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1. Introduction

The numerical simulation of dynamic contact problems plays an
important role in many applications in mechanics, like the forming
of sheet metal, crash tests and other examples of structures under
impact, fracture dynamics, or tire rolling. Especially the latter
application is a challenging task from the point of view of simula
tion, as the problem usually features a complex three dimensional
geometry, nonlinear elastic materials as well as dynamic effects. In
addition, the contact zone is usually quite small compared to the
size of the tire but needs to be resolved very accurately to get a
good picture of the evolution of the contact pressures during roll
ing contact. More importantly, many other multiscale contact sim
nity of the contact zone

ate simulation of a car
numerical scheme that
on in space and in time
the frictional contact
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conditions. The algorithm has to be robust with respect to jumps
in the material parameters as well as to provide an energy consis
tent description of the dynamics. The aim of this work is to design
such an algorithm by combining several well established mathe
matical methods with some new approaches. All of them are de
scribed in the following.

The basis of the algorithm is provided by a decomposition of the
original structure into several overlapping subdomains which have
different mesh sizes. The global d dimensional structure, d 2 {2,3},
is discretized with a relatively coarse mesh that does not resolve
the details along the contact boundary, whereas at the contact
area, an overlapping patch with a fine triangulation is introduced.
A two dimensional example of such a geometry is sketched in
Fig. 1. In order to avoid an expensive volume coupling, the transfer
between the subdomains is only performed at the inner (d 1)
dimensional interface. Here, we employ the variationally consis
tent mortar method (see, e.g., [1,2]) with dual Lagrange multipliers
[3] to enforce the weak continuity of the traces.

The subject of domain decomposition methods is already well
established in the literature; we refer to [4 6] and the references
therein for an overview of the topic. The construction of domain
decomposition schemes which are robust with respect to the mesh
size as well as to jumps in the material parameters has been the
topic of several papers (e.g., [7 9]). In this work, we make use of
the overlapping decomposition in order to obtain an iterative



Fig. 1. Sketch of overlapping domain decomposition; left: coarse domain; middle: fine patch resolving the details at the boundary and right: combined geometry.
solution scheme whose convergence rate is bounded indepen
dently of the mesh size or the Lamé parameters in the subdomains.

The next important item is the treatment of the contact
inequality constraints (see [10 14] and the references therein for
an overview of the topic). These conditions are enforced in a vari
ationally consistent way using dual Lagrange multipliers, allowing
for the application of a primal dual active set strategy [15 17].
This scheme can be interpreted as a semismooth Newton method
[15] applied to a set of nonlinear equations describing the contact
conditions [18,19]. In combination with the iterative subdomain
coupling, an inexact Newton scheme is obtained which still shows
superlinear local convergence provided that appropriate stopping
criteria for the inner iteration are satisfied [20 22].

The incorporation of inertia effects into the formulation makes
the simulation of the nonlinear contact problem even more chal
lenging. Standard time stepping algorithms like the trapezoidal
rule generally lose their energy conservation property if applied
to nonlinear problems. Possible remedies are presented in, e.g.,
[23 25] for nonlinear material laws and in [26,27] for contact.
But even with the energy consistent formulation of [27], the com
puted results for the contact stresses show spurious oscillations in
time. This is avoided employing a local modification of the mass
matrix along the potential contact boundary [28 30].

The last feature of the algorithm is the possibility to use differ
ent time step sizes in the subdomains. Here, the main challenge
lies in the construction of the interface constraints. A suboptimal
choice can lead to numerical instability or to artificial dissipation
at the interface, even if the time integrators in the subdomains
are stable and energy conserving [31 33]. In [34,35], a time sub
stepping scheme with linear interpolation of the velocity and the
Lagrange multipliers has been proposed which is stable but dissi
pative at the interface. An improved energy conserving scheme
with linear interpolation of the multipliers has been analyzed in
[36,37]. However, both methods rely on the expensive exact solu
tion of the resulting coupled system. In contrast, we present a
time discrete coupled system that uses different time step sizes
in each subdomain, conserves the energy over a coarse time step
and does not require the exact solution of the coupled problem.

At this point, one might ask whether the algorithm presented in
this work possibly is just a combination of known numerical tech
niques. As a return, we recall that we aim for formulating an algo
rithm that is able to solve challenging dynamic contact problems
with complex local geometries. This cannot be achieved without
building upon the knowledge and experience gained in the above
mentioned topics of numerical simulation, i.e., we combine domain
decomposition with mortar coupling, contact modeling via semi
smooth Newton methods and energy consistent time integration.
However, the algorithm presented in this work also contains
important new aspects. The main novelty is the consistent use of
the overlapping domain decomposition approach for both the dis
cretization and the solver, leading to a two scale formulation both
in space and in time which has been implemented with contact
constraints and dynamic terms. This is complemented by an exten
sive theoretical and numerical investigation of the properties of the
resulting method.

We now turn to the structure of the rest of this work. In Sections
2 4, we present and investigate the proposed algorithm for a linear
2

dynamic problem. Section 2 introduces the notation and the gov
erning equations as well as the algebraic formulation of the result
ing fully coupled system. In Section 3, we describe an efficient
iterative solution scheme based on overlapping domain decompo
sition and analyse its convergence rate. Section 4 numerically con
firms the theoretical results by means of several tests.

In Section 5, we extend the domain decomposition approach to
nonlinear problems, leading to an inexact semismooth Newton
method. A special focus is put on the approximation of the fric
tional contact conditions. Section 6 contains several numerical
examples illustrating the efficiency and the robustness of the
resulting iterative scheme.

The case of different time step sizes is analyzed in Section 7,
where we present an energy conserving formulation that can effi
ciently be solved by the iterative scheme used before. The numer
ical results in Section 8 illustrate that the scheme can considerably
decrease the number of global systems to be solved and still pro
vide a good local accuracy. Section 9 concludes the work with a
short summary.
2. Problem formulation for the linear setting

This section contains the problem formulation as well as the ba
sic notation for the rest of this work. In Section 2.1, the governing
equations for the linear problem are stated in their strong and
weak forms, whereas Section 2.2 introduces the spatial and tempo
ral discretization, including some properties of trace spaces and
mortar operators which will be used in the sequel. In Section 2.3,
the algebraic Schur complement formulation is presented.

Since Sections 2.2 and 2.3 only recall known results on mortar
methods and Schur complement formulations, they can possibly
be skipped by readers familiar with these topics.

2.1. Problem statement

In the following, we consider an elastic body X � Rd, where
d 2 {2,3} denotes the number of spatial dimensions. The polyhe
dral boundary oX is partitioned into two nonoverlapping parts
CD, CN with meas(CD) > 0. On CD, we assume homogeneous Dirich
let boundary conditions for simplicity, whereas a surface load de
noted by gN acts on the boundary CN where the unit outer
normal n is defined almost everywhere. Then, the strong form of
the dynamic linear elasticity problem on X subject to the volume
load l reads (see, e.g., [38])

.€u divrðuÞ l in X; ð1aÞ
u 0 on CD; ð1bÞ
rðuÞn gN on CN: ð1cÞ

Here, the Cauchy stress r = r(u) is given by r : CeleðuÞ with the
linearized strain tensor eðuÞ : 1

2 ruþruT
� �

. The Hooke tensor
Cel CelðxÞ can be defined either in terms of the Lamé parameters
k, l or with respect to the Young modulus E and the Poisson coeffi
cient m. Further, . P 0 denotes the density of X.

We consider the case for which there exists a given subregion
x �X, with possibly different material parameters, where a more
accurate local resolution is desired. In the situation of Fig. 1, the



Fig. 2. Subdomains and interfaces.
domain shown on the left picture is X, and the union of the patches
depicted on the right picture corresponds to x. The interface
@x \X is denoted by C and the domain Xn �x by N, as sketched
on the left side of Fig. 2. For simplicity, we assume that
CD \ C ;, that the material is compressible, and that the material
parameters E, m, . are piecewise constant on each of the subdo
mains. The corresponding values are denoted by .H, EH, mH,
H 2 {N,x}. A more general formulation also valid for incompress
ible material is investigated in [39].

In order to obtain the variational form of (1), we introduce the
vector valued function spaces

HkðHÞ : ½HkðHÞ�d; VH : v 2 H1ðHÞ : vjCD\@H 0
n o

for H 2 {X,N,x} and the (bi) linear forms

mHðu;wÞ :

Z
H
.u �wdx;

aHðu;wÞ :

Z
H

CeleðuÞ : eðwÞdx;

fHðwÞ :

Z
H

l �wdxþ
Z

CN\@H
gN �wds:

Further, let WC : H1/2(C) be the space of traces on C. Then, the
weak form of (1) can be formulated as two separate problems on
the subdomains N, x, where the continuity of the displacements
across C is enforced weakly by means of a Lagrange multiplier
fC 2MC : W0

C which is the dual space of WC. This leads to the fol
lowing coupled problem: find (ujN,ujx,fC) 2 VN � Vx �MC such
that for all t 2 (0,T]

mNð€u;wÞ þ aNðu;wÞ hw; fCiC fNðwÞ; w 2 VN; ð2aÞ
mxð€u;wÞ þ axðu;wÞ þ hw; fCiC fxðwÞ; w 2 Vx; ð2bÞ
ujx;lC

� �
C ujN;lC

� �
C 0; lC 2 MC; ð2cÞ

plus appropriate initial conditions ujt 0 u0; _ujt 0 v0. Above, we
have used the L2 duality pairing h , iC on C. For the quasi static case,
the well posedness of (2) follows from the condition meas (CD) > 0
and Korn’s inequality [40,41], whereas for the dynamic case, we
need that both initial values u0, v0 satisfy condition (2c) [42].

2.2. Discretization

For the spatial discretization of (2), we first triangulate the glo
bal domain X in terms of a quasi uniform regular mesh T H of sim
plicial or quadrilateral/ hexahedral elements of size H. We assume
that the Dirichlet boundary CD as well as the interface C are re
solved by this triangulation. On T H , we consider lowest order con
forming finite element basis functions /H

p ; p 2 N H , with N H
C � N

H

denoting the subset of vertices of T H on the interface C. On the
patch x, we introduce a second regular and quasi uniform discret
ization T h with elements of size h < H, the basis functions
/h

p; p 2 N h, and the interface nodes N h
C � N

h. We emphasize that
the grids need not be nested on x.
3

With these triangulations, we define the following vector val
ued finite element spaces associated with the coarse and the fine
discretization:

VH
N : span /H

p jN
n o

p2NH
� VN; VH

x : span /H
p jx

n o
p2N H

� Vx; ð3aÞ

VH : ðvH;wHÞ 2 VH
N � VH

x : vHjC wHjC
n o

� VðXÞ; ð3bÞ

Vh Vh
x : spanf/h

pgp2N h � Vx: ð3cÞ

On the interface C, we define the discrete trace spaces
Wm

C : VmjC �WC as well as the Lagrange multiplier space
Mm

C �MC spanned by the basis functions fwm
p gp2Nm

C
; m 2 fh;Hg.

