + ε(k,p)n (t)

)

, (78)

from which (26) follows by choosing m = ⌊nk ⌋.
Let us recall the multinomial formula using multi-indices q = (q1, . . . , qm),

(

1

m

m
∑

i=1

xi

)k

=
1

mk

∑

|q|=k

(

k

q

) m
∏

i=1

xqii ,

where |q| = ∑m
i=1 qi. Denote by k(q) the number of strictly positive indices in q.

Since the qi’s are integers, |q| = k implies k(q) ≤ k. First, let us remark that, for
all k′ = 1, . . . , k, the number of multi-indices q such that k(q) = k′ and |q| = k is

bounded by p(k′, k)mk′ with p(k′, k) :=
(k′−1
k−1

)

being the number of partitions of k
into exactly k′ parts. Indeed, the vector consisting in the k′ strictly positive indices
forms a partition of k and there are at most mk′ ways to complete it by m−k′ zeros
to build a vector of length m.

Then, using the exchangeability of the processes ∆n,j, we have

• if k(q) = k, then all the positive qi’s are equal to one and E[
∏n

i=1((∆
n,i
t− )p)qi ] =

ε(k,p)(t),

• if k(q) < k, we can bound all the positive qi’s by k so that E[
∏n

i=1((∆
n,i
t− )p)qi ] ≤

ε
(k(q),pk)
n (t).

Hence, using that
(k
q

)

≤ k!, (78) holds with C = maxk′=1,...,k p(k
′, k)k! for instance.

Proof of (27). Let us first recall that ξ
(k)
n (t) = E

[

|γnt − γ(t)|k
]

where γnt and
γ(t) are respectively defined below (12) and in (11). By convexity of the function
x 7→ |x|k (remind that k ≥ 2), let us consider the decomposition

ξ(k)n (t) ≤ 4k−1 (An(t) +Bn(t) + Cn(t) +Dn(t)) (79)

where














































An(t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 1n

∑n
j=1(N

n,j(dz) − λn,j
z dz)

∣

∣

∣

k
]

,

Bn(t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 1n

∑n
j=1(Ψ(Sn,j

z− , γnz )−Ψ(S
j
z−, γ

n
z ))dz

∣

∣

∣

k
]

,

Cn(t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 1n

∑n
j=1(Ψ(S

j
z−, γ

n
z )−Ψ(S

j
z−, γ(z)))dz

∣

∣

∣

k
]

,

Dn(t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 1n

∑n
j=1(λ

j
z − λ(z))dz

∣

∣

∣

k
]

.

Recall that λn,j
z = Ψ(Sn,j

z− , γnz ) and λ
j
z = Ψ(S

j
z−, γ(z)).
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- Study of An(t). Fix t and consider the martingale (Mn,t
x )x≥0 defined, for all

x ≥ 0, by

Mn,t
x :=

∫ x

0
h(t− z)

1

n

n
∑

j=1

(Nn,j(dz)− λn,j
z dz).

Its quadratic variation is [Mn,t]x = n−2
∫ x
0 h(t−z)2

∑n
j=1N

n,j(dz). Yet, Assumption

(Ah
∞) implies that

[Mn,t]t ≤ n−2h∞(t)2
n
∑

j=1

Nn,j
t .

Using the convexity of the power function (since k/2 ≥ 1) and exchangeability, one
has

E

[

[Mn,t]
k/2
t

]

.(t,k) n
−k

E





∣

∣

n
∑

j=1

Nn,j
t

∣

∣

k/2



 .(t,k) n
−k nk/2

E

[

|Nn,1
t |k/2

]

.

Yet, the intensity ofNn,1 is bounded by ||Ψ||∞ soNn,1 is stochastically dominated by
a Poisson process with intensity ||Ψ||∞. Hence, E[|Nn,1

t |k/2] ≤ E[Poiss(t||Ψ||∞)k/2]
where Poiss(t||Ψ||∞) is a Poisson variable with parameter t||Ψ||∞. This last expec-
tation is bounded uniformly in n by a locally bounded function of the time t. Then,
Burkholder-Davis-Gundy inequality [38, p. 894] gives

An
1 (t) = E

[

|Mn,t
t |k

]

≤ E

[

[Mn,t]
k/2
t

]

.(t,k) n
−k/2.

- Study of Bn(t). Here, we use the fact that Sn,j
z− = S

j
z− with high probability

and more precisely we recover the quantities ε
(k,p)
n that we want to control. Using the

convexity of the power function, Assumption (Ah
∞) and denoting xjz = Ψ(Sn,j

z− , γnz )−
Ψ(S

j
z−, γ

n
z ) we have

Bn(t) ≤ h∞(t)ktk−1

∫ t

0
E





∣

∣

∣

∣

1

n

n
∑

j=1

xjz

∣

∣

∣

∣

k


 dz.

Yet, |xjz| is bounded by ||Ψ||∞1{Sn,j
z− 6=S

j

z−} ≤ ||Ψ||∞∆n,j
z−. Hence, using (78) with

p = 1 and m = n,

Bn(t) ≤ ||Ψ||k∞h∞(t)ktk−1

∫ t

0
E





∣

∣

∣

∣

1

n

n
∑

j=1

∆n,j
z−

∣

∣

∣

∣

k


 dz

≤ ||Ψ||k∞h∞(t)kCtk−1

∫ t

0

(

k−1
∑

k′=1

nk′−kε(k
′,k)

n (z) + ε(k,1)n (z)

)

dz

≤ ||Ψ||k∞h∞(t)kCtk

(

k−1
∑

k′=1

nk′−kε(k
′,k)

n (t) + ε(k,1)n (t)

)

, (80)

where the last line comes from the fact that the ε
(k′,k)
n ’s are non-decreasing functions

of t. Hence, Bn
t .(t,k)

∑k−1
k′=1 n

k′−kε
(k′,k)
n (t) + ε

(k,1)
n (t).

- Study of Cn(t). Using the Lipschitz continuity of Ψ, Assumption (Ah
∞), one

has

Cn(t) ≤ Lip(Ψ)kh∞(t)ktk−1

∫ t

0
E

[

|γnz − γ(z)|k
]

dz .(t,k)

∫ t

0
ξ(k)n (z)dz. (81)
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- Study of Dn(t). First remark that using Assumption (Ah
∞), we have

Dn(t) ≤ h∞(t)ktk−1

∫ t

0
E





∣

∣

1

n

n
∑

j=1

λ
j
z − λ(z)

∣

∣

k



 dz.

Yet, the λ
j
z’s are i.i.d. with mean λ(z) and they are bounded by ||Ψ||∞. Hence,

Rosenthal inequality [29] gives the existence of a constant C(k) which depends only
on k and ||Ψ||∞ such that

E





∣

∣

1

n

n
∑

j=1

λ
j
z − λ(z)

∣

∣

k



 ≤ C(k)n−k/2.

It then follows that Dn(t) .(t,k) n
−k/2.

One deduces from the decomposition (79) and the four bounds on An, Bn, Cn

and Dn that

ξ(k)n (t) .(t,k)

(

n−k/2 +

k−1
∑

k′=1

nk′−kε(k
′,k)

n (t) + ε(k,1)(t)

)

+

∫ t

0
ξ(k)n (z)dz,

and so Lemma B.1 below gives the desired bound.

A.2 Proof of Proposition IV.5

By definition of ηn (Equation (15)),

〈ηnt , ϕ〉 − 〈ηn0 , ϕ〉 =
√
n

[

1

n

n
∑

i=1

(〈

δ
Sn,i
t

, ϕ
〉

−
〈

δ
Sn,i
0

, ϕ
〉)

− (〈ut, ϕ〉 − 〈u0, ϕ〉)
]

.

