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Pilot-Induced-Oscillations alleviation through
anti-windup based approach∗

Sophie Tarbouriech, Isabelle Queinnec, Jean-Marc Biannic and Christophe Prieur

Abstract The chapter is dedicated to the optimization of a well-known structure
of compensators: the anti-windup scheme. This approach belongs to the saturation
allowance control class which aims to exploit at the most the actuators capabilities.
The objective of this chapter consists of adapting and developing the anti-windup
compensator design to some particular classes of nonlinear actuators presenting both
magnitude and rate saturations. It is illustrated on the lateral flying case for a civil
aircraft in presence of aggressive maneuvering of the pilot. A complete methodology
is then proposed comparing several approaches including given anti-PIO filters.

1 Introduction

Control engineers, where possible, like to work under the assumption of linearity.
The mathematics associated with the field of linear systems is well developed and
underpins much of the control theory which is applied in industry. Even nonlin-
ear techniques often attempt to generalize linear concepts, and frequently nonlinear
systems are linearized to obtain linear models which locally yield good engineer-
ing approximations [18]. The problem with the assumption of linearity is that it is
sometimes unrealistic and can lead to erroneous results. Actually, the increasing re-
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quirements in terms of operational reliability and performance ask to work beyond
the linear behavior of the system. Hence, actuators saturations (both magnitude and
rate saturations) represent a common nonlinear phenomenon in almost all physical
applications, especially in space and aeronautical fields. There are many examples
of saturation problems but perhaps the most notorious are those associated with
so-called pilot-induced-oscillations (PIO’s) in aeronautics (see, for example, [19],
[8], [20]). These saturation-induced events have led to the crash of several aircrafts
(the SAAB Grippen and the Boeing V22 Osprey are notorious examples [2]) and
several near-misses with others. Actually, recall that a pilot-induced oscillation is
a sustained or uncontrollable, undesired oscillation resulting from the action of the
pilot to control the aircraft. A common nonlinearity leading to PIO is control sur-
face rate limiting. Then this phenomenon can introduce a delayed response and then
the action of the pilot implies that the airplane response is essentially opposite of
the command wished by the pilot (see, in particular the recent chapter [7]) Thus
the presence of saturation can lead to performance degradation from the mild to the
severe and can also lead to loss of stability [16], [17]. Although this is not always
critical, it is clear that some way of predicting the effects of saturation is required
and, moreover, that some method of limiting the degradation that occurs is war-
ranted. This reflects the need for the development of new and more complex control
techniques in order to meet the new demands.

In the aeronautical literature, there exist some methods mainly based on the ad-
dition of filters or estimators designed to predict and reduce the risk of PIO (see,
for example the OLOP criterion using describing functions studied in [12] or the
use of a detector based on short time Fourier transform and autoregressive model
[21]. In this chapter, we choose another route by considering the use of anti-windup
technique,with the objective to provide constructive conditions (that is associating
theoretical conditions to optimization routines in order to exhibit effective numerical
solutions). More specifically, the approach proposed in this chapter is based on the
optimization of a well-known structure of compensators: the anti-windup scheme
(see e.g., [26, 32] for an introduction of this notion). This approach belongs to the
saturation allowance control class which aims to exploit at the most the actuators
capabilities. The basic concept consists of introducing an extra layer to the existing
linear controller, accounting for the nonlinearities in order to mitigate the windup
phenomenon created by the saturation [15]. This strategy, also called anti-windup
design, allows the designer to keep the existing linear controller (already validated)
and to introduce a compensator which is active only when the nonlinearity arises.
In this framework, numerous works have emerged in the context of both magnitude
and rate saturation constraints [25], [6], [10] [13], [11], [30]. Such an approach ap-
pears to be really attractive as the anti-windup loop may work with existing control
laws (a priori designed by the engineers to answer to defined requirements). Indeed,
it represents an interesting technique for the controller designers who can use fa-
miliar and intuitive techniques for them and then, simply add an extra layer, which
will consider the nonlinear behavior in a second step. If originally, results on anti-
windup design consisted on ad-hoc methods intended to work with PID controllers
[9], [3], modern anti-windup methods have emerged during the last decade (see, for
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example, [31], [14]). Then, the design of such an additional compensator is gener-
ally carried out through a static optimization problem of the controller parameters.
Thanks to the development of semi-definite programming and convex optimization
[5], the anti-windup controller design problem can be formulated as the optimiza-
tion of a multi-objective criterium (corresponding to closed-loop stability and per-
formance specifications) subject to matrix inequalities constraints associated to the
dynamical system. Many different techniques exist in control theory to synthesize
such anti-windup controllers, among which static and dynamic linear anti-windup
augmentation (see [32]) based on a generalized sector condition representing the sat-
uration [26]. Other anti-windup augmentations are possible as nonlinear synthesis,
in particular for control systems equipped with other nonlinearities than magnitude
and rate saturations. One can consult [1] for control systems presenting two different
sector conditions, and [28] for a control system with a memory-based input.