There are several suitable possibilities to define these functions
(see [43] and the references therein for more details); in the rest
of this work, we use the so called dual basis functions fwm

p gp2Nm
C

which are piecewise (bi) linear, discontinuous and satisfy the
locality requirement suppðwm

p Þ suppð/m
p jCÞ as well as the

biorthogonality propertyZ
C

wm
p /m

q ds dpq

Z
C

/m
q ds; p; q 2 Nm

C ; m 2 fh;Hg: ð4Þ

As shown in [44], these basis functions can efficiently be con
structed even for general grids in 3D. We remark that the above def
inition of the multiplier spaces yields dimðMm

C Þ dimðWm
C Þ, i.e., we

do not modify the basis functions of Mm
C near the locations where C

is nondifferentiable.
In the rest of this subsection, we formulate the discrete alge

braic version of (2). For this, we introduce the mortar projection
onto Wm

C ; m 2 fh;Hg, given by

Pm : WC !Wm
C : PmwC;l

m
C

� �
C wC;l

m
C

� �
C; lm

C 2Mm
C : ð5Þ

As shown in [43], the mortar operator (5) is uniformly continuous in
h or H with respect to the L2(C) , the H1(C) and the H1/2(C) norm.

We define the matrices Dlm
C 2 RdjN l

C j�djNm
C j with l, m 2 {h,H} which

are composed of the d � d submatrices

ðDlm
C Þpq Id �

Z
C

wl
p/

m
q ds; p 2 N l

C; q 2 Nm
C ð6Þ

with Id denoting the d � d identity matrix. With this, the algebraic
representation of the operator PljWm

C
: Wm

C !Wl
C is given by

Plmwm
C ðDll

CÞ
1Dlm

C wm
C :
Remark 1. Due to the biorthogonality property (4), the matrices
Dll

C in (6) are diagonal and can easily be inverted.
Above and in the following, the discrete functions and the cor

responding coefficient vectors are denoted with the same symbol
for ease of notation. The extension of the matrices Dlh

C ; l 2 fh;Hg,
by zero to the vector space Vh is named Dlh 2 RdjN l

C j�djN h j; similarly,
the extension of DlH

C to the coarse upper space VH
N is denoted

by DlH.



Using this space discretization, standard matrix notation for the
mass and stiffness matrices as well as the fine Lagrange multiplier
space Mh

C for the continuity constraints, the spatially discrete ver
sion of (2) reads

MH
N

€uH þ AH
NuH ðDhHÞTfh

C fH
; ð7aÞ

Mh
x€uh þ Ah

xuh þ ðDhhÞTfh
C fh

; ð7bÞ
Dhhuh DhHuH 0: ð7cÞ

together with suitable initial conditions

ðuH;uhÞjt 0 ðuH
0 ;u

h
0Þ; ð _uH; _uhÞjt 0 ðvH

0 ;v
h
0Þ: ð8Þ
Remark 2. For the case WH
C �Wh

C, the definition of Mh
C and (7c)

imply that the finite element solution is continuous on the whole
domain X, and (7) results in a standard conforming scheme.

Next, we discretize (7) in time by partitioning the time interval
(0,T) into equidistant time steps Dt with discrete times tj = jDt and
introducing the notation

@Dtwj :
1
Dt
ðwj wj 1Þ; wj 1=2 :

1
2

wj þwj 1
� �

:

Using the implicit trapezoidal rule, i.e., the Newmark scheme with
c 1

2 ; b 1
4 [45], for the time stepping, we obtain the following

problem: find sequences of vectors ðuH
j ;u

h
j Þ

M
j 0; ðvH

j ;v
h
j Þ

M
j 0; ðf

H
CjÞ

M 1
j 0

satisfying the initial conditions (8) as well as

MH
N@DtvH

j þ AH
NuH

j 1=2 ðDhHÞTfh
Cj fH

j 1=2 0; ð9aÞ
vH

j 1=2 @DtuH
j 0; ð9bÞ

Mh
x@Dtvh

j þ Ah
xuh

j 1=2 þ ðD
hhÞTfh

Cj fh
j 1=2 0; ð9cÞ

vh
j 1=2 @Dtuh

j 0; ð9dÞ

Dhhuh
j DhHuH

j 0: ð9eÞ

The discrete energy at time tj is the sum of the contributions from
the subdomains N, x given by

Ej EH
Nj þ Eh

xj :
1
2
ðvH

j Þ
T MH

NvH
j þ

1
2
ðuH

j Þ
T AH

NuH
j ðfH

j Þ
T uH

j

� �
þ 1

2
ðvh

j Þ
T Mh

xvh
j þ

1
2
ðuh

j Þ
T Ah

xuh
j ðfh

j Þ
T uh

j

� �
: ð10Þ

For time independent outer loads, the energy is conserved for the
discrete system (9), i.e., Ej Ej 1 holds, provided that (9e) is valid
for both time steps tj and tj 1. This can easily be verified by multi
plying (9ac) with the mean velocities vm

j 1=2 as test functions, adding
the results and using (9bde).

Using (9bd) to eliminate the velocities from (9ac) and defining

Kh
x :

2
Dt2 Mh

x þ
1
2

Ah
x; ð11aÞ

.h
j 1 : fh

j 1=2 þ
2
Dt

Mh
xvh

j 1 Ah
xuh

j 1 þ Kh
xuh

j 1; ð11bÞ

as well as analogous expressions for the quantities on N, the system
to be solved for the displacement at time tj becomes

KH
N 0 ðDhHÞT

0 Kh
x ðDhhÞT

DhH Dhh 0

0BB@
1CCA

uH
j

uh
j

fh
Cj

0BB@
1CCA

.H
j 1

.h
j 1

0

0B@
1CA: ð12Þ
2.3. Schur complement formulation

The system (12) can equivalently be expressed in terms of the
unknowns on the interface C only. For this, we partition the vec
tors (uH,uh) and the corresponding matrices KH

N ; Kh
x into compo
4

nents associated with the interface nodes and the inner degrees
of freedom:

uH uH
N

uH
C

 !
; KH

N

KH
NN KH

NC

KH
CN KH

CC

 !
;

uh uh
C

uh
x

 !
; Kh

x
Kh

CC Kh
Cx

Kh
xC Kh

xx

!
:

Performing static condensation of the inner variables and introduc
ing the symmetric positive semi definite Schur complement matri
ces SH

N ; Sh
x given by

SH
N : KH

CC KH
CNðK

H
NNÞ

1KH
NC 2 RdjNH

C j�djN H
C j; ð13aÞ

Sh
x : Kh

CC Kh
CxðK

h
xxÞ

1Kh
xC 2 RdjN h

C j�djN h
C j; ð13bÞ

we can rewrite (9) as

SH
N 0 ðDhH

C Þ
T

0 Sh
x ðDhh

C Þ
T

DhH
C Dhh

C 0

0BB@
1CCA

uH
Cj

uh
Cj

fh
Cj

0BB@
1CCA

.H
Nðj 1Þ

.h
xðj 1Þ

0

0B@
1CA; ð14Þ

where the right hand side of (14) is defined as

.H
Nðj 1Þ : .H

Cðj 1Þ KH
CNðK

H
NNÞ

1.H
Nðj 1Þ; ð15aÞ

.h
xðj 1Þ : .h

Cðj 1Þ Kh
CxðK

h
xxÞ

1.h
xðj 1Þ: ð15bÞ

In many applications, the exact solution of the fully coupled
problem (14) is very expensive. Instead, we consider an iterative
solution scheme that incorporates a coarse mortar problem on
VH. In Section 3, the corresponding algorithm is derived and theo
retically analyzed. Numerical results are presented in Section 4.

3. Iterative coupling algorithm

In this section, we derive and investigate an iterative solution
scheme for the coupled system (14), where each step consists of
the solution of a coarse problem on the full domain X and a subse
quent solution of a local fine grid problem on x. In Subsection 3.1,
the algorithm is stated. The error propagation and the convergence
rate of the iterative scheme are analyzed in Sections 3.2 and 3.3,
respectively, followed by a short discussion on how its algebraic
error can be measured.

3.1. Derivation

In order to formulate an iterative solution algorithm for the
mortar system (14), we construct a coarse grid version of its second
equation. For this, we introduce a Schur complement matrix

SH
x : KH

CC KH
CxðK

H
xxÞ

1KH
xC 2 RdjNH

C j�djNH
C j ð16Þ

and a right hand side vector �.H
xj 2 RdjN H

C j which are defined similar
as in (13b), (15b) but assembled with respect to the coarse grid
T Hjx instead of T h. Further, we add an auxiliary coefficient vector
lH

C 2 RdjN H
C j which can be interpreted as a coarse Lagrange multiplier

in MH
C . These additional definitions allow to formulate an iterative

scheme for the unknowns

ẑ ðuH
CjÞ

T ðlH
CjÞ

T ðuh
CjÞ

T ðfh
CjÞ

T
� 	T

: ð17Þ

The distinctive feature of the algorithm is that is contains a global
coarse problem on X subject to an interface load on C, whose solu
tion defines a coarse grid approximation of the fine grid quantities
in x. The details of the scheme are summarized in Algorithm 1.

Remark 3. After one iteration of Algorithm 1, i.e., for l P 1, the
residuals (20bcd) vanish.



Remark 4. Definition (16) ensures that the Dirichlet boundary
conditions on CD \ @x are respected in both SH

x and Sh
x which is

important for the performance of the iterative method (cf. [46]
for a related algorithm). We come back to this point in Section 5,
where we discuss contact problems.

Algorithm 1. Two way coupling scheme with augmented
coarse grid problem

Starting from some initial guess ẑð0Þ, compute sequentially for
l = 0,1, . . .