Since, for all i = 1, . . . , n, the age process (Sn,i
t )t≥0 is piece-wise continuous, increas-

ing with rate 1 and jumps from Sn,i
t− to 0 when Nn,i

t −Nn,i
t− = 1, we have

〈

δ
Sn,i
t

, ϕ
〉

−
〈

δ
Sn,i
0

, ϕ
〉

=

∫ t

0
ϕ′ (Sn,i

z

)

dz +

∫ t

0
Rϕ

(

Sn,i
z−

)

Nn,i(dz)

and so

〈

µn
St
, ϕ
〉

−
〈

µn
S0
, ϕ
〉

=

∫ t

0

〈

µn
Sz
, ϕ′〉 dz +

1

n

n
∑

i=1

∫ t

0
Rϕ

(

Sn,i
z−

)

Nn,i(dz). (82)

Now, we have in the same way

〈

δ
S
1
t

, ϕ
〉

−
〈

δ
S
1
0
, ϕ
〉

=

∫ t

0
ϕ′
(

S
1
z

)

dz +

∫ t

0
Rϕ

(

S
1
z−
)

N
1
(dz)

and, by definition of (ut)t≥0,

〈ut, ϕ〉 − 〈u0, ϕ〉 = E

[
∫ t

0
ϕ′
(

S
1
z

)

dz

]

+ E

[
∫ t

0
Rϕ

(

S
1
z−
)

N
1
(dz)

]

. (83)

Yet, since ϕ′ is bounded, Fubini’s theorem gives that E[
∫ t
0 ϕ

′(S
1
z)dz] =

∫ t
0 〈uz, ϕ′〉 dz.

Moreover, remind that the intensity of N
1
is λ

1
t = Ψ(S

1
t−, γ(t)). Yet, since ϕ and Ψ

are bounded,

E

[∫ t

0

∣

∣

∣Rϕ
(

S
1
z−
)∣

∣

∣λ
1
zdz

]

< +∞,
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and so E[
∫ t
0 Rϕ(S

1
z−)N

1
(dz)] = E[

∫ t
0 Rϕ(S

1
z−)λ

1
zdz] since (S

1
t−)t≥0 is a predictable

process (see [6, II. T8]). Using once again Fubini’s theorem, we end up with

E

[∫ t

0
Rϕ

(

S
1
z−
)

N
1
(dz)

]

=

∫ t

0
〈uz,Ψ(·, γ(z))Rϕ〉 dz

and so (83) becomes

〈ut, ϕ〉 − 〈u0, ϕ〉 =
∫ t

0

〈

uz, ϕ
′〉 dz +

∫ t

0
〈uz,Ψ(·, γ(z))Rϕ〉 dz. (84)

Gathering (82) and (84) gives

〈ηnt , ϕ〉 − 〈ηn0 , ϕ〉 =
∫ t

0

〈

ηnz , ϕ
′〉 dz

+
√
n

(

1

n

n
∑

i=1

∫ t

0
Rϕ

(

Sn,i
z−
)

Nn,i(dz)−
∫ t

0
〈uz,Ψ(·, γ(z))Rϕ〉 dz

)

and so

〈ηnt , ϕ〉 − 〈ηn0 , ϕ〉 =
∫ t

0
〈ηnz , Lzϕ〉 dz

+
√
n

(

1

n

n
∑

i=1

∫ t

0
Rϕ

(

Sn,i
z−
)

Nn,i(dz) −
∫ t

0

〈

µn
Sz−

,Ψ(·, γ(z))Rϕ
〉

dz

)

, (85)

where we used that, almost surely, µn
Sz−

= µn
Sz

for almost every z in R+. Then, the

second term in the right-hand side of (85) rewrites as Mn
t (ϕ) +

∫ t
0 A

n
z (ϕ)dz.

It remains to show that (Mn
t (ϕ))t≥0 is an F-martingale. Yet, for all i = 1, . . . , n,

E

[
∫ t

0

∣

∣

∣Rϕ
(

Sn,i
z−
)∣

∣

∣λn,i
z dz

]

≤ 2||ϕ||∞E

[
∫ t

0
λn,i
z dz

]

= 2||ϕ||∞E

[

Nn,i
t

]

< +∞,

and the F-predictability of the age processes (Sn,i
t− )t≥0 gives the result (see [6, II. T8]).

Finally, the expression of the angle bracket (37) follows from standard computations
for point processes (see [18, Proposition II.4.1.]).

A.3 Proof of Proposition IV.7

Proof of (i). Let (ϕk)k≥1 be an orthonormal basis of W1,α
0 so that, in particular

||ηnt ||2−1,α =
∑

k≥1 〈ηnt , ϕk〉2. Using the coupling (12)-(13), we have for every k and
t ≤ θ,

〈ηnt , ϕk〉 =
√
n

(

1

n

n
∑

i=1

ϕk(S
n,i
t )− E

[

ϕk(S
i
t)
]

)

= Sn
t (ϕk) + T n

t (ϕk),

where
{

Sn
t (ϕk) := n−1/2

∑n
i=1 ϕk(S

n,i
t )− ϕk(S

i
t)

T n
t (ϕk) := n−1/2

∑n
i=1 ϕk(S

i
t)− E[ϕk(S

i
t)].
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On the one hand, using the independence of the age processes (S
i
t)t≥0, we have

E





∑

k≥1

T n
t (ϕk)

2



 =
∑

k≥1

E





1

n

(

n
∑

i=1

ϕk(S
i
t)− E

[

ϕk(S
i
t)
]

)2




=
∑

k≥1

E

[

(

ϕk(S
1
t )− E

[

ϕk(S
1
t )
])2
]

≤
∑

k≥1

E

[

(

ϕk(S
1
t )
)2
]

≤ E





∑

k≥1

(δ
S
1
t

(ϕk))
2



 = E

[

||δ
S
1
t

||2−1,α

]

.

Then, using Lemma IV.3 and the fact that the age S
1
t is upper bounded by MS0+t ≤

MS0 + θ (thanks to (Au0∞), remind (8)), it follows that

E





∑

k≥1

T n
t (ϕk)

2



 ≤ (C1)
2(1 + (MS0 + θ)α)2

and so supn≥1 supt∈[0,θ] E[
∑

k≥1 T
n
t (ϕk)

2 ] < +∞.
On the other hand, expanding the square and using exchangeability of the age

processes (Sn,i
t )t≥0, one has

E





∑

k≥1

Sn
t (ϕk)

2



 = n−1
E





∑

k≥1

(

n
∑

i=1

ϕk(S
n,i
t )− ϕk(S

i
t)

)2




= (n− 1)E





∑

k≥1

(ϕk(S
n,1
t )− ϕk(S

1
t ))(ϕk(S

n,2
t )− ϕk(S

2
t ))





+E





∑

k≥1

(ϕk(S
n,1
t )− ϕk(S

1
t ))

2



 . (86)

Since the ages Sn,1
t , S

1
t , S

n,2
t and S

2
t are upper bounded by MS0 + θ and (ϕk(x1)−

ϕk(x2))(ϕk(y1)− ϕk(y2)) = 0 as soon as x1 = x2 or y1 = y2, we have

E





∑

k≥1

(ϕk(S
n,1
t )− ϕk(S

1
t ))(ϕk(S

n,2
t )− ϕk(S

2
t ))





≤ χ(2)
n (θ) sup

x,y≤MS0
+θ

∑

k≥1

|ϕk(x)− ϕk(y)|2, (87)

where χ
(2)
n (θ) is defined by (16). Yet, since (ϕk)k≥1 is an orthonormal basis of W1,α

0 ,
we have






∑

k≥1(ϕk(S
n,1
t )− ϕk(S

1
t ))

2 =
∑

k≥1

〈

D
Sn,1
t ,S

1
t

, ϕk

〉2
= ||D

Sn,1
t ,S

1
t

||2−1,α

supx,y≤MS0
+θ

∑

k≥1 |ϕk(x)− ϕk(y)|2 = supx,y≤MS0
+θ ||Dx,y||2−1,α.

