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Abstract
The fact that the complete graph K5 does not embed in the plane has been generalized in two
independent directions. On the one hand, the solution of the classical Heawood problem for
graphs on surfaces established that the complete graph Kn embeds in a closed surface M if and
only if (n − 3)(n − 4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M . On the other
hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the
higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 2.

Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a com-
pact, (k−1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized
Heawood inequality holds:

(
n−k−1
k+1

)
≤
(2k+1
k+1
)
bk. This is a common generalization of the case of

graphs on surfaces as well as the Van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds

in a 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk
(2k+2

k

)
+ 2k + 5. This bound is

weaker than the generalized Heawood inequality, but does not require the assumption that M
is (k − 1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain
homological triviality condition.
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1 Introduction

Given a closed surface M , it is a natural question to determine the maximum integer n
such that the complete graph Kn can be embedded (drawn without crossings) into M (e.g.,
n = 4 if M = S2 is the 2-sphere, and n = 7 if M is a torus). This classical problem was
raised in the late 19th century by Heawood [9] and Heffter [10] and completely settled in the
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1950–60’s through a sequence of works by Gustin, Guy, Mayer, Ringel, Terry, Welch, and
Youngs (see [22, Ch. 1] for a discussion of the history of the problem and detailed references).
Heawood already observed that if Kn embeds into M then

(n− 3)(n− 4) ≤ 6b1(M) = 12− 6χ(M), (1)

where χ(M) is the Euler characteristic of M and b1(M) = 2 − χ(M) is the first Z2-Betti
number ofM , i.e., the dimension of the first homology group H1(M ;Z2) (here and throughout
the paper, we work with homology with Z2-coefficients).1 Conversely, for surfaces M other
than the Klein bottle, the inequality is tight, i.e., Kn embeds into M if and only if (1) holds;
this is a hard result, the bulk of the monograph [22] is devoted to its proof. (The exceptional
case, the Klein bottle, has b1 = 2, but does not admit an embedding of K7, only of K6.)

The question naturally generalizes to higher dimension: Let ∆(k)
n denote the k-skeleton

of the n-simplex, the natural higher-dimensional generalization of Kn+1 = ∆(1)
n (by defini-

tion ∆(k)
n has n+ 1 vertices and every subset of at most k + 1 vertices form a face). Given

a 2k-dimensional manifold M , what is the largest n such that ∆(k)
n embeds (topologically)

into M? This line of enquiry started in the 1930’s when Van Kampen [23] and Flores [5]
showed that ∆(k)

2k+2 does not embed into R2k (the case k = 1 corresponding to the non-
planarity of K5). Somewhat surprisingly, little else seems to known, and the following
conjecture of Kühnel [12, Conjecture B] regarding a generalized Heawood inequality remains
unresolved:

I Conjecture 1 (Kühnel). Let n, k ≥ 1 be integers. If ∆(k)
n embeds in a compact, (k − 1)-

connected 2k-manifold M with kth Z2-Betti number bk(M) then(
n− k − 1
k + 1

)
≤
(

2k + 1
k + 1

)
bk(M) (2)

The classical Heawood inequality (1) and the Van Kampen–Flores Theorem correspond
the special cases k = 1 and bk = 0, respectively. Kühnel states Conjecture 1 in slightly
different form in terms of Euler characteristic of M rather than bk(M). Our formulation is
an equivalent form. The Z2-coefficients are not important in the statement of the conjecture
but they are convenient for our further progress.

New result. Here, we prove an estimate in the spirit of the generalized Heawood inequal-
ity (2), with a quantitatively weaker bound. Note that our bound holds (at no extra cost)
under weaker hypotheses.

A somewhat technical but useful relaxation is that instead of embeddings, we consider
the following slightly more general notion (which also helps with setting up our proof
method). Let K be a finite simplicial complex and let |K| be its underlying space (geometric

1 The inequality (1), which by a direct calculation is equivalent to n ≤ c(M) := b(7 +
√

1 + β1(M))/2c,
is closely related to the Map Coloring Problem for surfaces (which is the context in which Heawood
originally considered the question). Indeed, it turns out that for surfaces M other than the Klein bottle,
c(M) is the maximum chromatic number of any graph embeddable into M . For M = S2 the 2-sphere
(i.e., b1(M) = 0), this is the Four-Color Theorem [1, 2]; for other surfaces (i.e., b1(M) > 0) this was
originally stated (with an incomplete proof) by Heawood and is now known as the Map Color Theorem
or Ringel–Youngs Theorem [22]. Interestingly, for surfaces M 6= S2, there is a fairly short proof, based
on edge counting and Euler characteristic, that the chromatic number of any graph embeddable into
M is at most c(M) (see [22, Thms. 4.2 and 4.8]). The hard part of the proof of the Ringel–Youngs
Theorem is to show that for every M (except for the Klein bottle) Kc(M) embeds into M .
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478 On Generalized Heawood Inequalities for Manifolds

realization). We define an almost-embedding of K into a (Hausdorff) topological space X
to be a continuous map f : |K| → X such that any two disjoint simplices σ, τ ∈ K have
disjoint images, f(σ)∩ f(τ) = ∅. We stress that the condition for being an almost-embedding
depends on the actual simplicial complex (the triangulation), not just the underlying space.
That is, if K and L are two different complexes with |K| = |L| then a map f : |K| = |L| → X

may be an almost-embedding of K into X but not an almost-embedding of L into X. Note
also that every embedding is an almost-embedding as well. Our main result is as follows:

I Theorem 2. Let n, k ≥ 1 be integers. If ∆(k)
n almost-embeds into a 2k-manifold M with

kth Z2-Betti number bk(M), then

n ≤ 2
(

2k + 2
k

)
bk(M) + 2k + 5. (3)

As remarked above, this bound is weaker than the conjectured generalized Heawood
inequality (2) and is clearly not optimal (as we already see in the special cases k = 1 or
bk = 0). On the other hand, apart from applying more generally to almost-embeddings, the
hypotheses of Theorem 2 are weaker than those of Conjecture 1 in that we do not assume
the manifold M to be (k − 1)-connected. We conjecture that this connectedness assumption
is not necessary for Conjecture 1, i.e., that (2) holds whenever ∆(k)

n almost-embeds into a
2k-manifold M . The intuition is that ∆(k)

n is (k − 1)-connected and therefore the image of
an almost-embedding cannot “use” any parts of M on which nontrivial homotopy classes of
dimension less than k are supported.

Previous work. The following special case of Conjecture 1 was proved by Kühnel [12,
Thm. 2] (and served as a motivation for the general conjecture): Suppose that P is an n-
dimensional simplicial convex polytope, and that there is a subcomplex of the boundary ∂P
of P that is k-Hamiltonian (i.e., that contains the k-skeleton of P ) and that is a triangulation
of M , a 2k-dimensional manifold. Then inequality (2) holds. To see that this is indeed a
special case of Conjecture 1, note that ∂P is a piecewise linear (PL) sphere of dimension
n− 1, i.e., ∂P is combinatorially isomorphic to some subdivision of ∂∆n (and, in particular,
(n− 2)-connected). Therefore, the k-skeleton of P , and hence M , contains a subdivision of
∆(k)
n and is (k − 1)-connected.
In this special case and for n ≥ 2k + 2, equality in (2) is attained if and only if P is a

simplex. More generally, equality is attained whenever M is a triangulated 2k-manifold on
n+ 1 vertices that is k+ 1-neighborly (i.e., any subset of at most k+ 1 vertices form a face, in
which case ∆(k)

n is a subcomplex of M). Some examples of (k + 1)-neighborly 2k-manifolds
are known, e.g., for k = 1 (the so-called regular cases of equality for the Heawood inequality
[22]), for k = 2 [15, 14] (e.g., a 3-neighborly triangulation of the complex projective plane)
and for k = 4 [3], but in general, a characterization of the higher-dimensional cases of equality
for (2) (or even of those values of the parameters for which equality is attained) seems rather
hard (which is maybe not surprising, given how difficult the construction of examples of
equality is already for k = 1).

Proof technique. Our proof of Theorem 2 strongly relies on a different generalization of the
Van Kampen–Flores Theorem, due to Volovikov [24], regarding maps into general manifolds
but under an additional homological triviality condition:

I Theorem 3 (Volovikov). Let M be a 2k-dimensional manifold and let f : |∆(k)
2k+2| →M be

a continuous map such that the induced homomorphism f∗ : Hk(∆(k)
2k+2;Z2)→ Hk(M ;Z2) is

trivial. Then f is not an almost-embedding, i.e., there exist two disjoint simplices σ, τ ∈ ∆(k)
2k+2

such that f(σ) ∩ f(τ) 6= ∅.
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Note that the homological triviality condition is automatically satisfied if Hk(M ;Z2) = 0,
e.g., ifM = R2k orM = S2k. On the other hand, without the homological triviality condition,
the assertion is in general not true for other manifolds (e.g., K5 embeds into every closed
surface different from the sphere, or ∆(2)

8 embeds into the complex projective plane).
Theorem 3 is only a special of the main result in [24]; it is obtained by setting j = q = 2,

m = 2k, s = k + 1 and N = 2k + 2 in item 3 of Volovikov’s main result (beware that k from
Volovikov’s condition “there exists a natural number k” is different from our k).

In addition, Volovikov [24] formulates the triviality condition in terms of cohomology,
i.e., he requires that f∗ : Hk(M ;Z2) → Hk(∆(k)

2k+2;Z2) is trivial. However, since we are
working with field coefficients and the (co)homology groups in question are finitely generated,
the homological triviality condition (which is more convenient for us to work with) and the
cohomological one are equivalent.2

The key idea of our approach is to show that if n is large enough and f is a mapping from
∆(k)
n to M , then there is an almost-embedding g from ∆(k)

s to |∆(k)
n | for some prescribed

value of s such that the composed map f ◦ g : ∆s →M satisfies Volovikov’s condition. More
specifically, the following is our main technical lemma:

I Lemma 4. Let k, s ≥ 1 and b ≥ 0 be integers. There exists a value n0 := n0(k, b, s) with
the following property. Let n ≥ n0 and let f be a mapping of |∆(k)

n | into a manifold M with
kth Z2-Betti number at most b. Then there exists a subdivision D of ∆(k)

s and a simplicial
map gsimp : D → ∆(k)

n with the following properties.
1. The induced map on the geometric realizations g : |D| → |∆(k)

n | is an almost-embedding
from ∆(k)

s to |∆(k)
n | (note that |D| = |∆(k)

s |).
2. The homomorphism (f ◦ g)∗ : Hk(∆(k)

s )→ Hk(M) is trivial (see Section 2 below for the
precise interpretation of (f ◦ g)∗).

The value n0 can be taken as
(
s
k

)
b(s− 2k) + 2s− 2k + 1.

