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Abstract

Liquid fuel injection modeling and simulation in automotive engines face new challenges related to the need for predictive sim-
ulations of combustion regimes. Recently, derived from a statistical approach at mesoscopic level, a high order method of moments
coupled to realizable, robust and accurate numerical methods [1], has been obtained and shown to describe properly the dynamics of
polydisperse evaporating sprays and its coupling to a turbulent gaseous flow field [2]. However, building up a global multi-scale model
with the capability to resolve the whole injection process requires a major breakthrough in terms of both modeling and numerical
methods. A new model for evaporating polydisperse sprays with easy coupling capabilities to the separated phases zone is proposed
in the present contribution, as well as specific numerical methods and implementation in the p4est library [3] for adaptive mesh re-
finement and massively parallel computing. The key ingredient is a good choice of variables, which can describe both the polydisperse
character of a spray as well as the topology of an interface. After verification cases, some two-phase simulations, challenging both in
terms of physics and of high performance computing, have been conducted using adaptive mesh refinement [4]. We focus here on a 3D
simulation of a spray in the presence of a frozen Homogeneous Isotropic Turbulence (HIT) gaseous carrier flow and assess the ability
of the model and of the related numerical methods to capture the physics of such flows.

Keywords: Two phase flow, polydisperse spray, separated phases, interface topology, moment method

1. Introduction

Direct injection systems are widely used in new automotive
engines to improve the air/fuel mixing. Thus, automotive indus-
tries have widely improved the engine efficiency, as well as re-
duced pollutant emissions. In the objective of designing more re-
liable and efficient injectors, engineers and researchers need pre-
dictive numerical modeling in order to understand the complex
physics of the flow and also to conduct numerical experiments
for the design of new engine prototypes. In particular, the liquid
fuel injection and the air-fuel mixture topology play a key role
in determining the combustion regime as well as the pollutants
formation.

Close after the mouth of the injector, the liquid fuel is in-
jected into the engine at high speed and pressure. At this stage
the liquid fuel is separated from the gas by a smooth and thin in-
terface, where the different interactions between the phases take
place. In this region, we have to deal with what is called a sep-
arated phases two-phase flow. The interaction between the liq-
uid and the surrounding gas increases the interface instabilities
and triggers the droplets formation. Finally, this atomization pro-
cess yields an evaporating polydisperse spray. The challenge is
to provide a model as well as a numerical strategy, which are
able to describe the whole process and capture the large scale
spectrum of such physics and then provide predictive numerical
simulations at relatively reasonable computational cost. Deter-
ministic approaches, where a direct numerical simulation of the
interface is used for example tracking methods (Lagrangian meth-

ods [5], Marker And Cell (MAC) methods [6]) or interface cap-
turing and reconstruction (VOF, Level-Set and hybrid method -
see [7, 8, 9, 2] and references therein), yield a high computation
time and memory requirement, but fail to predict the structure and
size distribution of the disperse phase in realistic configurations.
Therefore, reduced-order models, where averaging approaches
are envisioned, have to be considered since a full resolution is
out of reach. Our strategy is to build a reduced-order model for
the disperse liquid phase, which is able to resolve the polydis-
perse character of the spray, by using a set of variables which can
be identified as averages of the gas-liquid interface topology.

In this context, we start from a statistical description of the
droplet population by using a number density function (NDF),
which satisfies a population balance equation (PBE), also called
Williams-Boltzmann Equation (WBE) [10]. Kah et al. [11] de-
rived from this equation a high order moment method called Eule-
rian Multi-Size Moment model (EMSM), which tackles the mod-
eling and numerical simulation of polydisperse sprays flows in
a monokinetic configuration. In the EMSM model, the size dis-
tribution is described through a set of high order size-moments.
Anytime, the size distribution can be reconstructed from this set
by using an Entropy Maximization technique, thus providing the
model with a natural closure.