(88)

Hence, using Lemma IV.3 and once again the fact that the ages Sn,1
t and S

1
t are

upper bounded by MS0 + θ, we have, by gathering (86)-(88),

E





∑

k≥1

Sn
t (ϕk)

2



 ≤ (n− 1)χ(2)
n (θ)(C2)

2(1 + (MS0 + θ)α)2 + (C2)
2(1 + (MS0 + θ)α)2,
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and it follows from Proposition III.1 that supn≥1 supt∈[0,θ] E[
∑

k≥1 S
n
t (ϕk)

2] < +∞.

Finally, by convexity of the square function, ||ηnt ||2−1,α ≤ 2
∑

k≥1 S
n
t (ϕk)

2 +

T n
t (ϕk)

2 so that (38) follows from the two steps above.

Proof of (ii). We first show (39) and then use it in order to prove that (Mn
t )t≥0

is càdlàg. Let (ϕk)k≥1 be an orthonormal basis of W1,α
0 composed of C∞ functions

with compact support. For all k ≥ 1, the test function ϕk belongs to C1
b so that

(Mn
t (ϕk))t≥0 is an F-martingale (Proposition IV.5). Using Doob’s inequality for

real-valued martingales [21, Theorem 1.43.] and Equation (37), one has

E

[

sup
t∈[0,θ]

||Mn
t ||2−1,α

]

≤
∑

k≥1

E

[

sup
t∈[0,θ]

Mn
t (ϕk)

2

]

≤ C
∑

k≥1

E
[

Mn
θ (ϕk)

2
]

≤ C||Ψ||∞E





∫ θ

0

∑

k≥1

Rϕk(S
n,1
z− )2dz



 ,

where the last inequality comes from exchangeability and boundedness of the inten-
sity. Noticing that Rϕk(S

n,1
z− ) = D0,Sn,1

z−
(ϕk) and then using Lemma IV.3 as we have

done in the proof of (i), it follows that

E





∫ θ

0

∑

k≥1

Rϕk(S
n,1
z− )2dz



 ≤ (C2)
2

∫ θ

0
(1 + (MS0 + θ)α)2dz,

which does not depend on n and gives (39). Moreover, gathering the integrability
property given by (39) and the fact that, for all k ≥ 1, the process (Mn

t (ϕk))t≥0 is
an F-martingale, we have that Mn is a W−1,α

0 -valued F-martingale.
It remains to show that (Mn

t )t≥0 is càdlàg. First remark that for any k, the
F-martingale (Mn

t (ϕk))t≥0 is càdlàg. Let ε > 0 and t0 > 0. For any n ≥ 1,

E





∑

k≥1

sup
t∈[0,t0+1]

Mn
t (ϕk)

2



 < +∞,

so there exists a set Ωn such that P(Ωn) = 1 and for all ω in Ωn,

∑

k≥1

sup
t∈[0,t0+1]

〈Mn
t (ω), ϕk〉2 < +∞.

Once ω is fixed in Ωn, there exists an integer k0 (which depends on ω) such that
∑

k>k0
supt∈[0,t0+1] 〈Mn

t (ω), ϕk〉2 < ε. Let t be such that t0 < t ≤ t0 + 1, using the
right continuity of t 7→ 〈Mn

t (ω), ϕk〉, we have, dropping ω for simplicity of notations,

||Mn
t −Mn

t0 ||
2
−1,α =

∑

k≥1

(Mn
t (ϕk)−Mn

t0(ϕk))
2

≤
k0
∑

k=1

(Mn
t (ϕk)−Mn

t0(ϕk))
2 + 2

∑

k>k0

[Mn
t (ϕk)

2 +Mn
t0(ϕk)

2]

≤
k0
∑

k=1

ε+ 4ε = (k0 + 4)ε,
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as soon as |t − t0| is small enough. Hence, t 7→ Mn
t (ω) is right continuous with

values in W−1,α
0 . In the same way, let (tm)m≥1 be a sequence such that tm < t0 and

tm → t0. For any integers m and ℓ, we have, dropping ω for simplicity of notations,

||Mn
tm −Mn

tℓ
||2−1,α =

∑

k≥1

(Mn
tm(ϕk)−Mn

tℓ
(ϕk))

2

≤
k0
∑

k=1

(Mn
tm(ϕk)−Mn

tℓ
(ϕk))

2 + 4ε.

Yet, for all k = 1, . . . , k0, the sequence (M
n
tm(ϕk))m≥1 is convergent hence Cauchy. It

follows that (Mn
tm(ω))m≥1 is a Cauchy sequence and so converges in W−1,α

0 . Hence,

t 7→ Mn
t (ω) admits left limits in W−1,α

0 . Finally, t 7→ Mn
t belongs to D(R+,W−1,α

0 )
almost surely.

Proof of (iii). Starting from (43), we have, by convexity of the square function,

An
t (ϕ)

2 ≤ 2
(

〈

µn
St
,
∂Ψ

∂y
(·, γ(t))Rϕ

〉2

(Γn
t−)

2 +R
n,(1)
t (ϕ)2

)

Let (ϕk)k≥1 be an orthonormal basis of W2,α
0 so that ||An

t ||2−2,α =
∑

k≥1A
n
t (ϕk)

2.

Noticing that Rϕk(S
n,i
t− ) = D

0,Sn,i
t−

(ϕk) and then using Lemma IV.3 as we have done

in the proof of (i), it follows that

∑

k≥1

〈

µn
St
,
∂Ψ

∂y
(·, γ(t))Rϕk

〉2

≤ Lip(Ψ)2
1

n

n
∑

i=1





∑

k≥1

Rϕk(S
n,i
t− )2





≤ Lip(Ψ)2(C2)
2(1 + (MS0 + θ)α)2,

and in the same way,

∑

k≥1

R
n,(1)
t (ϕk)

2 ≤ Lip(Ψ)2(C2)
2(1 + (MS0 + θ)α)2

1

n

n
∑

i=1

(
√
nrn,it )2.

Hence,

∑

k≥1

An
t (ϕk)

2 ≤ 2Lip(Ψ)2(C2)
2(1 + (MS0 + θ)α)2

(

(Γn
t−)

2 +
1

n

n
∑

i=1

(
√
nrn,it )2

)

.

Yet, as a consequence of Proposition III.1, ξ
(2)
n (t) = E[|Γn

t−|2]/n .θ n
−1 and ξ

(4)
n (t) =

E[|Γn
t |4]/n2 .θ n−2. In particular, uniformly in t ≤ θ, the L1 norm of (Γn

t−)
2 is of

order 1 while the L1 norm of the rest term satisfies

1

n

n
∑

i=1

(
√
nrn,it )2 ≤ n

(

sup
s,y

|∂
2Ψ

∂y2
(s, y)|

)2
|γnt − γ(t)|4/4

and so vanishes to 0 as n goes to infinity. Hence,

sup
n≥1

sup
t∈[0,θ]

E
[

||An
t ||2−2,α

]

= sup
n≥1

sup
t∈[0,θ]

E

[

∑

k≥1

An
t (ϕk)

2

]

< +∞.
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Proof of (iv). By definition of Lz and the triangular inequality,

||Lzϕ||21,α ≤ 2(||ϕ′||21,α + ||Ψ(·, γ(z))Rϕ||21,α).