Therefore, if s ≥ 2k + 2, then f ◦ g cannot be an almost-embedding by Volovikov’s
theorem. We deduce that f is not an almost-embedding either, and Theorem 2 immediately
follows. This deduction requires the following lemma as in general, a composition of two
almost-embeddings needs not be an almost-embedding.

I Lemma 5. Let K and L be simplicial complexes and X a topological space. Suppose g is
an almost-embedding of K into |L| and f is an almost-embedding of L into X. Then f ◦ g
is an almost-embedding of K into X, provided that g is the realization of a simplicial map
gsimp from some subdivision K ′ of K to L.

We prove Lemma 4 in Section 4 thus completing the proof of Theorem 2. Before that,
in Section 3 we first present a simpler version of that proof that introduces the main ideas
in a simpler setting, and yields a weaker bound for n0 (see Equation(4)). Further related
questions and problems will be discussed in Section 5.

2 More specifically, by the Universal Coefficient Theorem [21, 53.5], Hk( · ;Z2) and Hk( · ;Z2) are dual
vector spaces, and f∗ is the adjoint of f∗, hence triviality of f∗ implies that of f∗. Moreover, if the
homology group Hk(X;Z2) of a space X is finitely generated (as is the case for both ∆(k)

n and M , by
assumption) then it is (non-canonically) isomorphic to its dual vector space Hk(X;Z2). Therefore, f∗
is trivial if and only if f∗ is.

SoCG’15



480 On Generalized Heawood Inequalities for Manifolds

2 Preliminaries

We begin by fixing some terminology and notation. We will use card(U) to denote the
cardinality of a set U .

ϑ

aϑ

aϑ ∗ ∂ϑ

We also recall that the stellar subdivision of a maximal face
ϑ in a simplicial complex K is obtained by removing ϑ from
K and adding a cone aϑ ∗ (∂ϑ), where aϑ is a newly added
vertex, the apex of the cone (see the figure on the left).

Throughout this paper we only work with homology groups and Betti numbers over Z2,
and for simplicity, we will for the most part drop the coefficient group Z2 from the notation.
Moreover, we will need to switch back and forth between singular and simplicial homology.
More precisely, if K is a simplicial complex then H∗(K) will mean the simplicial homology of
K, whereas H∗(X) will mean the singular homology of a topological space X. In particular,
H∗(|K|) denotes the singular homology of the underlying space |K| of a complex K. We use
analogous conventions for C∗(K), C∗(X) and C∗(|K|) on the level of chains, and likewise for
the subgroups of cycles and boundaries, respectively.3 Given a cycle c, we denote by [c] the
homology class it represents.

A mapping h : |K| → X induces a chain map hsing
] : C∗(|K|) → C∗(X) on the level of

singular chains; see [8, Chapter 2.1]. There is also a canonical chain map ιK : C∗(K) →
C∗(|K|) inducing the isomorphism of H∗(K) and H∗(|K|), see again [8, Chapter 2.1]. We
define h] : C∗(K)→ C∗(X) as h] := hsing

] ◦ ιK . The three chain maps mentioned above also
induce maps hsing

∗ , (ιK)∗, and h∗ on the level of homology satisfying h∗ = hsing
∗ ◦ (ιK)∗.

We also need a technical lemma saying that our maps compose, in a right way, on the
level of homology.

I Lemma 6. Let K and L be simplicial complexes and X a topological space. Let jsimp be a
simplicial map for K to L, j : |K| → |L| be the continuous map induced by jsimp and h : |L| →
X be another continuous map. Then h∗ ◦ (jsimp)∗ = (h ◦ j)∗ where (jsimp)∗ : H∗(K)→ H∗(L)
is the map induced by jsimp on the level of simplicial homology and h∗ and (h ◦ j)∗, as
explained above.

3 Proof of Lemma 4 with a weaker bound on n0

Let k, b, s be fixed integers. We consider a 2k-manifold M with kth Betti number b, a map
f : |∆(k)

n | →M . The strategy of our proof of Lemma 4 is to start by designing an auxiliary
chain map

ϕ : C∗
(

∆(k)
s

)
→ C∗

(
∆(k)
n

)
.

that behaves as an almost-embedding, in the sense that whenever σ and σ′ are disjoint
k-faces of ∆s, ϕ(σ) and ϕ(τ) have disjoint supports, and such that for every (k + 1)-face τ
of ∆s the homology class [(f] ◦ ϕ)(∂τ)] is trivial. We then use ϕ to design a subdivision D
of ∆(k)

s and a simplicial map gsimp : D → ∆(k)
n that induces a map g : |D| → |∆(k)

n | with the

3 We remark that throughout this paper, we will only work with spaces that are either (underlying
spaces of) simplicial complexes or topological manifolds. Such spaces are homotopy equivalent to CW
complexes [20, Corollary 1], and so on the matter of homology, it does not really matter which (ordinary,
i.e., satisfying the dimension axiom) homology theory we use as they are all naturally equivalent for
CW complexes [8, Thm. 4.59]. However the distinction between the simplicial and the singular setting
will be relevant on the level of chains.
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desired properties: g is an almost-embedding and (f ◦ g)∗([∂τ ]) is trivial for all (k + 1)-faces
τ of ∆s. Since the cycles ∂τ , for (k + 1)-faces τ of ∆s, generate all k-cycles of ∆(k)

s , this
implies that (f ◦ g)∗ is trivial.

The purpose of this section is to give a first implementation of the above strategy that
proves Lemma 4 with a bound of

n0 ≥
((

s+ 1
k + 1

)
− 1
)

2b(
s+1
k+1) + s+ 1. (4)

In Section 4 we then improve this bound to
(
s
k

)
b(s− 2k) + 2s− 2k + 1 at the cost of some

technical complications.

