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ABSTRACT
Source apportionment is usually tackled with blind Posi-

tive/Non-negative Matrix factorization (PMF/NMF) methods.
However, the obtained results may be poor due to the depen-
dence between some rows of the second factor. We recently
proposed to inform the estimation of this factor using some
prior knowledge provided by chemists—some entries are set
to some fixed values—and the sum-to-one property of each
row. These constraints were recently taken into account by
using a parameterization which gathers all of them. In this pa-
per, a novel robust NMF approach able to cope with outliers
is proposed. For that purpose, we consider the Huber loss
function—a `2-`1 cost function—which is robust to outliers,
contrary to the Frobenius norm classically met in NMF. We
thus propose new update rules for the informed Huber NMF
in the framework of the split gradient techniques. The choice
of the adaptive cutoff parameter—which links both single cost
functions—is discussed along this paper. The proposed ap-
proach is shown to outperform state-of-the-art methods on
several source apportionment simulations involving various
input SNRs and outliers.

Index Terms— Informed source separation, Non-negative
matrix factorization, Robustness, Split gradient, Source ap-
portionment, Huber cost function.

1. INTRODUCTION

Source apportionment aims to find particulate matter sources
and their emissions in the ambiant air. In practice, a device
is trapping particulate matter on filters, which are then ana-
lyzed by chemical experts. They actually estimate the masses
of each chemical species present in the filters, which are con-
verted into concentrations and provide a n×m non-negative
data matrix X , where n is the number of samples and m the
number of species. The data matrix may be approximated by
a linear mixture model also called Receptor Model in source
apportionment, i.e.,

X ≈ G · F, (1)

where G is the n× p contribution matrix gathering the emis-
sions of all the sources over time and F is the p ×m profile
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Fig. 1. Geometric point of view of the sum-to-one constraint
for (left) hyperspectral data, and (right) chemical data.

matrix, where a profile is a source signature involving all the
chemical species proportions (in ng/ng).

The non-negativity property of the factors usually leads
to tackle the approximated factorization in Eq. (1) with NMF
methods which generally carry out an alternating minimiza-
tion between factors of the Frobenius norm of the residuals
[1]. However, even a small number of deviating data points
completely alter the quality of the approximation. Indeed,
the Frobenius cost function is well-suited for Gaussian noise
while degrading in the presence of atypical observations. As
a result, robust NMF methods are devised to withstand a cer-
tain proportion of corrupted data points called outliers. In
source apportionment, outliers may result from an additional
contamination on the filter, or from a measurement error.

Two main strategies are used to handle outliers in NMF.
A first class of methods [2–4] proposes to rewrite the matrix
X as the sum of a low rank matrix L which can be factorized
according to Eq. (1), and a sparse matrix S which should con-
tain the outliers available in the collected data. The sparsity
of S is reached by using special norms favoring this property.
The second type of strategy suggests the use of a robust cost
function between parts of Eq. (1), e.g., the `1-`2 [5] or `2,1 [6]
norms, the Huber function [7], or a parametric divergence [8].
While the latter is asymmetric and implicitly assumes large
residuals to be positive, the other cost functions generally be-
have as a Frobenius norm for small residuals while providing
less penalization to large residuals than the Frobenius norm.

Moreover, in source apportionment, the definition of the
profile matrix imposes that rows of F sum to one. It should



be noticed that sum-to-one constraints are also met in remote
sensing [4,9,10], but they apply along the columns of the sec-
ond matrix factor. As a result, each column of the data matrix
may be viewed as a convex combination of the columns—
called endmembers—of the first matrix factor. The geometric
point of view (see the left plot of Fig. 1) shows that the col-
umn vectors of X belong to a non-negative polytope spanned
by the endmembers. Searching for the mixing matrix thus
consists of splitting the whole problem into independent sub-
problems related to the search of one column together with
the sum-to-one constraint of this column.