Firstly, ||ϕ′||21,α ≤ ||ϕ||22,α. Secondly, by Lemma IV.1, for all z ≤ θ,

||Ψ(·, γ(z))Rϕ||21,α ≤ C sup
z∈[0,θ]

||Ψ(·, γ(z))||2C1
b
||Rϕ||21,α.

Finally, (41) follows from (44) and the continuity of the mapping R (Lemma IV.2).

A.4 Proof of Proposition V.3

As stated in Equation (51), the sequence (W n)n≥1 is tight. Then, let us consider
the following decomposition, for any ϕ1 and ϕ2 in W2,α

0 ,

〈<<W n>>t(ϕ1), ϕ2〉 −
∫ t

0
〈uz, ϕ1ϕ2Ψ(·, γ(z)〉 dz = Bn

t + Cn
t ,

with


















Bn
t :=

1

n

n
∑

i=1

∫ t

0
ϕ1(S

n,i
z−)ϕ2(S

n,i
z−)

(

λn,i
z −Ψ(Sn,i

z−, γ(z))
)

dz,

Cn
t :=

∫ t

0

〈

µn
Sz

− uz, ϕ1ϕ2Ψ(·, γ(z))
〉

dz,

where we used the fact that, almost surely, µn
Sz−

= µn
Sz

for almost every z in R+.

The first term Bn converges in L1 to 0 by using the Lipschitz continuity of Ψ and
the convergence of γn to γ given by Proposition III.1. From the convergence

1

n

n
∑

i=1

δ
(Sn,i

t )t≥0
−−−→
n→∞

L
(

(S
1
t )t≥0

)

,

which is given in [9, Corollary IV.4], one can deduce that for almost every z,

1

n

n
∑

i=1

δ
Sn,i
z

−−−→
n→∞

uz

(see for instance [21, Proposition VI.3.14 and Lemma VI.3.12]). Then, dominated
convergence implies that the second term Cn converges in expectation to 0. Hence,
the bracket of W n (50) converges to the covariance (52) for t′ = t.

Furthermore, as for Mn (see the proof of Remark IV.12), the maximum jump
size of W n converges to 0. Hence, Rebolledo’s central limit theorem for local mar-
tingales [34] gives, for every ϕ1, . . . , ϕk in W2,α

0 and t1, . . . , tk ≥ 0, the convergence
of (W n

t1(ϕ1), . . . ,W
n
tk
(ϕk)) to a Gaussian vector with the prescribed covariance (52).

The limit law of (W n)n≥1 is then characterized as the law of a continuous Gaussian
process with covariance (52).

A.5 Proof of Corollary V.4

First, the tightness (and convergence) of (R∗W n)n≥1 comes from the continuity of
R∗ as a mapping from W−2,α

0 to W−2,α
0 which comes from the continuity of R as

a mapping from W2,α
0 to W2,α

0 (Lemma IV.2). Then, let us show that (V n)n≥1 is
tight in D(R+,R).
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Assume that h(0) = 0 and extend the function h to the whole real line by the
value 0 on the negative real numbers.

-(i) For all n ≥ 1, V n
0 = 0 a.s. so (V n

0 )n≥1 is clearly tight.
For any t > r ≥ 0, since h(r − z) = 0 as soon as z ≥ r, one has

V n
t − V n

r =

∫ t

0
[h(t− z)− h(r − z)] dW n

z (1).

Let us denote, for all x ≥ 0, V
n
r,t(x) =

∫ x
0 [h (t− z)− h (r − z)] dW n

z (1). It is a
martingale with respect to x. Burkholder-Davis-Gundy inequality [38, p. 894] gives
the existence of a universal constant Cp such that

E

[

sup
x≤t

∣

∣V
n
r,t(x)

∣

∣

2p
]

≤ CpE

[

[

V
n
r,t

]p

t

]

.

Yet, the quadratic variation of Vnr,t is given by

[

V
n
r,t

]

x
=

1

n

n
∑

j=1

∫ x

0
[h (t− z)− h (r − z)]2Nn,j(dz) ≤ Höl(h)2 |t− r|2β(h) 1

n

n
∑

j=1

Nn,j
x .

(89)
So, using the exchangeability, we have for all p ≥ 0,

E
[

|V n
t − V n

r |2p
]

≤ CpHöl(h)
2p |t− r|2β(h)p E

[

|Nn,1
t |p

]

. (90)

Yet, the intensity of Nn,1 is bounded so that Nn,1 is stochastically dominated by
a Poisson process with intensity ||Ψ||∞. Hence, E[|Nn,1

t |p] ≤ E[Poiss(t||Ψ||∞)p]
where Poiss(t||Ψ||∞) is a Poisson variable with parameter t||Ψ||∞. This implies that
E[|Nn,1

t |p] is bounded uniformly in n by a locally bounded function of the time t,
say C̃p(t) (which can be assumed to be increasing continuous without any loss of
generality). Then, taking p = 1, t = δ and r = 0 and using Markov’s inequality
gives

-(ii) for all ε > 0, limδ→0 lim supn P(|V n
δ − V n

0 | > ε) = 0.
Finally, taking p = 1/β(h) and using Markov’s inequality gives

-(iii) for all ν > 0, P(|V n
t − V n

r | > ν) ≤ ν−2/β(h)|F (t)− F (s)|2,
where F (t) := (C 1

β(h)
C̃ 1

β(h)
(t)Höl(h)2/β(h))1/2 t defines an increasing continuous func-

tion.
Hence, (i), (ii) and (iii) allow to apply Billingsley’s criterion for tightness [21,

Theorem VI.4.1] to deduce that (V n)n≥1 is tight.

Now, if h(0) 6= 0, one can use the following decomposition,

V n
t =

∫ t

0
[h (t− z)− h (0)] dW n

z (1) + h (0)W n
t (1).

The first term is tight thanks to what we have done in the case h (0) = 0 whereas
the second term is converging since (W n)n is converging, whence (V n)n≥1 is tight.

Now, since the limit trajectories of R∗W n are continuous, (R∗W n, V n)n≥1 is tight
in D(R+,W−2,α

0 ×R). It now suffices to characterize the limiting finite dimensional

distributions. Recall that Vt =
∫ t
0 h(t−z)dWz(1) and denote by (t1, . . . , tk) a k-tuple

of positive times.
First, suppose that h is piecewise constant. In that case, the convergence of

W n towards W easily implies the convergence of ((R∗W n
t1 , V

n
t1 ), . . . , (R

∗W n
tk
, V n

tk
)) to
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((R∗Wt1 , Vt1), . . . , (R
∗Wtk , Vtk)) (use the fact that h is a piecewise function to write

V n
ti as a sum of increments of W n(1)).
Then, since h is continuous, one can find, for each ε > 0, a piecewise constant

function hε such that ||h − hε||∞ ≤ ε. Denote V n,ε
t :=

∫ t
0 h

ε(t − z)dW n
z (1) and

notice that E
[

|V n
t − V n,ε

t |2
]

≤ 2ε2E [< W n(1) >t] ≤ 2ε2||Ψ||∞t → 0 as ε → 0. In

the same way, denote V ε
t :=

∫ t
0 h

ε(t − z)dWz(1) and remark that E
[

|Vt − V ε
t |2
]

≤
2ε2||Ψ||∞t → 0 as ε → 0. Yet, the previous point gives the convergence, in terms of
finite dimensional distributions, of V n,ε to V ε for all ε > 0 so the convergence, in
terms of finite dimensional distributions, of V n to V follows which ends the proof.

A.6 Proof of Proposition V.5

The idea is to use (55). The first step is to simplify (55) by using the following
convergences























E

[∣

∣

∣

∣

∣

sup
t∈[0,θ]

∫ t

0
h(t− z)Rn,(2)

z dz

∣

∣

∣

∣

∣

]

→ 0,

E

[∣

∣

∣

∣

∣

sup
t∈[0,θ]

∫ t

0
h(t− z)

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z dz

∣

∣

∣

∣

∣

]

→ 0.