Throughout the rest of this paper we use the following notations. We let {v1, v2, . . . , vn+1}
denote the set of vertices of ∆n and we assume that ∆s is the induced subcomplex of ∆n

on {v1, v2, . . . , vs+1}. We let U = {vs+2, vs+3, . . . , vn+1} denote the set of vertices of ∆n

unused by ∆s. We let m =
(
s+1
k+1
)
and denote by σ1, σ2, . . . , σm the k-faces of ∆s.

3.1 Construction of ϕ

For every face ϑ of ∆s of dimension at most k− 1 we set ϕ(ϑ) = ϑ. We then “route” each σi

u ∈ U

σi

z(σi, u)

v1v2 v1v2

u

ϕ(σi)

by mapping it to its stellar subdivision with an apex
u ∈ U , i.e. by setting ϕ(σi) to σi + z(σi, u) where
z(σi, u) denotes the cycle ∂(σi ∪ {u}). The picture
on the left shows the case k = 1, the support of
z(σi, u) is dashed on the left, and the support of the
resulting ϕ(σi) is on the right.

We ensure that ϕ behave as an almost-embedding by using a different apex u ∈ U for
each σi. The difficulty is to choose these m apices in a way that [f](ϕ(∂τ))] is trivial for
every (k + 1)-face τ of ∆s. To that end we associate to each u ∈ U the sequence

v(u) := ([f](z(σ1, u))], [f](z(σ2, u))], . . . , [f](z(σm, u)]) ∈ Hk(M)m,

and we denote by vi(u) the ith element of v(u). We work with Z2-homology, so Hk(M)m is
finite; more precisely, its cardinality equals 2bm. From n ≥ n0 = (m− 1)2bm + s+ 1 we get
that card(U) ≥ (m− 1) card(Hk(M)m) + 1. The pigeonhole principle then guarantees that
there exist m distinct vertices u1, u2, . . . , um of U such that v(u1) = v(u2) = · · · = v(um).
We use ui to “route” σi and put

ϕ(σi) := σi + z(σi, ui). (5)

We finally extend ϕ linearly to C∗
(

∆(k)
s

)
.

I Lemma 7. ϕ is a chain map and
[
f]
(
ϕ(∂τ)

)]
= 0 for every (k + 1)-face τ ∈ ∆s.

Before proving the lemma, we establish a simple claim that will be also useful later on.

I Claim 8. Let τ be a (k + 1)-face of ∆s and let u ∈ U . Let σi1 , . . . , σik+2 be all the k-faces
of τ . Then

∂τ + z(σi1 , u) + z(σi2 , u) + · · ·+ z(σik+2 , u) = 0. (6)

Proof. This follows from expanding the equation 0 = ∂2(τ ∪ {u}). J

SoCG’15



482 On Generalized Heawood Inequalities for Manifolds

Proof of Lemma 7. The map ϕ is the identity on `-chains with ` ≤ k − 1 and Equation (5)
immediately implies that ∂ϕ(σ) = ∂σ for every k-simplex σ. It follows that ϕ is a chain map.

Now let τ be a (k + 1)-simplex of ∆s and let σi1 , . . . , σik+2 be its k-faces. We have

f] ◦ ϕ(∂τ) = f]

k+2∑
j=1

σij + z(σij , uij )

 = f](∂τ) +
k+2∑
j=1

f]
(
z(σij , uij )

)
.

The ui’s are chosen in such a way that the homology class
[
f]
(
z(σij , u`)

)]
= vij (u`) is

independent of the value `. When passing to the homology classes in the above identity, we
can therefore replace each uij with u1, and obtain,

[f] ◦ ϕ(∂τ)] = [f](∂τ)] +
k+2∑
j=1

[
f]
(
z(σij , u1)

)]
=
[
f]

(
∂τ +

k+2∑
j=1

z(σij , u1)
)]
.

This class is trivial by Claim 8.
Here is the idea behind the proof with k = 1 and ui1 = u1 (same colors represent same

homology classes; the class on the right is trivial, because each edge appears twice):

z(σi1 , ui1)

σi1

σi3σi2

z(σi3 , ui3)z(σi2 , ui2)
ui3

ui1

ui2

z(σi1 , u1)

z(σi3 , u1)z(σi2 , u1)

∂τ

∂τ

J

3.2 Construction of D and g

The definition of ϕ, an in particular Equation (5), suggests to construct our subdivision D
of ∆(k)

s by simply replacing every k-face of ∆(k)
s by its stellar subdivision. Let ai denote the

new vertex introduced when subdividing σi.
We define a simplicial map gsimp : D → ∆(k)

n by putting gsimp(v) = v for every original
vertex v of ∆(k)

s , and gsimp(ai) = ui for i ∈ [m]. This gsimp induces a map g : |∆(k)
s | → |∆(k)

n |
on the geometric realizations. Since the ui’s are pairwise distinct, g is an embedding4, so
Condition 1 of Lemma 4 holds.