(i) Solve problem on global coarse space VH with interface
load on C inherited from fine computation on x:
ðSH
N þ SH

xÞ 0

SH
x ðDHH

C Þ
T

!
duH;ðlÞ

Cj

dlH;ðlÞ
Cj

0@ 1A rH;ðlÞ
N þ rH;ðlÞ

x

rH;ðlÞ
x

!
:

ð18Þ
(ii) Solve problem on local fine space Vh with weakly
imposed trace on C inherited from coarse computation
on X:
Sh
x ðDhh

C Þ
T

Dhh
C 0

!
duh;ðlÞ

Cj

df
h;ðlÞ
Cj

0@ 1A rh;ðlÞ
x

mh;ðlÞ
C

 !
þ

0
DhH

C duH;ðlÞ
Cj

!
:

ð19Þ
(iii) Update the solution vector:
ẑðlþ1Þ : ẑðlÞ þ dẑðlÞ:
The residuals of (18), (19) are given by
rH;ðlÞ
N .H

Nj 1 SH
NuH;ðlÞ

Cj þ ðD
hH
C Þ

T
f

h;ðlÞ
Cj ; ð20aÞ

rH;ðlÞ
x .H

xj 1 SH
xuH;ðlÞ

Cj ðDHH
C Þ

TlH;ðlÞ
Cj ; ð20bÞ

rh;ðlÞ
x .h

xj 1 Sh
xuh;ðlÞ

Cj ðDhh
C Þ

T
f

h;ðlÞ
Cj ; ð20cÞ

mh;ðlÞ
C DhH

C uH;ðlÞ
Cj Dhh

C uh;ðlÞ
Cj : ð20dÞ
3.2. Error propagation

In order to analyse the error propagation of Algorithm 1, we
reformulate the mortar system (14) as an equation with the only
unknown uH

Cj 2 RdjNH
C j. Introducing the matrix SHhH

x 2 RdjNH
C j�djNH

C j

with

SHhH
x : 0 ðDhH

C Þ
T

� 	 Sh
x ðDhh

C Þ
T

Dhh
C 0

 ! 1
0

DhH
C

� �
ðPhHÞT Sh

xPhH;

ð21Þ
(14) can be rewritten as

SH
N þ SHhH

x

� 	
uH

Cj gH
Cj 1 : ðPhHÞT.h

xj 1 þ .H
Nj 1: ð22Þ

The following lemma shows that Algorithm 1 can be reformu
lated as a fixed point iteration on uH

Cj:

Lemma 1. Let uH
Cj denote part of the exact solution of the mortar

system (14), and let uH;ðlÞ
Cj ; l 0;1; . . ., be the sequence of trace vectors

obtained from Algorithm 1. For l P 1, the error eH;ðlÞ
C : uH;ðlÞ

Cj uH
Cj

� 	
satisfies the relation

eH;ðlþ1Þ
C Id SH

N þ SH
x

� 	 1
SH

N þ SHhH
x

� 	� �
eH;ðlÞ

C : ð23Þ
Proof. The result follows from the definition of the iterative
scheme by substitution. Details can be found in [39]. h
5

Remark 5. If the coarse and the fine grid on x coincide, i.e.,
Vh VH

x holds with the definitions from (3), then we have
SHhH
x SH

x, and Lemma 1 implies that the exact coarse trace uH
Cj is

obtained after at most two steps. If the starting vector ẑð0Þ satisfies

ðDHH
C Þ

T lH;ð0Þ
Cj lH

Cj

� 	
ðDhH

C Þ
T

k
h;ð0Þ
Cj kh

Cj

� 	
0;

then the exact solution is already obtained after the first iteration.
A damped version of (23) with a suitable damping parameter

al > 0 yields the error propagation

eH;ðlþ1Þ
C Id al SH

N þ SH
x

� 	 1
SH

N þ SHhH
x

� 	� �
eH;ðlÞ

C : ð24Þ

If al = a does not depend on l, (24) is equivalent to a preconditioned
Richardson iteration for the Schur complement system (22). But in
general, it is more effective to choose al in each step according to a
conjugate gradient algorithm (see, e.g., [6,7]).

Remark 6. From (23), one can see that the difference between
Algorithm 1 and the classical Dirichlet Neumann coupling with N

as the Neumann subdomain is the additional term of SH
x in the

factor SH
N þ SH

x

� 	�1
. The benefit of this term can be seen in the next

subsection, where we show that Algorithm 1 is robust with respect
to jumps in the material parameters in contrast to the Dirichlet
Neumann iteration whose convergence rate degrades if Ex� EN or
.x� .N, i.e., if the local details are much more stiff than the rest of
the domain (cf. [7,39]).
3.3. Condition number analysis

The convergence properties of the iteration (24) or its conjugate
gradient version are determined by the condition number of the
iteration matrix in (23). To this extend, we investigate the spectral
equivalence of the matrices SH

x and SHhH
x in the following theorem

proved in Appendix A:

Theorem 2. Assume that the trace spaces WH
C �Wh

C are nested and
that there exists a constant CCFL with

.x

Dt2 6 CCFL
Ex

H2 : ð25Þ

Then, there exist constants c⁄, C⁄ independent of the diameter of x, h, H,
Dt and the values Ex, .x, such that the following estimates are satis
fied for any wH

C 2WH
C:

c	ð1þ CCFLÞ 1 wH
C; S

H
xwH

C

� 	
6 wH

C; S
HhH
x wH

C

� 	
6 C	 wH

C; S
H
xwH

C

� 	
:

ð26Þ

If the finite element spaces (3) satisfy VH
x � Vh, then the constant C⁄ in

(26) can be replaced by one.
Remark 7. The assumption WH
C �Wh

C is not necessary but the
proof becomes more technical. We refer to [39] for details.

Thus, if the assumptions of Theorem 2 are satisfied, the condi
tion number of the iteration matrix in (23) is bounded by

j SH
N þ SH

x

� 	 1
SH

N þ SHhH
x

� 	� �
6

maxð1;C	Þ
min 1; c	ð1þ CCFLÞ 1

� 	
with the constants c⁄, C⁄ from Theorem 2. Furthermore, the iterates
of (24) converge to the solution uH

Cj of (22) if the damping parameter
al is chosen within the set 0 < amin 6 al <

2
C	 for some fixed value of

amin (see, e.g., [6]). Hence, if the finite element spaces VH
x � Vh are

nested, Theorem 2 implies the convergence of (24) for al = 1, i.e.,
the convergence of Algorithm 1.



Remark 8. The value of CCFL is related to the Courant Friedrichs
Levy condition often used to analyse the convergence of explicit
time integration schemes. In general, the CFL condition gives a
mesh dependent upper bound on the time step size of the form
D t2

6 Ch2, where C is some constant depending on the maximum
value of the ratio E/.. Implicit integration schemes like the one
used in this work are generally employed for problems where
larger time steps are used than permitted by the CFL condition.
Hence, (25) is a reasonable assumption for the problems we are
interested in.

However, if Assumption (25) is only satisfied with a large
constant CCFL, the lower bound in (26) degenerates. In this case, the
proof in Appendix A can be modified, leading (neglecting logarith
mic terms) to a lower bound of

c	 1þ H
h

� � 1

wH
C; S

H
xwH

C

� 	
6 wH

C; S
HhH
x wH

C

� 	
instead of (26). The resulting dependence of the convergence rate of
Algorithm 1 on the ratio H/h can be observed from the numerical re
sults in Section 4.3; furthermore, it is in agreement with the theo
retical estimates of the spectrum of discrete Dirichlet to
Neumann operators recently presented in [47].
3.4. Stopping criteria

In this subsection, we state a measure of the algebraic error
introduced by solving (14) by means of Algorithm 1.

As the residuals (20bcd) vanish for l P 1, the only nonzero com
ponent of the residual vector is rH;ðlÞ

N given in (20a). As the energy
norm of this residual given by

ðSH
N þ SHhH

x Þ 1rH;ðlÞ
N ; rH;ðlÞ

N

� 	
ð27Þ

is too expensive to compute, it is approximated by the value

ðSH
N þ SH

xÞ
1rH;ðlÞ

N ; rH;ðlÞ
N

� 	
duH;ðlÞ

Cj ; rH;ðlÞ
N

� 	
;

where the last equality follows from (18) for l P 1. Thus, we pro
pose to use the following relative algebraic error estimator for
l P 1:
Fig. 3. Linear example; left: grid for L = 2; middle and righ
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6

gðlÞalg

� 	2
:

duH;ðlÞ
Cj ; rH;ðlÞ

N

� 	
uH;ðlÞ

Cj ; ðSH
N þ SH

xÞu
H;ðlÞ
Cj

� 	 : ð28Þ

As (28) is a norm of the error between the exact mortar solution and
the approximate solution by means of Algorithm 1, it can be used
to define a stopping criterion for the iterative process (see also
Section 6).

Remark 9. In order to compute the denominator of (28) without
solving a Schur complement problem in each step, one can use the
relation

SH
N þ SH

x

� 	
uH;ðlÞ

Cj SH
N þ SH

x

� 	
uH;ð0Þ

Cj þ rH;ð0Þ
x þ

Xl 1

k 0

rH;ðkÞ
N :
4. Numerical results for the linear setting

4.1. Geometry and parameters

For these first numerical tests, we consider the domain
X = (0,2) � (0,1) which is split into the patch x = (0.5,1.5) �
(0,0.5) and the upper domain N X n �x. Both subdomains are ini
tially discretized by quadrilaterals of size H = h = 0.125; afterwards,
we perform L additional refinements of the fine grid on x. The
resulting grid for L = 2 is depicted on the left side of Fig. 3. If not
stated otherwise, we iteratively solve the equations of linear elas
ticity (1) with l = 0 and do not apply damping, i.e., a = 1. The coarse
matrix SH

x and the right hand side �.H
j express as in (16) and (15b)

with h replaced by H, respectively, and the starting vector is taken
to be 0. Thus, all computations with L = 0 yield the exact mortar
solution after one iteration and are not presented in the following.

4.2. Algebraic error for static case

For the first set of tests, we set . = 0, m = 0.3, and piecewise con
stant Young moduli EN 100; Ex 10parEN; par 2 Z. Further, we
enforce homogeneous Dirichlet conditions on the upper boundary,
homogeneous Neumann boundary conditions on the left and right
t: effective stress reff and pressure for the static case.
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e static case with L 2 {1,2,3,4} with respect to l; left: Ex = EN and right: Ex = 105EN.
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Fig. 5. Algebraic error reduction factor eðlþ1Þ
alg =eðlÞalg for the static case with Ex = 10parEN with respect to l; left: par = 0, L 2 {1, . . . ,6}; right: L = 2, par 2 {0, . . . ,5}.
side and a surface load of gN = 106 max (0.25 jx1 1j,0) at the
bottom. The effective stress reff kr 1

d trðrÞIdk and the pressure
tr(r) of the corresponding mortar solution for par = 0 are depicted
in Fig. 3.

