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Chapter 1
Optimal control of slender microswimmers

M. Zoppello, A. DeSimone, F. Alouges, L. Giraldi, P. Martinon

Abstract We discuss a reduced model to compute the motion of slender swimmers
which propel themselves by changing the curvature of their body. Our approach is
based on the use of Resistive Force Theory for the evaluation of the viscous forces
and torques exerted by the surrounding fluid, and on discretizing the kinematics
of the swimmer by representing its body through an articulated chain of N rigid
links capable of planar deformations. The resulting system of ODEs governing the
motion of the swimmer is easy to assemble and to solve, making our reduced model
a valuable tool in the design and optimization of bio-inspired artificial microdevices.
We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for
almost every set of stick lengths. As a direct result, there exists an optimal swimming
strategy to reach a desired configuration in minimum time. Numerical experiments
for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a
sequence of identical strokes. Our results indicate that this candidate for an optimal
stroke indeed gives a better displacement speed than the classical Purcell stroke.
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1.1 Mathematical setting of the problem

In this section we describe the kinematics of the so called N-link swimmer, in-
spired by the Purcell’s 3-link swimmer. A discrete representation od the swimmer’s
curvature is provided by he angles between successive inks. These angles are con-
sidered as freely prescribed shape parameters. We then write the balance of total
viscous force and torque, i.e. the equations of motion, solving for the time evolution
of position and orientation of the swimmer in response to a prescribed history of
(concentrated) curvatures along the swimmer’s body.

1.1.1 Kinematics of the N-link swimmer

Here we are interested in essentially one–dimensional swimmers moving in a plane.
This setting is suitable for the study of slender, one-dimensional swimmers explor-
ing planar trajectories. The general case is a bit more involved because of the non-
additivity of three–dimensional rotations, see e.g. [1], but it can be handled with
similar techniques.

Our swimmer is composed of N rigid links with joints at their ends (see Fig. 1.1),
moving in the plane (ex,ey) (2d lab-frame). We set ez := ex× ey. The i-th link is the
segment with end points xi and xi+1. It has length Li > 0 and makes an angle θi with
the vector ex. The lenght of the sticks is chosen such that the size of the swimmer is
of order of µm. We define by xi := (xi,yi) (i = 1, · · · ,N) the coordinates of the first
end of each link. Notice that, for i ∈ {2 · · ·N}, xi is a function of x1, θk and Lk, with
k ∈ {1 · · · i−1}:

xi := x1 +
i−1

∑
k=1

Lk

(
cos(θk)
sin(θk)

)
. (1.1)

The swimmer is described by two kind of variables:

• the state variables which denote the position and the orientation of one selected
link, labeled as the i∗-th one;

• the shape variables which describe the relative angles between successive links.
For each link with i > i∗, this is the angle relative to the preceding one, denoted
by αi = θi− θi−1, for i∗ < i ≤ N. For i < i∗ this is the the angle relative to the
following one, denoted by αi = θi+1−θi, for 1≤ i < i∗.

For example, if the triplet (x1,θ1) is the state of the swimmer then the vector
(α2 = θ2−θ1, · · · ,αN = θN−θN−1) describes the shape of the swimmer. We will
use these coordinates in the rest of the chapter.
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ey	
  

Fig. 1.1 Coordinates of the N-link swimmer

1.1.2 Equations of motion

The dynamics of the swimmer is governed by a system of three ODEs.
This system represents the Newton laws, in which inertia is neglected, namely{

F = 0 ,
ez ·Tx1 = 0 , (1.2)

where F is the total force that the fluid exerts on the swimmer and Tx1 is the corre-
sponding total torque computed with respect to the point x1.

In what follows we use the local drag approximation of Resistive Force Theory
(RTF), to couple the fluid and the swimmer. According to this approximation the
hydrodinamic forces are linear in the velocities of each point. More precisely denot-
ing by s the arc length coordinate on the i-th link (0≤ s≤ Li), by vi(s) the velocity

of the corresponding point, and calling ei =

(
cos(θi)
sin(θi)

)
and e⊥i =

(
−sin(θi)
cos(θi)

)
the

unit vectors in the directions parallel and perpendicular to the i-th link respectively,
we can write xi(s) = xi + sei. Differentiating, we obtain,
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vi(s) = ẋi + sθ̇ie⊥i . (1.3)

According to RTF, the density of the force fi acting on the i-th segment depends
linearly on the velocity and can be written as

fi(s) :=−ξ (vi(s) · ei)ei−η

(
vi(s) · e⊥i

)
e⊥i , (1.4)

where ξ and η are the drag coefficients in the directions of ei and e⊥i respectively,
measured in N sm−2 . We thus obtain

F =
N

∑
i=1

∫ Li

0
fi(s)ds ,

ez ·Tx1 = ez ·
N

∑
i=1

∫ Li

0
(xi(s)−x1)× fi(s)ds .