On principle, we would like to derive Condition 2 of Lemma 4 by observing that g
‘induces’ a chain map from C∗(∆(k)

s ) to C∗(∆(k)
n ) that coincides with ϕ. Making this a

formal statement is thorny because g, as a continuous map, naturally induces a chain map
g] on singular rather than simplicial chains. We can’t use directly gsimp either, since we are
interested in a map from C∗(∆(k)

s ) and not from C∗(D).
We handle this technicality as follows. Let ρ : C∗(∆(k)

s ) → C∗(D) be the chain map
that sends each simplex ϑ of ∆(k)

s to the sum of simplices of D of the same dimension that
subdivide it. This map induces an isomorphism ρ∗ in homology, and ϕ = (gsimp)] ◦ ρ where
(gsimp)] : C∗(D)→ C∗(∆(k)

n ) denotes the (simplicial) chain map induced by gsimp. We thus
have in homology

f∗ ◦ ϕ∗ = f∗ ◦ (gsimp)∗ ◦ ρ∗

4 We use the full strength of almost-embeddings when proving Lemma 4 with the better bound on n0.
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and since ρ∗ is an isomorphism and f∗ ◦ϕ∗ is trivial, Lemma 7 yields that f∗ ◦ (gsimp)∗ is also
trivial. Since f∗ ◦ (gsimp)∗ = (f ◦ g)∗ by Lemma 6, (f ◦ g)∗ is trivial as well. This concludes
the proof of Lemma 4 with the weaker bound.

4 Proof of Lemma 4

We now prove Lemma 4 with the bound claimed in the statement, namely

n0 =
(
s

k

)
b(s− 2k) + 2s− 2k + 1.

Let k, b, s be fixed integers. We consider a 2k-manifold M with kth Betti number b, a map
f : |∆(k)

n | →M , and we assume that n ≥ n0.
The proof follows the same strategy as in Section 3 : we construct a chain map

ϕ : C∗(∆(k)
s )→ C∗(∆(k)

n ) such that the homology class [(f] ◦ ϕ)(∂τ)] is trivial for all (k + 1)-
faces τ of ∆s, then upgrade ϕ to a continuous map g : |∆(k)

s | → |∆(k)
n | with the desired

properties.
When constructing ϕ, we refine the arguments of Section 3 to “route” each k-face using

not only one, but several vertices from U ; this makes finding “collisions” easier, as we can
use linear algebra arguments instead of the pigeonhole principle. This comes at the cost that
when upgrading g, we must content ourselves with proving that it is an almost-embedding.
This is sufficient for our purpose and has an additional benefit: the same group of vertices
from U may serve to route several k-faces provided they pairwise intersect in ∆(s)

k .

4.1 Construction of ϕ

We use the same notation regarding v1, . . . , vn+1, ∆n, ∆s, U , m =
(
s+1
k+1
)
and σ1, σ2, . . . , σm

as in Section 3.

Definition of multipoints and the map v. As we said we plan to route k-faces of ∆s

through collections of vertices from U , we will call these collections multipoints. It turns out
that this is useful for our needs only if these multipoints have an odd cardinality. In order to
easily proceed with later computations, we define multipoints as vectors rather than subsets
of U as below.

Let C0(U) denote the Z2-vector space of formal linear combinations of vertices from
U . A multipoint is an element of C0(U) with an odd number of non-zero coefficients. The
multipoints form an affine subspace of C0(U) which we denote byM. The support, sup(µ),
of a multipoint µ ∈ M is the set of vertices v ∈ U with non-zero coefficient in µ. We say
that two multipoints are disjoint if their supports are disjoint.

For any k-face σi and any multipoint µ we define:

z(σi, µ) :=
∑

u∈sup(µ)

z(σi, u) =
∑

u∈sup(µ)

∂(σi ∪ {u}).

Now, we proceed as in Section 3 but replace the unused points by the multipoints ofM and
the cycles z(σi, u) with the cycles z(σi, µ). Since Z2 is a field, Hk(M)m is a vector space and
we can replace the sequences v(u) of Section 3 by the linear map

v :
{
C0(U) → Hk(M)m

µ 7→ ([f](z(σ1, µ))], [f](z(σ2, µ))], . . . , [f](z(σm, µ))])
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Finding collisions. The following lemma takes advantage of the vector space structure of
Hk(M)m to find disjoint multipoints µ1, µ2, . . . to route the σi’s more effectively than by
simple pigeonhole.

I Lemma 9. For any r ≥ 1, any Z2-vector space V , and any linear map ψ : C0(U)→ V , if
card(U) ≥ (dim(ψ(M)) + 1)(r− 1) + 1 thenM contains r disjoint multipoints µ1, µ2, . . . , µr
such that ψ(µ1) = ψ(µ2) = · · · = ψ(µr).

Proof. Let us write U = {vs+2, vs+3, . . . , vn+1} and d = dim(ψ(M)). We first prove by
induction on r the following statement:

If card(U) ≥ (d+ 1)(r− 1) + 1 there exist r pairwise disjoint subsets I1, I2, . . . , Ir ⊆ U
whose image under ψ have affine hulls with non-empty intersection.

(This is, in a sense, a simple affine version of Tverberg’s theorem.) The statement is obvious
for r = 1, so assume that r ≥ 2 and that the statement holds for r − 1. Let A denote the
affine hull of {ψ(vs+2), ψ(vs+3), . . . , ψ(vn+1)} and let Ir denote a minimal cardinality subset
of U such that the affine hull of {ψ(v) : v ∈ Ir} equals A. Since dimA ≤ d the set Ir has
cardinality at most d+ 1. The cardinality of U \ Ir is at least (d+ 1)(r − 2) + 1 so we can
apply the induction hypothesis for r − 1 to U \ Ir. We thus obtain r − 1 disjoint subsets
I1, I2, . . . , Ir−1 whose images under ψ have affine hulls with non-empty intersection. Since
the affine hull of ψ(U \ Ir) is contained in the affine hull of ψ(Ir), the claim follows.