In order to investigate the decrease of the algebraic error for
Algorithm 1 with respect to the number of iterations, the differ
ence between the values (uH,(l),uh,(l)) obtained by Algorithm 1
and the solution (uH,uh) of the discrete mortar system (14) is mea
sured with respect to the relative energy norm. For this, we
compute

eðlÞalg

� 	2
:
ðuH;ðlÞ uHÞT AH

NðuH;ðlÞ uHÞ þ ðuh;ðlÞ uhÞT Ah
xðuh;ðlÞ uhÞ

ðuHÞT AH
NuH þ ðuhÞT Ah

xuh
;

the numerator being equal to the value of (27). The results for this
relative algebraic error and the corresponding estimator (28) are
shown in Fig. 4 for different values of L 2 {1,2,3,4}. The left picture
shows the results for equal material parameters Ex = EN, whereas
the right picture displays the convergence for discontinuous param
eters Ex = 105EN. One can see that the decay rate with respect to the
number of iterations is the same for the true and the estimated
algebraic error and that the difference between them is very small,
indicating that galg is well suited to measure the algebraic energy
error due to the iterative solution of the coupled system.

The dependence of the algebraic error reduction on the ratio H/
h = 2L as well as on the jump in the material parameters Ex = 10pa-

rEN is further investigated in Fig. 5, where the error reduction fac
tor eðlþ1Þ

alg =eðlÞalg is plotted with respect to l. The results show that the
algorithm converges best for small values of L and par, but the
reduction factor is limited from above by around 0.35 for par = 0
independently of L > 0 and by around 0.55 for L = 2 and par ?1.
Hence, in the static case, Algorithm 1 is stable with respect to
Table 1
Asymptotic error reduction rates eðlþ1Þ

alg =eðlÞalg for the dynamic case with different values
of Ex 10parE EN; .x 10par. .N with par.,parE 2 {�4,� 2,0,2,4,6}.

L parEnpar. �4 �2 0 2 4 6

2 �4 0.0001 0.0037 0.2572 0.7357 0.7498 0.7500
�2 0.0034 0.0052 0.2449 0.7352 0.7498 0.7500

0 0.2311 0.2315 0.2792 0.6933 0.7498 0.7500
2 0.5441 0.5442 0.5473 0.5568 0.7065 0.7495
4 0.5462 0.5463 0.5516 0.5568 0.5624 0.7066
6 0.5462 0.5464 0.5516 0.5560 0.5558 0.5624

4 �4 0.0001 0.0043 0.3210 0.9196 0.9373 0.9375
�2 0.0039 0.0059 0.2887 0.9177 0.9373 0.9375

0 0.2617 0.2621 0.3159 0.8144 0.9373 0.9375
2 0.6063 0.6063 0.6095 0.6240 0.8298 0.9355
4 0.6090 0.6091 0.6139 0.6193 0.6302 0.8300
6 0.6091 0.6091 0.6138 0.6195 0.6194 0.6303
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jumps in the coefficients, in accordance with the theoretical results
of Theorem 2 for the case .x = 0.

4.3. Algebraic error decrease for dynamic case

Next, we take the inertia terms into account and consider one
time step of a dynamic setting with Dt = 10 3 and piecewise con
stant material parameters EN 100; .N 0:01; Ex 10parE EN;

.x 10par. .N. The parameters are chosen such that the minimal
value of the constant CCFL in (25) is given by

CCFL
100
64
� 10par. parE : ð29Þ

We impose homogeneous Dirichlet boundary conditions on the top,
the Neumann compression forces

gN 10f ðparE ;par.Þ �maxð0;0:25 rÞ; with r2 ð0:5 x1Þ2

on the bottom and homogeneous Neumann conditions elsewhere.
The value of the function f(parE,par.) 2 [0,9] is chosen such that
the deformation of the body is within a sensible range. Both the vol
ume load and the initial velocity are set to zero.

In Table 1, the algebraic error reduction rates of Algorithm 1 are
summarized for L 2 {2,4}, parE, par. 2 { 4, 2,0,2,4,6}. The results
illustrate the influence of the constant CCFL in (25) and the bound in
Remark 8. As long as par. 6 parE + 2 and thus CCFL 6 200, the error
reduction factor is bounded from above independently of the ratio
of the grid sizes or the material parameters Ex and .x, correspond
ing to Theorem 2. However, for par. > parE + 4, we get a reduction
factor of (1 h/H), as predicted by Remark 8.

5. Extension to nonlinear problems

Motivated by the challenge of simulating the large deformation
dynamics of structures with contact, we have presented and ana
lyzed a flexible iterative scheme that allows for a locally improved
spatial resolution. In this section, we extend the considerations of
Section 3 to the nonlinear case by incorporating nonlinear effects
like material nonlinearity and contact with friction.

In Section 5.1, a general nonlinear setting is sketched, as well as
an iterative solution scheme using the overlapping domain decom
position approach. Section 5.2 treats the case of dynamic frictional
contact as an example of a nonlinear effect.

5.1. Iterative solution scheme

In comparison with the mortar system (9), the matrices
Km

H; H 2 fN;xg; m 2 fh;Hg, are now replaced by nonlinear opera
tors Km

H. As we want to state a general algorithm which can be



applied to different kinds of nonlinearities, we do not give a precise
definition of these operators. Some characteristic examples are
presented in the next subsection, but we refer to, e.g.,
[12,38,48,49] for further information on geometrical or material
nonlinearities.

The general nonlinear version of the mortar coupled discrete
problem (12) reads

KH
NðuH

j Þ
Kh

xðuh
j Þ

Dhhuh
j DhHuH

j

0BB@
1CCAþ ðDhHÞT

ðDhhÞT

0

0B@
1CAfh

Cj 0: ð30Þ

Above, we have included the volume and surface forces as well as
the terms from the last time step in the definition of the maps
Km

H, i.e., Km
Hðum

j Þ Km
Hðum

j ;u
m
j 1;v

m
j 1Þ, but we omit the dependence

on the latter two arguments for ease of notation. Further, the exact
form of Km

H depends on the kind of nonlinearity considered. In Sub
section 5.2, we state the conditions of frictional contact as an exam
ple for a nonlinear problem with inequality constraints and sketch
how these conditions can equivalently be reformulated as a set of
semismooth equations. Hence, we assume in the following that
(30) can be solved by a generalized form of the Newton method
for semismooth systems. We refer to [21] and the references therein
for an overview of Newton methods and to [15,50] for the definition
of semismoothness.

Algorithm 2. Inexact nonlinear two way coupling scheme

Start from some initial guess ẑð0;lmaxÞ.
Newton loop: Compute sequentially for k = 0,1,. . .

(1) Initialize the solution ẑðkþ1;0Þ ẑðk;lmaxÞ.

Compute the tangential stiffness matrices and the residu
als on N and x relating to SH;ðkÞ

N ; Sh;ðkÞ
x and �qH;ðkÞ

N ; �qh;ðkÞ
x .

Define coarse grid approximations SH;ðkÞ
x ; �qH;ðkÞ

x of
Sh;ðkÞ
x ; �qh;ðkÞ

x .
(2) Gauß Seidel loop: Compute sequentially for l = 0,1,. . .,

(i) Solve problem on coarse space VH with interface
load on C
;

ðSH;ðkÞ

N þ SH;ðkÞ
x Þ 0

SH;ðkÞ
x ðDHH

C Þ
T

!
duH;ðkþ1;lÞ

Cj

dlH;ðkþ1;lÞ
Cj

0@ 1A ¼ rH;ðkþ1;lÞ
N þ rH;ðkþ1;lÞ

x

rH;ðkþ1;lÞ
x

!
ð31Þ
(ii) Solve problem on fine space Vh with weakly
imposed trace on C:
;

Sh;ðkÞ
x ðDhh

C Þ
T

Dhh
C 0

!
duh;ðkþ1;lÞ

Cj

df
h;ðkþ1;lÞ
Cj

0@ 1A ¼ rh;ðkþ1;lÞ
x

mh;ðkþ1;lÞ
C

!
þ

0
DhH

C duH;ðkþ1;lÞ
Cj

!
ð32Þ
(iii) Update the solution vector:
ẑðkþ1;lþ1Þ : ẑðkþ1;lÞ þ dẑðkþ1;lÞ;
The residuals of (31), (32) are given by
rH;ðkþ1;lÞ
N qH;ðkÞ

N SH;ðkÞ
N uH;ðkþ1;lÞ

Cj þ ðDhH
C Þ

T
f

h;ðkþ1;lÞ
Cj ; ð33aÞ

rH;ðkþ1;lÞ
x qH;ðkÞ

x SH;ðkÞ
x uH;ðkþ1;lÞ

Cj ðDHH
C Þ

TlH;ðkþ1;lÞ
Cj ; ð33bÞ

rh;ðkþ1;lÞ
x qh;ðkÞ

x Sh;ðkÞ
x uh;ðkþ1;lÞ

Cj ðDhh
C Þ

T
f

h;ðkþ1;lÞ
Cj ; ð33cÞ

mh;ðkþ1;lÞ
C DhH

C uH;ðkþ1;lÞ
Cj Dhh

C uh;ðkþ1;lÞ
Cj : ð33dÞ
(iv) If l + 1 = lmax or (35) is satisfied, set ẑðkþ1;lmaxÞ

ẑðkþ1;lþ1Þ and stop.
(3) Check convergence of Newton iteration.
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In the following, we transfer the idea of Algorithm 1 to (30). Be
cause of the nonlinearity, we have to combine two iterative pro
cesses, namely the semismooth Newton loop for the nonlinear
effects and the subdomain iteration presented in Section 3. The
natural way of doing so is to use Algorithm 1 to solve the tangential
systems of the semismooth Newton iteration applied to (30). The
corresponding scheme is summarized in Algorithm 2, using the
notation ẑ introduced in (17), with Sm;ðkÞ

H denoting the Schur com
plement of the tangential matrix

Km;ðkÞ
H : @um

j
Km

H

� 	
ðum;ðkÞ

j Þ; H 2 fN;xg; m 2 fh;Hg; ð34Þ

and the right hand side vectors

qH;ðkÞ : KH;ðkÞ
N uH;ðkÞ

j KH
Nðu

H;ðkÞ
j Þ; qh;ðkÞ : Kh;ðkÞ

x uh;ðkÞ
j Kh

xðu
h;ðkÞ
j Þ:

The convergence rate of the inner Gauß Seidel iteration can be
analyzed with the results from Section 3. Furthermore, the super
linear local convergence of the outer Newton iteration can be pre
served if the norm of the residual of the inner iteration is bounded
in terms of the norm of the Newton residual

RðkÞ :
KH

Nðu
H;ðkÞ
j Þ ðDhHÞTfh;ðkÞ

Cj

Kh
xðu

h;ðkÞ
j Þ þ ðDhhÞTfh;ðkÞ

Cj

0@ 1A
(see, e.g., [20 22]). For l P 1, the residual of the inner loop is given
by the vector (33a), such that the Gauß Seidel iteration has to be
solved until the condition

rH;ðkþ1;lÞ
N




 


 O RðkÞ



 


� 	

ð35Þ

is satisfied.