The objective of this chapter is to adapt and develop the anti-windup compen-
sator design to a class of systems presenting both magnitude and rate saturations.
The techniques proposed first include a modeling of the nonlinear actuator involved
to further derive analysis and design conditions. It is illustrated on the lateral flying
case for a civil aircraft in presence of aggressive maneuvering of the pilot. A com-
plete methodology is then proposed comparing several approaches including given
anti-PIO filters (borrowed mainly from [4] and [22]).

The chapter is organized as follows. In Section 2, a complete model of plant,
actuator and controller involved to address the stability and performance optimiza-
tion problem is described. Then, the multi-objective problem to be solved in order
to design anti-windup loops is stated. Section 3 pertains to the anti-windup design
conditions in two cases depending on the signal used as the input of the anti-windup
controller. Then, in order to alleviate the PIO risk for a civil aircraft in presence of
aggressive maneuvering of the pilot, Section 4 depicts how the previous techniques
are very interesting in comparison with classical anti-PIO filters to guarantee sta-
bility and performance of the closed-loop system. Several simulations illustrate the
benefits provided by the anti-windup compensators, in terms of simple and system-
atic methods without needing a tuning parameters step. Finally, some concluding
remarks end the chapter.

2 Model description and problem formulation

Anti-windup strategies represent an appropriate framework to mitigate the unde-
sired saturation effects [26], [32]. Thus, the general principle of the anti-windup
scheme can be depicted in Figure 1, where the (unconstrained) signal produced by
the controller is compared to that which is actually fed into the plant (the constrained
signal). This difference is then used to adjust the control strategy by preserving sta-
bility and performance.
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Fig. 1: Principle of anti-windup

The kind of anti-windup controller used in the chapter is specified later and is
strongly depending on the considered plant, actuator and controller. Let us first de-
scribe the complete model.

Plant model

Unlike most systems in the literature, the outputs of the controller are not affected in
a same way by the nonlinear elements. Then, the vector u∈ℜm building the m inputs
of the plant is decomposed into two subvectors: the first one, denoted us ∈ ℜms ,
corresponds to ms saturated inputs, whereas the second one, denoted uns ∈ℜm−ms ,
corresponds to the linear inputs (unsaturated inputs). The plant model can be defined
by:

sysP :


ẋp = Apxp +Bs

puus +Bns
puuns +Bpww

yp = Cpxp +Ds
puus +Dns

puuns +Dpww

z = Czxp +Ds
zuus +Dns

zuuns +Dzww

(1)

where xp ∈ ℜnp and yp ∈ ℜp are the state and the measured output of the plant.
w ∈ ℜq generally represents an exogenous perturbation but may also be used to
represent a reference signal (or both). Furthermore, z ∈ℜl represents the regulated
output, which is used to evaluate the performance of the system with respect to the
perturbation w via some pertinent optimization criteria.

Controller model

Differently from the classical anti-windup loops, in which the output of the anti-
windup controller is injected to the dynamics of the controller and/or the output of
the controller, we consider here that the output of the anti-windup controller modi-
fies only partially the dynamics of the controller and/or the output of the controller.
Then, with this in mind, the dynamical controller is described as follows:
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sysC :


ẋc = Acxc +Bcuc +Bcww+Bcavx

ycs = Cs
cxc +Ds

cuc +Ds
cww+Dcavy

ycns = Cns
c xc +Dns

c uc +Dns
cww

(2)

where xc ∈ℜnc and uc ∈ℜp are the state and the input of the controller. The output
of the controller is decomposed into two signals: ycs ∈ℜms , which will be intercon-
nected to us through a saturated actuator, and ycns ∈ℜm−ms , which will be intercon-
nected with the linear (unsaturated) input uns. Moreover, vx and vy are the additional
inputs that will be connected to the anti-windup controller.

Bca and Dca are matrices of dimensions nc×ncr and ms×mr, and allow to specify
what are the ncr states and mr outputs modified by the anti-windup action.

Actuator model

There is an actuator block between the output of the controller yc and the input of
the plant u, which is decomposed into two blocks: the first one corresponding to
the nonlinear (saturated) part and the second one corresponding to the linear (unsat-
urated) part. The nonlinear actuator part involves ndz nested saturations, including
the case of rate and magnitude saturations, as depicted in Figure 2(a). Such non-
linearities will will be tackled via the use of dead-zone, denoted φi(.), i = 1...ndz.

+

u

+
− 1
u−

+
−u

0

u

+
−

0

1−

+

(a)

(b)
v

1

01/T  s + 1

T0

ycs us

ycs us

Fig. 2: (a) Actuator with rate and magnitude saturations. (b) Model used to represent
such an actuator (scalar case)

The dynamical model of the actuator is based on the scheme 2(b) as follows:

sysACT :


ẋa = v+φ1(v)

v = T0ycs +T0φ0(ycs)−T0xa

us = xa

(3)
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with φ0(ycs) = satu0(ycs)− ycs and φ1(v) = satu1(v)− v, where satu0(.) and satu1(.)
are classical saturation functions and u0 and u1 are the levels of saturation in mag-
nitude and in rate, respectively. The elements of the diagonal matrix T0 ∈ ℜms×ms

classically take values large enough in order to avoid affecting the linear dynamics
of the closed-loop system.