(1.5)

Using (1.3) and (1.4) into (1.5), the total force and torque can be expressed as

F =−
N

∑
i=1

Liξ (ẋi · ei)ei +

(
Liη(ẋi · e⊥i )+

L2
i

2
ηθ̇i

)
e⊥i , (1.6)

and

ez ·Tx1 = −
N

∑
i=1

L2
i

2
η

(
ẋi · e⊥i

)
+

L3
i

3
ηθ̇i

+ (xi−x1)×
(

Liξ (ẋi · ei)ei +

(
Liη(ẋi · e⊥i )+

L2
i

2
ηθ̇i

)
e⊥i

)
· ez . (1.7)

Moreover, the differentiation of (1.1) gives

ẋi = ẋ1 +
i−1

∑
k=1

Lkθ̇ke⊥k , (1.8)

which is linear in ẋ1 and (θ̇k)1≤k≤N . This implies that also (1.6) and (1.7) are linear
in ẋ1 and θ̇i for i ∈ [1 · · ·N], and therefore system (1.2) reads

(
F

ez ·Tx1

)
= M(θ1, · · · ,θN)


ẋ1
θ̇1
θ̇2
...

θ̇N

=

 0
0
0

 . (1.9)

We point out that for all i ∈ {2, · · · ,N}, αi = θi−θi−1, equations (1.6) and (1.7)
can be written using the relative angles (αi)i=2,···,N instead of the variables (θi)2≤i≤N
recalling that
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θi = θi−1 +αi , i = 2, · · · ,N . (1.10)

To this end, we introduce the matrix C defined by

C =



1 0 · · · · · · · · · · · · 0

0 1
. . . . . . . . . . . .

...

0 0 1
. . . . . .

...

0 0 −1
. . . . . .

...
...

... 0
. . . . . . 0

...
...

...
. . . . . . . . . 0

0 0 0 · · · 0 −1 1


(1.11)

and obtain

C


ẋ1
θ̇1
θ̇2
...

θ̇N

=


ẋ1
θ̇1
α̇2
...

α̇N

 . (1.12)

Thus, by setting

N(θ1,α2, · · · ,αN) := M(θ1,θ2(θ1,α2, · · · ,αN), · · · ,θN(θ1,α2, · · · ,αN))C−1,
(1.13)

system (1.9) can be rewritten in the equivalent form

N(θ1,α2, · · · ,αN)


ẋ1
θ̇1
α̇2
...

α̇N

=

0
0
0

 . (1.14)

We observe that we can decompose the 3× (N + 2) matrix N(θ1,α2, · · · ,αN) in
blocks into a 3× 3 sub-matrix A(θ1,α2, · · · ,αN) and a 3× (N − 1) sub-matrix
B(θ1,α2, · · · ,αN), according to

N = (A |B) . (1.15)

The matrix A is known as the “grand-resistance-matrix” of a rigid system evolving
at frozen shape, i.e., with α̇i ≡ 0, i = 2, . . . ,N, see [8]. it can be easily verified that it
is symmetric and negative definite [8] and hence invertible. Therefore the equations
of motion of the swimmer turn out to be affine system without drift. Indeed, solving
(1.14) for (ẋ1, θ̇1) leads to
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(
ẋ1
θ̇1

)
=−A−1 (θ1,α2, · · · ,αN)B(θ1,α2, · · · ,αN)

 α̇2
...

α̇N


which can be rewritten in the form(

ẋ1
θ̇1

)
=

N

∑
i=2

g̃i (θ1,α2, · · · ,αN) α̇i , (1.16)

where the N − 1 vector fields {g̃i}
N
i=2, are the columns of the 3× (N − 1) matrix

−A−1B.
The equation above encode the link between the displacement (both translation

and rotation) of the swimmer and its deformation. More precisely, prescribing the
shape functions t 7→ (α2, · · · ,αN)(t), the motion of the swimmer is obtained by solv-
ing the system (1.16). In what follows we call stroke a time-periodic shape change,
i.e., the functions t 7→ αi(t), i = 2, · · · ,N are all periodic, with the same period.