Remark 10. In principle, the two iterative processes can also be
nested in a different way, leading to an outer fixed point loop and
an inner Newton iteration. However, as a Newton step is, in
general, more expensive than a linear fixed point step due to the
reassembly of the stiffness matrix, this version is likely to be less
efficient than the latter one, see also [39] for numerical results.
5.2. Frictional contact

In this subsection, we exemplify the formation of the nonlinear
semismooth operators Km

H used in (30) for the cases of a nonlinear
displacement stress relationship and frictional contact. For the for
mer effect, the derivation of the function Km

H proceeds along the
lines of Section 2.1, but with the Cauchy stress tensor r in (1) being
replaced by the first Piola Kirchhoff stress tensor P(u). The latter is
given by P(u) = (Id +ru)S(u), with S(u) denoting the second Piola
Kirchhoff stress tensor whose definition depends on the material.
In some of the numerical results, we consider the compressible
equivalent of the nonlinear Mooney Rivlin material law given in
[39,51], where S is defined in terms of the Lamé parameters l, k,
the additional parameter cm and the right Cauchy Green tensor
C = (Id +ru)T (Id +ru) via

S
k
2

detðCÞ 1ð ÞC 1 þ l ð1 cmÞðId C 1Þ
�
þ cmððtrCÞId C ðd 1ÞC 1Þ

	
: ð36Þ

Due to the nonlinear relationship between u and P, the stiffness
terms in (7) are now nonlinear (i.e., AH

NðuHÞ and Ah
xðuhÞ). Further,

special care must be taken by applying the time discretization.
We refer to, e.g., [12,23,25] for more details.

Next, we consider the constraints for frictional contact in more
detail. Here, we designate a part c � CN of the Neumann boundary
where the body X can come into contact with a fixed smooth



obstacle Cobs; for the contact of several elastic bodies we refer to,
e.g., [17,52]. On c, we enforce the Neumann conditions Pn = k,
where the contact stress k is a priori unknown and has to be deter
mined by the contact conditions.

In general, a detailed resolution of the contact area is desired,
and thus it is reasonable to assume that the patch x is large en
ough to cover the whole contact boundary, i.e., �c � @x. Further,
we assume C \ �c ;; CD \ �c ; for simplicity and denote the set
of degrees of freedom of Vm

x on c by Nm
c � N

m
; m 2 fh;Hg.

The discrete conditions for normal contact with Coulomb or
Tresca friction [11 13] can be described in terms of the fine scale
displacement uh

c ðuh
pÞp2N h

c
and the Lagrange multipliers

kh
c ðkh

pÞp2N h
c
. For the discretization of kh

c , we employ dual basis
functions fwh

pgp2N h
c

which are characterized by a biorthogonality
condition similar to (4). This allows for a separation of the contact
conditions into individual constraints for each contact node p 2 N h

c
(see [16,17] for more details). Since we consider unilateral contact
with a fixed obstacle, these conditions can be formulated in terms
of the local displacement and the corresponding multiplier. For
this, we split the displacement vector uh

p into its normal and tan
gential part according to uh

pn : uh
p np; uh

pt : uh
p uh

pnnp, where
np denotes a suitable approximation of the unit outer normal of
x at p 2 N h

c . Further, we introduce the initial normal gap gpn be
tween the node p and the fixed obstacle Cobs in the direction of
np (see, e.g., [12,53] for a detailed definition), as well as the normal
and tangential parts kh

pn : kh
p np; kh

pt : kh
p kh

pnnp of the Lagrange
multiplier. With this, the constraints in the normal direction at the
time step tj read

uh
pjn gpn 6 0; kh

pjn P 0; kh
pjnðuh

pjn gpnÞ 0: ð37Þ

The first inequality of (37) comprises the non penetration con
dition at p, whereas the second one ensures that the force in nor
mal direction is compressive. The last complementarity equation
states that a nonzero contact stress can only develop if the gap is
closed.

The constraints for frictional contact with either Coulomb or
Tresca friction are given by

kkh
pjtk 6 gpt þ Fjkh

pjnj;
kkh

pjtk < gpt þ Fjkh
pjnj ) @Dtuh

pjt 0;

kkh
pjtk gpt þ Fjkh

pjnj ) 9b P 0 : kh
pjt b@Dtuh

pjt:

ð38Þ

If the friction coefficient F P 0 is set to zero, the above inequalities
describe the case of Tresca friction with the given friction bound
gpt P 0, whereas for gpt = 0, the Coulomb friction law is obtained.

There are several possibilities to rewrite the above inequality
constraints as a set of nonsmooth equations [19,50,54]; the form
we propose employs the augmented trial

khtr
pjn : kh

pjn þ cn uh
pjn gpn

� 	
; ð39aÞ

khtr
pjt : kh

pjt þ ct uh
pjt uh

pðj 1Þt

� 	
ð39bÞ

with some fixed constants cn, ct > 0, as well as the combined friction
bound

~gpjt : gpt þ F max 0; khtr
pjn

� 	
:

Then, we can rewrite the contact conditions (37) and (38) as

Ch
c uh

cj; k
h
cj

� 	
: Ch

pðuh
pj; k

h
pjÞ

� 	
p2N h

c

0

with the nonlinear complementarity (NCP) function

Ch
p uh

pj; k
h
pj

� 	
:

kh
pjn max 0; khtr

pjn

� 	
max ~gpjt; kkhtr

pjt k
� 	

kh
pjt

~gpjtk
htr
pjt

0B@
1CA: ð40Þ
9

The equivalence of (37), (38) and (40) follows from a case by case
analysis according to the values of the max functions in (40).
Further, this analysis directly leads to a partition of the set N h

c into
subsets of active and inactive nodes denoted by Ah

n; A
h
t and Ih

n; Ih
t ,

respectively, and defined via

Ah
n : p 2 N h

c : khtr
pjn > 0

n o
; Ih

n : N h
c n A

h
n; ð41aÞ

Ah
t : p 2 N h

c : kkhtr
pjt k > ~gpjt or ~gpjt 0

n o
; Ih

t : N h
c n A

h
t : ð41bÞ

According to this partition, the NCP function (40) simplifies to

Ch
p uh

pj; k
h
pj

� 	 kh
pjn; p 2 Ih

n;

cnðgpn uh
pjnÞ; p 2 Ah

n;

(
~gpjtct uh

pjt uh
pðj 1Þt

� 	
; p 2 Ih

t ;

kkhtr
pjt kk

h
pjt ~gpjtk

htr
pjt ; p 2 Ah

t ;

8<:

0BBBBBB@

1CCCCCCA: ð42Þ

Thus, the set Ah
n contains all nodes which are in contact with the

obstacle, whereas Ah
t and Ih

t represent the slippy and sticky nodes,
respectively. We remark that (42)2,3 can be seen as partial Dirichlet
conditions for the normal or tangential displacement, whereas (42)1

is a partial Neumann and (42)4 a Robin type condition.

Remark 11. If the normal np does not coincide with one of the co
ordinate basis vectors, the partial boundary conditions are
enforced by a local basis transformation with np being one of the
new orthonormal basis vectors. We refer to [16] for details.

For the implementation of these boundary conditions within
the kth iteration of the semismooth Newton loop, we compute
the generalized derivative of the NCP function (42) which is given
in Appendix B. This leads to intermediate active sets Ah;ðkÞ

n ; Ah;ðkÞ
t

which correspond to the final active sets (41) after the Newton
iteration has converged. The linearized version of (42) is then
implemented by local static condensation of the dual variables. De
tails can be found in [54,16].

Remark 12. As shown in [12], the normal contact conditions (37)
in combination with the trapezoidal rule yield an unstable
algorithm if inertia terms are present. In this case, it is advisable
to change the time discretization of (37) like, e.g., described in
[27,55]. But even then, the additional problem occurs that the
computed contact stresses show spurious oscillations in time [30].
In order to avoid this, we employ a local modification of the mass
matrix such that its entries associated with the potential contact
nodes vanish. We refer to [28 30] for more details.

In the rest of this subsection, we present a possible definition of
the coarse grid quantities SH;ðkÞ

x ; �qH;ðkÞ
x needed in Algorithm 2.

Numerical tests like the one in Subsection 6.1 show that the con
vergence rate of the inner iteration in Algorithm 2 degrades if
the Dirichlet contact conditions, i.e., the active nodes Ah;ðkÞ

n in nor
mal direction and the sticky nodes Ih;ðkÞ

t in tangential direction, are
not respected within the coarse approximation. Hence, we propose
to construct SH;ðkÞ

x ; �qH;ðkÞ
x as their fine grid counterparts, but with re

spect to setsAH;ðkÞ
n ; IH;ðkÞ

t � N H
c approximating the fine contact zone.

To construct the coarse active set AH;ðkÞ
n , we define the finite ele

ment function vh;ðkÞ
c;n 2Wh

c given by

vh;ðkÞ
cn ðpÞ

1; p 2 Ah;ðkÞ
n ;

0; otherwise:

(
ð43Þ

Introducing the mortar operator PH
c : Wc !WH

c defined according to
(5), we choose an appropriate threshold value sn 2 R and set

AH;ðkÞ
n ðsnÞ : p 2 N H

c : PH
c v

h;ðkÞ
cn

� 	
ðpÞ > sn

n o
: ð44Þ



The rest of the coarse nodes is set inactive, i.e., IH;ðkÞ
n : N H

c n A
H;ðkÞ
n .

We remark that smaller values of sn generally lead to a larger coarse
contact set AH;ðkÞ

n .
For the tangential part, we proceed similarly and define the set

IH;ðkÞ
t of coarse sticky nodes by

IH;ðkÞ
t ðstÞ : p 2 N H

c : PH
c v

h;ðkÞ
ct

� 	
ðpÞ > st

n o
ð45Þ

with st 2 R and

vh;ðkÞ
ct ðpÞ

1; p 2 Ih;ðkÞ
t ;

0; otherwise:

(
ð46Þ

Due to the combination of boundary displacement and stress, the
Robin conditions for the slippy nodes are not as easy to transfer
to the coarse grid. Thus, we free the remaining nodes
AH;ðkÞ

t : N H
c n I

H;ðkÞ
t in tangential direction by enforcing k

H;ðkþ1Þ
t 0.