In source apportionment, the issue is different since in this
case, the sum-to-one constraints apply to the rows of the pro-
file matrix F . The right plot of Fig. 1 illustrates that each row
of the data matrix is only a non-negative linear combination
of the profile row vectors, so that it belongs to a simplicial
cone in the non-negative orthant. The only noticeable prop-
erty (shown on the right plot of Fig. 1) is that each row of the
profile matrix lives in a non-negative polytope spanned by the
usual orthonormal basis vectors. Therefore, it is impossible
to split the NMF problem into independent sub-problems. As
a result, source apportionment needs some specific methods.

Moreover, blind NMF methods for source apportionment
may result in solutions without physical meaning [11], espe-
cially when some source profiles are geometrically close to
each other. To overcome these drawbacks, we recently pro-
posed some informed NMF approaches [12–15] which take
into account some prior information—e.g., some set values
in the profile matrix provided by chemical experts—together
with the row sum-to-one property. In [12, 13], the constraints
were alternatingly satisfied along iterations and only the limit
matrix was fulfilling both of them. We recently proposed a
new parameterization [14, 15] which fulfills both constraints
at the same time, and we then derived informed NMF meth-
ods using the split gradient strategy [16]. While the approach
in [14] is based on the Frobenius norm—and is then sensitive
to outliers—the one in [15] is using a robust αβ-divergence,
which requires the parameters α and β to be properly tuned.
In this paper, we propose a novel robust NMF approach—
extending [14]—which is based on the Huber cost function
[17] and which does not need to some parameter tuning.

This paper is organized as follows. Sections 2 and 3
briefly recall the parameterization proposed in [14] and the
Huber function, respectively. We derive the update rules of
the proposed informed NMF method in Section 4 and we
investigate its performance in Section 5. The conclusion and
the perspectives of this work are discussed in Section 6.

2. PARAMETERIZATION OF F

In source apportionment, prior information often concerns the
profile matrix1, for which some entries are provided by ex-

1Please note that it is also possible to inform G [18].

perts. Let Ω be a p×m binary matrix which shows the pres-
ence/absence of constraints on each entry of F , i.e.,

Ωij =

{
1 if Fij is known,
0 otherwise. (2)

Conversely, we define Ω , 1pm−Ω, where 1pm is the p×m
matrix of ones. Defining Φ and ∆F , the p × m matrices of
set and free parts of F , respectively, we derive [13]

F = Ω ◦ Φ+Ω ◦∆F, (3)

where ◦ stands for the Hadamard product. It should be no-
ticed that updating F consists of updating its free part ∆F .
However, at this stage, the sum-to-one constraint is not satis-
fied. For that purpose, we extended in [14] the idea proposed
in [16] which consists in normalizing the constrained ∆F by
replacing it by an unconstrained p×m matrix Z [14,15], i.e.,

F = Ω ◦ Φ+
Ω ◦ Z

(Ω ◦ Z) · 1mm
· (1pm − Φ · 1mm), (4)

where / stands for the elementwise division. As an exam-
ple, if we assume that F is a 1 × 4 profile matrix and Φ ,
[0, 0.2, 0, 0.3], then the maximum free part value is 1pm−Φ ·
1mm = [0.5, 0.5, 0.5, 0.5] and Eq. (4) reads

F =

[
Z11 · 0.5
Z11 + Z13

, 0.2,
Z13 · 0.5
Z11 + Z13

, 0.3

]
.

In the next sections, source apportionment is addressed
with the above parameterization combined with the Huber
cost function.

3. HUBER COST FUNCTION

Data are often corrupted by outliers so that quadratic cost
functions—i.e., using the `2 norm—become inappropriate.
Robust cost functions are designed to provide less penaliza-
tion to large entries of E, the matrix of residuals defined as

E , X −G · F. (5)

On the other side, the `1 norm may be used to achieve ro-
bustness but—because of its sparsity promoting behaviour—
it tends to overweight near-zero residuals. As a consequence,
intermediate solutions may be found to reduce the weight of
small residuals.