(91)

These two convergences follow from the two following claims: by (56),

sup
z∈[0,θ]

E

[∣

∣

∣Rn,(2)
z

∣

∣

∣

]

≤ Lip(Ψ)Cn−1/2 sup
z∈[0,θ]

E
[

|Γn
z−|2

]

→ 0,

and, by Cauchy-Schwarz inequality,

sup
z∈[0,θ]

E

[∣

∣

∣

∣

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z

∣

∣

∣

∣

]

→ 0. (92)

Indeed,

E

[∣

∣

∣

∣

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z

∣

∣

∣

∣

]

≤ E

[

∣

∣

∣

∣

1√
n

〈

ηnz ,
∂Ψ

∂y
(·, γ(z))

〉∣

∣

∣

∣

2
]1/2

E
[

|Γn
z |2
]1/2

≤ 1√
n
E
[

||ηnz ||2−1,α

]1/2
∥

∥

∥

∥

∂Ψ

∂y
(·, γ(z))

∥

∥

∥

∥

1,α

E
[

|Γn
z |2
]1/2

,

for any α > 1/2 and (92) follows from Proposition IV.7-(i) and Equations (30), (44)
and (56).

Return to (55). The right-hand side is tight since it is convergent (Corollary V.4)
and the last term in the left hand side is tight since (ηn)n≥1 is tight (with continuous
limit points) and η 7→

∫ t
0 h(t − z) 〈ηz,Ψ(·, γ(z)〉 dz is continuous at every point η in

C(R+,W−2,α
0 ) thanks to Lemma B.3 (remind (30) and (44)). Moreover, the term

in the middle may be simplified by means of (91). Hence it remains to prove the
tightness of the sequence of continuous processes (In)n≥1 defined, for all t ≥ 0, by

Int :=

∫ t

0
h(t− z)

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z dz.

We use Aldous criterion [5, Theorem 16.10.], that is the simplified version of the one
stated on page 13 but for real valued processes. First, for all θ ≥ 0,

E

[

sup
t∈[0,θ]

|Int |
]

≤ h∞(θ)Lip(Ψ)

∫ θ

0
E [|Γn

z |] dz,
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is bounded uniformly with respect to n thanks to Equation (56). And Markov’s
inequality implies that, for every θ ≥ 0 and ε > 0, there exists a > 0 such that

sup
n≥1

P

(

sup
t∈[0,θ]

|Int | ≥ a

)

≤ ε,

which is the standard compactness condition.
Then, for the Aldous criterion, let us consider δ0 > 0, δ ≤ δ0 and for all n ≥ 1,

an F-stopping time smaller than θ denoted by τn. Assume for a while that h(0) = 0
and extend the function h to the whole real line by setting 0 on the negative real
numbers. As for Equation (89), we have

|Inτn+δ − Inτn | ≤ Höl(h)δ
β(h)
0 Lip(Ψ)

∫ θ+δ0

0
|Γn

z |dz.

Hence, as before, (56) implies that supn≥1 E[|Inτn+δ − Inτn |] ≤ C(θ + δ0)δ
β(h)
0 which

is arbitrary small for δ0 small enough and Markov’s inequality gives that, for any
ε1, ε2 > 0, there exists δ0 such that supn≥1 supδ≤δ0 P

(

|Inτn+δ − Inτn | ≥ ε1
)

≤ ε2, that
is Aldous criterion. Hence, (In)n≥1 is tight in C(R+,R).

Now, if h(0) 6= 0, one can use the following decomposition,

In(t) =

∫ t

0
(h(t−z)−h(0))

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z dz+h(0)

∫ t

0

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
z dz.

The first term is tight thanks to what we have done in the case h(0) = 0 whereas
the tightness of the second one is simpler and left to the reader (use Equation (56)).

It only remains to check that the limit points are continuous. The idea is the
same as for Remark IV.12. According to [5, Theorem 13.4.], it suffices to prove that
for all θ ≥ 0, the maximal jump size of Γn on [0, θ] converges to 0. Yet, using the
continuity of γ and the reverse triangle inequality, we have

∆Γn
t := |Γn

t − Γn
t−| ≤

√
n|γnt+ − γnt |,

where we remind the definition γnt = n−1
∑n

j=1

∫ t−
0 h(t − z)Nn,j(dz) and we define

γnt+ := n−1
∑n

j=1

∫ t
0 h(t − z)Nn,j(dz). Now, Assumption (Ah

Höl) implies that h is
continuous and so we deduce that

∆Γn
t ≤

√
n
1

n

n
∑

i=1

h(0)1t∈Nn,i .

Since almost surely there is no common point to any two of the point processes
(Nn,i)i=1,...,n, there is, almost surely, for all t ≥ 0, at most one of the 1t∈Nn,i

which is non null. Hence, supt∈[0,θ]∆Γn
t ≤ h(0)n−1/2 a.s., which gives the desired

convergence to 0.

A.7 Proof of Theorem V.6

First, let us notice that we use the two following statements whose proofs are similar
to those of Proposition IV.7-(iv) and Remark IV.8: for any α > 1/2 and θ ≥ 0,

for all ϕ in W3,α
0 , sup

z∈[0,θ]

||Lzϕ||22,α
||ϕ||23,α

< +∞, (93)
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and, for all w in W−2,α
0 , sup

z∈[0,θ]

||L∗
zw||2−3,α

||w||2−2,α

< +∞. (94)

As a consequence of tightness and continuity of the limit trajectories, we have
tightness of the process (ηn,Γn,W n, V n)n≥1 in D(R+,W−2,α × R × W−2,α

0 × R).
Hence, let us assume without loss of generality that the sequence converges to
(η,Γ,W, V ) in D(R+,W−2,α × R×W−2,α

0 × R).

Then, let (ϕk)k≥1 be an orthonormal basis of W3,α
0 and define the following

applications: for all k ≥ 1, Fk : D(R+,W−2,α × R×W−2,α
0 ) → D(R+,R) satisfy for

all t ≥ 0,

Fk(f
1, f2, f3)(t) :=

〈

f1
t , ϕk

〉

−
〈

f1
0 , ϕk

〉

−
∫ t

0

〈

f1
z , Lzϕk

〉

dz

−
∫ t

0

〈

uz, Rϕk
∂Ψ

∂y
(·, γ(z))

〉

f2
z dz − f3

t (Rϕk),

and G : D(R+,W−2,α × R× R) → D(R+,R) satisfy for all t ≥ 0,

G(g1, g2, g3)(t) := g2t −
∫ t

0
h(t− z)

〈

g1z ,Ψ(·, γ(z)
〉

dz

−
∫ t

0
h(t− z)

〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

g2zdz − g3t .

Notice that the system (58)-(59) is equivalent to

{

∀k ≥ 1, Fk(η,Γ,W ) = 0

G(η,Γ, V ) = 0.
(95)

Step one. Let us show that the first line of (95) is satisfied. First, we prove that for
all k ≥ 1, Fk is continuous at every point (f̃1, f̃2, f̃3) in C(R+,W−2,α ×R×W−2,α

0 ).
To state continuity of Fk at a continuous trajectory, it suffices to show continuity
with respect to each coordinate f1, f2 and f3.

- Equation (93) implies that z 7→ ||Lzϕk||2,α is locally bounded and Lemma B.3
gives the following:

f1 7→
(

t 7→
〈

f1(t), ϕk

〉

−
〈

f1(0), ϕk

〉

−
∫ t

0

〈

f1(z), Lzϕk

〉

dz
)

is a mapping from D(R+,W−2,α
0 ) into D(R+,R) which is continuous at every point

f̃1 in C(R+,W−2,α
0 ).