In order to design a model which could be also used further
upstream, i.e. closer to the injector, we will rely in the present
work on the same idea of deriving a system of conservation equa-
tions on a set of high order size moments, except that we will use
another set of moments, which can be identified as averaged geo-
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metrical information of the interface between the two phases. In
fact, the interfacial geometry has a major effect on the dynamics
of interfacial flows and an accurate geometrical description of this
phase is mandatory. The key issue is then to be able to construct a
set of high order moments, which can both describe some level of
topological information about the averaged interface and allow to
reconstruct a size distribution in the spray region, and therefore
deal with evaporation and other spray-gas exchange terms. For
this purpose, we introduce a new model, where the geometrical
variables are expressed as fractional size-moments.

Whereas the mathematical aspects of such an approach are
tackled in [12] (structure of the moment space, treatment of the
frontiers of the moment space, realizability conditions...), we fo-
cus here on introducing the model with an engineering point of
view, for the sake of clarity. As in [4], we stay in a simplified
framework, but nonetheless provide more details on the link with
averaged model for interfacial flows. This is the first novelty of
the paper. Next, a dedicated numerical treatment to transport the
resulting model in physical and phase space (such as evaporation)
is briefly presented. This numerical method always guarantees
the realizability of the set of transported moments. We refer to
[12] for detailed numerical analysis. Finally, the whole method
has been implemented in a code, called CanoP [13, 4]. In order
to deal with adaptive mesh refinement, which will be essential in
many two-phase flow configurations, as well as with massively
parallel architechure, this code is based on the p4est library
[3]. The efficiency of the code is investigated in [4]. Here, we
will rather focus on the physics and study a difficult case, as far
as mesh refinement is concerned. This configuration is a homo-
geneous isotropic turbulence, laden with polydisperse particles.
The model and the numerical method are assessed through com-
parisons with a Lagrangian approach and this will allow us to
show the potential of the proposed approach.

The paper is organized as follows. In the second section, we
present the general framework of spray modeling at mesoscopic
scale and then we briefly recall the fundamentals of Kah et al [1]
we will rely on. In the third section, we present the motivation
and the importance of using geometrical modeling of the inter-
face and introduce the new topological moment model. In the
fourth section, we show the ability of this new Eulerian model to
predict the disperse phase segregation in a turbulent gaseous car-
rier flow, using adaptive mesh refinement grid for high resolution
and low computational cost.

2. Spray modeling

The spray consists in a cloud of polydisperse droplets inter-
acting with the surrounding gas and possibly with each other. In
the present work, we consider dilute sprays of small droplets such
that the coalescence and secondary break-up can be neglected.
In the following, we present the Eulerian moment model derived
from a statistical approach. First, let us introduce the number den-
sity function (NDF) f(t, ~x,~c, S), which represents the probable
number of droplets located at position ~x, travelling with velocity
~c and having size S. If not specified otherwise, S is a surface.
At the mesoscopic scale, the NDF satisfies a WBE1 [10]. In the
following, we use a dimensionless formulation of this equation:

∂tf + ∂~x · (~cf) + ∂~c ·
(
~ug − ~c
St(S)

f

)
+ ∂S(RS f) = 0, (1)

where
~ug − ~c
St(S)

is the drag force given by Stokes law, under the

assumption of low Reynolds number, ~ug is the gas velocity, St is
the Stokes number which is supposed to depend linearly on the

surface of the droplets St(S) = θS and RS(S) =
dS

dt
is the

evaporation rate. We consider the case of a d2 evaporation law,
thus, the evaporation rate is constant: RS = −K < 0.

Next, we reduce this kinetic model to a system of conser-
vation laws by solving for the first moments of the NDF. The
velocity-size moment is defined by:

Mi,j,k,l =

∫ Smax

0

∫
R3

Slvixv
j
yv
k
zf(t, ~x,~v, S)dSd3~v, (2)

where the maximum size Smax can be set to 1 since we
use dimensionless variables. In the following, we consider
a monokinetic-equilibrium assumption [14, 15], where all the
droplets at a given position and time have the same velocity.
Moreover this velocity is assumed not to depend on the droplet
size for the sake of simplicity. We refer to [16] for a size-
velocity correlation resolution. Therefore, the distribution veloc-
ity is given by the following Dirac delta distribution:

f(t, ~x,~c, S) = n(t, ~x, S)δ(~c− ~u(t, ~x)), (3)

where n(t, ~x, S) is the size distribution and ~u(t, ~x) is the macro-
scopic velocity. Kah derived the EMSM model [11] as the dy-
namics of the successive N size-moments of the WB equation:

∂tm0 + ∂~x.(m0~u) = −n(S = 0),
∂tm1 + ∂~x.(m1~u) = −K m0,
∂tm2 + ∂~x.(m2~u) = −2K m1,

...
...

