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In this work we study the numerical approximation of the solutions of a class of abstract parabolic time optimal control problems with unbounded control operator. Our main results assert that, provided that the target is a closed ball centered at the origin and of positive radius, the optimal time and the optimal controls of the approximate time optimal problems converge (in appropriate norms) to the optimal time and to the optimal controls of the original problem. In order to prove our main theorem, we provide a nonsmooth data error estimate for abstract parabolic systems.

Introduction

Time optimal control of infinite dimensional systems is a subject of growing interest, motivated by numerous applications in domains such as guidance of complex systems or temperature regulation in large buildings. In recent year, using new tools from infinite dimensional systems theory, the literature devoted to this topic grew in a considerable manner (see Arada and Raymond [START_REF] Arada | Time optimal problems with Dirichlet boundary controls[END_REF], Barbu [START_REF] Barbu | Analysis and control of nonlinear infinite-dimensional systems[END_REF], [START_REF] Barbu | Nonlinear differential equations of monotone types in Banach spaces[END_REF], Fattorini [START_REF] Fattorini | Time-optimal control of solutions of operational differential equations[END_REF], [START_REF] Fattorini | Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems[END_REF], [START_REF] Fattorini | Infinite Dimensional Optimization and Control Theory[END_REF], Kunisch and Wang [START_REF] Kunisch | Time optimal control of the heat equation with pointwise control constraints[END_REF], Kunisch and Wachsmuth [START_REF] Kunisch | On time optimal control of the wave equation, its regularization and optimality system[END_REF], Li and Yong [START_REF] Li | Optimal control theory for infinite-dimensional systems[END_REF] and Tröltzsch [START_REF] Tröltzsch | On generalized bang-bang principles for two time-optimal heating problems with constraints on the control and the state[END_REF]). The specific case of time optimal control for systems governed by parabolic PDE's has numerous applications, from which we quote optimization of building thermal storage (see, for instance [START_REF] Henze | Evaluation of optimal control for active and passive building thermal storage[END_REF] and references therein).

The aim of this paper, containing results partially announced in [START_REF] Tucsnak | Numerical approximation of some time optimal control problems[END_REF], is to study the approximation of the solutions of time optimal (internally or boundary) control problems for a class of infinite dimensional linear systems by projecting the original problem on an appropriate family of finite dimensional spaces. This is a delicate question since, as shown in the above mentioned references, time optimal controls are usually highly oscillating functions (due to the bang-bang property). As far as we know, the only papers having already investigated this issue are Knowles [START_REF] Knowles | Finite element approximation of parabolic time optimal control problems[END_REF], Wang and Wang [START_REF] Wang | Finite element approximations of optimal controls for the heat equation with end-point state constraints[END_REF], Wang and Zheng [START_REF] Wang | An approach to the optimal time for a time optimal control problem of an internally controlled heat equation[END_REF] which investigated finite elements approximation for systems governed by the heat 1 equation with internal controls. To our knowledge, the similar results obtained in these papers are unknown to boundary time optimal control problems. A similar topic dealing with the homogenization of parabolic system, where we study the asymptotic behavior of solutions and (time-)optimal controls has been developed in recent years (see for example, Carja [START_REF] Cârjȃ | On variational perturbations of control problems: minimum-time problem and minimum-effort problem[END_REF], [START_REF] Cârjȃ | The time optimal problem for boundary-distributed control systems[END_REF], Castro and Zuazua [START_REF] Castro | Some topics on the control and homogenization of parabolic partial differential equations[END_REF] and Tebou [START_REF] Tebou | Uniform null controllability of the heat equation with rapidly oscillating periodic density[END_REF] ).

To state our results we need some notation. Let X and U be real Hilbert spaces, and let A 0 : DpA 0 q Ñ X be a strictly positive operator. It is known that ´A0 generates an exponentially stable analytic semigroup, denoted by T t . We denote by }.} (resp. x., .y) the norm (resp. the inner product) on X. For γ ą 0 we denote by X γ the space DpA γ 0 q, endowed with the graph norm. For γ ă 0, X γ stands for the dual of X ´γ with respect to the pivot space X. We also introduce an operator B P LpU, X ´αq with 0 ď α ă 1 2 , called control operator. In this paper we consider systems of the form 9 zptq `A0 zptq " Buptq pt ě 0q, (

zp0q " z 0 pz 0 P Xq,

where u P L 8 pr0, `8q; U q is the input function and z is the state trajectory. It is well known (this follows, for instance, by combining Theorem 4.4.3 and Proposition 5.1.3 in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]) that if z 0 P X and u P L 8 pr0, `8q; U q, there exists a unique solution z P Cpr0, `8q; Xq of (1.1)-(1.2) and z satisfies zptq " T t z 0 `Φt u, where Φ t u "

ż t 0 T t´σ Bupσqdσ. (1.3) 
Given ε ą 0, denote by Bp0, εq the closed ball centered in zero and of radius ε in X. We consider the time optimal control problem which states as follows pTPq Determine τ 0 ą 0 such that τ 0 " mintτ ě 0 | there exists u P L 8 pr0, `8q; U q s.t. }u} L 8 pr0,`8q;U q ď 1 and zpτ q P Bp0, εqu, and the corresponding optimal controls u 0 .

Denote

U ad " tu P L 8 pr0, `8q; U q | }u} L 8 pr0,`8q;U q ď 1u.

(1.4)

It is well-known that the above optimal time τ 0 and optimal control u 0 exist under additional assumptions (see, for instance, [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF]).

Let pV h q hą0 (resp. pU h q hą0 ) be a family of finite dimensional subspaces of X 1 2 (resp. U ), which are normed spaces when endowed with the restriction of the norm of X 1 2 (resp. U ). We denote P h (resp. Q h ) the orthogonal projector from X onto V h (resp. U onto U h ). For each h ą 0 we consider the following system:

9 z h ptq `Ah z h ptq " B h u h ptq pt ě 0q, (1.5) z h p0q " P h z 0 , (1.6) 
where u h P L 8 pr0, `8q; U h q, pA h q hą0 is defined by

ă A h ϕ, ψ ą " ă A 1 2 0 ϕ, A 1 2 0 ψ ą pϕ, ψ P V h q, (1.7) 
and B h P LpU, V h q is defined by: xB h u, ϕy " xu, B ˚ϕy U pϕ P V h , u P U q.