Interconnections

The interconnections considered in the chapter can be described as follows:

• linear link between the output of the plant and the input of the controller: uc = yp;
• the first part of the output of the controller (ycs) is linked to the corresponding

inputs of the plant (us) through the actuator model (3);
• the second part of the output of the controller is directly connected to the corre-

sponding inputs of the plant: uns = ycns;
• vx and vy are built from the anti-windup compensator (and will be specified later).

Anti-windup compensator

In the DLAW (Direct Linear Anti-Windup) strategy, the anti-windup controller uses
as input the difference between the signals issued either from the input and the out-
put of the whole actuator or from the input and the output of the nonlinear elements
included in the actuator. Following this, we pursue two strategies to design the anti-
windup loops.

• The first strategy is reported in [4] and considers the difference between the input
and the output of the actuator defined by e = us− ycs ∈ ℜms . Additionally, one
assumes that the anti-windup controller only acts on the dynamics of the con-
troller, which corresponds to vy = 0, or equivalently, mr = 0. The anti-windup
controller of order naw, with vx ∈ℜncr , reads:

AWe :

{
ẋaw = Aawxaw +Be

aw(us− ycs)

vx = Cawxaw +De
aw(us− ycs)

(4)

• The second strategy considers that the input of the anti-windup controller are the
dead-zones associated to each saturation. Hence, the anti-windup controller of
order naw reads:

AWφ :


ẋaw = Aawxaw +B0

awφ0(yc)+B1
awφ1(v)[

vx
vy

]
= Cawxaw +D0

awφ0(yc)+D1
awφ1(v)

(5)

where vx and vy are of dimensions ncr and mr, respectively.
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Remark 1. The interest of the second anti-windup structure resides in the simplic-
ity of the design conditions. Indeed, the design of a static anti-windup gain (only
matrices D0

aw and D1
aw are used) is issued from a fully linear problem. In the case

of the design of a dynamical anti-windup controller, for a priori given matrices Aaw
and Caw, the determination of input and transmission matrices is also obtained by
solving a linear problem. In the case where naw = np + nms + nc, the resolution of
a linear problem can also be considered [26]. At the opposite, the first strategy is
more adapted to provide analysis conditions but does not allow to simultaneously
compute the matrices of the anti-windup and the matrix of the Lyapunov function
through a linear optimization problem, even in the static anti-windup case.

Remark 2. The anti-windup model (5) imposes the assumption that the input and
output signals of each saturation block is available. To overcome this assumption,
alternative strategies can be investigated. For example, the anti-windup may use the
difference between the nonlinear actuator and a linear fictitious one (with the same
dynamics but without saturation blocks) to explicitly take into account the dynamics
of the actuator (present in the rate limiter) [23]. Another option would be to build an
observer to evaluate the internal state of the actuator [29]. In these cases, conditions
can be derived in a simpler way than that ones issued from the strategy with (4), but
they remain more complex than those due to the strategy with (5).

Standard formulation

In [26], a standard formulation of the anti-windup design has been proposed for
different kinds of actuators. In the current case, by considering an augmented state
of dimensions n = np+ms+nc+naw including the state of the plant, the state of the
actuator, the state of the controller and the state of the anti-windup controller, the
following standard model of the complete closed-loop system can be defined by:

ẋ = A x+ B0φ0(yc)+ B1φ1(v)+ B2w

yc = C0x+D00φ0(yc)+D01φ1(v)+D0ww

v = C1x+D10φ0(yc)+D11φ1(v)+D1ww

z = C2x+D20φ0(yc)+D21φ1(v)+D2ww

(6)

Then, depending of the anti-windup scheme under consideration, the matrices of the
anti-windup controller are encapsulated into the matrices of system (6).

The design procedure of the anti-windup controller consists in optimizing some
quantities as the size of the region of stability of the closed-loop system or the
guaranteed level of performance. Several optimization problems are then of interest.
In particular, the idea by adding the anti-windup loop is to maximize the basin of
attraction of the origin for the closed-loop system and/or to minimize the L2 gain
between w and z or to maximize the set of perturbation w, which can be rejected.
Then, throughout the chapter, the signal of perturbation is supposed to be bounded
in energy as follows:
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‖w‖2
2 =

∫
∞

0
w′(t)w(t)dt ≤ δ

−1 ; 0≤ δ
−1 < ∞ (7)

The problem we intend to address in the chapter can be summarized below.

Problem 1. Determine an anti-windup controller and a region E , as large as possi-
ble, such that

• Internal stability. The closed-loop system (6) with w = 0 is asymptotically stable
for any initial conditions belonging to E (which is a region of asymptotic stability
(RAS));

• Performance. The L2 gain between w and z is finite and equal to γ > 0.

The convex optimization problems associated to Problem 1 are specified in Sec-
tions 3.2 and 3.3.