∂tmN + ∂~x.(mN~u) = −NK mN−1,

∂t(m1~u) + ∂~x.(m1~u⊗ ~u) = −K m0~u+m0
~ug − ~u
θ

,

(4)

wheremk =
∫ 1

0
Skn(t, ~x, S)dS is the kth order size-moment. In

order to close the system, Massot et al [17] proposed to recon-
struct the size distribution by maximizing Shannon entropy:

H(n) = −
∫ 1

0

n(s)ln(n(s))ds. (5)

The existence and uniqueness of a function density nwhich max-
imizes the Shannon entropy and satisfies:

m0 =
∫ 1

0
n(S)dS,

...
...

mN =
∫ 1

0
SNn(S)dS,

(6)

were proved in [18]. The solution has the following form:

n(S) = exp
(
−(λ0 + λ1S + . . .+ λNS

N )
)
. (7)

This model shows a great capacity to describe the polydisperse
character of the spray in an Eulerian modeling framework [16],
especially for automotive engines [19]. Even if the use of an
Eulerian framework makes the coupling easier with the other re-
duced order model near the injector, which is usually a diffuse
interface model, Eulerian as well, this coupling still encounters
several difficulties and remains an open problem. Then, we need
a way of describing the polydisperse spray through a high order
size moment approach, which could be related to the geometrical
properties of the interface. This is the purpose of next section.

1We directly work in a simplified framework and notice that the extension of the approach to more complex droplet models can be conducted without problem [2].
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3. High order geometrical size moment for polydisperse
evaporating sprays - relation with interface average topology

The final droplets size distribution downstream the injection
device depends widely on the flow close to injector. There, the
liquid fuel is injected at high speed and pressure and the interac-
tion with the surrounding gas is located at a very thin interface.
In this first region, the two phases are considered as separated
phases and the dynamics of the interface will have a major influ-
ence on the atomization process and thus, on the formation of the
polydisperse spray.

In fact, the exchange of mass, momentum and energy be-
tween both phases depend on the interface area. Besides, after
the interface has been destabilized through aerodynamics forces,
a region of high complexity is to be found where ligaments are
formed and disintegrate into droplets of various sizes. These
droplets can even experience secondary break-up and coales-
cence and the whole process yields a very large spectrum of
scales in terms of interface dynamics. The exact location of
each phase is difficult to determine because of different chaotic
phenomena such as turbulence, interface instabilities and other
small scale phenomena that cannot be simulated even with the
most powerful calculators. Fortunately, industrial applications
are more concerned with the main features of the flow than with
its small details. Thus, only averaged quantities can be resolved
and we can use diffuse interface models (DIM) [20, 21, 22]. The
derivation of the DIM is based on some averaging-like operator
(ensemble-average, time-average or volume-average). By con-
sidering some equilibrium assumptions, a hierarchy of models
can then be derived. In this approach, the interface is considered
as a mixing zone, such that the two phases coexist at the same
macroscopic position, and each phase occupies a fraction of the
volume. The derivation of the model is based on averaging meth-
ods [23] applied to the monophasic Navier-Stokes equations of
each phase. This way, we obtain a set of equations which in-
volves the volume fraction function. This variable takes values
close to 1 in regions of a pure given phase and values close to
0 in the regions where this phase nearly disappears. Crossing
the interface, the volume fraction varies continuously from 0 to
1 or the other way around. Thereby, the interface is considered
as a narrow layer instead of a sharp discontinuity. This assump-
tion smoothes out the small variations and details of the interface.
As a result, some geometrical information about the interface are
lost, what could be interpreted as ignoring the small scale effects.
One has then to find a way to enrich the model with geometrical
information about the interface.