One of the widely used techniques is the M-estimators
[19]—defined as a generalization of maximum likelihood
estimators—of the form

min
G,F

∑
i,j

ρ(Eij), (6)



where ρ(.) is a loss function, e.g., `1-`2 [5] or `2,1 [6] cost
functions. Another popular choice of M-estimators is the Hu-
ber function which is based on the derivable connection be-
tween the `2 and `1 norms, i.e.,

ρhuber(e) =

{
e2 for |e| < c,
2c|e| − c2 otherwise, (7)

where c is the cutoff parameter of the Huber cost function,
which divides the domain between the quadratic and linear
loss functions. Moreover, in source apportionment, individ-
ual standard deviations are available, thus yielding weighted
residuals, i.e.,

Eσ,ij ,
Eij
σij

. (8)

The Weighted Huber-NMF problem is thus defined as:

min
G,F�0

n∑
i=1

m∑
j=1

ρhuber(Eσ,ij). (9)

It should be noticed that ρhuber(.) behaves as an `2 norm for
small weighted residuals while it is linear for large residu-
als. The function is convex and it has a bounded influence
function—defined as the differentiation of the cost function—
so that the influence of a single deviating point is minimized.

4. PROPOSED INFORMED NMF METHOD

In this section, we aim to solve Eq. (9) subject to the parame-
terization (4), i.e.,

minG,F�0 J (G,F )
s.t. F = Ω ◦ Φ+ Ω◦Z

(Ω◦Z)·1mm

· (1pm − Φ · 1mm),

(10)
where J (G,F ) ,

∑n
i=1

∑m
j=1 ρhuber(Eσ,ij).

4.1. Update rules for F

We now aim to find the update rules of the profile matrix F
which are consistent with the KKT conditions. This is done
by differentiating J in Eq. (10) with respect to F for both
expressions of ρhuber(.). For that purpose, we firstly define
the following weight matrices W1 and W2:

W1,ij ,
1

σ2
ij

, W2,ij ,

{
1 if (GF−X)ij

σij
< c,

c·σij

|GF−X|ij otherwise.
(11)

W2 should be seen as an adaptive re-weighting matrix, de-
pending on small/large weigthed residuals. In the case of a
single data point labelled as an outlier, the weight in W2 is
proportional to the inverse of residual value and is below 1.

Noticing that W2 = 1nm for the `2 part of the cost func-
tion, the differentiation of J for a single entry Frj reads

∂J
∂Frj

= Gir(GF −X)ijW1ij . (12)

The differentiation of J for the `1 part yields

∂J
∂Frj

=

n∑
i=1

c

σij
·Gir · sign((GF −X)ij). (13)

Then, using the definition of the sign function, an equivalent
expression is derived, i.e.,

∂J
∂Frj

=

n∑
i=1

c · σij
σ2
ij

·Gir ·
(GF −X)ij
|GF −X|ij

. (14)

We lastly derive from Eq. (11)

∂J
∂Frj

= Gir(GF −X)ijW1ijW2ij . (15)

Equations (12) and (15) yield a unified matrix expression, i.e.,

∂J
∂F

= GT [W ◦ (GF −X)], (16)

where
W ,W1 ◦W2. (17)

Let us emphasize again that the differentiation of J has a
similar expression for both the quadratic and the linear parts
of the Huber function, except that W is reweighted for large
residuals, as explained when we introduced W2.