(1.8)

The above system is the Galerkin approximation of (1.1)-(1.2), and its solution z h can be written as

z h ptq " T t,h P h z 0 `Φt,h u h , where Φ t,h u h " ż t 0 T t´σ,h B h u h pσqdσ, (1.9) 
where T t,h " expp´tA h q is the semigroup generated by A h . Denote by Bh p0, εq the closed ball centered in zero in V h with radius ε. For each h ą 0, we consider the time optimal control problem for the above system (1.5)-(1.6) which states as follows: pTP h q Determine τ h ą 0 such that τ h " mintτ ě 0 | there exists u h P L 8 pr0, `8q; U h q s.t. }u h } L 8 pr0,`8q;U h q ď 1 and z h pτ q P Bh p0, εqu, and the corresponding optimal controls u h in the admissible set U ad,h , where U ad,h is defined by U ad,h " tu P L 8 pr0, `8q; U h q | }u} L 8 pr0,`8q;U h q ď 1u.

(1.10)

The goal of this work is to study the convergence of τ h to τ 0 and of u h to u 0 when h Ñ 0. To this aim, we need appropriate assumptions on the approximation properties of the spaces pV h q hą0 and pU h q hą0 . More precisely, we assume that there exist θ ą 0, h 1 ą 0, C ą 0 such that for every h P p0, h 1 q and 0 ď γ ď 1 we have:

pC1q }x ´Ph x} ď Ch θγ }x} γ for every x P X γ , pC2q 
A h is uniformly (with respect to h) analytic, in the sense of the Definition 3.2 below, pC3q }pI ´Ph qB} LpU,Xq ď Ch θp1´αq , pC4q }P h B} LpU,V h q ď Ch ´θα , pC5q lim hÑ0 }Q h u ´u} U " 0 for every u P U , where α represents the unboundedness degree of the operator B (introduced in the beginning of this section).

We are now in a position to state the main results of this paper:

Theorem 1.1.
With the notation and assumptions on operators A 0 , B, A h , B h , assume that pC1q-pC5q hold and that z 0 P X, }z 0 } ą ε. Then lim hÑ0 τ h " τ 0 .

Theorem 1.2. With the notation and assumptions on operators A 0 , B, A h , B h , assume that pC1q-pC5q hold and that the only η P X for which there exists an open non-empty interval I with B ˚Tt η " 0 for t P I is η " 0. Then we have

u h Ñ u 0 strongly in L 2 pr0, T s; U q,
where T " 2 lnp}z 0 }{εq λ 1

(λ 1 is the first eigenvalue of the operator A 0 ) and extending pu hq h and u 0 to time T by zero.

It is worth mentioning that similar convergence results have been obtained in [START_REF] Knowles | Finite element approximation of parabolic time optimal control problems[END_REF] and [START_REF] Wang | An approach to the optimal time for a time optimal control problem of an internally controlled heat equation[END_REF]. In [START_REF] Knowles | Finite element approximation of parabolic time optimal control problems[END_REF], the control space takes only in finite dimensional subspaces of U and in [START_REF] Wang | An approach to the optimal time for a time optimal control problem of an internally controlled heat equation[END_REF] the initial data z 0 is taken in X 1 can be seen as generalizations of those obtained in [START_REF] Wang | An approach to the optimal time for a time optimal control problem of an internally controlled heat equation[END_REF], in the sense that we consider a class of abstract problems including the PDE systems studied there. The novelty of our results is that we weaken the regularity assumptions on the initial data with z 0 P X and also that we weaken the assumption on control operator B with B P LpU, X ´αq, 0 ď α ă 1 2 . The outline of the remaining part of this paper is as follows. Section 2 contains some necessary background on time optimal control problems. In Section 3, we provide some error estimate results with smooth initial data which play an essential role to prove our Theorem 1.1. In Section 4, we provide the proof of our main theorems. In Section 5, we apply our abstract results to some equations. Throughout the paper, we denote by C a positive constant that may change from line to line.

2 Some background on time optimal control problem This section, in which we continue to use the notation and assumptions introduced in Section 1 for X, U , A 0 , B, is devoted to some background on the time optimal control problem pTPq. We first introduce some basic notions on controllability (see for example Ch6. and Ch11. in [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]).

For τ ą 0, we denote Ψ τ P LpX, L 2 pr0, τ s; U qq the observation operator of pA 0 , B ˚q on r0, τ s defined by pΨ τ z 0 qpσq " B ˚Tσ z 0 pz 0 P X, σ P r0, τ sq.

It is clear that (see, for instance, [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]Ch. 4]),

Φ τ " R τ Ψ τ pτ ą 0q, (2.11) 
where R τ is the reflection operator on L 2 pr0, τ s; U q defined by R τ uptq " upτ ´tq.

We then recall the following existence result, which can be proved by using standard techniques providing the existence of time optimal controls for linear systems. We refer to [START_REF] Fattorini | Infinite Dimensional Linear Control Systems. The Time Optimal and Norm Optimal Control Problems[END_REF] or Lions [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] for a detailed description of the methodology or to Micu et al [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF]Proposition 2.6] for a slightly more general version of this result.

Proposition 2.1. For every z 0 P X and ε ą 0, the time optimal control problem pTPq admits at least one solution pτ ˚, u ˚q.

We need below a special version of the maximum principle. Although maximum principle is a classical tool in optimal control problems, we were unable to find the version we need (abstract setting with unbounded control operators) in the existing literature. Therefore we give the precise statement and a short proof below. Theorem 2.2. With the notation of Proposition 2.1, assume that τ ˚ą 0. Then the time optimal control u ˚satisfies the maximum principle, i.e., there exists ξ P X, ξ " 0 such that,

xu ˚pσq, pΨ τ ˚ξq pτ ˚´σqy U " max vPU, }v}ď1
xv, pΨ τ ˚ξq pτ ˚´σqy U , pσ P p0, τ ˚q a.e.q.

(2.12)

Moreover, ξ satisfies the transversality condition, i.e.:

xξ, z ´Tτ ˚z0 ´Φτ ˚u˚y ě 0 pz P Bp0, εqq.

(2.13)

Proof. Let pτ ˚, u ˚q be a solution of the time optimal control in Proposition 2.1 and let

z 1 " T τ ˚z0 `Φτ ˚u˚.
Moreover, for each z 0 P X and τ ą 0 denote

U τ :" tu| r0,τ s | u P U ad u and R τ z 0 " T τ z 0 `Φτ U τ .
We claim that z 1 P BR τ ˚z0 X BBp0, εq.