In order to solve (1.16) numerically, we need to compute the vector fields g̃i
explicitly. To this end, we notice that the total force F and the total torqueTx1 depend
linearly on (ẋi)1≤i≤N and (θ̇i)1≤i≤N and that these quantities depend in turn linearly
on (ẋ1, θ̇1, · · · , θ̇N) in view of (1.8). Therefore, we can rewrite (1.6) and (1.7) as

F = P1



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P1Q


ẋ1
θ̇1
...

θ̇N

 , ez ·Tx1 = P2



ẋ1
...

ẋN
−−
θ̇1
...

θ̇N


= P2Q


ẋ1
θ̇1
...

θ̇N

 , (1.17)

where
P1 :=

(
−m1 · · · −mN | η

2 L2
1e⊥1 · · ·

η

2 L2
Ne⊥N

)
with mi := Li(ξ ei⊗ ei +ηei

⊥⊗ ei
⊥) for i = 1 · · ·N,

P2 :=
(
· · · −(L2

i ηe⊥i +(xi−x1)×mi)
T · · · | · · · ηL2

i (
Li
3 +

(xi−x1)×e⊥i ·ez
2 ) · · ·

)
,

and, finally,
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Q =



1 0 0 0 · · · 0
1 L1e⊥1 0 0 · · · 0
1 L1e⊥1 L2e⊥2 0 · · · 0
...

...
...

. . . · · · 0
1 L1e⊥1 L2e⊥2 · · · LN−1e⊥N−1 0
0
... Id
0


.

We thus have that the matrix M in (1.13) is

M =

(
P1Q
P2q

)
and we can compute N = C−1M, where C−1 is explicitly given as

C−1 =



1 0 · · · · · · · · · · · · 0

0 1
. . . . . . . . . . . .

...

0 0 1
. . . . . .

...

0 0 1
. . . . . .

...
...

... 1
. . . . . . 0

...
...

...
. . . . . . . . . 0

0 0 1 · · · 1 1 1


. (1.18)

Matrices A and B are obtained from the columns of N as in (1.15) and, finally, the
vectors g̃i are simply the columns of −A−1B. Finally the dynamics of the swimmer
is expressed as 

α̇2
...

α̇N
ẋ1
θ̇1

=
N−1

∑
i=1

(
bi

g̃i (θ1,α2, · · · ,αN)

)
α̇i+1 . (1.19)

where bi is the i−th vector of the canonical basis of RN−1.

1.2 Applications of the N-link swimmer

The N−link swimmer model is very useful and can be used as a discrete approxima-
tion of a swimmer’s flexible tail whose shape is controlled by curvature. We show in
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this section, how curvature control can be implemented in our model in a concrete
case reproducing the motion of a sperm cell analyzed in [6].

1.2.1 Curvature approximation

Here, we describe the method to approximate the curvature of a beating tail with the
discrete N link swimmer model. Let L > 0 be the total length of the flexible tail and
let r(s, t) be the position, in the body frame of the swimmer (see Figure 1.2), at time
t > 0 of the point of arc-length coordinate s ∈ [0,L] along the tail. We also define
the angle between the tangent vector to the tail at the point r(s, t) and the x−axis in
the lab-frame as Ψ(s, t). It is wll known that the derivative of Ψ(s, t) with respect to
s is the local curvature of the curve.

We discretize the swimmer’s tail into N equal parts of lenght Li = L/N, and define
the angles (θi)1≤i≤N by averaging the functionΨ(s, t) on the interval [iL/N,(i+1)L/N]

θi(t) =
N
L

∫ iL
N

(i−1)L
N

Ψ(s, t)ds , i = 1 . . .N . (1.20)

Finally, differentiating (1.20) with respect to time we get the angular velocities θ̇i,
i = 1, · · · ,N,

θ̇i(t) =
N
L

∫ iL
N

(i−1)L
N

∂Ψ(s, t)
∂ t

ds , i = 1 . . .N . (1.21)

−2 0 2 4 6 8
x 10−5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10−5

r(s,t)

e1

e⊥1

Ψ(s, t)

Fig. 1.2 The discrete approximation by the N-link swimmer (blue curve), N = 15 of a continuous
tail (red curve).
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1.2.2 N-link approximation of sperm cell swimmer