3.1. Drew’s model for geometrical averaged quantities

In order to correct this default, Drew [24] proposed an accu-
rate description for the interface dynamics, based on considering
some geometrical variables, which satisfy kinematic equations
for the rate of change of the volume fraction, interface area den-
sity, and curvature variables. In the following, we present the
geometrical variables in the context of a general separated phases
two-phase flow. The details of the resulting transport equations
are not presented for the sake of clarity and the readers can refer
to the article [24]. The important point is to focus on the proper
set of geometrical variables, which have some physical meaning
and, which will be identified in the specific framework of a poly-
disperse spray.

In the following, we define some average geometrical vari-
ables that can be used to model the interface between separated
phases. Their definition is based on the volume-average operator.
First, we define the phase function χk(t, ~x) for a given phase k
by:

χk(t, ~x) =

{
1, if ~x ∈ k
0, otherwise.

Next, the volume-average operator is defined by:

(•)(t, ~x) =
1

|V |

∫
V

(•)χk(t, ~x)dV (~x), (8)

where V ∈ R3 is a macroscopic neighborhood of position ~x, and
|V | its volume.

Let us emphasize that the averaged set of conservation equa-
tions of is obtained by applying this operator to the monophasic
Navier-Stokes equations. The obtained equations involve the vol-
ume fraction variable, which expresses the fraction of volume oc-
cupied by a given phase. Moreover, this variable allows to locate
the interface up to the averaging scale and is then a first piece of
information about the interface geometry [1]. It writes:

αk(t, ~x) =
1

|V |

∫
V

χk(t, ~x)dV (~x). (9)

In order to model exchange terms, such as evaporation, ther-
mal transfer and drag force, Drew [24] or other two-phase flows
models [25, 26, 8] consider an additional topological variable:
the interfacial area density. It can be interpreted as the ratio of
the interface area present in a macroscopic neighborhood to its
volume. This variable can be written as the volume-average of
the norm of the gradient of the phase function χk:

Σ(t, ~x) =
1

|V |

∫
V

||~∇χk(t, ~x)||dV (~x). (10)

So far, the interface modeling is still incomplete, since no in-
formation on the interface shape is available. In fact, the small
details of the interface can not be modeled accurately using only
two geometrical variables. Drew proposed to introduce the two
principal curvatures of the interface in his model. Indeed, these
variables give a complementary description of the interface and
are highly related to the atomization process, since they are in-
volved in the jump relations at the interface.

The two local principal curvatures are defined as follows: we
consider a point P at the interface and the associated normal vec-
tor ~n. Then, we take a plane that contains P and ~n and let it rotate
around the normal. For each position of this plane, the intersec-
tion curve between the interface and the rotated plane defines a
curvature at point P which corresponds to the curvature of this
manifold. As the plane completes a full π rotation, it reaches ex-
actly two extremal curvature values: the two principal curvatures
k1 and k2.

Then, Drew derived the equation of the dynamics of the mean
and of the Gauss curvature from the differential equations ruling
k1 and k2. The mean curvature H and the Gauss curvature G are
defined by:

H = 1
2
(k1 + k2),

G = k1k2.
(11)

Since these interfacial variables are properly defined only at
the interface, they need a specific operator to be averaged. We
introduce the interface-average operator Σ(̃•), defined as:

Σk (̃•)(t, ~x) =
1

|V |

∫
V

(•)||~∇χk(t, ~x)||dV (~x). (12)

The interface-averaged Gauss and mean curvature weighted
by the interface density are defined as follows :

ΣH̃ =
∫
V

H||~∇χk(t, ~x)||dV (~x),

ΣG̃ =
∫
V

G||~∇χk(t, ~x)||dV (~x).
(13)
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3.2. High order geometrical moments for a polydisperse spray

Finally, we derive from the kinetic model a new high order
size moment model describing the interfacial geometry evolu-
tion at the scale of a polydisperse and monokinetic spray, using
the previously defined variables. In the disperse phase, droplets
are of spherical shape. Therefore, they involve various level of
curvature and interface area depending on their size. However,
considering a population of droplets, we can describe the mean
topological geometry of the ensemble by analogy with interfa-
cial flow. Considering the interface description given in the last
section, we transport the same geometrical variables.

Above, the definition of the geometrical variables (volume
fraction, interfacial area density, mean and Gauss curvature) have
been defined based on the phase function χk. This function con-
tains all the microscopic information about the interface. In the
context a polydisperse spray, we use the statistical information
about the droplet distribution, which is given by the size distribu-
tion n(t, ~x, S). Considering this function, we define the various
geometrical variables in the context of a polydisperse spray.