3 Main Anti-Windup Design Conditions

3.1 Solution to standard anti-windup design

The following proposition provides conditions of local stability and L2 performance
for the closed-loop system (6). The result regards existence conditions to solve Prob-
lem 1.

Proposition 1. If there exist a symmetric positive definite matrix Q ∈ ℜn×n, two
matrices Z0 and Z1 ∈ℜm×n, two positive diagonal matrices S0 and S1 ∈ℜm×m and
a positive scalar γ such that the following conditions are verified:

QA ′+A Q B0S0−QC ′0−Z′0 B1S1−QC ′1−Z′1 B2 QC ′2
? −2S0−D00S0−S0D

′
00 −D01S1−S0D

′
10 −D0w S0D

′
20

? ? −2S1−D11S1−S1D
′
11 −D1w S1D

′
21

? ? ? −I D ′2w
? ? ? ? −γI

< 0

(8)[
Q Z′0(i)
? δu2

0(i)

]
≥ 0, i = 1, ...,m (9)

[
Q Z′1(i)
? δu2

1(i)

]
≥ 0, i = 1, ...,m (10)

then,

1. when w = 0, the set E (Q−1,δ ) = {x ∈ℜn;x′Q−1x≤ δ−1} is RAS for the closed-
loop system (6);

2. when w 6= 0, satisfying (7), and for x(0) = 0,
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• the trajectories of the closed-loop system remain bounded in the set E (Q−1,δ );
• the L2 gain is finite and one gets:∫ T

0
z(t)′z(t)dt ≤ γ

∫ T

0
w(t)′w(t)dt,∀T ≥ 0 (11)

In an analysis purpose (the anti-windup controller being given), conditions of
Proposition 1 are linear and can be directly used to solve adequate optimization
problems. Moreover, in the design context, conditions of Proposition 1 are non con-
vex, matrices Aaw, Baw, Caw and Daw being hidden in matrices A , Bi, Ci, Di j,
i, j = 0,1. Depending on the problem studied, conditions linear in the decision vari-
ables can be obtained, more or less directly, by modifying a bit the original condi-
tions or still by considering iterative procedures (including D-K iteration process)
allowing to search for Lyapunov matrix and anti-windup matrices. These situations
are detailed in the next subsections.

Remark 3. In the sequel, one considers a set X0, defined by some directions in the
plant state space vi ∈ ℜnp , i = 1, ...,q, to provide a desired shape of the region
E (Q−1,δ ) to be maximized when solving Problem 1. Then, considering v̄i =

[
v′i 0

]′
∈ℜn, i = 1, ...,q and β a scaling factor such that βX0 ⊂ E (Q−1,δ ), an additional
condition to those of Proposition 1 have to be considered in the algorithms which
follow: [

δ
1

β 2 δ v̄′i
δ v̄i Q

]
> 0, i = 1, ...,q (12)

3.2 Algorithms for AWe case

From (1), (2), (3) and (4), matrices of system (6) read:

A =

[
A 0
0 0

]
+BνBAawCνA +BνBBe

awCνC +BνDCawCνA +BνDDe
awCνC

B0 =

[
Bφ0
0

]
; B1 =

[
Bφ1
0

]
; B2 =

[
B2
0

]
+BνBBe

awCνW +BνDDe
awD0w

C0 =
[

C0 0
]

; C1 =
[

C1 0
]

; C2 =
[

C2 0
]

D00 = 0 ; D01 = 0 ; D10 = D1 ; D11 = 0

D20 = 0 ; D21 = 0 ; D0w = D0w ; D1w = D1w ; D2w = D2w

(13)

with
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A=


Ap +Bns

pu∆−1Dns
c Cp Bs

pu +Bns
pu∆−1Dns

c Ds
pu Bns

pu∆−1Cns
c

T0Ds
c(Cp+Dns

pu∆−1Dns
c Cp)

T0(Ds
cDs

pu− Ims

+Ds
cDns

pu∆−1Dns
c Ds

pu)
T0(Cs

c+Ds
cDns

pu∆−1Cns
c )

BcCp+BcDns
pu∆−1Dns

c Cp BcDs
pu+BcDns

pu∆−1Dns
c Ds

pu Ac +BcDns
pu∆−1Cns

c



B2 =


Bpw +Bns

pu∆−1(Dns
c Dpw +Dns

cw)

T0(Ds
cDpw +Ds

cw +Ds
cDns

pu∆−1(Dns
c Dpw +Dns

cw))

Bcw +BcDpw +BcDns
pu∆−1(Dns

c Dpw +Dns
cw)


Bφ0 =

 0
T0
0

 ; Bφ1 =

 0
Ims

0

 ; D1 = T0

C0 =
[

Ds
c(Ip +Dns

pu∆−1Dns
c )Cp Ds

c(Ip +Dns
pu∆−1Dns

c )Ds
pu Cs

c +Ds
cDns

pu∆−1Cns
c
]

C1 =
[

T0Ds
c(Ip +Dns

pu∆−1Dns
c )Cp T0Ds

c(Ip +Dns
pu∆−1Dns

c )Ds
pu−T0

T0(Cs
c +Ds

cDns
pu∆−1Cns

c )
]