(2.14)

Indeed, it can be easily checked that we necessarily have }z 1 } " ε. If we admit, by contradiction, that z 1 is an interior point of R τ ˚z0 , this implies that there exists z 2 P R τ ˚z0 with }z 2 } ă ε. Consequently, there exists

u 2 P U τ ˚such that T τ ˚z0 `Φτ ˚u2 " z 2 .
Since the map t Þ Ñ }T t z 0 `Φt u 2 } is continuous and that τ ˚ą 0, we obtain that there exists τ P p0, τ

˚q such that }T τ z 0 `Φτ u 2 } " ε.
This contradicts the fact that pτ ˚, u ˚q is a solution of our time optimal control problem.We have thus proved our claim (2.14).

Thus we clearly have that the sets R τ ˚z0 and Bp0, εq are non-empty, convex and they have no common point. Moreover, since Bp0, εq is open, we can apply the geometric version of the Hahn Banach theorem (see, for instance [START_REF] Brezis | Analyse fonctionnelle[END_REF]Theorem 1.6]) to obtain that there exists a hyperplane separating R τ ˚z0 and Bp0, εq. This means that there exists α P R and ξ P X, ξ " 0 such that

xξ, ηy ď α pη P R τ ˚z0 q, (2.15) 
xξ, ηy ě α pη P Bp0, εqq.

(

The two above inequalities and (2.14) imply that xξ, z 1 y " α.

(2.17)

From (2.15) and (2.17) we deduce that xξ, z 1 y ě xξ, ηy pη P R τ ˚z0 q, which combined with the duality (2.11), clearly implies the maximum principle (2.12). Moreover, we easily deduce the transversality condition (2.13) from (2.16) and (2.17).

Remark 2.3. To be more precise, we can deduce from the transversality condition (2.13) that:

ξ " ´k pT τ ˚z0 `Φτ ˚u˚q , for some positive constant k.

(2.18)

Corollary 2.4. With the notation of Theorem 2.2, assume that τ ˚ą 0 and that the assumption of Theorem 1.2 holds, i.e., the only η P X for which there exists an open non-empty interval I with B ˚Tt η " 0 for t P I is η " 0. Then the time optimal control u ˚is unique and it has the bang-bang property: }u ˚ptq} " 1 pt P p0, τ ˚q a.e.q.

Proof. We first remark that the following statement holds: If η P X such that there exists a subset e Ă r0, τ s of positive measure with B ˚Tt η " 0 for t P e, then η " 0. Indeed, the facts that the map t Þ Ñ B ˚Tt η is analytic (which is due to the analyticity of T t ) and that it vanishes in e imply that this map vanishes for t in some non-empty open interval I. Therefore, according to the hypothesis, we have η " 0. With the above property, it is clear that pΨ τ ˚ξq pτ ˚´tq ‰ 0 for almost every t P p0, τ ˚q. Indeed, if it is not the case, we deduce from the above property that ξ " 0, which contradicts Theorem 2.2. We can deduce from the maximum principle (2.12) that u ˚ptq " pΨ τ ˚ξqpτ ˚´tq }pΨ τ ˚ξqpτ ˚´tq} . Thus, the bang-bang property of the time-optimal control holds.

The uniqueness of the time-optimal control can be deduced from the strict convexity of U . This ends the proof.

Nonsmooth data error estimates for abstract parabolic equations

In this section, we gather, for easy reference, some results providing error estimates for the semidiscrete Galerkin approximation of some abstract parabolic systems. Our results are strongly inspired by Lasiecka and Triggiani [20,Ch.4] and Badra [3,Ch.5], where they deal with a more general framework. We continue to use the same notation and assumption introduced in Section 1 for X, U , A 0 , B, A h , B h and V h and we recall that T t (resp. T t,h ) is the semigroup generated by ´A0 (resp. ´Ah ). We then consider the following linear equation and its approximated scheme (where we do not approximate u by u h ):

9 zptq `A0 zptq " Buptq pt ě 0q, (3.1) 
zp0q " z 0 P X, (3.2)

9 z h ptq `Ah z h ptq " B h uptq pt ě 0q, (3.3) 
z h p0q " P h z 0 , (3.4) 
with u P L 8 pr0, `8q; U q. We first recall a classical characterization of analytic semigroups: Proposition 3.1. T t is an analytic semigroup if and only if there exist C, δ ą 0 such that

Σ Ă ρpA 0 q and } pλI ´A0 q ´1 } LpXq ď C |λ| pλ P Σq, (3.5) 
where Σ is defined by Σ :

" λ P C | |argpλq| ď π 2 `δ( .
It is well known (see, for instance, [24, Ch. 2.6]) that if T t is analytic then

}A γ 0 T t } LpXq ď C t γ pt ě 0, γ P p0, 1qq. (3.6)
We also need the concept of uniform analyticity of the family of semigroups pT t,h q hě0 . Definition 3.2. T t,h is an uniformly analytic semigroup if there exist C independant of h, δ ą 0 such that for every h ą 0 we have

Σ Ă ρpA h q and }pλI ´Ah q ´1} LpXq ď C |λ| pλ P Σq,
where Σ is defined in Proposition 3.1.

Similarly, the above definition implies the following property:

}A γ h T t,h } LpXq ď C t γ pt ą 0, γ P r0, 1sq. (3.7)
It is also clear that B h u " pP h Bq u pu P U q, and (see assumption pC4q) }B h } LpU,V h q ď Ch ´θα .

We recall in the following some well-known results:

Lemma 3.3.
Assume that T t is analytic. Then, for any 0 ď γ ď 1, there exists C ą 0 such that the following estimates hold:

1. }A γ 0 pλI ´A0 q ´1} LpXq ď C |λ| 1´γ pλ P Σq. 2. T t z " 1 2πi
ş Γ e λt pλI ´A0 q ´1 z dλ pz P Xq, where Γ is the path composed from the two rays ρe iψ and ρe ´iψ , 0 ă ρ ă 8 and π{2 ă ψ ă π{2 `δ, Γ being oriented so that λ increases along Γ ( λ denotes the imaginary part of λ).

Proof. The proof of the first estimate can be found in [24, Ch. 2.6] and the proof of the last assertion can be found in [24, Th. 7.7, Ch. 1].