Remark 13. The coarse representation of the Dirichlet constraints
is similar to the construction of the coarse grid corrections in
recent monotone multigrid methods; see, e.g., [56] and the
references therein.
Remark 14. For the action of the operator PH
c introduced above, we

need to compute the integrals
R
c wH

p /h
qds for all p 2 N H

C; q 2 N h
C.

Depending on the local geometry, the evaluation of these integrals
can be rather cumbersome (see, e.g., [44]); however, if the relative
position of the coarse and the fine grid is not changed, they only
have to be computed once.
6. Numerical tests for the nonlinear setting

In this section, we show some numerical results with two dif
ferent three dimensional geometries.
Fig. 6. Frictionless contact example with conforming geometry; from left to right: isoline
sn 2 {0,0.4}.

Table 2
Asymptotic error reduction rates for Algorithm 2 and proportions of fine active nodes for
other rows: F > 0; sn 0; st 2 f�1;0;0:1;0:2; 0:4;2g.

F n sn �1 0 0.1 0.2

0 0.304 0.304 0.304 0.306

F n sn �1 0 0.1 0.2

0.02 0.741 0.305 0.305 0.305

0.2 0.371 0.364 Div Div

0.35 0.305 0.302 Div 0.699

0.5 0.303 0.299 0.303 0.730

1 0.301 0.299 0.299 osc

5 0.302 0.300 0.301 0.343
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6.1. Contact approximation with conforming geometry

First, we investigate the influence of the coarse grid approxima
tions AH

n ðsnÞ; IH
t ðstÞ defined in (44) and (45) on the convergence

rate. For this, we consider the simple three dimensional domain
X = (0,1) � (0,1) � (0,2) with the patch x = (0,1)3. We impose a
fixed displacement of (0,0, 0.03)T on the top, unilateral contact
with the obstacle

Cobsðx1; x2Þ x1; x2;0:25x1 � sinð4px1Þ � x2 � sinð4px2Þð Þ

on the bottom (see the left picture of Fig. 6) and homogeneous Neu
mann conditions elsewhere. The material parameters for the linear
elastic body are Ex = EN = 100, m = 0.33 and . = 0, and we use uni
form hexahedral grids of mesh size H 1

4 and h 1
16.

We consider frictionless as well as frictional contact, the latter
case with gt = 0 and F 2 f0;0:02;0:2;0:35;0:5;1;5g. In Fig. 6, the
fine active set Ah

n of the converged solution for F 0 is depicted,
as well as the coarse grid approximations AH

n ðsnÞ for sn 2 {0,0.4}.
Table 2 summarizes the error reduction rates for Algorithm 2 with
one inner Gauß Seidel step (lmax = 1) and different values of F; sn

and st. The upper subtable contains the frictionless case with
sn 2 { 1,0,0.1,0.2,0.4,2}, where the threshold values sn = 1 and
sn = 2 correspond to the cases IH

n ; and AH
n ;, respectively.

One can see that the convergence rate is around 0.3 as long as
sn 6 0.2, but for larger values of sn, the inner iterations of Algo
rithm 2 become less effective.

The remaining rows of Table 2 refer to the frictional case where
we approximate the normal active set by (44) with sn = 0 and com
pare the error reduction rates for different values of st. The nota
tion div indicates that the method has diverged, whereas osc
refers to an oscillation of the active sets. One can observe that
the convergence rate is best for the threshold value st = 0 whose er
ror reduction is rather independent of the value of the friction coef
ficient. In contrast, smaller coarse sets IH

t obtained by larger values
of st yield a more unstable convergence behavior, and the extreme
s of obstacle, fine normal active set Ah
n (black nodes), and approximations AH

n ðsnÞ for

L = 2, lmax = 1 and different values of F; first row: F 0; sn 2 f�1;0;0:1; 0:2;0:4;2g;

0.4 2 jAh
n j

jN h
c j

0.625 0.830 77
289 
 0:27

0.4 2 jAh
n j

jN h
c j

jIh
t j

jAh
n j

0.305 0.305 75
289 
 0:26 0

Div Div 51
289 
 0:18 6

52 
 0:12
Div Div 51

289 
 0:18 21
51 
 0:41

Div Div 51
289 
 0:18 32

51 
 0:63
osc Div 51

289 
 0:18 41
51 
 0:80

0.943 Div 51
289 
 0:17 46

49 
 0:94



case IH
t ; obtained for st = 2 hardly converges at all. This suggests

that for a good convergence rate, one should choose either st small
enough (less than 0.1 in our example) or try to improve the coarse
grid approximation for slippy nodes, possibly by using a coarse Ro
bin condition or an approach similar to [56].

Remark 15. The results indicate that in the static case, the
convergence rate of Algorithm 2 is quite sensitive to the threshold
values sn, st. Therefore, we suggest to choose these parameters
small enough such that the supports of the fine grid indicator
functions (43) and (46) are contained in their coarse counterparts.

However, if a mass term is included in the computation, the
convergence rate is less sensitive to the approximation of the
contact boundary conditions. For the frictionless contact problem
with . = 10 2, Dt = 10 3, we have obtained a convergence rate of
0.29 independent of the threshold value sn.
6.2. Tire application

Next, we apply our algorithm to a complex 3D geometry con
sisting of the lower half of a car tire centering on the x2 axis and
with an approximate radius of 318. In Fig. 7, the domain X as well
as the multiply connected fine patch x are sketched, with a differ
ence in the mesh sizes of about 4 6 H/h 6 8. In contrast to all pre
vious numerical results, the geometry is nonconforming because
the fine triangulation T h features some details at the potential con
tact boundary c which are not resolved by the coarse grid T H (see
Fig. 8).

First, we restrict ourselves to the case of linear static elasticity
with frictionless contact. The contact plane is located at
x3 = 320, and the coarse approximation for the normal active
set computed with cn = 106 is done using (44). On the cutting faces
Fig. 7. Geometry of the

Fig. 8. Fine contact set Ah
n of exact solution with 555 n

11
of the tire (for x3 = 0), a fixed displacement of (0,0, 1) is pre
scribed, whereas all other boundaries are free. Further, a volume
force of (0,0, 1000) is applied to the tire, and the material param
eters read EN = Ex = 2.5 107 and m = 0.33.

Local reinforcement, incompressibility and anisotropy have
been voluntarily ignored, the aim of the present case mainly being
to analyse the performance of the present method on a nonlinear
contact problem with complex 3D geometry. The active set Ah

n of
the corresponding mortar solution is sketched on the left of
Fig. 8, whereas its coarse grid approximation AH

n ð0:15Þ can be seen
on the right side.

Fig. 9 displays the error decay and the mean error reduction
factor of the damped version of Algorithm 2 with the damping
parameter a = 0.6, lmax = 4 inner iterations, and different threshold
values sn. The results show that on the one hand, a too small
threshold value can lead to oscillations in the coarse active set
such that the algorithm does not converge. On the other hand, if
sn is too large, the coarse contact set becomes smaller which de
grades or even disables the convergence, as already observed in
Section 6.1.

From now on, we fix sn = 0.15 and investigate the performance
of Algorithm 2 for different damping parameters a. On the left side
of Fig. 10, the error decay for lmax = 4 and a 2 {0.5,0.6,0.7,0.8} is
shown. For larger values of a, generally more Newton steps are
necessary in order to detect the correct active set. But as soon as
the correct active set has been found, the mean error reduction fac
tor is better for larger values of a, varying between 0.49 for a = 0.7
and 0.66 for a = 0.5. This suggests an adaptive choice of a with re
spect to a change in the active sets.

In order to decrease the number of total iterations, we replace
the condition l 6 lmax by the following stopping criterion in the
spirit of (35):
3D tire example.

odes and approximation AH
n ð0:15Þ with 36 nodes.



gðkþ1;lÞ
abs

� 	2
6 E 1

x RðkÞ



 


2

: ð47Þ

The corresponding error decay is depicted on the right of Fig. 10.
Comparing these results with those in the left picture, one can ob
serve that the number of total iterations until convergence has been
reduced by around 10, and that also the computation with a = 0.8 is
able to detect the correct active set within 15 Newton steps.

Finally, we show a dynamic example with both material and
contact nonlinearities. For this, we employ the nonlinear material
law previously stated in (36) with the parameters EN =
Ex = 2.5 107, m = 0.33, . = 10 5 and cm = 0.5. We apply no volume
forces and enforce frictional contact with the coefficient F 0:5.
The linearized contact conditions are assembled in an updated
Lagrangian manner, and we employ a redistribution of the
mass near the contact boundary c as described in [29]. We
compute 10 time steps with a step size of Dt = 10 5 and prescribe
Fig. 9. Performance of Algorithm 2 with a = 0.6, lmax = 4 w.r.t. number of total iterations
of AH

n ðsnÞ and mean error red. factor after correct active set has been found.
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Fig. 11. Effective stress of dynamic tire problem

12
a time dependent displacement of t
10Dt ð0; 0; 0:75þ signðx1Þ

dispÞ; disp 2 f0;2g, on the top, whereas all other boundaries are
free. The effective stress reff of the corresponding solutions at time
t10 is depicted in Fig. 11. The problem is solved using Algorithm 2
with a = 0.6, sn = st = 0.15 and lmax = 1. On the left of Fig. 12, the
error reduction factor for the first 10 iterations of the time steps
t2 to t10 is plotted, together with the geometric mean for each time
step. The right figure shows the evolution of the fine active sets
jAh

nj and jIh
t j with respect to time. One can observe that the second

test setting with disp = 2 yields no sticky nodes and thus gives a
slightly better convergence rate than the problem with disp = 0
where sticky and slippy nodes appear. However, the mean
error reduction factor is between 0.4 and 0.5 for both settings,
illustrating that Algorithm 2 is able to handle different types of
nonlinearities within a single inexact Newton loop even on
complex geometries.
for sn 2 {0.05,0.1,0.15,0.2,0.3,0.4}; left: true and estimated rel. alg. error; right: Size
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Fig. 12. Performance of Algorithm 2 with a = 0.6 and sn = st = 0.15 for the dynamic tire problem with frictional contact and nonlinear material. Left: error reduction factor for
the first 10 iterations per time step and right: evolution of fine active sets.
Remark 16. A crucial feature of the present approach is the fact
that the global coarse grid solution can serve as a predictor of the
effective contact zone. Using this prediction, a subrefinement of
the coarse mesh can be generated automatically to provide a more
accurate description of the deformation in the contact region. The
contact detection and the corresponding refinement can, e.g., be
reevaluated in each iteration after the solution of the coarse model
and the corresponding update of the coarse active sets. Combined
with the local time step refinement presented in the next section,
this idea makes the efficiency of the present approach superior to
most standard domain decomposition methods.
7. Local time subcycling

The domain decomposition approach introduced in the previ
ous sections has been motivated by the fact that one is interested
in a detailed resolution of the solution within the fine patch. Hence,
in addition to the different spatial mesh sizes, it is desirable to use
different time scales for the coarse and the fine problems, which is
the topic of the current section. In Section 7.1, we present a mortar
coupled solution with different time scales and analyse its asymp
totical convergence order for Dt ? 0. Afterwards, we sketch in Sec
tion 7.2 how the discrete system can efficiently be solved using an
iterative scheme based on the overlapping domain decomposition.
Numerical tests are presented in Section 8.