C2 =
[

Cz +Dns
zu∆−1Dns

c Cp Ds
zu +Dns

zu∆−1Dns
c Ds

pu Dns
zu∆−1Cns

c
]

D0w = Ds
cw +Ds

cDpw +Ds
cDns

pu∆−1(Dns
c Dpw +Dns

cw)

D1w = T0(Ds
cw +Ds

cDpw +Ds
cDns

pu∆−1(Dns
c Dpw +Dns

cw))

D2w = Dzw +Dns
zu∆−1(Dns

c Dpw +Dns
cw)

BνB =


0
0
0

Inaw

 ; BνD =


0
0

Bca
0

 ; CνA =
[

0 0 0 Inaw

]
CνC =

[
−Ds

c(Ip +Dns
pu∆−1Dns

c )Cp Im−Ds
c(Ip +Dns

pu∆−1Dns
c )Ds

pu

−Cs
c−Ds

cDns
pu∆−1Cns

c 0
]

and ∆ = Im−ms−Dns
c Dns

pu.

In the analysis context, conditions of Proposition 1 using the AWe structure are
linear in the decision variables and can be directly used. On the other hand, in the
design context, conditions of Proposition 1 are nonlinear due to, in particular, the
products between the Lyapunov matrix Q and the matrices of the anti-windup con-
troller. Then, to address the design and solve Problem 1, some iterative procedure
can be applied by considering at the first step a given static (naw = 0) or dynamic
(naw 6= 0) anti-windup controller.

The following algorithms can be used.
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Algorithm 3.1 Analysis of a given AWe anti-windup controller

1. Give matrices Aaw, Be
aw, Caw and De

aw.
2. Choose directions to be optimized vi ∈ℜnp , i = 1, ...,q and a known perturbation

with bound δ .
3. Solve

min
Q,S0,S1,Z0,Z1,γ,µ

γ +µ

subject to LMI (8), (9), (10) and (12)

where γ is the L2 gain between w and z and µ = 1/β 2.

Algorithm 3.2 Design of a AWe anti-windup controller

1. Select an initial guess for matrices Aaw, Be
aw, Caw and De

aw. of appropriate di-
mensions in order to build the desired anti-windup loop. A static anti-windup
AWe may also be used by considering naw = 0.

2. Choose directions to be optimized vi ∈ℜnp , i = 1, ...,q and a known perturbation
with bound δ .

3. Analysis step − Solve

min
Q,S0,S1,Z0,Z1,γ,µ

γ +µ

subject to LMI (8), (9), (10) and (12)

where γ is the L2 gain between w and z and µ = 1/β 2.
4. If the solution obtained is satisfactory (some accuracy has to be fixed) or no more

improved from the previous steps then STOP. Otherwise, go to the next iteration
(the idea is to finish by an analysis step).

5. Synthesis step − Pick the solution Q obtained at Step 3 and solve

min
Aaw,Be

aw,Caw,De
aw,S0,S1,Z0,Z1,γ

γ

subject to LMI (8), (9), (10) and (12)

6. Go to Step 3.

Remark 4. The selection of an initial guess of anti-windup in the Algorithm 3.2 must
take care of the dimension of each elements but must also verify that Aaw is Hurwitz.
Actually, it is not possible to initialize the problem with null matrices of appropriate
dimensions (for a given order of the anti-windup scheme naw) as the condition on
A in the first block of inequality (8) imposes that both the closed-loop linear dy-
namics of the system and the anti-windup dynamics are asymptotically stable. An
option may then be to select any stable dynamical matrix Aaw with matrices Be

aw, Caw
and De

aw equal to null matrices of appropriate dimensions. This initial anti-windup
scheme is ineffective but allows to solve the analysis steep and obtain a matrix Q to
be used in the synthesis step.
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3.3 Algorithms for AWφ case

As for the previous case, from (1), (2), (3) and (5), matrices of system (6) are defined
by:

A =

[
A BvCaw
0 Aaw

]
; B0 =

[
Bφ0 +BvD0

aw
B0

aw

]
; B1 =

[
Bφ1 +BvD1

aw
B1

aw

]
C0 =

[
C0 Cv0Caw

]
; C1 =

[
C1 Cv1Caw

]
; C2 =

[
C2 0

]
D00 =Cv0D0

aw ; D01 =Cv0D1
aw ; D10 = D1 +Cv1D0

aw ; D11 =Cv1D1
aw

B2 =

[
B2
0

]
; D20 = 0 ; D21 = 0 ;

(14)

Matrices A, B2, Bφ0, Bφ1, D1, C0, C1, C2, D0w, D1w and D2w remain unchanged.
Matrices defining the interconnection between the anti-windup loop and the system
are:

Bv =

 0
T0Dca

[
0 Imr

]
Bca
[

Incr 0
]
 ; Cv0 = Dca

[
0 Imr

]
; Cv1 = T0Dca

[
0 Imr

]
As in the previous case, the analysis problem (Algorithm 3.3) is linear and the

synthesis problem of the anti-windup is nonlinear, including products between deci-
sion variables, and in particular between the Lyapunov matrix Q and the anti-windup
elements. As for the AWe strategy, a D-K iteration procedure may then be considered
for the synthesis problem (Algorithm 3.4). However, differently for the AWe strat-
egy, the synthesis optimization problem may be partialy linearized and, for given
matrices Aaw and Caw, the design of matrices Bi

aw and Di
aw, i = 0,1 can be handled

via a linear optimization problem (Algorithm 3.5).