Similar to Lemma 3.3, it is clear that we have the following lemma: Lemma 3.4. Assume that T t,h is uniformly analytic. Then, for any 0 ď γ ď 1, there exists C ą 0 such that the following statement hold: 1. }A γ h pλI ´Ah q ´1} LpXq ď C |λ| 1´γ pλ P Σq. 2. T t,h z " 1 2πi ş Γ e λt pλI ´Ah q ´1 z dλ pz P V h q.

We gather in the proposition below, with no claim of originality, several error estimates which play a central role in the proof of our main result. Some of the proofs are very similar to those in [START_REF] Badra | Stabilisation par feedback et approximation des équations de Navier-Stokes[END_REF]Ch.5], so that they are detailed. Proposition 3.5. Assume that the assumption pC1q ´pC4q hold. Then, there exists C ą 0, such that for every h ą 0, we have the following properties:

1. }A ´1 0 ´A´1 h P h } LpXq ď Ch θ . 2. }A ´1 0 pB ´Bh q} LpU,Xq ď Ch θp1´αq .
3. }pλI ´A0 q ´1 ´pλI ´Ah q ´1P h } LpXq ď Ch θ pλ P Σq. 4. }pλI ´A0 q ´1B ´pλI ´Ah q ´1B h } LpU,Xq ď Ch θp1´αq pλ P Σq. 5. }T t,h P h ´Tt } LpXq ď Ct ´1h θ . 6. }T t,h B h ´Tt B} LpU,Xq ď Ct ´1h θp1´αq . 7. }T .,h B h ´T. B} L 1 pr0,ts;LpU,Xqq ď Ch θp1´αq p| ln h| `t `1q .

Proof.

1. We skip this proof which is based on Proposition 5.1.1 and Proposition 5.1.3 in [START_REF] Lasiecka | Control Theory for Partial Differential Equations: Continuous and Approximation Theories[END_REF].

2. We skip this proof as it is similar to the proof of previous assertion by using assumption pC3q.

3. Notice at first that by simple calculation, it is clear that we have pλI ´A0 q ´1 " ´A´1 0 `λpλI ´A0 q ´1A ´1 0 and pλI ´Ah q ´1P h " ´A´1 h P h `λpλI ´Ah q ´1A ´1 h P h .

Denote M h pλq " pλI ´A0 q ´1 ´pλI ´Ah q ´1P h , we then have:

M h pλq " ´A´1 0 `A´1 h P h `λpλI ´A0 q ´1A ´1 0 ´λpλI ´Ah q ´1A ´1 h P h " ´`A ´1 0 ´A´1 h P h ˘`λpλI ´A0 q ´1 `A´1 0 ´A´1 h P h ˘`λpλI ´A0 q ´1A ´1 h P h ´λpλI ´Ah q ´1A ´1 h P h " ´`I ´λpλI ´A0 q ´1˘`A ´1 0 ´A´1 h P h ˘`λM h pλqA ´1 h P h .
This leads to M h pλq " ´`I ´λpλI ´A0 q ´1˘p A ´1 0 ´A´1 h P h qpI ´λA ´1 h P h q ´1. Notice that pI ´λA ´1 h P h q ´1 " I ´Ph ´Ah pλI ´Ah q ´1P h .

Indeed, we have pI ´λA ´1 h P h q `I ´Ph ´Ah pλI ´Ah q ´1P h " I ´Ph ´Ah pλI ´Ah q ´1P h ´λA ´1 h P h `λA ´1 h P h `λA ´1 h A h pλI ´Ah q ´1P h " I ´Ph `pλI ´Ah qpλI ´Ah q ´1P h " I.

In the same manner, `I ´Ph ´Ah pλI ´Ah q ´1P h ˘pI ´λA ´1 h P h q " I. Thus, (3.8) holds.

By analyticity assumption (3.5) and assertion 1. in Lemma 3.4, we know that there exists a constant C independent of λ and h such that, }λpλI ´A0 q ´1} LpXq ď C |λ| |λ| " C and }A h pλI ´Ah q ´1} ď C pλ P Σq, which leads to, using assertion 1. of Proposition 3.5

}M h pλq} LpXq ď }I ´λpλI ´A0 q ´1} LpXq Ch θ }I ´Ph ´Ah pλI ´Ah q ´1P h } LpXq ď Ch θ .
This ends the proof of assertion 3..

4.

Denote M h,B pλq " pλI ´A0 q ´1B ´pλI ´Ah q ´1B h . Notice that pλI ´A0 q ´1 " A 0 pλI ´A0 q ´1A ´1 0 .

Then, we have: M h,B pλq " pλI ´A0 q ´1pB ´Bh q ``pλI ´A0 q ´1 ´pλI ´Ah q ´1˘B h " A 0 pλI ´A0 q ´1A ´1 0 pB ´Bh q ``pλI ´A0 q ´1 ´pλI ´Ah q ´1˘B h .

Since A 0 pλI ´A0 q ´1 is a bounded operator (by assertion 1. in Lemma 3.3), it is clear that by using assertions 2. and 3. of Proposition 3.5 and assumption pC4q, we have:

}M h,B pλq} LpU,Xq ď C}A ´1 0 pB ´Bh q} LpU,Xq `}pλI ´A0 q ´1 ´pλI ´Ah q ´1} LpXq }B h } LpU,V h q ď Ch θp1´αq `Ch θ }B h } LpU,V h q ď Ch θp1´αq .

5.

It is clear that, by using assertion 2. in Lemma 3.3 and assertion 2. in Lemma 3.4, we have:

T t ´Tt,h P h " 1 2πi
ż Γ e λt `pλI ´A0 q ´1 ´pλI ´Ah q ´1P h ˘dλ.

Then, by using assertion 3. in Proposition 3.5, we have:

}T t ´Tt,h P h } LpXq " C ˆżΓ |e λt |dλ ˙hθ ď Ct ´1h θ .
This ends the proof.

6. We skip this proof as it is similar to the proof of the previous assertion by using assertion 4. in Proposition 3.5.

We calculate:

}T .,h B h ´T. B} L 1 pr0,ts;LpU,Xqq "

ż h θ 0 }T σ,h B h ´Tσ B} LpU,Xq dσ`ż t h θ }T σ,h B h ´Tσ B} LpU,Xq dσ " I 1 `I2 .
By using assertion 6. of Proposition 3.5, we have:

I 2 ď Ch θp1´αq ˆż t h θ σ ´1dσ ˙ď Ch θp1´αq ˆż 1 h θ σ ´1dσ `ż t 1 1dσ ˙ď Ch θp1´αq p| ln h| `t `1q .
Note that the assumption B P LpU, X ´αq means that A ´α 0 B is a bounded operator in LpU, Xq.