At this stage, we still need to express the differentiation

of ∂Fij

∂Zik
based on the parameterization (4) where the (i, j)-

th entry of F only depends on the i-th row of Z and ∀k ∈
{1 . . .m}. We thus obtain

∂Fij
∂Zik

= (1−
m∑
l=1

Φil)
Ωij∑m

l=1ΩilZil

[
δjk −

ΩikZij∑m
l=1ΩilZil

]
,

(18)
where δjk is the Kronecker index which is equal to 1 when
j = k and 0 otherwise. For the sake of readability, we define
B as a p×m matrix of scale factors, i.e.,

Bik ,
1−

∑
l Φil

(
∑m
l=1 ZilΩil)

. (19)

Using the chain rule and Eqs. (18) and (19), the matrix form
of ∂J
∂Z

reads [14]

∂J
∂Z

= B ◦

∂J
∂F
◦Ω−Ω ◦

(
(∂J
∂F
◦ F ◦Ω) · 1mm

)
1pm − Φ · 1mm

 .
(20)

The first term (respectively, second) of the difference in the
bracket of Eq. (20) corresponds to the first term (respectively,
second) of the difference in Eq. (18).

The third KKT condition has to be fulfilled to get a sta-
tionary point with respect to Z, i.e., Z◦ ∂J

∂Z
= 0. Equivalently

and according to Eq. (4), it may be written as

F ◦Ω ◦ ∂J
∂Z

= 0. (21)



A stationary point means that F = F k = F k+1, and using
Eqs. (20) and (21), and letting U , −∂J

∂F
(see Eq. (16)), the

new update rules of F read

F k+1 = Ω◦Φ+Ω◦ F k ◦ U
[U ◦Ω ◦ F k] · 1mm

◦ (1pm−Φ · 1mm).

(22)
Moreover, we need to make sure that the updated rules of F
in Eq. (22) remain positive which implies that U is positive at
every iteration. In [15], we proved the following theorem:

Theorem 1. Every Us of the form Us = U + S · 1mm checks
the third KKT condition (21).

As a consequence, a shift equal to the sum of the negative
part of −∂J

∂F
was proposed in [14]. Applying the same idea

to Eq. (22), we derive

Us = GT (W ◦X)−GT (W ◦(GF ))+[GT (W ◦(GF ))]1mm.
(23)

4.2. Update rules for G

Due to the application used in this paper, the contribution ma-
trix G is unconstrained. Once again, the weight W should
be taken into account in the updated rules. Due to symme-
try in the expression of the weighted Huber cost function, the
derivation with respect to G remains similar to Eq. (16) and
reads

∂J
∂G

= [W ◦ (GF −X)] · F (24)

Expression (24) is similar to the differentiation of the quadratic
loss function in [20], except that we use the weight matrix
(17). As a consequence, the update rules for G read [20]

Gk+1 = Gk ◦
[
(W ◦ (X))FT

(W ◦ (GF ))FT

]
, (25)

Please notice that the update of the weight matrix should be
made prior to the computation of F andG, which implies that
the cutoff parameter should be carefully chosen.

4.3. Choice of the cutoff parameter

The cutoff parameter is an adaptive parameter depending on
the residuals. In [7], it is chosen as the median of the residu-
als. In our framework, it relies on weighted residuals. While
it could also be chosen as the median—i.e., half of the data
are seen as outliers—we consider that this choice prevents to
modify the matrix factors in a sufficient way along iterations
and as a consequence, we propose a different strategy. We
also think that at the beginning of the NMF iterations, all the
data should be processed in the quadratic part of the Huber
function, resulting that c should go to the maximum value
of the data. Conversely, at the end of the iterations, we feel

that c should tend to an intermediate value, enabling to point
only the outlying points. As a consequence, we propose an
heuristic choice for c based on the quantile function with a
probability value linearly depending on the current iteration
number k, i.e.,

c = quantile(Eσ, 1−
k

Itermax
∗ 0.1) (26)

where Itermax is the maximum number of iterations. This
choice implicitly states that a maximum of 10 percent of the
data may be labelled as outlying data, which was found to be
a good trade-off in preliminary tests.