Now, let a ∈ V be a point common to the affine hulls of ψ(I1), ψ(I2), . . . , ψ(Ir). Writing
a as an affine combination in each of these spaces, we get

a =
∑
u∈J1

ψ(u) =
∑
u∈J2

ψ(u) = · · · =
∑
u∈Jr

ψ(u)

where Jj ⊆ Ij and |Jj | is odd for any j ∈ [r]. Setting µj =
∑
u∈Jj

u finishes the proof. J

Computing the dimension of v(M). Having in mind to apply Lemma 9 with V = Hk(M)m
and ψ = v, we now need to bound from above the dimension of v(M). An obvious upper
bound is dimHk(M)m, which equals bm = b

(
s+1
k+1
)
. A better bound can be obtained by an

argument analogous to the proof of Lemma 7. We first extend Claim 8 to multipoints.

I Claim 10. Let τ be a (k + 1)-face of ∆s and let µ ∈ M. Let σi1 , . . . , σik+2 be all the
k-faces of τ . Then

∂τ + z(σi1 , µ) + z(σi2 , µ) + · · ·+ z(σik+2 , µ) = 0. (7)

Proof. By Claim 8 we know that (7) is true for points. For a multipoint µ, we get (7) as a
linear combination of equations for the points in sup(µ) (using that card(sup(µ)) is odd). J

I Lemma 11. dim(v(M)) ≤ b
(
s
k

)
.

Proof. Let τ be a (k + 1)-face of ∆s and let σi1 , . . . , σik+2 denote its k-faces.
For any multipoint µ, Claim 10 implies

[f](∂τ)] =
k+2∑
j=1

[f](z(σi, µ))] =
k+2∑
j=1

vij (µ) so vik+2(µ) = [f](∂τ)] +
k+1∑
j=1

vij (µ).

(Remember that homology is computed over Z2.) Each vector v(µ) is thus determined by
the values of the vj(µ)’s where σj contains the vertex v1. Indeed, the vectors [f](∂τ)] are
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independent of µ, and for any σi not containing v1 we can eliminate vi(µ) by considering
τ := σi ∪ {v1} (and setting σik+2 = σi). For each of the

(
s
k

)
faces σj that contain v1,

the vector vj(µ) takes values in Hk(M) which has dimension at most b. It follows that
dim v(M) ≤ b

(
s
k

)
. J

Coloring hypergraphs to reduce the number of multipoints used. We could now apply
Lemma 9 with r = m to obtain one multipoints per k-face, all pairwise disjoint, to proceed with
our “routing”. As mentioned above, however, we only need that ϕ is an almost-embedding,
so we can use the same multipoint for several k-faces provided they pairwise intersect.
Optimizing the number of multipoints used reformulates as the following hypergraph coloring
problem:

Assign to each k-face σi of ∆s some color c(i) ∈ N such that card{c(i) : 1 ≤ i ≤ m} is
minimal and disjoint faces use distinct colors.

This question is classically known as Kneser’s hypergraph coloring problem and an optimal
solution uses s − 2k + 1 colors [17, 18]. Let us spell out one such coloring (proving its
optimality is considerably more difficult, but we do not need to know that it is optimal). For
every k-face σi we let min σi denote the smallest index of a vertex in σi. When min σi ≤ s−2k
we set c(i) = min σi, otherwise we set c(i) = s− 2k + 1. Observe that any k-face with color
c ≤ s− 2k contains vertex vc. Moreover, the k-faces with color s− 2k + 1 consist of k + 1
vertices each, all from a set of 2k + 1 vertices. It follows that any two k-faces with the same
color have some vertex in common.

Defining ϕ. We are finally ready to define the chain map ϕ : C∗(∆(k)
s )→ C∗(∆(k)

n ). Recall
that we assume that n ≥ n0 = (

(
s
k

)
b+1)(r−1)+s+1. Using the bound of Lemma 11 we can

apply Lemma 9 with r = s−2k+1, obtaining s−2k+1 multipoints µ1, µ2, . . . , µs−2k+1 ∈M.
We set ϕ(ϑ) = ϑ for any face ϑ of ∆s of dimension less than k. We then “route” each k-face
σi through the multipoint µc(i) by putting

ϕ(σi) := σi + z(σi, µc(i)), (8)

where c(i) is the color of σi in the coloring of the Kneser hypergraph proposed above. We
finally extend ϕ linearly to C∗(∆s).

We need the following analogue of Lemma 7.

I Lemma 12. ϕ is a chain map and
[
f]
(
ϕ(∂τ)

)]
= 0 for every (k + 1)-face τ ∈ ∆s.

The proof of Lemma 12 is very similar to the proof of Lemma 7; it just replaces points
with multipoints and Claim 8 with Claim 10.

We next argue that ϕ behaves like an almost embedding.

I Lemma 13. For any two disjoint faces ϑ, η of ∆(k)
s , the supports of ϕ(ϑ) and ϕ(η) use

disjoint sets of vertices.

Proof. Since ϕ is the identity on chains of dimension at most (k−1), the statement follows if
neither face has dimension k. For any k-chain σi, the support of ϕ(σi) uses only vertices from
σi and from the support of µc(i). Since each µc(i) has support in U , which contains no vertex
of ∆s, the statement also holds when exactly one of ϑ or η has dimension k. When both ϑ
and η are k-faces, their disjointness implies that they use distinct µj ’s, and the statement
follows from the fact that distinct µj ’s have disjoint supports. J
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w1 x1 w2 x2 w1 x3 w2
w1 w2

w1 w2 w1 w2

w2

w3

x1 x2 x3 x4 x5

ϑ

S′
S

S

Figure 1 Examples of subdivisions for k = 1 and ` = 3 (left) and for k = 2 and ` = 5 (right).