We now focus on reproducing with our model the motion of a sperm cell and com-
pare to the one reported in [6]. To preform this comparison, we have to to take into
account the presence of the head of the sperm cell. In order to do this, we modify
the first segment of the N−link swimmer so that it has its own translational and
rotational viscous drag. Indeed, we denote by x1 the position of the central point of
the head and θ1 the angle that the direction of first segment (attached to the head)
(e1) makes with the horizontal axis. The movement of the head generates a viscous
force and torque that are given by

Fhead =−ξhead(ẋ1 · e1)e1−ηhead(ẋ1 · e⊥1 )e⊥1 , (1.22)

and
Thead · ez =−ζhead θ̇1 . (1.23)

We also fix that the length of the head is Lhead = 10 µm and we assume again that L is
the length of the tail which is attached to one of the extremities of the head segment.
As suggested in [11], the wave profile along the tail of the sperm cell swimmer was
obtained from experimental data, keeping only the two first Fourier modes, and we
use the method described before in section 1.2.1 to approximate the tail’s motion.

More precisely, we describe the shape of the wave shown in Fig. 1.3 by

r(s, t) =
Lhead

2
e1(t)+

∫ s

0
cos(Ψ(u, t))e1(t)+ sin(Ψ(u, t)e⊥1 (t)du . (1.24)

where
Ψ(s, t) = K0s+2A0scos(ωt− 2πs

λ
) . (1.25)

In the previous equations, K0 represents the mean flagellar curvature while ω , λ and
A0 are the frequency, the wave-length and the amplitude of the wave respectively.
Following [6], in the next numerical simulations we use the following values for the
wave parameters: A0 = 15.2 ·103 rad m−1, K0 = 19.1 ·103 rad m−1, ω = 200rad ,s−1

and λ = 71.6 ·10−6 m.
Except the first segment, we discretize the rest of the tail with N−1 segments of

extremities (xi,xi+1) for i = 2, · · · ,N. We use the method described in section 1.2.1,
to approximate the beating wave and obtain the shapes shown in Figure 1.4 for one
period (0≤ t ≤ 2π

ω
).
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−2 0 2 4 6 8
x 10−5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10−5

r(s,t)

e1

e⊥1

Ψ(s, t)

LHead

Fig. 1.3 The prescribed continuous wave (red curve) and its discrete approximation by the N-link
swimmer (blue curve), N = 15.

Fig. 1.4 Flagellar beating during one period. The red curve represents the tail as described by
formula 1.24 while the blue links describe the tail according to our discrete approximation.

With the above notation, the equations of motion become
F = Fhead +

N

∑
i=1

∫ Li

0
fi(s)ds ,

Tx1 = Thead +
N

∑
i=1

∫ Li

0
fi(s)× (xi(s)−x1) ds .

(1.26)

where Li = L/N is the length of each segment (xi,xi+1) for i = 2, · · · ,N, while the
first segment, also of size L1 = L/N is given by (x1 +

Lhead
2 e1,x2).

Since the two previous formulas (1.26) are linear in θ̇1 and ẋ1, we end up with
the same compact expression of the equations of motion (1.16). More precisely, the
matrix P1 and P2 defined in system (1.17) are replaced by
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Phead
1 :=

(
−ξheade1⊗ e1 +ηheade⊥1 ⊗ e⊥1 −m1 · · · −mN | η

2 L2
1e⊥1 · · ·

η

2 L2
Ne⊥N

)
and

Phead
2 :=

(
−p1 · · · −pN | −ζhead +q1 q2 · · · qN

)
,

with mi := Li(ξ ei⊗ ei +ηe⊥i ⊗ e⊥i ) for i = 1 · · ·N, and pi := (L2
i ηe⊥i +(xi−x1)×

mi)
T , qi := ηL2

i (
Li
3 +

(xi−x1)×e⊥i ·ez
2 ), for i = 1 · · ·N.

Moreover we use the following values for the drag coefficients

• for the head, ξhead = 40.3 ·103 pN sm−1, ηhead = 46.1 ·103 pN sm−1, and ζhead =
0.84 ·10−6 pN sm

• for the links rcomposing the tail, ξ = 0.38 ·109 pN sm−2, η

ξ
= 1.89.

The graphs in Figures 1.5 and 1.6 below, summarize our results that are in perfect
agreement with those of [6] (see Figure 3 for the trajectory and Figure 4 for the
various speeds).
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Fig. 1.5 Above translational speed of the swimmer head in the tangent and perpendicular direc-
tions, and below rotational speed.