For ease of presentation, we restrict ourselves to the linear case.
The extension to nonlinear problems can be done as in Section 5.
Further, we assume that the fine scale mass matrix Mh

x is con
structed in such a way that its entries associated with the interface
C vanish. Such a modification has already been successfully ap
plied to dynamic contact problems (cf. Remark 12 and [30,28]),
and the corresponding a priori error in space has been analyzed
in [29]. The time subcycling algorithm with the standard mass ma
trix is presented in [57].

7.1. Interface coupling conditions

From now on, we denote the time step associated with the
coarse space VH by DT and the time step on the patch x by Dt.
We assume that the time step sizes have an integer ratio, i.e.,
DT
Dt J holds for some J 2 N. For ease of notation, the time indices
refer to the fine time steps, such that the first macro time step lasts
from t0 to tJ. To derive continuity conditions on the interface for the
case J > 1, we define intermediate values of the coarse solution at
the discrete time steps tj = jDt, j = 1, . . . , J, by means of linear inter
polation in time. The reasons for this choice will become clear in
the following, where we show that the resulting coupled system
13
of equations provides conservation of the total energy as well as
optimal a priori error estimates in time on the interior of the patch.

First, we look at the solution of one fine time step at the patch
x, where we want to ensure the weak continuity of the displace
ment on C with the linearly interpolated values from N (cf.
(14)2,3). If the coarse solution uH

CJ at time tJ is given, this yields

Sh
x ðDhh

C Þ
T

Dhh
C 0

!
uh

Cj

fh
Cj

 !
.h

xðj 1Þ

DhH
C

j
J uH

Cj þ 1 j
J

� 	
uH

C0

� 	0@ 1A: ð48Þ

The feedback to the coarse grid Eq. (14)1 is carried out by the mean
value of the Lagrange multipliers, leading to

SH
NuH

CJ .H
N0 þ ðD

hH
C Þ

T 1
J

XJ

j 1

fh
Cj: ð49Þ

The Schur matrices SH
N ; Sh

x used above have been defined in (13),
and the residuals �qH

N0; �qh
xðj 1Þ are given in (15).

The reason for implementing the backcoupling as stated in (49)
is the following lemma which follows directly from the definitions:

Lemma 3. For time independent loads f, the coupled system (48),
(49) conserves the total energy (10) after one coarse time step, i.e.,
EJ E0 0.

Besides the fact that the solution of (48), (49) is energy conserv
ing, it permits the a priori error estimates stated in the next theorem.

Theorem 4. Let the initial conditions uH
0 ;v

H
0 ;u

h
0;v

h
0

� �
be given. Let

uH
J ;v

H
J ;u

h
1;v

h
1; f

h
C 1; . . . ;uh

J ;v
h
J ; f

h
CJ

� 	
be the complete solution of (48), (49) with a mass matrix Mh

x such that
all entries associated with the nodes on C vanish. Let

ûHðtÞ; v̂HðtÞ; ûhðtÞ; v̂hðtÞ; f̂h
CðtÞ

� 	
ð50Þ

be the time continuous solution of the differential algebraic equation
(7) with the same mass matrix. Then, we obtain the following local er
ror estimates for j 2 {1, . . . , J}:

uH
J ûHðtJÞ




 


þ vH
J v̂HðtJÞ




 


 6 CDT3;

uh
xj ûh

xðtjÞ



 


þ vh

xj v̂h
xðtjÞ




 


 6 CjDt3;

uh
Cj ûh

CðtjÞ



 


þ vh

Cj v̂h
CðtjÞ




 


 6 C
jðJ jÞ

J2 DT2 þOðDT3Þ;

fh
Cj f̂h

Cðtj 1=2Þ



 


 6 CDt2:

The constants C of the leading order terms can depend on h, the mate
rial parameters and the time derivatives of (50) but are independent of
J, j and DT.



Proof. The idea of the proof is to consider the time continuous
solution (50) as a perturbed solution of the discrete system (48)
and (49) and to estimate the perturbation terms via Taylor expan
sion. For the details, we refer to [57]. h

Theorem 4 implies that the local errors at time tJ, i.e., after one
coarse time step, are of order OðDT3Þ for both displacement and
velocity, and thus the time stepping scheme is globally second or
der convergent. Further, we obtain optimal local estimates for the
fine grid quantities in the interior of the subdomain x.

However, a direct solution of the coupled system (48) and (49)
is very expensive, as it involves the simultaneous solution of one
coarse problem on N and J fine subproblems on x. Here, we benefit
from the iterative algorithm derived in Section 3 which provides an
efficient way of solving this system, which is the topic of the next
subsection.

7.2. Approximate solution scheme

The idea of Algorithm 1 can be transferred to the coupled sys
tem (48) and (49). One iteration of the resulting scheme consists
of the solution of a coarse problem on VH with the macro time step
size DT, followed by J intermediate fine scale problems with step
size Dt and Dirichlet boundary conditions on C. The backcoupling
for the next iteration is performed via the difference in the coarse
and fine boundary stress at C. The corresponding numerical
scheme for the iterative computation of

ẑJ : uH
CJ;l

H
CJ ;u

h
C1; f

h
C1; . . . ;uh

CJ ; f
h
CJ

� 	
;

given all values at time t0, is stated in Algorithm 3.

Algorithm 3. Two way coupling scheme with time subcycling
(t0 ? tJ)

Starting from ẑð0ÞJ , compute sequentially for l = 0,1, . . . ,
(lmax 1)
(i) Solve problem on coarse space VH with interface load

on C:
ðSH
N þ SH

xÞ 0

SH
x ðDHH

C Þ
T

!
duH;ðlÞ

CJ

dlH;ðlÞ
CJ

0@ 1A rH;ðlÞ
N þ rH;ðlÞ

x

rH;ðlÞ
x

!
:

ð51Þ

(ii) Loop on time substeps: j = 1, . . . ,J: Solve problem on

fine space Vh with weakly imposed trace on C:
Sh
x ðDhh

C Þ
T

Dhh
C 0

!
duh;ðlÞ

Cj

dfh;ðlÞ
Cj

0@ 1A rh;ðlÞ
xj

mh;ðlÞ
Cj

0@ 1Aþ 0
j
J DhH

C duH;ðlÞ
CJ

!
:

ð52Þ

(iii) Update the solution vector:
ẑðlþ1Þ
J : ẑðlÞJ þ dẑðlÞJ :
The residuals of (51), (52) are given by
rH;ðlÞ
N qH

N0 SH
NuH;ðlÞ

CJ þ
1
J

XJ

j 1

ðDhH
C Þ

T
f

h;ðlÞ
Cj ; ð53aÞ

rH;ðlÞ
x qH

x0 SH
xuH;ðlÞ

CJ ðDHH
C Þ

TlH;ðlÞ
CJ ; ð53bÞ

rh;ðlÞ
xj qh;ðlÞ

xðj 1Þ Sh
xuh;ðlÞ

Cj ðDhh
C Þ

T
f

h;ðlÞ
Cj ; ð53cÞ

mh;ðlÞ
Cj 1

j
J

� �
DhH

C uH
C0 þ

j
J
DhH

C uH;ðlÞ
CJ Dhh

C uh;ðlÞ
Cj : ð53dÞ
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Remark 17. For l P 1, the residuals (53bcd) vanish.

An appropriate stopping criterion for Algorithm 3 can be de

rived as in Section 3.4 based on the residual

rH;ðlÞ
N SH

N þ SH
x

� 	
duH;ðlÞ

CJ :

This leads to the following relative algebraic error estimator for
l P 1:

gðlÞJ;alg

� 	2
:

duH;ðlÞ
CJ ; rH;ðlÞ

N

� 	
uH;ðlÞ

CJ ; ðSH
N þ SH

xÞu
H;ðlÞ
CJ

� 	 : ð54Þ
8. Numerical results for time subcycling

In this section, we illustrate the performance of Algorithm 3 ap
plied to two different two dimensional geometries.

8.1. Conforming geometry

First, we investigate the energy conservation and the time
discretization error of the coupled system (48), (49) by means of
a simple 2D test setting with X = (0,1) � (0,3) and x = (0,1) �
(0,1.5). We impose homogeneous Dirichlet boundary conditions
on the top, the time dependent Neumann forces

gNðtÞ ¼

7
8 � 109 max 0; 1

2 x1
� �

t t 6 8 � 10 5;

7
8 � 109 max 0; 1

2 x1
� �

ð1:6 � 10 4 tÞ 8 � 10 5 < t 6 1:6 � 10 4;

0; else

8><>:
on the bottom and homogeneous Neumann conditions elsewhere.
The volume load as well as the initial velocity are set to 0. In order
to measure only the error due to time discretization, we use a uni
form quadrilateral grid of mesh size H = h = 2 3. The parameters for
the linear elastic material are chosen according to m = 0.33,
EN = Ex = 105 and a discontinuous density of qN = 1, qx = 0.01.

The left picture in Fig. 13 illustrates the evolution of the total
energy (10) after each coarse time step. One can observe that after
the excitation on the bottom of the body, i.e., for t > 1.6 10 4, the
energy is constant with respect to time, in agreement with the the
oretical result of Lemma 3.

Next, we fix DT = 4 10 5 and investigate the evolution of the
relative time discretization error on the patch x given by

e2
x;time :

ðuh ûhÞT Ah
xðuh ûhÞ

ðûhÞT Ah
xûh

; ð55Þ

where the ‘‘reference solution’’ û has been computed with an over
all fine time step of size 2.5 10 7. The corresponding results for dif
ferent values of J are shown on the right side of Fig. 13. One can
observe that the time subcycling decreases the local energy error
in all cases.