• The volume fraction αd is the sum of the volume of each
droplet divided by the containing volume at a given posi-
tion:

αd =

∫ 1

0

V (S)n(t, ~x, S)dS. (14)

The droplet being spherical, V (S) =
S3/2

6
√
π

.

• The interfacial area density Σd is the sum of the surface of
each droplet divided by the containing volume at a given
position:

Σd =

∫ 1

0

Sn(t, ~x, S)dS. (15)

• The two local curvature radii are equal for spherical
dropletsR1 = R2 =

√
S

2
√
π

. But, since we use the mean and
Gauss curvatures, two different averaged quantities can be
defined. This can also justify the use of Gauss and mean
curvatures instead of considering directly the two princi-
pal curvatures. Let us notice that, in the case of separated
phases, the average mean and Gauss curvatures have been
defined as an average over a volume and weighed by the
interfacial area. In the disperse phase case, this becomes:

ΣdH̃d =
∫ 1

0
H(S)Sn(t, ~x, S)dS,

ΣdG̃d =
∫ 1

0
G(S)Sn(t, ~x, S)dS.

(16)

Finally, these four geometrical variables can be expressed as frac-
tional moments of the NDF:

ΣdGd = 4πm0,
ΣdHd = 2

√
πm1/2,

Σd = m1,
αd = 1

6
√
π
m3/2,

(17)

where the half-integer moments are defined by

mk/2 =

∫ 1

0

Sk/2n(S)dS. (18)

In fact, these moments could be expressed as integer moments
by simple variable substitution R =

√
S. However, we pre-

fer to hold with the droplet surface as the size variable, since

we consider a d2 evaporation law, for which the evaporation rate
Rs = dS/dt is constant.

Following the same derivation as the EMSM model, we de-
rive the following system of conservations laws for the new mo-
ments:

∂tm0 + ∂~x · (m0~u) = −n(t, S = 0)

∂tm1/2 + ∂~x ·
(
m1/2~u

)
= −K

2
m−1/2

∂tm1 + ∂~x · (m1~u) = −K m0

∂tm3/2 + ∂~x ·
(
m3/2~u

)
= −3K

2
m1/2

∂t(m1~u) + ∂~x · (m1~u⊗ ~u) = −K m0~u+m0
~ug−~u
θ

(19)

where K is the constant evaporation rate for the d2 evaporation
law.

By analogy with the EMSM model, from a set of moments,
we reconstruct the continuous distribution n(t, ~x, S) by entropy
maximization, what allows us to close the system. The existence
and uniqueness of such a reconstruction, as well as the behavior
at the frontier of the moment space have been studied in [12].
Also, it is shown that the reconstructed NDF has the following
form:

nEM (S) = exp
(
−(λ0 + λ1S

1/2 + λ2S + λ3S
3/2)

)
. (20)

The λi coefficients are determined thanks to the same inversion
algorithm as in [18]: a convex optimization under constraints.

Let us emphasize that this model can be extended to a hy-
brid method between high order moment method and Multi-Fluid
model, by considering multiple size intervals, called sections. In
our case, exchange terms between sections due to evaporation
have to be considered. Nevertheless, these new terms do not in-
troduce any further difficulty compared to the one section case
and the multi-section case can be treated the same way [12, 16].

4. Results

This model has been implemented in the CanoP code [13, 4].
It is a C/C++ Code developed for multi-applications, based on fi-
nite volume solvers and relying on the adaptive mesh refinement
library p4est [3]. The resolution of the system (19) is done
using operator splitting techniques [14, 15], what allows us to
separate the resolution of the two main phenomena, transport in
physical space (solving for a system of conservation laws) and
transport in phase space through source terms (evaporation and
drag force), thus leading to a very efficient algorithm on paral-
lel architectures, when coupled to adaptive mesh refinement [4]2.
The transport in physical space relies on a finite volume schemes
of order two for non-conforming meshes [4], whereas a new evap-
oration algorithm has been developed in [12]. The whole numer-
ical process allows for a fully realizable scheme: it guarantees
that the vector of moments always remains within the space of
moments.