12 M. Zoppello, A. DeSimone, F. Alouges, L. Giraldi, P. Martinon

−3 −2 −1 0 1
x 10−5

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10−5

x1(t) (m)

y1
(t)

 (m
)

Fig. 1.6 Trajectory of the head of the sperm-cell during one period.

1.3 Controllability

This section is devoted to the controllability of the N-link swimmer, which is its
ability to move between two fixed configurations prescribing (controlling) its shape
parameters. More precisely we prove that there exist control shape functions which
allow the swimmer to move everywhere in the plane.

Theorem 1.1. Consider the N-link swimmer described in section 1.1 evolving in
the space R2. Then for almost every lengths of the sticks (Li)i=1,···,N and for
any initial configuration (xi

1,θ
i
1,α

i
2, · · · ,α i

N) ∈ R2 × [0,2π]N , any final configu-
ration (x f

1 ,θ
f

1 ,α
f

2 , · · · ,α
f

N) and any final time T > 0, there exists a shape func-
tion (α2, · · · ,αN) ∈ W 1,∞([0,T ]), satisfying (α2, · · · ,αN)(0) = (α i

2, · · · ,α i
N) and

(α2, · · · ,αN)(T ) = (α f
2 , · · · ,α

f
N) and such that if the self-propelled swimmer starts in

position (xi
1,θ

i
1) with the shape (α i

2, · · · ,α i
N) at time t = 0, it ends at position (x f

1 ,θ
f

1 )

and shape (α f
2 , · · · ,α

f
N) at time t = T by changing its shape along (α2, · · · ,αN)(t).

Proof. The proof of the theorem is divided into three steps. First of all, we show
the analyticity of the dynamics vector fields. Then, we prove the controllability of
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the 3-link swimmer (Purcell swimmer), exploiting the Chow theorem and the Orbit
theorem. Finally, we generalize the result to the case of N links. We start by recalling
some classical results used in the proof.

1.3.1 Classical results in geometric control

Theorem 1.2. (Chow (see [5])) Let m,n ∈N and let (gi)i=1,n be C ∞ vector fields on
Rn. Consider the control system, of state trajectory q,

q̇ =
m

∑
i=1

uigi(q), (1.27)

with input function u = (ui)i=1,m ∈ L∞ ([0,+∞[,BRn(0,δ )) for some δ > 0.
Let O an open and connected set of Rn and assume that

Lieq (g1, ...gm) = Rn q ∈ O

Then the system (1.27) is controllable, i.e., for every q0, q1 in O and for every T > 0
exists u ∈ L∞((0,T ),BRn(0,δ )) such that q(0) = q0 and q(T ) = q1 and q(t) ∈ O
for every t ∈ [0,T ].

If the vector fields are analytic, we can apply the Orbit Theorem to extend the di-
mension property of the Lie algebra defined by the dynamics vector fields on the
whole orbit.

Theorem 1.3. (Orbit (see [9]) Let M be an analytic manifold, and F a family of
analytic vector fields on M . Then

a)each orbit of F is an analytic submanifold of M , and
b) if N is an orbit of F , then the tangent space of N at x is given by Liex(F ). In

particular the dimension of Liex(F ) is constant as x varies on N.

In our case, the manifold in which the state and the shape of the swimmer evolve
is defined by M := [0,2π]N−1×R2× [0,2π]. The vector fields of the dynamics are
denoted by

gi (θ1,α2, · · · ,αN) :=
(

bi
g̃i (θ1,α2, · · · ,αN)

)
.

We say that the Lie algebra of the family of vector fields {gi}i=1,···,N−1 is fully
generated at the point q = (α2, · · · ,αN ,x1,y1,θ1) ∈M if the tangent space of the
manifold, TqM , is equal to the Lie algebra Lie((gi))i=1,···,N−1)(q).
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1.3.2 Regularity

We first prove that the vector fields (g̃i) are analytic on M . From (1.6) and (1.7), the
entries of the matrices A and B are analytic functions on [0,2π]N . Since the coeffi-
cients of A−1 are obtained by multiplication and division of those of A, and because
det(A) 6= 0 (A is symmetric and negative defined), the entries of A−1 remain ana-
lytic functions on [0,2π]N . Thus, the (g̃i)i=1,···,N := A−1B are analytic on [0,2π]N .