Then, in order to deal with I 1 , using also the analyticity of T (see (3.5)), for h small enough, we have, for every 0 ď α ă 1 2 ,

}T σ B} LpU,Xq ď }T σ A α 0 } LpXq }A ´α 0 B} LpU,Xq ď Cσ ´α.
Similarly, by using again the assumption B P LpU, X ´αq, it is clear that A ´α h B h is a bounded operator in LpU, Xq. Thus, we have

}T σ,h B h } LpU,Xq ď }T σ,h A α h } LpU,Xq }A ´α h B h } LpU,Xq ď Cσ ´α, using (3.7).
Finally, by the two previous inequalities, we have :

I 1 ď C ż h θ 0 σ ´αdσ ď Ch θp1´αq .
Thus, we have }T .,h B h ´T. B} L 1 pr0,ts;LpU,Xqq ď Ch θp1´αq p| ln h| `t `1q .

This ends the proof.

We will now present the main result of this section which gives us a nonsmooth initial data error estimate.

Theorem 3.6. Let z 0 P X, let z be the solution of (3.1),(3.2) and let z h be the solution of (3.3), (3.4). Moreover, assume that pC1q ´pC4q hold. Then, there exist C ą 0, h ą 0 such that for h P p0, hq we have the following error estimate: }zptq ´zh ptq} X ď Ch θ t ´1}z 0 } X `Ch θp1´αq p| ln h| `t `1q }u} L 8 pr0,`8q;U q , @t ą 0.

(3.9)

Proof. Denote K h ptq " T t B ´Tt,h B h . We recall that z, solution of system (1.1)-(1.2), satisfies (1.3) and z h , solution of (1.5)-(1.6), satisfies (1.9). It is clear that

}zptq ´zh ptq} X ď }T t z 0 ´Tt,h P h z 0 } X `› › › › ż t 0 K h pt ´σqupσqdσ › › › › X .
By using assertions 5. and 7. in Proposition 3.5, we have:

}zptq ´zh ptq} X ď Ch θ t ´1}z 0 } X `}K h ˚u} L 1 pr0,ts;Xq ď Ch θ t ´1}z 0 } X `}K h } L 1 pr0
,ts;LpU,Xqq }u} L 8 pr0,ts;U q ď Ch θ t ´1}z 0 } X `Ch θp1´αq p| ln h| `t `1q }u} L 8 pr0,ts;U q .

This ends the proof.

Proof of the main results

We denote τ 0 pz 0 q (resp.τ h pz 0,h q) the optimal time associated with the initial state z 0 P X (resp. z 0,h P V h ) and with final state in Bp0, q (resp. Ď B h p0, εq). We use also the notation zpt, z 0 , uq for the solution of the system (1.1)-(1.2) (resp. z h pt, z 0,h , u h q for the system (1.5)-(1.6)) associated with the initial state z 0 (resp. z 0,h ) and with the control u (resp. u h ) at time t.

We first recall a generalized Aubin-Lions theorem (Theorem 4.1) and a standard energy estimate (Lemma 4.2).

Theorem 4.1. Let T ą 0 and let Y 0 , Y 1 , Y 2 be Banach spaces such that Y 0 Ă Y 1 Ă Y 2 . Assume that Y i is reflexive for i " 0, 1, 2 and that the embedding of Y 0 into Y 1 is compact. Let 1 ă r ă 8.
Then, the space Integrating the above estimate from 0 to τ and using the fact that

W " L 8 pr0, T s; Y 0 q X W 1,r pr0, T s; Y 2 q is compactly embedded in Cpr0, T s; Y 1 q. Proof.
ˇˇxBuptq, A 1´2α 0 zptqy ´α,α ˇˇď }Buptq} ´α › › A 1´α 0 zptq › › , it follows that }A 1 2 ´α 0 zpτ q} 2 `ż τ 0 }A 1´α 0 zptq} 2 dt ď }A 1 2 ´α 0 z 0 } 2 `}Bu} 2 L 2 pr0,τ s;X ´αq .
This leads to:

}zpτ q} 2 1 2 ´α `ż τ 0 }zpsq} 2 1´α ds ď ż τ 0 }Bupsq} 2 ´αds `}z 0 } 2 1 2
´α.

(4.2)

Similarly, we have: and integrating by time from 0 to τ , we obtain the following inequality:

x
}A 1 2 ´α 0 zpτ q} 2 `ż τ 0 }A ´α 0 9 zptq} 2 dt ď }A 1 2 ´α 0 z 0 } 2 `}Bu} 2 L 2 pr0,τ s;X ´αq .
This leads to:

}zpτ q} 2 1 2 ´α `ż τ 0 } 9 zpsq} 2 ´αds ď ż τ 0 }Bupsq} 2 ´αds `}z 0 } 2 1 2
´α.

(

Then (4.1) is deduced from (4.2) and (4.3). This ends the proof.

We give here some convergence results which play an important rule in the proof of our main results.

Lemma 4.3. Let z 0 P X, T ą 0, ū P L 8 pr0, T s; U q and τ P r0, T s. Let pu n q n be a sequence of L 8 pr0, T s; U q and pτ n q n be a sequence of r0, T s such that u n P L 8 pr0, T s; U hn q for any n P N and

u n Ñ ū weakly* in L 8 pr0, T s; U q, τ n Ñ τ in r0, T s.
Then, the following convergence results hold 1. lim nÑ`8 }zp., z 0 , u n q ´zp., z 0 , ūq} Cpr0,T s;Xq " 0, 2. lim nÑ`8 }zpτ n , z 0 , u n q ´zpτ , z 0 , u n q} " 0.

Proof.

1. Denote ψptq " zpt, z 0 , ūq and ψ n ptq " zpt, z 0 , u n q. By the standard energy estimate (4.1), we know that pψ n q n is a bounded sequence in

W " Cpr0, T s; X 1 2 ´αq X L 2 pr0, T s; X 1´α q X W 1,2 pr0, T s; X ´αq. (4.4) 
Using Theorem 4.1 with Y 0 " X 1 2 ´α, Y 1 " X and Y 2 " X ´α, we deduce that:

D r ψ P Cpr0, T s; Xq s.t. ψ n Ñ ψ strongly in Cpr0, T s; Xq and ψ n Ñ ψ weakly in W.