Ret ε ηk τk TKE
25 1e− 3 3.2e− 2 1. 1.e− 2

Table 1: Turbulence properties of the 3D HIT gaseous flow field

As a complement to the studies conducted in [4, 12], we as-
sess the capability of the proposed approach by investigating a
3D configuration of a non-evaporating spray in the presence of a
frozen Homogeneous Isotropic Turbulence flow (HIT). The HIT
gaseous flow field has been generated independently by Sabat
[27] with the ASPHODELE code of CORIA [28], which solves
the three-dimensional Navier-Stokes equations for the gas phase

2A detailed studies to assess the robustness and accuracy of the numerical scheme as well as the parallel performance of CanoP code can be found in [4, 12].
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in the low-Mach number limit. The characteristics of this HIT is
given in Table 4, where Ret is the turbulent Reynolds number,
ε is the mean dissipation rate, ηk is the smallest structures size,
τk is the Kolmogorov time scale of the turbulence, and TKE
is the turbulent kinetic energy. The mean Stokes number of the
polydisperse spray is taken as St = 0.5

Figure 1: Number density of the droplets given by the moment
m0, on an AMR grid at t = 12.

Figure 2: The AMR grid at t = 12.

The simulation is performed with an adaptive mesh, where
the maximum and minimum refinement levels, lmax = 9 and
lmin = 7, correspond respectively to a mesh of size δxmin =
2−9 and δxmax = 2−7 for a dimensionless grid [0, 1]3 (the real
physical domain dimension is 5m× 5m× 5m). The refinement
criterion is based on an heuristic estimation of the L1-norm of
the error and requires a thorough study of the threshold influ-
ence on the solution quality [4]. In Figure 1, we display a three
cut sections of the spray density, as well as the corresponding
mesh in Figure 2. The first figure shows the segregation of the
spray in low vorticity regions. For the present choice of refine-
ment criterion, the compression rate is 91.56%. In Figure 3, we
compare the segregation evolution obtained in this Eulerian sim-
ulation with a Lagrangian result (see [27]). The segregation is

computed using the spray moment m0 as follows:

< (m0)2 >

< m0 >2
where < • >=

1

V

∫
V

• dV .

We can see that in the AMR Eulerian simulation, we make a small
error on predicting the segregation compared to the Lagrangian
simulation because of the numerical diffusion and eventually
the monokinetic-equilibrium assumption. A detailed study con-
ducted in [27] shows that the produced results stays very closely
comparable to the monokinetic Eulerian results on the finest grid,
which exhibit the same small difference based on numerical diffu-
sion and modeling assumptions for this range of Stokes numbers.

Figure 3: Evolution of the segregation with time for the La-
grangian simulation (black solid line) and our Eulerian model
with AMR (red dotted line).

5. Conclusion

In this paper, we have introduced a new geometrical high
order size moment method, which allows both to capture the
dynamics of a polydisperse evaporating spray and to make the
link with physically relevant interfacial geometrical quantities. It
should help designing a unified model able to resolve the full
spectrum of scales, from the injector mouth down to the polydis-
perse spray region, via the region where the atomization process
occurs. Also, the dedicated numerical scheme developed in this
context [12, 4] is proven to be accurate, robust and realizable.

The second contribution of this paper consists in using adap-
tive mesh refinement, in order to reach a fine mesh resolution
in the high concentrated zones, while keeping low resolution in
other emptying regions, and thus gaining computational cost. Fi-
nally, the validy of the whole modeling and numerical process is
assessed by looking at the evolution of the segregation in a ho-
mogeneous isotropic turbulence laden with a polydisperse spray.
The comparison with a reference Lagrangian simulation is very
satisfying.

Let us underline that for the moment, we have focused only
on a rather simple modeling level and used only one single sec-
tion to describe the polydisperse spray. Using the ideas devel-
oped in [16], size-conditioned dynamics should be easily taken
into account by using more size sections. Also, the monokinetic-
equilibrium assumption could be relaxed and hydrodynamical
equilibrium velocity distribution could be considered. However,
this would involve higher order velocity moments [27] and a dif-
fuse interface model involving such quantities still has to be de-
signed. This is work in progress.
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