1.3.3 Controllability of the Purcell Swimmer (N=3)

Setting N = 3 in (1.19) the dynamics becomes
α̇2
α̇3
ẋ1
ẏ1
θ̇1

= g1(θ1,α2,α3)α̇2 +g2(θ1,α2,α3)α̇3 . (1.28)

To prove the controllability of this system we want use Theorem 1.2.
Therefore we compute the Lie algebra of the vector fields g1 and g2 for any θ1 ∈
[0,2π] at (α2,α3) = (0,0), for a swimmer whose sticks have the length L1 = L3 = L
and L2 = 2L where L > 0. First we have

g1 (θ1, 0, 0) =



1
0

9Lsin(θ1)
64

− 9Lcos(θ1)
64

27
32


g2 (θ1, 0, 0) =



0
1

− 7Lsin(θ1)
64

7Lcos(θ1)
64

− 5
32


Then, the iterated Lie brackets are equals to

[g1,g2](θ1,0,0) =
(

0,0, 7L(η−ξ )cos(θ1)
128ξ

, 7L(η−ξ )sin(θ1)
128ξ

,0
)T

,

[g1, [g1,g2]](θ1,0,0) =



0
0

− L(126η2+31ξ η−76ξ 2)sin(θ1)

4096ηξ

L(126η2+31ξ η−76ξ 2)cos(θ1)

4096ηξ

− 3(9η2−4ξ η+4ξ 2)
2048ηξ


,
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[g2, [g1,g2]](θ1,0,0) =



0
0

L(36η2−103ξ η+148ξ 2)sin(θ1)

4096ηξ

− L(36η2−103ξ η+148ξ 2)cos(θ1)

4096ηξ

3(9η2−4ξ η+4ξ 2)
2048ηξ


.

To see if they are linearly independent we compute the determinant of the matrix
whose columns are the 5 previous vector fields that is equal to

21L2(η−ξ )2(45η +112ξ )
(
9η2−4ηξ +4ξ 2

)
536870912η2ξ 3 . (1.29)

Since the drag coefficients ξ and η are positive, this determinant is null only
when ξ = η . This would imply an isotropic drag, as we would have if we use
spheres instead of sticks. Thus in our case the Lie algebra of the vector fields g1
and g2 is fully generated at the point (θ1,0,0), for any θ1 ∈ [0,2π].

Notice that any point (α2,α3,x1,θ1)∈ [0,2π]2×R2× [0,2π] belongs to the orbit
of the point (0,0,x1,θ1). Since the vector fields are analytic, the Orbit Theorem 1.3
guarantees that the Lie algebra of g1 and g2 is fully generated everywhere in the
manifold M = [0,2π]2×R2× [0,2π].

To conclude, by Chow Theorem (1.2) we get the controllability of the Purcell
swimmer.

1.3.4 Controllability of the N-link swimmer

The third step is to generalize the previous controllability result to the N-link swim-
mer, whose dynamics is described by (1.19). It is easy to see that the vector fields gi
generate the tangent space of the manifolds [0,2π]N−1,

Span(g1, · · · ,gN−1) = RN−1 . (1.30)

We can obtain the vector fields g1 and g2 starting from the Purcell’s one defined
in (1.28) as follows: we add N−2 rows of zeroes, take sticks of null length Li = 0
for 4≤ i≤ N−1, while keeping the three sticks L1 = L3 = L and L2 = 2L.
In this case, for any (x1,θ1)∈R2×[0,2π], subsection 1.3.3 shows that g1(θ1,0, · · ·0),
g2(θ1,0, · · ·0) and their iterated Lie brackets [g1,g2](θ1,0, · · ·0), [g1, [g1,g2]](θ1,0, · · ·0),
and [g2, [g1,g2]](θ1,0, · · ·0) are linearly independent.
Therefore, the Lie algebra of the family (gi)i=1,···,N−1 at the point (θ1,0, · · · ,0) is
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equal to the tangent space T(0,···,0,x1,θ1)M . Then, by analyticity of the vector fields
gi, the Orbit Theorem ensures that the Lie algebra is fully generated everywhere for
a swimmer whose length of sticks verify L1 = L3 = L, L2 = 2L and Li≥4 = 0.
We call D(0,···,0), the function that maps (L1, · · · ,LN) to the determinant of the vec-
tors g1, · · · ,gN−1 and their iterated Lie brakets at the point (0, · · · ,0). Since the
vector fields gi depend analytically on the sticks length Li, we get the analytic-
ity of the function D(0,···,0). Thus for any L > 0, the value of D(0,···,0) at the point
(L,2L,L,0 · · ·0) is not null. By analyticity, it remains non null almost everywhere in
RN . Therefore, we obtain that the Lie algebra has full rank for almost every swim-
mer.
Finally, Chow Theorem gives the controllability in the Theorem 1.1. ut

1.4 Minimum time optimal control problem for the N-link
swimmer

We present in subsection 1.4.1 the minimum time optimal control problem for the
N-link swimmer, which is well defined from the controllability result proven in
section 1.3. Then in subsection 1.4.2 we present the numerical method used to solve
this problem.