Now we prove that r ψ " ψ. We know that ψ n satisfies:

9 ψ n `A0 ψ n " Bu n , ψ n p0q " z 0 .
Then it is clear that 9 ψ n Ñ 9 r ψ weakly in L 2 pr0, T s; X ´αq and A 0 ψ n Ñ A 0 r ψ weakly in L 2 pr0, T s; X ´αq since ψ n Ñ ψ weakly in W . Moreover, u n á ū weakly* in L 8 pr0, T s; U q implies that u n á ū weakly in L 2 pr0, T s; U q. Thus, Bu n á B ū weakly in L 2 pr0, T s; Xq. Finally, ψp0q " z 0 . Indeed, we know that z 0 " ψ n p0q Ñ ψp0q, since ψ n Ñ ψ strongly in Cpr0, T s; Xq.

Consequently, ψ satisfies:

9 ψ `A0 ψ " B ū, ψp0q " z 0 ,
which implies that ψ " ψ. This leads to the first assertion.

We first notice that

}zpτ n , z 0 , u n q ´zpτ , z 0 , u n q} ď }T τn z 0 ´Tτ z 0 } `› › › › ż τn 0 T τn´σ Bu n pσqdσ ´ż τ 0 T τ ´σBu n pσqdσ › › › › ď }T τn z 0 ´Tτ z 0 } `› › › › › ż Ă τn 0 T τn´σ Bu n pσqdσ ´ż Ă τn 0 T τ ´σBu n pσqdσ › › › › › `› › › › ż τn Ă τn T τn´σ Bu n pσqdσ › › › › `› › › › ż τ Ă τn T τ ´σBu n pσqdσ › › › › " L 1 `L2 `L3 `L4 , where r τ n " mintτ n , τ u.
By using the continuity of the map t Þ Ñ T t z 0 , it is clear that L 1 converges to zero when n tends to `8.

Moreover, since pu n q n Ă L 8 pr0, T s, U q and using (3.6), we have

L 3 ď ż τn Ă τn }T τn´σ Bu n pσq} dσ ď ż τn Ă τn }T τn´σ A α 0 } LpXq › › A ´α 0 B › › LpU,Xq }u n pσq} U dσ ď C ż τn Ă τn
pτ n ´σq ´αdσ " C 1 ´α pτ n ´r τ n q 1´α Ñ 0, since 1 ´α ą 0. Similarly, L 4 converges to zero. Now we prove that L 2 converges to zero. We have

L 2 " › › › › › ż Ă τn 0 pT τn´σ ´Tτ´σ q B pu n pσq ´ūpσqq dσ › › › › › `› › › › › ż Ă τn 0 pT τn´σ ´Tτ´σ q B ūpσqdσ › › › › › " L 2,1 `L2,2 .
By using the continuity of the map t Þ Ñ T t z 0 , it is clear that L 2,2 converges to zero. Now we prove that L 2,1 tends to 0 when n tends to `8.

We have

L 2,1 ď › › › › › ż Ă τn 0 T τn´σ B pu n pσq ´ūpσqq dσ › › › › › `› › › › › ż Ă τn 0 T τ ´σB pu n pσq ´ūpσqq dσ › › › › › " }T τn´Ă τn }}zp r
τ n , z 0 , u n q ´zp r τ n , z 0 , ūq} `}T τ ´Ă τn }}zp r τ n , z 0 , u n q ´zp r τ n , z 0 , ūq}.

Since }T τn´Ă τn } and }T τ ´Ă τn } are bounded, by using the first assertion of this lemma, we can deduce that L 2,1 converge to zero when n tends to `8. This ends the proof of the second assertion.

We then give some properties which will be used to prove the convergence results:

Lemma 4.4.

Denote λ 1 (resp. λ 1,h ) the first eigenvalue of the operator A 0 (resp. A 0,h ). For every z 0 P X and z 0,h P V h the following properties hold 1. τ 0 pz 0 q ď lnp}z 0 }{εq λ 1 .

2. τ h pz 0,h q ď lnp}z 0,h }{εq λ 1,h .

λ 1 ď λ 1,h .

Proof. To prove assertion 1. we notice that }zpt, z 0 , 0q} ď e ´λ1 t }z 0 } and taking t " lnp}z 0 }{εq λ 1 we obtain that }zpt, z 0 , 0q} ď ε. This proves 1. By a similar argument, it is clear that assertion 2. holds.

We end by proving the last assertion. In fact, this inequality is easily deduced by the min-max formula:

λ 1 " min zPX 1 2 }A 1 2 0 z} 2 }z} 2 and λ 1,h " min zPV h }A 1 2 0 z} 2 }z} 2 .
This ends the proof.

Given ε ą 0 and z 0 P X such that }z 0 } ą ε, the lemma below shows that τ h has a strictly positive lower and upper bounds, which are independent of h. Lemma 4.5. Assume that pC1q holds. For every z 0 P X such that }z 0 } ą ε, there exist c, C ą 0, h ą 0 such that for any h P p0, hq, we have c ď τ h pP h z 0 q ď C, where C " 2 lnp}z 0 }{εq λ 1 .

Proof. We begin by proving that τ h pP h z 0 q is bounded from below. Assume by contradiction that lim hÑ0 τ h pP h z 0 q " 0.

We first notice that }z h pτ h , P h z 0 , u hq ´zh p0, P h z 0 , u hq} "

› › › › › T τ h ,h P h z 0 `ż τ h 0 T τ h ´σ,h Bu hpσqdσ ´Ph z 0 › › › › › ď › › › ´Tτ h ,h ´Id ¯Ph z 0 › › › `› › › › › ż τ h 0 T τ h ´σ,h Bu hpσqdσ › › › › › .
We can apply the Trotter-Kato theorem (see, for instance, [2, Theorem 3.6.1, Proposition 3.6.2]), to get that the first term of the right hand side of the previous inequality tends to zero when h tends to zero. Moreover, concerning the left hand side, using (3.7), we have

› › › › › ż τ h 0 T τ h ´σ,h Bu hpσqdσ › › › › › ď ż τ h 0 › › ›T τ h ´σ,h A α h › › › LpXq › › A ´α h B › › LpU,Xq }u h pσq} U dσ ď C ż τ h 0 pτ h ´σq ´αdσ " C 1 ´α pτ h q 1´α Ñ 0, since 1 ´α ą 0.
Consequently, we have lim hÑ0 }z h pτ h , P h z 0 , u hq ´zh p0, P h z 0 , u hq} " lim hÑ0 }z h pτ h , P h z 0 , u hq ´Ph z 0 } " 0.