Algorithm 3.3 Analysis of a given AWφ anti-windup controller

1. Select matrices Aaw, B0
aw, B1

aw, Caw, D0
aw and D1

aw.
2. Choose directions to be optimized vi ∈ℜnp , i = 1, ...,q and a known perturbation

with the bound δ .
3. Solve

min
Q,S0,S1,Z0,Z1,γ,µ

γ +µ

subject to LMI (8), (9), (10) and (12)

where γ is the L2 gain between w and z and µ = 1/β 2.

Algorithm 3.4 Design of a AWφ anti-windup controller
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1. Select matrices Aaw, B0
aw, B1

aw Caw, D0
aw and D1

aw of appropriate dimensions in
order to build the desired anti-windup loop. A static anti-windup AWφ may also
be used by considering naw = 0.

2. Choose directions to be optimized vi ∈ℜnp , i = 1, ...,q and a known perturbation
with bound δ .

3. Analysis step − Solve

min
Q,S0,S1,Z0,Z1,γ,µ

γ +µ

subject to LMI (8), (9), (10) and (12)

where γ is the L2 gain between w and z and µ = 1/β 2.
4. If the solution obtained is satisfactory (some accuracy has to be fixed) or no more

improved from the previous steps then STOP. Otherwise, go to the next iteration
(the idea is to finish by an analysis step).

5. Synthesis step − Pick the solution Q obtained at Step 3 and solve

min
S0,S1,Z0,Z1,B0

aw,B1
aw,D0

aw,D1
aw,γ

γ

subject to LMI (8), (9), (10) and (12)

6. Go to Step 3.

Algorithm 3.5 Design of a AWφ anti-windup controller with fixed dynamics

1. Give matrices Aaw and Caw.
2. Choose directions to be optimized vi ∈ℜnp , i = 1, ...,q and a known perturbation

with the bound δ .
3. Solve

min
Q,S0,S1,Z0,Z1,B̄0

aw,B̄1
aw,D̄0

aw,D̄1
aw,γ,µ

γ +µ

subject to LMI (8), (9), (10) and (12)

where γ is the L2 gain between w and z and µ = 1/β 2.
4. Compute B0

aw = B̄0
awS−1

0 , B1
aw = B̄1

awS−1
1 , D0

aw = D̄0
awS−1

0 and D1
aw = D̄1

awS−1
1 .

Remark 5. In Algorithm 3.5, condition (8) is not directly applied. The products be-
tween Bi

aw and Di
aw with the matrices Si are replaced by the change of variables B̄i

aw
and D̄i

aw, i = 0,1, which allows to linearize the problem.

Remark 6. An interesting case is the static anti-windup one, for which matrices Aaw
and Caw are null matrices of appropriate dimensions. It implies that Bi

aw, i = 0,1
are also null matrices of appropriate dimensions and only matrices Di

aw, i = 0,1 are
computed in the linear Algorithm 3.5.

Remark 7. Matrices Aaw and Caw to be used in Algorithm 3.5 may be selected as the
solution of a full-order (naw = np+nc+ms) anti-windup compensator design where
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the actuator is just a saturation in magnitude (see, for example, the conditions pro-
vided in [26]), i.e. via a linear optimization problem. Eventually, an order-reduction
step may also be considered in order to select matrices Aaw and Caw (see Example
8.5 in [26]). Other procedures developed in [32] could be used.

4 Anti-windup and its use for PIO alleviation

The design and analysis algorithms of Section 3 are now applied and compared
in the realistic context of lateral maneuvers of a civil transport aircraft. A specific
attention will be devoted to aggressive pilot’s demands in conjunction with actuator
loss.

In the following, the pilot’s activity is modeled as a static gain Kpil . For this appli-
cation, a normal activity would correspond to Kpil = 1. But, in stressful situations,
notably in case of actuators loss, a more aggressive pilot’s behavior is generally
observed, resulting in much higher gains. Here, the gain is set to Kpil = 3.