1.4.1 Minimum Time Problem

For any time t > 0, we use the following notation: the state of the swimmer is
z(t) := (α2, · · · ,αN ,x1,θ1)(t), the control functions are u(t) := (α̇2, · · · , α̇N)(t) and
the dynamics is f(z(t),u(t)) = ∑

N−1
i=1 gi(z(t)) α̇i+1(t).

We now assume that the swimmer starts at the initial configuration zi, and we fix
a final state z f . Our aim is to find a swimming strategy that minimizes the time to
swim between the initial and the final configuration, i.e.,

(OCP)


inf t f ,
ż(t) = f(z(t),u(t)) , ∀t ∈ [0, t f ] ,
u(t) ∈ U := [−1,1]N , ∀t ∈ [0, t f ] ,
z(0) = zi , z(t f ) = z f .

By applying Filippov-Cesary Theorem ([12]) which ensures the existence of a
solution of the minimum time problem for controllable systems, there exists a min-
imal time such that the constraints are satisfied i.e., the infimum can be written as a
minimum.
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1.4.2 Numerical Optimization

In order to solve this optimal control problem, we use a direct approach. This ap-
proach transforms the infinite dimensional optimal control problem (OCP) into a
finite dimensional optimization problem (NLP). This is done with a discretization
procedure on the dynamics equation summarized below:

t ∈ [0, t f ] → {t0 = 0, . . . , tN = t f}
z(·),u(·) → X = {z0, . . . ,zN ,u0, . . . ,uN−1, t f}
Criterion → min t f
Dynamics → (ex : Euler) zi+i = zi +h f (zi,ui)
Controls → −1≤ ui ≤ 1
I/F Cond.→ Φ(z0,zN) = 0

We therefore obtain a nonlinear programming problem on the discretized state and
control variables

(NLP)
{

min F(z) = t f
LB≤C(z)≤UB

All tests were run using the software BOCOP ([4]). The discretized nonlinear op-
timization problem is solved by the well-known solver IPOPT [13] with MUMPS [2],
while the derivatives are computed by sparse automatic differentiation with ADOL-
C [14] and COLPACK [7]. In the numerical experiments, we used a Midpoint (im-
plicit 2nd order) discretization with 1000 time steps. Execution times on a Xeon
3.2GHz CPU were a few minutes.

1.5 Numerical simulations for the Purcell’s swimmer (N= 3)

We present in this section the numerical simulations regarding the Purcell swimmer
(3 links). Without making any assumptions on the structure of the optimal trajectory,
we obtain an optimal solution with periodic strokes. Comparing this stroke to the
one of Purcell ([10], [3]), we observe that it gives a better displacement speed.

In the rest of the chapter, in order to match the notations used in [3], we we the
following coordinates (see Fig 1.7):

• the position (x2,y2) of the center of the second stick, and its angle with the x-axis
θ2 := θ1−α2.

• the shape angles β1 :=−α2 and β3 := α3.
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Fig. 1.7 Purcell’s 3-link swimmer.

This reformulation gives the new dynamics
β̇1

β̇3
ẋ2
θ̇2

= M(θ2,β1)


α̇2
α̇3
ẋ1
θ̇1

 ,

M(θ2,β1) =


−1 0 0 0 0
0 1 0 0 0

sin(θ2)+ cos(β1) 0 1 0 −sin(θ2)
−cos(β1)− cos(θ2) 0 0 1 cos(θ2)

−1 0 0 0 1

 .