Using the fact that }z h pτ h , P h z 0 , u hq} ď ε, it is clear that lim hÑ0 }P h z 0 } ď ε. However, note that lim hÑ0 }P h z 0 ´z0 } " 0, which comes from pC1q since X γ is dense in X for any γ ą 0 and P h is a projection. This leads to the contradiction with the fact that }z 0 } ą ε.

We prove now that τ h pP h z 0 q is bounded from above. This is obvious by using Lemma 4.4, since

τ h pP h z 0 q ď lnp}P h z 0 }{εq λ 1,h ď 2 lnp}z 0 }{εq λ 1 ă `8.
Proof of Theorem 1.1. It suffices to prove the following two inequalities: lim inf hÑ0 τ h pP h z 0 q ě τ 0 pz 0 q, (4.5) lim sup hÑ0 τ h pP h z 0 q ď τ 0 pz 0 q. (4.6)

We begin by proving (4.5). In the following, we denote simply τ 0 pz 0 q by τ 0 and τ h pP h z 0 q by τ h when there is no ambiguity. We notice at first the following property: @ T ą 0, @ u P U ad , τ 0 pz 0 q ď T `τ 0 pzpT, z 0 , uqq.

We deduce from Theorem 3.6 that }zpτ h , z 0 , u hq ´zh pτ h , P h z 0 , u hq} ď Ch θ τ h ´1}z 0 } X `Ch θp1´αq p| ln h| `1 `τ h q }u h} L 8 pr0,`8q;U h q , which leads to: }zpτ h , z 0 , u hq} ď ε `Ch θ τ h ´1}z 0 } X `Ch θp1´αq p| ln h| `1 `τ h q }u h} L 8 pr0,`8q;U h q ď ε `Ch θ τ h ´1 `Ch θp1´αq p| ln h| `1 `τ h q.

We denote r z 0 " zpτ h , z 0 , u hq. According to (4.7) with T " τ h pP h z 0 q, we have: τ 0 pz 0 q ď τ h pP h z 0 q `τ 0 p r z 0 q.

Since u h P L 8 pr0, `8q; U h q Ă L 8 pr0, `8q; U q and }u hptq} ď 1, u h is then an admissible control for the continuous system. Then, according to Lemma 4.4, we have:

τ 0 ď τ h `lnppε `Ch θ τ h ´1 `Ch θp1´αq p| ln h| `1 `τ h qq{εq λ 1 ď τ h `Ch θ λ 1 ε τ h ´1 `C h θp1´αq λ 1 ε p1 `τ h q `C h θp1´αq | ln h| λ 1 ε . ( 4.8) 
Thus, (4.5) can be deduced by taking h to zero and by the fact that C ą lim hÑ0 τ h pP h z 0 q ą c ą 0 (see Lemma 4.5).

We now prove the second inequality (4.6). We have: }z h pτ 0 , P h z 0 , Q h u ˚q ´zpτ 0 , z 0 , u ˚q} ď }z h pτ 0 , P h z 0 , Q h u ˚q ´zh pτ 0 , P h z 0 , u ˚q} `}z h pτ 0 , P h z 0 , u ˚q ´zpτ 0 , z 0 , u ˚q} ď }z h pτ 0 , P h z 0 , Q h u ˚q ´zh pτ 0 , P h z 0 , u ˚q} `Ch θ τ 0 ´1 `Ch θp1´αq p| ln h| `1 `τ 0 q, using (3.9). Denote f phq " }z h pτ 0 , P h z 0 , Q h u ˚q ´zh pτ 0 , P h z 0 , u ˚q}. Notice that lim hÑ0 f phq " 0. Indeed,

lim hÑ0 f phq " lim hÑ0 }z h pτ 0 , P h z 0 , Q h u ˚q ´zh pτ 0 , P h z 0 , u ˚q} " lim hÑ0 }Φ τ ˚,h pu ˚´Q h u ˚q}.
Moreover, we have

}Φ τ ˚,h pu ˚´Q h u ˚q} ď } `Φτ ˚,h ´Φτ ˚˘pu ˚´Q h u ˚q} `}Φ τ ˚pu ˚´Q h u ˚q}.
Since B P LpU, X ´αq, with 0 ď α ă 1 2 , it is known that Φ τ ˚P LpL 2 pr0, τ ˚s; U q, Xq (see for instance [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]Proposition 5.1.3]). Combining this fact with assertion 7. in Proposition 3.5 and with assumption pC5q, it is clear that lim hÑ0 f phq " 0.

Thus, we have:

}z h pτ 0 , P h z 0 , Q h u ˚q} ď ε `f phq `Ch θ τ 0 ´1 `Ch θp1´αq p| ln h| `1 `τ 0 q.
By the similar argument as in (4.8), we have: τ h pP h z 0 q ď τ 0 `lnppε `f phq `Ch θ τ 0 ´1 `Ch θp1´αq p| ln h| `1 `τ 0 qq{εq λ 1,h ď τ 0 `f phq `Ch θ τ 0 ´1 `Cp1 `τ 0 qh θp1´αq `Ch θp1´αq | ln h| λ 1 ε .

This leads to inequality (4.6) by taking h to zero.

Proof of Theorem 1.2. Denote T " 2 lnp}z 0 }{εq λ 1

. It is clear that τ h ď T for all h ą 0 and τ 0 ď T (see Lemma 4.4 and Lemma 4.5). We extend pu hq h and u 0 to time T by zero.

Since }u h} L 8 pr0,T s;U h q ď 1, there exist a control ū P L 8 pr0, T s; U q and a subsequence ph n q n Ñ 0, such that: u hn Ñ ū weakly* in L 8 pr0, T s; U q. Now we prove that ū " u 0 .

We then consider the standard P 1 finite element method with regular triangulation T h of Ω (see for example, Thomée [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF], Raviart and Thomas [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF]) and we build the finite element space V h Ă H 1 0 pΩq of X, defined by V h " ϕ P Cp Ωq |ϕ |T P P 1 pT q for every T P T h , ϕ |BΩ " 0 ( where P 1 pT q is the set of affine functions on T . We also define U h a finite dimensional subspace of U by U h :" tχ ω ϕ h | ϕ h P V h u .