4.2 Construction of D and g

We define D and g similarly as in Section 3, but the switch from points to multipoints
requires to replace stellar subdivisions by a slightly more complicated decomposition.

The subdivision D. We define D so that it coincides with ∆s on the faces of dimension at
most (k−1) and decomposes each face of dimension k independently. The precise subdivision
of a k-face σi depends on the cardinality of the support of the multipoint µc(i) used to “route”
σi under ϕ, but the method is generic and spelled out in the next lemma; refer to Figure 1.

I Lemma 14. Let k ≥ 1 and σ = {w1, w2, . . . , wk+1} be a k-simplex. For any odd integer
` ≥ 1 there exists a subdivision S of σ in which no face of dimension k−1 or less is subdivided,
and a labelling of the vertices of S by {w1, w2, . . . , wk+1, x1, x2, . . . , x`} (some labels may
appear several times) such that:
1. Every vertex in S corresponding to an original vertex wi of σ is labelled by wi,
2. no k-face of S has its vertices labelled w1, w2, . . . , wk+1,
3. for every (i, j) ∈ [k + 1] × [`] there exists a unique k-face of S that is labelled by

w1, w2, . . . , wi−1, wi+1, . . . , wk+1, xj,
4. no edge of S has its two vertices labelled in {x1, x2, . . . , x`},

Proof. This proof is done in the language of geometric simplicial complexes (rather than
abstract ones).

The case ` = 1 can be done by a stellar subdivision and labelling the added apex x1. The
case k = 1 is easy, as illustrated in Figure 1 (left). We therefore assume that k ≥ 2 and build
our subdivision and labelling in four steps:

We start with the boundary of our simplex σ where each vertex wi is labelled by itself.
Let ϑ be the (k − 1)-face of ∂σ opposite vertex w2, ie labelled by w1, w3, w4, · · ·wk+1.
We create a vertex in the interior of σ, label it w2, and construct a new simplex σ′ as the
join of ϑ and this new vertex; this is the dark simplex in Figure 1 (right).
We then subdivide σ′ by considering ` − 1 distinct hyperplanes passing through the
vertices of σ′ labelled w3, w4, . . . , wk+1 and through an interior points of the edge of σ′
labelled w1, w2. These hyperplanes subdivide σ′ into ` smaller simplices. We label the
new interior vertices on the edge of σ′ labelled w1, w2 by alternatively, w1 and w2; since
` is odd we can do so in a way that every sub-edge is bounded by two vertices labelled
w1, w2.
We operate a stellar subdivision of each of the ` smaller simplices subdividing σ′, and
label the added apices x1, x2, . . . , x`. This way we obtain a subdivision S′ of σ′.
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We finally consider each face η of S′ subdividing ∂σ′ and other than ϑ and add the
simplex formed by η and the (original) vertex w2 of σ. These simplices, together with S′,
form the desired subdivision S of σ.

It follows from the construction that no face of ∂σ was subdivided.
Property 1 is enforced in the first step and preserved throughout. We can ensure that

Property 2 holds in the following way. First, we have that any k-simplex of S′ contains a
vertex xj for some j ∈ [`]. Next, if we consider a k-simplex of S which is not in S′ it is a join
of a certain (k− 1)-simplex η of S′, with η ⊂ ∂σ′, and the vertex w2 of σ. However, the only
such (k − 1)-simplex labelled by w1, w3, w4, . . . , wk+1 is ϑ, but the join of ϑ and w2 does not
belong to S.

Properties 3 and 4 are enforced by the stellar subdivisions of the third step, and no other
step creates, destroys or modifies any simplex involving a vertex labelled xi. J

The subdivision D of ∆(k)
s is now defined as follows. First, we leave the (k − 1)-skeleton

untouched. Next, for each k-simplex σi we let `i denote the number of points in the support
of µc(i); since we work with Z2 coefficients, `i is odd. We then compute some subdivision
S(i) of σi using Lemma 14 with ` := `i.

We let ρ : C∗(∆(k)
s ) → C∗(D) denote the map that is the identity on ∆(k−1)

s and that
maps each σi to the sum of the k-dimensional simplices of S(i). This maps induces an
isomorphism ρ∗ in homology.

The simplicial map gsimp. We now define a simplicial map gsimp : D → ∆(k)
n . We first set

gsimp(v) = v for every vertex v of ∆s. Consider next some k-face σi = {w1(i), w2(i), . . . , wk+1(i)}.
We denote by v1(i), v2(i) . . . , vk+1(i) the vertices on the boundary of S(i), being understood
that each vj(i) is labelled by wj , and let u1(i), u2(i), . . . , u`(i)(i) denote the vertices of the
support of µc(i). We map each interior vertex of S(i) to either some wj(i) if its label, as
given by Lemma 14, is wj(i), or some uj(i) if that label is xj .

I Lemma 15. (gsimp)] ◦ ρ = ϕ.