As a result, the dynamics (1.19) reads in this case as
β̇1

β̇3
ẋ2
θ̇2

= f̃1 (θ2,β2,β3) β̇1 + f̃2 (θ2,β2,β3) β̇3 (1.31)

where for i = 1,2

f̃i (θ2,β1,β3) = M(θ2,β1,) g̃i (θ1,α2,α3) . (1.32)

Observe that since the new state variables are the image of the former ones
through a one-to-one mapping, the controllability result in subsection 1.3.3 holds
also for (1.31).
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1.5.1 The classical Purcell stroke

We recall the stroke presented by Purcell in [10] in order to compare it to the optimal
strategy given by our numerical results. Let us denote by ∆θ the angular excursion,
which means that β1 and β3 belong to [−∆θ

2 , ∆θ

2 ]. The Purcell stroke is defined by
this periodic of deformation over [0,T ]:

(β1(t), β3(t)) =


( 4∆θ

T t− ∆θ

2 , ∆θ

2 ) 0≤ t ≤ T
4

(∆θ

2 ,− 4∆θ

T t + 3∆θ

2 ) T
4 ≤ t ≤ T

2
(− 4∆θ

T t + 5∆θ

2 ,−∆θ

2 ) T
2 ≤ t ≤ 3T

4
(−∆θ

2 , 4∆θ

T t− 7∆θ

2 ) 3T
4 ≤ t ≤ T

.

In what follows, we call the “classical” Purcell stroke the one corresponding to
∆θ = π

3 , with T = 4∆θ chosen in order to satisfy the constraints on the controls of
(OCP), i.e., ui(t) := β̇i(t) ∈ [−1,1].

1.5.2 Comparison of the optimal stroke and Purcell stroke

We set the initial position (x2,θ2) = (0,0,0) and the final position (x2,θ2) =
(−0.25,0,0). Moreover we constrain the angles β1 and β3 in [−π

6 ,
π

6 ] for all time.
Solving the minimum time problem numerically with the direct method gives us
a solution that is actually periodic, as shown on Fig. 1.8. We notice that the x-
displacement is not monotone: during each stroke, the swimmer alternately moves
forward, closer to the target, and goes partially backward.
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Fig. 1.8 Angles and x-displacement for a whole periodic trajectory.

Now we isolate only one stroke from this solution, and compare it with the Pur-
cell stroke. We show on Fig. 1.9 the angles functions β1 and β3, as well as the phase
portrait. Note that the time required to complete our candidate for an optimal stroke
is shorter than for the Purcell one (roughly 2.5 versus 4.1). We illustrate on Fig. 1.10
the shape changes in the plane for the Purcell and optimal stroke.
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Fig. 1.9 Angles and phase portrait - Purcell stroke and optimal stroke.
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Fig. 1.10 Purcell stroke (above) and optimal stroke (below).

Finally we make a comparison between the two x-displacement, Fig. 1.11 shows
the x−displacement of the swimmer with the classical Purcell stroke (dashed)
and the optimal stroke (solid). Both trajectories were recomputed in Matlab us-
ing the same ODE solver, and the results for the Purcell stroke match the ones
in [3]. The final time t f = 15.3252 is the one given by the numeric simulation
to reach x2 = (−0.25 ,0). We see that using Purcell strokes, the swimmer only
reaches (≈ −0.18,0), which confirms that our optimal stroke allows a greate x-
displacement.

More precisely, each optimal stroke gives a x−displacement close to the Purcell
stroke, however the cycle of deformation is performed in less time. Therefore, for
a given time frame, more optimal strokes can be performed, leading to an overall
greater displacement. In Fig. 1.11, almost 3.5 Purcell strokes are performed, while
6 optimal strokes are completed within the same time.



1 Optimal control of slender microswimmers 21

0 5 10 15−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
X DISPLACEMENT

TIME
X 

D
IS

PL
AC

EM
EN

T
 

 

Purcell
Optimal

Fig. 1.11 x displacement for one Purcell and one optimal stroke.

Remark: The initial shape of the swimmer is not identical for both strategies,
however the increasing gap between the two curves clearly shows that the optimal
stroke is faster.

We also observe that the optimal stroke consistently gives a swimming speed
better by 20% than the Purcell stroke.

1.6 Conclusions

In this chapter we study the N-link swimmer, and use the Resistive Force Theory
to derive its dynamics. In this context, we prove that for N greater than 3 and for
almost any N-uplet of sticks lengths, the swimmer is globally controllable in the
whole plane. Then, we focus on finding a swimming strategy that leads the N-link
swimmer from an fixed initial position to a given final position, in minimum time. As
a consequence of the controllability result, we show that there exists a shape change
function which allows to reach the final state in a minimal time. We formulate this
optimal control problem and solve it with a direct approach (BOCOP) for the case
N = 3 (Purcell swimmer). Without any assumption on the structure of the trajectory,
we obtain a periodic solution, from which we identify an optimal stroke. Comparing
this optimal stroke with the Purcell one confirms that it is better, actually giving a
greater displacement speed.
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