Denote P h the L 2 ´projection from L 2 pΩq to V h , and we consider the following space semi-discrete scheme formulated in the form of (1.5)-(1.6): 9 z h ptq `Ah z h ptq " B h u h ptq pt ě 0q, (5.4) z h p0q " P h z 0 pz 0 P Xq, (

where u h is taken in L 8 pr0, `8q; U h q and the operator A h and B h are defined by

ă A h ϕ, ψ ą " ż Ω ∇ϕ∇ψ dx pϕ, ψ P V h q, (5.6) 
and B h P LpU, V h q is defined by : xB h u, ϕy " xu, B ˚ϕy U pϕ P V h , u P U q.

(5.7)

Given ε ą 0 with the same notation as in Section 1, we consider the time optimal control problem pTPq associated to (5.1)-(5.3) (resp. pTP h q associated to (5.4)-(5.5)) and denote pτ 0 , u 0 q the corresponding optimal time and time-optimal control (resp. pτ h , u hq).

We can now state the following convergence results:

Proposition 5.2. With the notation above, let, for every ε ą 0, z 0 P X such that }z 0 } ą ε. Then we have that τ h Ñ τ 0 , and u h Ñ u 0 in L 2 pr0, T s; L 2 pΩqq.

Proof. In order to apply Theorem 1.1 and Theorem 1.2, we verify that conditions pC1q ´pC5q are satisfied with α " 0 and θ " 2. Indeed, pC1q is a standard error estimate when applying the P 1 finite element scheme (see for example [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF]). pC2q is proved in Bramble et al [START_REF] Bramble | Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations[END_REF] and in Lasiecka [START_REF] Lasiecka | Convergence estimates for semidiscrete approximations of nonselfadjoint parabolic equations[END_REF]. Moreover, pC3q´pC5q clearly hold true because here the control operator B is bounded. Furthermore, it is known that the assumption made in Theorem 1.2 holds true (see for example [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF]). Thus, we can apply Theorem 1. 

  See for example [26, Cor. 4, p.85].
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BΩ px, tq " upx, tq px P BΩ, t ě 0q, (5.9) zpx, 0q " z 0 pxq P L 2 pΩq px P Ωq.

(5.10)

and with bounded operator B, which can not apply to boundary control problem. Our results

The main step here is to prove the following convergence property: }z hn pτ hn , P hn z 0 , u hn q ´zpτ 0 , z 0 , ūq} Ñ 0.

(4.9) Indeed, since Bp0, εq is complete (notice that Ď B h p0, εq Ă Bp0, εq), (4.9) leads to zpτ 0 , z 0 , ūq P Bp0, εq. Then, by the uniqueness of the time optimal control and Theorem 1.1, we deduce that ū " u 0 .

We are then reduced to prove (4.9). We have:

}z hn pτ hn , P hn z 0 , u hn q ´zpτ 0 , z 0 , ūq} ď }z hn pτ hn , P hn z 0 , u hn q ´zpτ hn , z 0 , u hn q} `}zpτ hn , z 0 , u hn q ´zpτ 0 , z 0 , u hn q} `}zpτ 0 , z 0 , u hn q ´zpτ 0 , z 0 , ūq}. (4.10)

The first term of the right hand side of (4.10) converges to zero using the error estimate (3.9). Moreover, by using the first and the second assertions in Lemma 4.3, it is clear that the second and the third terms of the right hand of (4.10) converges to zero. We then deduce (4.9). Thus, we have:

We deduce immediately that:

At last, since both u hn and u 0 are bang-bang controls (see Corollary 2.4), we have lim nÑ`8

}u hn } L 2 pr0,T s;U q " }u 0 } L 2 pr0,T s;U q .

According to the Radon-Riesz property, this leads to the strong convergence in L 2 pr0, T s; U q. This ends the proof. where ω Ă Ω is an open and non-empty subset with its characteristic function χ ω . The system (5.1)-(5.3) can be formulated in the abstract form (1.1)-(1.2) by taking A 0 " ´ with Dirichlet boundary conditions, of domain DpA 0 q " H 1 0 pΩq X H 2 pΩq on X " L 2 pΩq. The control operator B P LpU, Xq (here α " 0) is defined by

Bϕ " χ ω φ, where U " L 2 pωq and where φ is the extension by 0 of ϕ on Ω outside ω.

It is known that the system (5.8)-(5.10) can be written in the form of (1.1)-(1.2) by taking X " L 2 pΩq, U " L 2 pBΩq, DpA 0 q " z P H 2 pΩq | Bz Bν | BΩ " 0 ( , A 0 " ´ and the control operator B P LpU, X ´αq (here α " 1 4 `ε, ε ą 0) defined by

where N is the Neumann map. This map is defined by N v " z, where z P L 2 pΩq is the unique solution of the nonhomogeneous elliptic equation

(5.11)

We refer to [START_REF] Lasiecka | Galerkin approximations of abstract parabolic boundary value problems with rough boundary data-l p theory[END_REF]Par. 5] which shows that the Galerkin semi-discrete approximation of system (5.8)-(5.10) satisfies conditions pC1q ´pC5q (and for other numerical approximation method).

We can obtain the following result:

Proposition 5.4. With the notation above, let, for every ε ą 0, z 0 P X such that }z 0 } ą ε. Then we have that τ h Ñ τ 0 , and

Proof. In order to apply Theorem 1.1 and Theorem 1.2, we verify that conditions pC1q ´pC5q are satisfied with α " 1 4 `ε, ε ą 0 and θ " 2 (see for example [START_REF] Lasiecka | Galerkin approximations of abstract parabolic boundary value problems with rough boundary data-l p theory[END_REF]Ch. 5]). Moreover, it is known that the assumption made in Theorem 1.2 holds true (see for example [START_REF] Lasiecka | Control Theory for Partial Differential Equations: Continuous and Approximation Theories[END_REF]Section 3.3,Ch. 5.3]). Thus, we can apply Theorem 1.1 and Theorem 1.2 to conclude.

We illustrate in the follows some numerical results for the 1d-heat equation with Neumann boundary condition. More precisely, we take Ω " p0, 1q, " 1 (the radius of the target ball), control constraints |upt, 0q| ď 1 and |upt, 1q| ď 1 and the initial data z 0 pxq " 5sinpπxq. We choose to discretize totally the system, with the implicit Euler method for time and finite difference scheme for space. We also use the optimization solver IPOPT in Matlab.

We obtain the following result: Moreover, we find that u h pt, 0q " u h pt, 1q " ´1 for any t ą 0 and for any number of discretization, that validates the fact that the time optimal control for the discrete system converges towards a bang-bang time optimal control. Remark 5.5. The error estimates of the time and control convergence remain to study.