4.1 Problem setup and objectives

The two anti-windup structures AWe and AWφ above described are compared in this
applicative part of the chapter. Both nonlinear closed-loop Simulink implementa-
tions are sketched in Figures 3 and 4, respectively. For each design strategy, the
state-space models sysP and sysC are readily obtained from the Simulink diagrams
of Figures 3 and 4 with the help of the Matlab linmod function. The plant corre-
sponds to the "yellow box" depicting the aircraft system while the global controller
(including pilot actions) is obtained by extraction of the 3 blue boxes. A standard
balanced reduction technique is finally applied to obtain reasonably sized models.
The obtained reduced orders, respectively np = 8 and nc = 20, are compatible with
the proposed algorithms. The aircraft system involves 2 inputs (m = 2) with only the
ailerons deflection actuator which saturates (ms = 1), and 5 outputs (p = 5), among
which the performance output which is set as the roll angle (l = 1). The disturbance
of the system is due to the saturation of the input, i.e., Bpw = Bs

pu (q = 1).
In the AWe strategy, the anti-windup input is a single scalar signal (ms = 1) which

only captures the difference between the input of the nonlinear ailerons deflection
actuator and its output. In the AWφ strategy, two signals (one for the magnitude
limitation and one for the rate limitation) are used by the anti-windup device. Their
generation is detailed in the Simulink implementation of Figure 5.

Whatever the considered approach, both anti-windup controllers act similarly on
the internal dynamics of the nominal lateral controller of the aircraft through two
scalar signals vp and vb which respectively affect roll and sideslip angles dynamics
(vx = [vp vb]

′ and vy = 0, ncr = 2, mr = 0). Remark yet that the second strategy offers
more flexibility with the possibility of a direct anti-windup action at the controller
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Fig. 3: Nonlinear closed-loop Simulink implementation of Anti-Windup AWe for
lateral aircraft simulations

Fig. 4: Nonlinear closed-loop Simulink implementation of Anti-Windup AWφ for
lateral aircraft simulations

output. However, no significant improvement has been observed with this additional
feature which has thus not been further considered in this application.

The main objective of this application is to design and evaluate anti-windup sys-
tems to improve the aircraft response to roll angle solicitations while limiting os-
cillations despite actuator loss [22]. During such maneuvers, a significant control
activity is observed on the ailerons. This is why the effects of saturations are mod-
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Fig. 5: Detailed view of the magnitude and rate limitations system

eled and taken into account for these actuators in both diagrams of Figures 3 and 4
while no saturation is introduced on the rudders. The effects of saturations become
even more penalizing in case of a partial loss of control capability. Assume indeed
that the aircraft is controlled by a pair of ailerons on each wing but only one is op-
erational. In that case, the activity of the remaining actuators is doubled as well as
the risk of magnitude and rate saturations. Then, the magnitude and rate limits in
the following will be halved. We will consider Lm = 10deg (instead of 20 in normal
conditions) and Lr = 20deg/s (instead of 40).

In the sequel, five different anti-windup compensators are implemented and com-
pared:

• A standard anti-PIO filter used in the industry. It is an "open-loop" solution which
does not exploit the information relative to the saturation of the signal (see [4]).
This may be considered as the basic solution from the industry. It corresponds to
the block REFERENCE in Figures 3 and 4;

• A dynamic H∞AWe anti-windup built by using a structured H∞ design method
[22]. The advantage of such a strategy is that it circumvents some limitations of
LMI-based strategies (limitation on the size problem when manipulating LMIs,
conservatism of sufficient conditions) but to the detriment of the easiness of con-
struction for engineers not always specialists of advanced control theories;

• A dynamic AWe anti-windup designed with the Algorithm 3.2 initialized with the
H∞AWe anti-windup above-described;

• A dynamic AWφ anti-windup designed with the Algorithm 3.5 using matrices Aaw
and Caw borrowed to the H∞AWe anti-windup;

• A static AWφ anti-windup designed with the Algorithm 3.5. This strategy is an
alternative to the standard anti-PIO filter as it is very easy to implement (no
additional dynamical system to introduce in the controller block).



Pilot-Induced-Oscillations alleviation through anti-windup based approach 17

4.2 Analysis and design of anti-windup AWe

First, an analysis step (in terms of stability and performance) of the anti-windup
controller proposed in [4] (denoted H∞AWe anti-windup) is carried out. This anti-
windup compensator has been built by using a structured H∞ design method [22].
Such an anti-windup has provided very good numerical results but no proof of its
stability in closed-loop was a priori ensured. By using Algorithm 3.1, one can verify
that the conditions are feasible. The optimization problem is then solved by consid-
ering the bound on perturbation δ = 0.1 and v1 = [Cp(4, :) 0] as the direction to be
optimized over the set E (Q−1,δ ). Algorithm 3.1 gives the optimal solution:

Analysis H∞AWe : γ = 1.7167 ; β = 0.6254

It is interesting to do the same analysis for the closed-loop system without anti-
windup. The feasibility is also obtained and the solution is:

Analysis without anti-widup: γ = 1.8929 ; β = 0.7851

The solution with the H∞AWe anti-windup described through γ and β as perfor-
mance indicators does not appear as much better than the one without anti-windup:
indeed γ is actually decreased in the case with anti-windup but β is slightly de-
graded. However, simulations presented in [4] exhibited that the time responses with
the H∞AWe strategy were very close to the desired behavior (that is without satura-
tion), differently from the case without anti-windup resulting in large overshoot and
degraded time evolution. The meaning of this is that the considered criterion of opti-
mization, which does not explicitly include the time response performance, does not
exactly fit to the analysis or design of the anti-windup loop. Nevertheless, consid-
ering criteria on time response performance is a difficult task and the optimization
criterion used here gives a reasonable trade-off between stability guarantee, perfor-
mance and time response.