4.4. Algorithm

The algorithm may be outlined in the following form:

Algorithm 1 Weighted Huber Informed NMF description
Reading of X , Φ and Ω
Initialization of F and G
while the stopping rule is not fulfilled do

Compute E and the weighted residuals Eσ
Compute c according to Eq. (26)
Update W according to Eqs. (11) and (17)
Update F according to Eq. (22) with Eq. (23)
Update G at fixed F according to Eq. (25)

end while

5. SIMULATIONS

In this section, we are investigating the performance of the
newly proposed method—named Huber SG-CWNMF for
Split-Gradient Constrained Weighted NMF using Huber cost
function—in several tests with and without outliers. The col-
lected data matrix X is made of 50 samples and 7 species.
Each entry in X has a known variance σij provided by chem-
ical experts. The collected samples are possibly corrupted
by outliers located at random locations and tuned by a gain
which is always greater than one in order to simulate a pollu-
tant contamination. Then a uniform noise is added, ranging
in the interval [−min(λσij ;xij);λσij ] while taking into con-
sideration that the data is always positive. As a result, λ is
related to an input Signal-to-Noise Ratio (SNR) without any
outliers. Moreover, the profile matrix F consists of three
partially correlated industrial sources for which 9 entries are
known and provided in Table 1. In the simulation, the initial
F is consistent with the provided constraints and the initial
G is computed with a quadratic program. The performance
criterion is the Mixing-Error Ratio (MER) expressed in dB,
computed over each column of G and averaged.

In addition to the proposed method, several methods are
tested. They are divided into two categories, i.e., the blind



Table 1. Positions and values of the constraints used in the
informed NMF methods. X means no constraint.

Fe Ca SO
4

Zn Mg Al Cr

Source 1 0.7 X X X X X 0
Source 2 X 0.4 5 0 X 0.075 X
Source 3 0.4 X X 0 X X 0

and the informed ones. In the first category, the tested meth-
ods which are all based on β-divergence, are the original un-
weighted β-NMF [21], the weighted β-NMF [20] and the ro-
bust NMF (rNMF) [4] in which the data matrix is split into
a low rank matrix satisfying Eq. (1) and a sparse matrix con-
taining the outliers. Two other informed approaches based
on the β-divergence are experimented (tested with β = 0.8
in this paper), i.e., our previous β-CWNMF with Residuals
(β-CWNMF-R) and without residuals (β-CWNMF) [13]. In
addition, we test a weighted version of the Split Gradient ap-
proach developped by Lantéri et al. [16], which involves a
sum-to-1 parameterization, and our previous proposed αβ-
SG-CWNMF with α = β = 0.6 [15]. All these methods are
compared for several input SNR with the newly proposed one,
based on the weighted Huber cost function and for 200k iter-
ations. Finally, the upper bound of the performance is com-
puted with the Huber cost function by assuming F is set to
its real value and using the update rules (25) together with the
iterative re-weighting process (11).

In a first experiment, each method is tested over 400 sim-
ulations with respect to the input SNRs ranging from 15 to
60 dB without and with several outliers. For space considera-
tions, we only plot the case of 5 outliers on Fig. 2. Moreover,
in the sake of readbility, we do not show the performance
of all the tested methods. First of all, our proposed Huber
method outperforms the blind and informed tested methods,
for any input SNR interval and for both cases with and with-
out outliers (except our previous αβ-SG-CWNMF [15] which
behaves very similarly and which is not shown as a conse-
quence). Moreover, the achieved performance is almost equal
to the Bound MERs. Interestingly, the rNMF method com-
pletely fails over all the tests. This is probably due to the fact
that rNMF is not able to split the data matrix into appropri-
ate sparse and low rank matrices. Indeed, in our experiments,
outliers are relatively small for high input SNRs and medium-
sized for low SNRs. Such a situation is challenging for rNMF
which performs well in the presence of larger outliers.

In a second experiment, we investigate the influence of
an increasing number of outliers on the behavior of the tested
NMF methods, for an input SNR of 40 dB without outliers.
Figure 3 shows the achieved MER with respect to the the
numbers of outliers (associated with the input SNR with out-
liers). All the methods provide decreasing MERs when the
number of outliers increase. However and similarly to the pre-
vious experiment, our proposed Huber SG-CWNMF method
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Fig. 2. MERs provided by the tested NMF methods vs. the
input SNR for 5 outliers.

outperforms all the tested approaches and provides a perfor-
mance very close to the Bound, which shows the relevance of
this work.