- Then, notice that |
〈

uz, Rϕk
∂Ψ
∂y (·, γ(z))

〉

| ≤ Lip(Ψ)E[|D
0,S

1
z

(ϕk)|] and Lemma

IV.3 gives that

z 7→
〈

uz, Rϕk
∂Ψ

∂y
(·, γ(z))

〉

is locally bounded,

so that applying Lemma B.4 gives the continuity of Fk with respect to f2.
- Finally, Fk is clearly continuous with respect to f3.
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Notice that (54) gives for any k ≥ 1,

∀t ≥ 0, Fk(η
n,Γn,W n)(t)−

∫ t

0
Rn,(1)

z (ϕk)dz

−
∫ t

0

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))Rϕk

〉

Γn
z dz = 0. (96)

Yet, we have, on the one hand, for all θ ≥ 0,

sup
z∈[0,θ]

E

[

∣

∣Rn,(1)
z (ϕk)

∣

∣

]

≤
√
nLip(Ψ) sup

z∈[0,θ]
E

[

1

n

n
∑

i=1

|D
0,Sn,i

z
(ϕk)||rn,iz |

]

≤ n−1/2CLip(Ψ)(1 + (MT0 + θ)α)||ϕk||2,α sup
z∈[0,θ]

E
[

|Γn
z−|2

]

→ 0,

where we used Lemma IV.3, Equations (53) and (56), and on the other hand,

sup
z∈[0,θ]

E

[

∣

∣

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))Rϕk

〉

Γn
z

∣

∣

]

→ 0,

which follows from Cauchy-Schwarz inequality as we have done for (92).
These two convergences above imply























E

[∣

∣

∣

∣

∣

sup
t∈[0,θ]

∫ t

0
Rn,(1)

z (ϕk)dz

∣

∣

∣

∣

∣

]

→ 0,

E

[∣

∣

∣

∣

∣

sup
t∈[0,θ]

∫ t

0

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))Rϕk

〉

Γn
z dz

∣

∣

∣

∣

∣

]

→ 0.

(97)

On the one hand, gathering (96) and (97) gives the convergence of Fk(η
n,Γn,W n)

to 0 in probability and, on the other hand, applying the continuous mapping theorem
gives the convergence in law of Fk(η

n,Γn,W n) to Fk(η,Γ,W ). Identifying the limits
gives Fk(η,Γ,W ) = 0 which ends this step.

Step two. Let us show that the second line of (95) is satisfied. First, we prove
that G is continuous at every point (g̃1, g̃2, g̃3) in C(R+,W−2,α × R × R). To state
continuity of G at a continuous trajectory, it suffices to show continuity with respect
to each coordinate g1, g2 and g3.

- Equations (30), (44) and Lemma B.3 give the following:

g1 7→
(

t 7→
∫ t

0
h(t− z)

〈

g1z ,Ψ(·, γ(z)
〉

dz
)

is a mapping from D(R+,W−2,α
0 ) into C(R+,R) which is continuous at every point

g̃1 in C(R+,W−2,α
0 ).

- Then, notice that |
〈

uz,
∂Ψ
∂y (·, γ(z))

〉

| ≤ Lip(Ψ) so that

z 7→
〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

is locally bounded,

so that applying Lemma B.4 gives the continuity of G with respect to g2.
- Finally, G is clearly continuous with respect to g3.
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Notice that (55) gives

∀t ≥ 0, G(ηn,Γn, V n)(t) −
∫ t

0
h(t− z)Rn,(2)

z dz

−
∫ t

0
h(t− z)

〈

µn
Sz

− uz,
∂Ψ

∂y
(·, γ(z))

〉

Γn
zdz = 0.

Finally, the argument used to end the previous step also applies here.

To conclude, the two steps above give (95) which gives that the process (η,Γ) is
a solution of (58)-(59). Finally, its trajectories are supported in C(R+,W−2,α

0 × R)

since η is supported in C(R+,W−2,α
0 ) and Γ is supported in C(R+,R) as a solution

of (59) (remind that h is Hölder continuous).

A.8 Proof of Proposition VI.4

First, the following Lemma states the well-posedness of γ̂n as defined by (74).

Lemma A.1. Under (ACLT), assume furthermore that Ψ is in C4
b . For all T ≥ 0,

there exists a pathwise unique of solution (γ̂nt )t∈[0,T ] of Equation (74). Furthermore,
the solution γ̂n has continuous paths.

Proof. We first deal with the continuity of Un
t :=

∫ t
0 h(t − z)dŴ n

z (1) appearing in
(74). Following the arguments given in the proof of Corollary V.4 to get the control
(90), one can prove that, for all r < t < T and p ≥ 0, there exists a universal
constant Cp such that

E
[

|Un
t − Un

r |2p
]

≤ CpHöl(h)
2p |t− r|2β(h)p

∫ t

0

〈uz,Ψ(·, γz)〉
n

dz.

The integral above being clearly bounded by T ||Ψ||∞, one can for instance take
p = 1/β(h) in the equation above in order to apply Kolmogorov continuity theorem.

Hence, without loss of generality, one can deduce that any solution of (74) admits
a modification with continuous paths. Let t0 < T and g be in C([0, T ],R) and
consider the application Ft0,g : C([0, t0],R) → C([0, t0],R) defined by

Ft0,g(γ)(t) :=

∫ t

0
h(t− z) 〈ûnz ,Ψ(·, γ(z))〉 dz + g(t).

Remind that ûnt = ut + n−1/2ηt and remark that

| 〈ηt,Ψ(·, γ1(t))−Ψ(·, γ2(t))〉 | ≤ C||ηt||−2,1||Ψ(·, γ1(t))−Ψ(·, γ2(t))||C2
b

≤ C||ηt||−2,1|γ1(t)− γ2(t)|,

since Ψ is C4
b , where the C’s are deterministic constants. Hence, we have

||Ft0,g(γ1)− Ft0,g(γ2)||C([0,t0]) ≤ t0h∞(t0)||γ1 − γ2||C([0,t0])
(

Lip(Ψ)

+ C sup
t∈[0,T ]

||ηt||−2,1

)

.

Yet, supt∈[0,T ] ||ηt||−2,1 is almost surely finite as a consequence of (49) so one can

find t0 small enough4 such that Ft0,g is a contraction. The proof is then completed
by iteration. Let us mention how goes the second step: fix t0 such that Ft0,g is

4The time t0 is random and depends on the time horizon T .
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a contraction and consider the application Gt0,g : C([t0, 2t0],R) → C([t0, 2t0],R)
defined by

Gt0,g(γ)(t) :=

∫ t

0
h(t− z) 〈ûnz ,Ψ(·, γ(z))〉 dz + g(t),

where the value of γ(t) for t in [0, t0] is given by the unique Banach-Picard fixed
point of Ft0,g. The same kind of computations as before gives

||Gt0,g(γ1)−Gt0,g(γ2)||C([t0,2t0]) ≤ t0h∞(t0)||γ1 − γ2||C([t0,2t0])
(

Lip(Ψ)

+ C sup
t∈[0,T ]

||ηt||−2,1

)

,

so that Gt0,g is also a contraction.

Then, the following Lemma relates γ̂nt with its approximation appearing through
the CLT, namely γ̌nt := γ(t) + n−1/2Γt.