For a numerical test of the dependence of the convergence rate
of Algorithm 3 on J, we refer to [57].

8.2. Nonconforming geometry

Finally, we apply Algorithm 3 to the two dimensional geometry
sketched in Figs. 1 and 15. The domain X consists of a circular ring
centered at the origin with the diameters rinner = 1.6, router = 1.95
and 60 additional salients of height 0.05. The fine domain x is built
by several separate patches which are associated with the salients
but have an extended T like shape in order to include the corner
singularities in the fine triangulation. We remark that these
patches can be computed in parallel as they do not overlap. Though
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Fig. 13. Conforming time subcycling example: left: evolution of total energy for J = 5 and right: Evolution of local rel. error etime,x for DT = 4 � 10 5, J 2 {1,2,4,8,16}.

Fig. 14. 2D two-scale example with L = 2 and Dt = 2 � 10 5; upper row: J = 1; lower row: J = 10; from left to right: effective stress at times t50, t150 and t250.

Fig. 15. 2D two-scale problem with time subcycling; left: evolution of active sets and right: sketch of grids and convergence statistics.
fairly simple, the dynamic of the corresponding structure is consid
ered a good paradigm for space and time two scale applications.

On the potential contact boundary c, each salient features four
additional small sipes which are resolved by the fine grid T h but
are not respected by the coarse grid T H (see Fig. 15). Hence, similar
to Section 6.2, we have a geometrically nonconforming situation
with VH

x å Vh
x. However, the triangulation with H/h = 4 is con

structed such that the trace spaces WH
C �Wh

C are nested.
We set Dt = 2 10 5 and use the nonlinear Neo Hooke material

(which corresponds to the Mooney Rivlin material law in (36)
with cm = 0) with the parameters EN = Ex = 4.4 106 and m = 0.33.
The density on the inner ring is given by .N = 1, whereas the sali
ents have a density of 10 3. The structure has an initial velocity of

v0ðxÞ 150
x2

x1

� �
0

20

� �
and an initial displacement corresponding to stationary rolling [58].
We set the volume load to zero and apply homogeneous Neumann
boundary conditions everywhere except for the potential contact
15
boundary c where frictionless contact with a flat obstacle at
x2 = 2.04 is enforced. The tangential matrices are updated in each
inner iteration (lmax = 1), and the resulting quasi Newton method is
solved in each time step subject to kR(k)k 6 10 5. Further, due to the
inertia terms, we do not use active coarse nodes for the coarse
approximate problem.

In Fig. 14, the results for the computations with J = 1 and J = 10
are compared at different time instances, whereas the evolution of
the active set is shown on the left of Fig. 15. Although one can ob
serve small differences, the overall quality of the results with time
subcycling is evident. We remark that the computation with an
overall coarse time step of size DT = 2 10 4 has not converged
within 30 Newton iterations in the second and all subsequent time
steps.

The total number of Newton iterations as well as the asymptotic
error reduction factor are summarized on the right of Fig. 15. We
emphasize that each Newton iteration consists of the solution of
one global coarse and J fine local systems. In comparison with
J = 1, the number of fine solves has increased by 149% for the
computation with J = 10, but the number of coarse global problems



has decreased by 75%. Hence, the subcycling scheme is extremely
useful if the coarse global problems are much more expensive than
the local solves.
9. Conclusion

In this paper, we have developed an efficient iterative algorithm
for the solution of frictional dynamic contact problems with locally
refined geometries. For this, we have employed an overlapping do
main decomposition with an independent fine mesh around the
contact zone. For linear problems, we have shown that under some
reasonable assumptions, the convergence rate of the correspond
ing algorithm is bounded independently of the material and dis
cretization parameters. Further, we have investigated how the
scheme can be extended to nonlinear contact problems as an inex
act inner solver within the semismooth Newton iteration. Finally,
we have shown that the overlapping discretization can be ex
tended to a locally finer time scale as well as that the resulting cou
pled problem is energy conserving in the linear case and can be
solved efficiently by an iterative procedure.
Appendix A. Proof of Theorem 2

First, we need to introduce some notation. We use the abbrevi
ation k kk;H : k kHkðHÞ and denote the space RBx of rigid body
modes on x as well as the corresponding seminorm by

RBx : z 2 Vx : axðz; zÞ 0f g; jvjeVx
: inf

z2RBx
v þ zk k1;x; v 2 Vx:

Further, according to (11a), we define the bilinear form

kxðv;wÞ :
2

Dt2 mxðv;wÞ þ axðv;wÞ; v;w 2 Vx:

Due to the fact that the Schur complement matrices SH
x; SHhH

x de
fined in (16) and (21) correspond to discrete harmonic extensions
onto x with respect to kx( , ), we obtain

wH
C; S

HhH
x wH

C

� 	
inf

vh2Vh

vh jC PhwH
C

kxðvh;vhÞ;

wH
C; S

H
xwH

C

� 	
inf

vH2VH
x

vH jC wH
C

kxðvH;vHÞ: ðA:1Þ

As the spaces Vh; VH
x are finite dimensional, we can define the

values

v̂h : arg inf
vh2Vh

vh jC PhwH
C

kxðvh;vhÞ; v̂H : arg inf
vH2VH

x
vH jC wH

C

kxðvH;vHÞ:

The idea of the proof is to project the discrete function v̂h 2 Vh
x onto

the space VH
x and vice versa, and to construct an upper bound of the

terms in (A.1) from these projections. A suitable projection operator
Zm

x : Vx ! Vm
x; m 2 fh;Hg, can be constructed similar to the Scott

Zhang operator Zh defined in [59]. The only difference is that we
change the original definition of [59] near the interface C such that
the relation ðZm

xvÞjC PmðvjCÞ holds for v 2 Vx, where the mortar
projection Pm has been defined in (5). With this, the operator Zm

x sat
isfies the approximation properties

0 6 l 6 k 6 2; k >
1
2

: kZhv vkl;x 6 Chk ljvjk;x; v 2 HkðxÞ;

ðA:2Þ

as well as the H1(x) stability estimate

jZhvj1;x 6 Cjvj1;x; v 2 H1ðxÞ: ðA:3Þ
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However, a uniform L2(x) stability similar to (A.3) cannot be valid
in general. As a counterexample, we look at the case that vh is the
extension by zero of wh

C 2Wh
C where we obtain

kZH
xvhk2

0;x 6 CHkPHwh
Ck

2
0;x 6 CHkwh

Ck
2
0;x 6 C

H
h
kvhk2

0;x:

Nevertheless, using (A.2) and an inverse estimate, the projection of
vH 2 VH

x onto Vh gives the stability estimate

kZh
xvHk0;x 6 kZ

h
xvH vHk0;x þ kvHk0;x 6 ChjvHj1;x þ kvHk0;x

6 1þ C
h
H

� �
kvHk0;x 6 CkvHk0;x: ðA:4Þ

With these preliminaries, we can show the second inequality of
(26), using the stability estimates (A.3), (A.4), the equation
ðZh

xv̂HÞjC PhwH
C as well as the fact that Zh

xz z holds for
z 2 RBx � ðVh \ VH

xÞ:

kxðv̂h; v̂hÞ 6 kx Zh
xv̂H; Zh

xv̂H
� 	

6 C ExjZh
xv̂Hj2eVx

þ .x

Dt2 kZ
h
xv̂Hk2

0;x

� �
6 C Exjv̂Hj2eVx

þ .x

Dt2 kv̂
Hk2

0;x

� �
6 C	kx v̂H; v̂H

� �
:

For the other estimate, we make use of the nested trace spaces
WH

C �Wh
C, implying PHPhwH

C wH
C . For any fixed rigid body motion

z 2 RBx, we thus obtain

kxðv̂H; v̂HÞ 6 C ExjZH
xv̂hj2eVx

þ .x

Dt2 kZ
H
xv̂hk2

0;x

� �
6 C Exjv̂hj2eVx

þ .x

Dt2 kðZ
H
x IdÞ v̂h þ z

� �
k2

0;x þ kv̂hk2
0;x

� 	� �
6 C Exjv̂hj2eVx

þ .x

Dt2 H2jv̂h þ zj21;x þ kv̂hk2
0;x

� 	� �
;

where we have used the estimates (A.2) and (A.3). Minimizing on
z 2 RBx and using Assumption (25), we get the upper bound

kxðv̂H; v̂HÞ 6 Cð1þ CCFLÞExjv̂hj2eVx
þ C

.x

Dt2 kv̂
hk2

0;x

6 ðc	Þ 1ð1þ CCFLÞkxðv̂h; v̂hÞ;

implying (26).
Finally, we prove that the constant C⁄ in (26) can be replaced by

one if the finite element spaces VH
x � Vh are nested. For this, we

need to show the inequality

inf
wH2VH

x
wH jC wH

C

kxðwH;wHÞ inf
wh2Vh

wh jC PhwH
C

kxðwh;whÞP 0;

which follows from the nestedness of WH
C �Wh

C and

wH 2 VH
x : wHjC wH

C

n o
� wh 2 Vh : whjC PhwH

C

n o
:

Appendix B. Linearization of contact conditions

The linearization of the NCP function (42) is given in terms of
the (in) active sets Ah;ðkÞ

n ; Ih;ðkÞ
n and Ah;ðkÞ

t ; Ih;ðkÞ
t which are defined

according to (41) but evaluated at the kth Newton iterate
ðuh

j ; k
h
j Þ
ðkÞ. For the case of Tresca friction with F 0, it is imple

mented in the following way, omitting the indices p,j and h for ease
of notation:

kðkþ1Þ
n 0; p 2 IðkÞn ;

uðkþ1Þ
n gn; p 2 AðkÞn ;

uðkþ1Þ
t uj 1;t ; p 2 IðkÞt ;

k
ðkþ1Þ
t LðkÞt uðkþ1Þ

t qðkÞt ; p 2 AðkÞt :

8>>>>><>>>>>:



Above, we have used the abbreviations

Lt :
ctgt

kktr
t k gt

Id
akktr

t k
gtnt

kt � ktr
t

� �
;

qt :
akktr

t k
2

nt
kt;

nt : kktr
t k

2 gtkktr
t k þ akt : ktr

t :

For the correct derivative of (42), the value of a above is one. But for
stability reasons, we implement a quasi Newton scheme with

a min 1; gt
kktk

� 	
. We refer to [16,54] for details as well as for the

case F > 0.
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