Finally, we experiment different cutoff parameter strate-
gies, either constant or adaptive with linear decrease along
iterations. Figure 4 shows the obtained performance on the
above simulations with each choice. In fact, the legend spec-
ifies the percentage of data points considered in the `1 part of
the Huber function at the beginning and at the end of the itera-
tions. The best choice is achieved with the cutoff proposed in
Eq. (26) as indicated in Figure 4. Moreover, the usual choice
of the median proposed in the literature is here shown to be
inappropriate.

6. CONCLUSION

In this paper, a new robust informed NMF method is proposed
for solving the source apportionment problem. It is based on
a weighted symmetric Huber cost function which adaptively
connects weighted `2 and `1 norms according to the size of
the computed residuals. In addition, a specific parameteriza-
tion and the split gradient framework allow to provide new
update rules which take into account set entries and the sum-
to-one constraint in one factor matrix. This method has been
tested for a large range of SNRs and for several outliers. It
overcomes all the tested state-of-the-art methods and besides,
behaves very close to the bound computed with the Huber re-
gression method and the exact profile matrix.

7. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of ob-
jects by non negative matrix factorization,” Nature, vol.
401, no. 6755, pp. 788–791, 1999.

[2] B. Shen, L. Si, R. Ji, and B. Liu, “Robust nonnegative
matrix factorization via l1 norm regularization,” arXiv
preprint arXiv:1204.2311, 2012.



1 (32.56) 2 (32.56) 3 (32.52) 4 (31.71) 5 (31.21)
0

10

20

30

40

50

60

Outliers number (input SNR in dB )

M
E
R

 

 

β-NMF

β-WNMF

SG-WNMF

β-CWNMFR

Huber SG-CWNMF

Bound

SNR before outliers = 40 dB

Fig. 3. NMF performance vs. the number of outliers.

15−20 20−25 25−30 30−35 35−40 40−45 45−50 50−55 55−60 60−65
0

10

20

30

40

50

60

M
E
R

SNR

 

 

cutoff 0 to 10 percent

cutoff 50 percent

cutoff 20 percent

cutoff 0 to 50 percent

Fig. 4. MERs obtained with the Huber SG-CWNMF method
vs. the input SNR for different cutoff strategies.

[3] J. Rapin, J. Bobin, A. Larue, and J. L. Starck, “Sparse
and non-negative BSS for noisy data,” IEEE Trans. on
Signal Processing, vol. 61, no. 22, pp. 5620–5632, 2013.

[4] C. Févotte and N. Dobigeon, “Nonlinear hyperspec-
tral unmixing with robust nonnegative matrix factoriza-
tion,” IEEE Trans. Image Processing, vol. 24, no. 12,
pp. 4810–4819, Dec. 2015.

[5] A. Ben Hamza and D. J. Brady, “Reconstruction of re-
flectance spectra using robust nonnegative matrix factor-
ization,” IEEE Trans. on Signal Processing, vol. 54, no.
9, pp. 3637–3642, 2006.

[6] D. Kong, C. Ding, and H. Huang, “Robust non-negative
matrix factorization using l21-norm,” in Proc. of CIKM,
2011, pp. 673–682.

[7] L. Du, X. Li, and Y.-D. Shen, “Robust non-negative
matrix factorization via half-quadratic minimization,” in
Proc. of ICDM. 2012, pp. 201–210, Springer.

[8] A. Cichocki, S. Cruces, and S. Amari, “Generalized
alpha-beta divergences and their application to robust
nonnegative matrix factorization,” Entropy, vol. 13, pp.
134–170, 2011.

[9] E. Chouzenoux, S. Moussaoui, M. Legendre, and
J. Idier, “Algorithme primal-dual de points intérieurs
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