Lemma A.2. We have
E [|γ̂nt − γ̌nt |] .t n

−1. (98)

Furthermore, we show within the proof that

E[|γ̂nt − γ(t)|2] .t n
−1. (99)

Proof. Let us prove the a priori rough bound,

E

[

|γ̂nt − γ̌nt |2
]1/2

.t n
−1/2. (100)

We use the decomposition γ̂nt − γ̌nt = (γ̂nt − γ(t)) − n−1/2Γt. On the one hand,

E
[

|n−1/2Γt|2
]1/2

.t n
−1/2 thanks to (57). On the other hand, we use the decompo-

sition
E

[

|γ̂nt − γ(t)|2
]

≤ 3(An
1 (t) +An

2 (t) +An
3 (t)),

where






























An
1 (t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 〈ûnz − uz,Ψ(·, γ̂nz )〉 dz

∣

∣

∣

2
]

,

An
2 (t) := E

[

∣

∣

∣

∫ t
0 h(t− z) 〈uz,Ψ(·, γ̂nz )−Ψ(·, γ(z))〉 dz

∣

∣

∣

2
]

,

An
3 (t) := E

[

∣

∣

∣

∫ t
0 h(t− z)dŴ n

z (1)
∣

∣

∣

2
]

.

- Study of An
1 (t). Using that ûnz − uz = n−1/2ηz and Ψ belongs to C2

b , we have

An
1 (t) ≤ t2h∞(t)2n−1

E

[

sup
z∈[0,t]

||ηz ||2−2,1

]

||Ψ||2C2
b
.t n

−1,

where we used (49).
- Study of An

2 (t). Using the Lipschitz continuity of Ψ, we have

An
2 (t) ≤ th∞(t)2Lip(Ψ)

∫ t

0
E

[

|γ̂nz − γ(z)|2
]

dz .t

∫ t

0
E

[

|γ̂nz − γ(z)|2
]

dz,

which is convenient to apply the Grönwall-type Lemma B.1.
- Study of An

3 (t). By definition of the bracket of Ŵ n, we have

An
3 (t) =

∫ t

0
h(t− z)2n−1 〈uz,Ψ(·, γ(z))〉 dz .t n

−1.
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As expected, applying Lemma B.1 gives E[|γ̂nt − γ(t)|2] .t n
−1, that is Equation

(99). Then, gathering the two steps above proves (100).

Then, let us show how to use (100) in order to prove (98). We have,

γ̌nt =

∫ t

0
h(t− z)

[

〈ûnz ,Ψ(·, γ(z))〉 +
〈

uz,
∂Ψ

∂y
(·, γ(z))

〉

n−1/2Γz

]

dz

+

∫ t

0
h(t− z)dŴ n

z (1).

Hence we use the decomposition

E [|γ̂nt − γ̌nt |] ≤ 3(Bn
1 (t) +Bn

2 (t) +Bn
3 (t)),

where


















Bn
1 (t) := E

[∣

∣

∣

∫ t
0 h(t− z) 〈ûnz ,Ψ(·, γ̂nz )−Ψ(·, γ̌nz )〉 dz

∣

∣

∣

]

,

Bn
2 (t) := E

[∣

∣

∣

∫ t
0 h(t− z)

〈

ûnz ,Ψ(·, γ̌nz )−Ψ(·, γ(z))− ∂Ψ
∂y (·, γ(z)) Γz√

n

〉

dz
∣

∣

∣

]

,

Bn
3 (t) := E

[∣

∣

∣

∫ t
0 h(t− z)

〈

ûnz − uz,
∂Ψ
∂y (·, γ(z))

〉

Γz√
n
dz
∣

∣

∣

]

.

- Study of Bn
1 (t). Using Lemma VI.5, Cauchy-Schwarz inequality and finally (49)

and the a priori rough bound (100), we have

Bn
1 (t) ≤ h∞(t)

∫ t

0
E

[(

1 +
C√
n
||ηt||−2,1

)

||Ψ||C3
b
|γ̂nz − γ̌nz |

]

dz,

.t

∫ t

0
E [|γ̂nz − γ̌nz |] dz + n−1/2

∫ t

0
E
[

||ηt||2−2,1

]1/2
E
[

|γ̂nz − γ̌nz |2
]1/2

dz

.t

∫ t

0
E [|γ̂nz − γ̌nz |] dz + n−1

where we used (49).
- Study of Bn

2 (t). From Taylor’s inequality it follows that

∥

∥

∥

∥

Ψ(·, γ̌nz )−Ψ(·, γ(z)) − ∂Ψ

∂y
(·, γ(z)) Γz√

n

∥

∥

∥

∥

C2
b

≤ ||Ψ||C4
b

|Γz|2
n

,

and so, using Lemma VI.5, Cauchy-Schwarz inequality and finally (49) and (57), we
have

Bn
2 (t) ≤ h∞(t)

∫ t

0
E

[(

1 +
C√
n
||ηt||−2,1

)

||Ψ||C4
b

|Γz|2
n

]

dz,

.t n−1

∫ t

0
E
[

|Γz|2
]

dz + n−3/2

∫ t

0
E
[

||ηz||2−2,1

]1/2
E
[

|Γz|4
]1/2

dz,

.t n−1.

- Study of Bn
3 (t). By definition of ûn = u− n−1/2η and doing as above, we have

Bn
3 (t) ≤ h∞(t)n−1

∫ t

0
E

[

||ηz||−2,1

∥

∥

∥

∥

∂Ψ

∂y
(·, γ(z))

∥

∥

∥

∥

C2
b

|Γz|
]

dz .t n
−1.

Finally, applying Lemma B.1 gives (98) and ends the proof.
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We are now in position to prove Proposition VI.4. Let us use the decomposition

E [|rnt (ϕ)|] ≤
∫ t

0
An

1 (z) +An
2 (z) +An

3 (z)dz,

where














An
1 (t) := E

[∣

∣

∣

〈

ûnt − ut, (Lt − L̂n
t )ϕ
〉∣

∣

∣

]

,

An
2 (t) := E

[∣

∣

∣

〈

ut,
[

Ψ(·, γ(t)) + ∂Ψ
∂y (·, γ(t))n−1/2Γt −Ψ(·, γ̌nt )

]

Rϕ
〉∣

∣

∣

]

,

An
3 (t) := E [|〈ut, [Ψ(·, γ̌nt )−Ψ(·, γ̂nt )]Rϕ〉|] .

- Study of An
1 (t). Using that û

n
t −ut = n−1/2ηt, Ψ belongs to C3

b , and an inequality
similar to the second line of (77), we have

An
1 (t) .t n

−1/2
E

[

||ηt||−2,1||Ψ||C3
b
|γ(t)− γ̂nt |

]

||ϕ||2,1.

Cauchy-Schwarz inequality with Equations (49) and (99) gives An
1 (t) .t n

−1.
- Study of An

2 (t). From Taylor’s inequality and then (31) and (57), it follows that

An
2 (t) .t n

−1||Ψ||C2
b
E
[

|Γt|2
]

||ϕ||∞ .t n
−1||ϕ||2,1.

- Study of An
3 (t). Finally, using (98) and then (31), we have

An
3 (t) .t Lip(Ψ)E [|γ̂nt − γ̌nt |] ||ϕ||∞ .t n

−1||ϕ||2,1.

Gathering the computations above, we prove the first part of Proposition VI.4. For
the second part, let us use the decomposition,

E

[∣

∣

∣
DMt(ϕ1, ϕ2)− D̂Mt(ϕ1, ϕ2)

∣

∣

∣

]

≤ 1

n

∫ t

0
Bn

1 (z) +Bn
2 (z)dz,

where
{

Bn
1 (t) := E [|〈ut, [Ψ(·, γ̂nt )−Ψ(·, γ(t))]ϕ1ϕ2〉|] ,

Bn
2 (t) := n−1/2

E [|〈ηt,Ψ(·, γ̂nt )ϕ1ϕ2〉|] .
- Study of Bn

1 (t). Using the Lipschitz continuity of Ψ and then (99), we have

Bn
1 (t) ≤ Lip(Ψ)||ϕ1||∞||ϕ2||∞E [|γ̂nt − γ(t)|] .t n

−1/2||ϕ1||∞||ϕ2||∞.