In a second step, Algorithm 3.2 is used by considering the previous anti-windup
controller at the initialization step (Step 1). After one iteration (after the conditions
become unfeasible for numerical reasons), one gets a new anti-windup controller
AWe such that:

Design AWe : γ = 1.6887 ; β = 0.6978

Now, we compare the results obtained in response to a step demand of 40 deg on
the roll angle, by using the scheme given in Figure 3.

In Figure 6, the time evolutions obtained with the H∞AWe anti-windup (used in
the first step of analysis) and the AWe anti-windup above designed are compared.
The case without saturation is also plotted (denoted "reference" in the figure). The
time evolution of inputs δpc is plotted in both cases and without saturation in Figure
7.

Remark 8. Note that the level of performance obtained with the H∞AWe anti-windup
cannot be much improved with our strategy as this "initial" anti-windup had been
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Fig. 6: Roll solicitation of 40 deg: comparison of the performance outputs for the
cases with H∞AWe anti-windup and designed anti-windup AWe

cleverly designed with the structured H∞ approach. The iterative procedure could
be initialized with any other anti-windup controller of order naw, for example (as
suggested before) solution of a design in the case of magnitude saturation only.
The initial choice has however a significant influence on the iterative process and
the attainable solution. Many tests have shown that the results obtained are often
not much convincing (generally the solution extended from the initial H∞AWe anti-
windup shows better performance indexes) and then it seems that this anti-windup
structure is not much adapted to a design from scratch.

4.3 Design of anti-windup AWφ

In this section, we consider the second strategy, whose main advantage is that it is
based on a systematic method without tuning parameter. Figure 4 shows how the
AWφ anti-windup is implemented.

As commented in Section 3, in the context of the AWφ strategy, the design of
matrices Bi

aw and Di
aw is cast by solving a linear optimization problem. Then, for the

same conditions on δ and X0 as in the previous case, and by considering matrices
Aaw and Baw of the H∞AWe anti-windup, Algorithm 3.5 gives matrices Bi

aw and Di
aw,
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Fig. 7: Roll solicitation of 40 deg: comparison of the inputs for the cases with
H∞AWe anti-windup and designed anti-windup AWe

i = 0,1, and the following optimal solution

Design of dynamical AWφ : γ = 1.8441 ; β = 0.9013

As previously, we consider a Roll solicitation of 40 deg to compare the results.
The time responses of the roll angle for the case without saturation, with the H∞AWe
anti-windup and the designed dynamic AWφ anti-windup are plotted in Figure 8.
Similarly, the time evolutions of δpc in these cases are depicted in Figure 9.

One can observe that the level of performance of the H∞AWe anti-windup is
slightly degraded in the case of the design of AWφ , but it remains acceptable.

Now, we design a static AWφ anti-windup (only matrices Di
aw, i = 0,1, have to be

designed). The main advantage is that we do not need to initialize the algorithm as
matrices Aaw and Caw do not exist (naw = 0). Algorithm 3.5 provides the following
optimal solution:

Static AWφ design : γ = 1.7846 ; β = 0.7772

Figures 10 and 11 illustrate the time evolution of the closed-loop system to a roll
solicitation of 40 deg. The responses are compared by considering the case without
saturation, a standard anti-PIO strategy (see [4]) and the static AWφ anti-windup
strategy. It is important to underline that a simple static anti-windup strategy allows
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Fig. 8: Roll solicitation of 40 deg: comparison of the performance outputs for the
cases with H∞AWe anti-windup and designed anti-windup AWφ

to obtain better performance than the standard anti-PIO case, which adds dynamics
in the system.

5 Conclusion

In this chapter, an anti-windup analysis and design strategy has been proposed for
systems involving both magnitude and rate saturations, and taking into considera-
tion that such saturations elements only affect some of the inputs. Such a situation
has much practical interest for many systems issued in particular from aerospace
domain. It is illustrated here on a lateral flying model of a civil aircraft in presence
of aggressive maneuvering of the pilot. Actually magnitude and rate saturations of
the ailerons deflection actuator may lead to an undesirable behavior which is often
called Pilot-Induced-Oscillation (PIO). For this class of nonlinear control systems,
anti-windup compensators have been adapted through adequate convex optimization
schemes. A comparison with given dynamic anti-PIO filters already used for this
class of systems has also been provided. This work lets many questions open, such
as the design of other anti-windup schemes. Other classes of fruitful anti-windup
compensators may include the parameter-varying approach [24] or reset controllers
[27].



Pilot-Induced-Oscillations alleviation through anti-windup based approach 21

0 2 4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

5

10

15

Time (sec)

C
o
n

tr
o
l 

in
p

u
t 

δ
p

c

 

 

reference

H
∞

 AW
e

Dynamic AW
φ

Fig. 9: Roll solicitation of 40 deg: comparison of the inputs for the cases with
H∞AWe anti-windup and designed anti-windup AWφ
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