- Study of Bn
2 (t). Using Lemma IV.1, we have,

|〈ηt,Ψ(·, γ̂nt )ϕ1ϕ2〉| ≤ C||ηt||−2,1||Ψ(·, γ̂nt )||C2
b
(R+)||ϕ1ϕ2||2,1.

Yet, ||Ψ(·, γ̂nt )||C2
b
(R+) ≤ |Ψ||C2

b
(R+×R) and, by combining Lemma IV.1 and (31),

||ϕ1ϕ2||2,1 ≤ C||ϕ1||C2
b
||ϕ2||2,1 ≤ C||ϕ1||3,1||ϕ2||3,1. Hence, Equation (49) gives

Bn
2 (t) .t n

−1/2||ϕ1||3,1||ϕ2||3,1. Gathering the computations above ends the proof.

B Lemmas

The following lemma is a generalization of the standard Grönwall lemma.

Lemma B.1. Let f, g : R+ → R+ be two locally bounded non-negative measurable
functions. Assume that for all t ≥ 0,

f(t) .t g(t) +

∫ t

0
f(s)ds. (101)

Then, for any θ ≥ 0, supt∈[0,θ] f(t) .θ supt∈[0,θ] g(t).
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Proof. For a fixed θ, Equation (101) implies that there exists a constant C such
that for all t ≤ θ, f(t) ≤ C(supt∈[0,θ] g(t) +

∫ t
0 f(s)ds). Hence, standard Grönwall’s

inequality gives supt∈[0,θ] f(t) ≤ C supt∈[0,θ] g(t)e
Cθ which ends the proof.

The next lemma proves continuity in time for the law of the age process associ-
ated with a point process.

Lemma B.2. Assume that N admits the bounded F-intensity λt and satisfy As-
sumption (Au0∞). Denote by (St)t≥0 its associated age process. Then, the law of St

denoted by wt is such that t 7→ wt belongs to C(R+,W−2,α
0 ) for any α > 1/2.

Proof. This continuity result comes from the fact that the probability that N has a
point in an interval goes to 0 as the size of the interval goes to 0. Fix α > 1/2 and
let t, t′ be positive real numbers. First, remark that St+t′ = St + t′ as soon as there
is no point of N in the interval [t, t+ t′] and so one has for all ϕ in W2,α

0 ,

|ϕ(St+t′)− ϕ(St)| ≤ ||DSt+t′,St
||−2,α||ϕ||2,α + (|ϕ(St+t′ )|+ |ϕ(St)|)1N([t,t+t′])6=0.

The bound obtained in Lemma IV.3 for the operator Dx,y is too rough here. We
need a finer bound: it holds that there exists a constant C such that ||Dx,y||−2,α ≤
C|x − y|(1 + max(|x|α, |y|α)). Indeed, by density, let us assume that ϕ is C∞ with
compact support and remark that

|ϕ(x)− ϕ(y)| ≤ |x− y| sup
z, |z|≤max(|x|,|y|)

|ϕ′(z)| ≤ |x− y|(1 +max(|x|α, |y|α))||ϕ||C1,α

≤ C|x− y|(1 + max(|x|α, |y|α))||ϕ||2,α,

where we used (31) in the last inequality. Since (Au0∞) is satisfied, St+t′ and St are
upper bounded by MS0 + t+ t′ so that

{

||DSt+t′,St
||−2,α ≤ Ct′(1 + (MS0 + t+ t′)α)

(|ϕ(St+t′ )|+ |ϕ(St)|) ≤ 2(1 + (MS0 + t+ t′)α)||ϕ||C0,α .

Hence, (31) gives

|ϕ(St+t′)− ϕ(St)| ≤ C(t′ + 1N([t,t+t′])6=0)||ϕ||2,α.

Yet, P (N([t, t+ t′]) 6= 0) ≤ E [N([t, t+ t′])] = E[
∫ t+t′

t λzdz] goes to 0 as t′ goes to 0.
The same argument for t′ < 0 gives continuity.

The three lemmas below are used to get the limit equation satisfied by the
fluctuations.

Lemma B.3. Let h be a locally bounded function and (ϕt)t≥0 be a family of test
functions in W2,α

0 such that t 7→ ||ϕt||2,α is locally bounded. Then, F : g 7→
∫ t
0 h(t−

z) 〈g(z), ϕz〉 dz is a mapping from D(R+,W−2,α
0 ) to C(R+,R) which is continuous at

every point g0 in C(R+,W−2,α
0 ).

Proof. Let (gn)n≥1 be any sequence such that gn → g0 for the Skorokhod topology.
Since g0 is continuous, the convergence also holds true for the local uniform topology
[21, Proposition VI.1.17.]. We have for all θ ≥ 0,

sup
t∈[0,θ]

|F (gn)(t)− F (g0)(t)| ≤ sup
z∈[0,θ]

h(z) sup
z∈[0,θ]

||gn(z)− g0(z)||−2,α sup
z∈[0,θ]

||ϕz ||2,α.

(102)
Yet, the right hand side of (102) goes to 0 as n goes to infinity, which ends the
proof.
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Lemma B.4. Assume that (gn)n≥1 converges to g for the Skorokhod topology in
D(R+,R). If h satisfies (Ah

Höl) and f is locally bounded, then

∫ t

0
h(t− z)f(z)gn(z)dz −−−−−→

n→+∞

∫ t

0
h(t− z)f(z)g(z)dz,

as functions of t in C(R+,R) for the local uniform topology. In particular, the
application F from D(R+,R) to D(R+,R) defined by

F (g)(t) :=

∫ t

0
h(t− z)f(z)g(z)dz,

is continuous.

Proof. Let cn(t) :=
∫ t
0 h(t−z)f(z)gn(z)dz and c(t) :=

∫ t
0 h(t−z)f(z)g(z)dz. Assume

for a while that h(0) = 0 and extend the function h to the whole real line by setting
0 on the negative real numbers. Then, for all t, δ ≥ 0,

|cn(t+ δ)− cn(t)| ≤
∫ t+δ

0
|h(t+ δ − z)− h(t− z)||f(z)||gn(z)|dz

≤ (t+ δ)Höl(h) sup
z∈[0,t+δ]

|f(z)| sup
z∈[0,t+δ]

|gn(z)|δβ(h).

Yet, since gn is convergent, we have supn≥1 supz∈[0,t+δ] |gn(z)| < +∞ (see [21, Propo-
sition VI.2.4.] for instance) which implies that for all θ ≥ 0,

sup
n≥1

sup
t∈[0,θ]

|cn(t+ δ)− cn(t)| → 0 as δ → 0.

Hence, the sequence (cn)n≥1 is uniformly continuous. Moreover, for all n ≥ 1,
cn(0) = 0 and the uniform continuity gives the uniform boundedness

sup
n≥1

sup
t∈[0,θ]

|cn(t)| < +∞.

Then, Ascoli-Arzela theorem implies that the sequence (cn)n≥1 is relatively compact.
It only remains to identify the limit for all t ≥ 0. Yet, as a consequence of the
dominated convergence and the fact that for almost every z, gn(z) → g(z), we have
∫ t
0 h(t− z)f(z)gn(z)dz →

∫ t
0 h(t− z)f(z)g(z)dz.

Now, if h(0) 6= 0, one can use the following decomposition,

cn(t) =

∫ t

0
(h(t− z)− h(0))f(z)gn(z)dz + h(0)

∫ t

0
f(z)gn(z)dz.

The first term is convergent thanks to what we have done in the case h(0) = 0
whereas the convergence of the second one is simpler and left to the reader.
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