Proof. All three maps are the identity on ∆(k−1)
s so let us focus on the k-faces. Since ρmaps σi

to the formal sum of the k-faces of S(i). Each k-face of S(i) is mapped, under gsimp, to a k-face
with labels v1(i), v2(i), . . . , vj−1(i), vj+1(i), . . . , vk+1(i), uj′(i) for some (j, j′) ∈ [k+1]× [`(i)].
Although tedious, it is elementary to check that the chain (gsimp)]◦ρ(σi) has the same support
as ϕ(σi). Since we are working with Z2 coefficients, the chains are therefore equal. J

The continuous map g. Since D is a subdivision of ∆(k)
s , we have |∆(k)

s | = |D| and the
simplicial map gsimp : D → ∆(k)

n induces a continuous map g : |∆(k)
s | → |∆(k)

n |. All that
remains to do is check that g satisfies the two conditions of Lemma 4. Condition 1 follows
from a direct translation of Lemma 13. Condition 2 can be verified by a computation in the
same way as in Section 3. Specifically, in homology we have

f∗ ◦ ϕ∗ = f∗ ◦ (gsimp)∗ ◦ ρ∗

and we know that f∗ ◦ ϕ∗ is trivial on ∆(k)
s by Lemma 12. As ρ∗ is an isomorphism, this

implies that f∗ ◦ (gsimp)∗ is trivial. Lemma 6 then implies that (f ◦ g)∗ is trivial. This
concludes the proof of Lemma 4.
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5 Related Questions and Outlook

While we consider Conjecture 1 natural and interesting in its own right, there are a number of
connections to other problems that are worth mentioning and provide additional motivation.

5.1 Topological Helly-Type Theorems for subsets of Manifolds
In [6, Thm. 1], we use the Van Kampen–Flores Theorem to prove the following topological
Helly-type theorem for finite families F of subsets of Rd, under the assumption that for every
proper subfamily G ( F , the Z2-Betti numbers bi(

⋃
G), 0 ≤ i ≤ dd/2e − 1, are bounded.

More precisely, our proof heavily relies the fact that the Van Kampen–Flores Theorem
also applies to the following generalization of almost-embeddings: We define a homological
almost-embedding of a finite simplicial complex K into a topological space X as a chain map
ϕ from the simplicial chain complex C∗(K;Z2) to the singular chain complex C∗(X;Z2) with
the properties that (i) for every vertex of K, ϕ(v) consists of an odd number of points in X
and (ii) for any pair σ, τ of disjoint simplices of K, the image chains ϕ(σ) and ϕ(τ) have
disjoint underlying point sets.

One can show that Volovikov’s theorem, and consequently Theorem 2 extend to homo-
logical almost-embeddings; we plan to discuss this in more detail in the full version of the
present paper. Thus, (3) holds whenever ∆(k)

n homologically almost-embeds into M .
As a consequence, the Helly-type result in [6, Thm. 1] generalizes (with an appropriate

change in the constants) to families of subsets of an arbitrary d-dimensional manifold.

5.2 Extremal Problems for Embeddings
Closely related to the classical Heawood inequality is the well-known fact that for a (simple)
graph embedded into a surface M , the number of edges of G is at most linear in the number
of vertices of G (see, e.g., [22, Thm. 4.2]). More specifically, if G embeds into a surface M
with first Z2-Betti number b1(M), and if f1(G) and f0(G) denote the number of vertices and
of edges of G, respectively, then

f1(G) ≤ 3f0(G)− 6 + 3b1(M).

Note that this immediately implies (1) when applied to G = Kn.
This question also naturally generalizes to higher dimensions:

I Conjecture 16. Let M be a 2k-dimensional manifold with kth Z2-Betti number bk(M). If
K is a finite k-dimensional simplicial complex that embeds into M then

fk(K) ≤ C · fk−1(K),

where fi denotes the number of i-dimensional faces of K, −1 ≤ i ≤ k, and C is a constant
that depends only on k and on bk(M).5

The special case M = R2k of the problem was first raised by Grünbaum [7] more than
forty years ago, and has since then been rediscovered and posed independently by a number
of authors (see, e.g., Dey [4], where the problem is motivated by the question of counting

5 In the spirit of the bound for graphs on surfaces, it is also natural to wonder if there might be a bound
of the form fk(K) ≤ C · fk−1(K) + B, with C depending only on the dimension k and the additive
term B depending on k and bk(M).



X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner 489

triangulations of higher-dimensional point sets), and the problem remains wide open even
in that case. Moreover, there is a beautiful conjecture, due to Kalai and Sarkaria [11,
Conjecture 27] that gives a necessary condition for embeddability into R2k in terms of
algebraic shifting and would, in particular, imply that the constant C in Conjecture 16 can
be taken to be k + 2 if M = R2k.

The aforementioned extension of Theorem 2 to homological almost-embeddings together
with [25, Thm. 7] imply the following result for random complexes:

I Corollary 17. Let Xk(n, p) denote the Linial–Meshulam model [16, 19] of k-dimensional
random complexes on n vertices.6 Given integers k ≥ 1 and b ≥ 0, there exists a constant
C = C(k, b) with the following property: If M is a 2k-dimensional manifold with Z2-Betti
number bk(M) ≤ b and if p ≥ C/n then asymptotically almost surely, Xk(n, p) does not
embed into M .

This generalizes [25, Thm. 2] and can be viewed as evidence for Conjecture 16 (in a sense, it
shows that the conjecture holds for “almost all complexes”).

The arguments in [25, Thm. 7] are based on the following notion closely related to
homological almost-embeddings: If K and L are simplicial complexes, we say that K is
a homological minor of K if there is a chain map ϕ from the simplicial chain complex
C∗(K;Z2) into the simplicial chain complex of C∗(K;Z2) that satisfies conditions (i) and
(ii) in the definition of a homological almost-embedding (one might call ϕ a simplicial
homological almost-embedding). In [25, Conj. 6], we propose a conjectural generalization
of Mader’s theorem to the extent that a finite k-dimensional simplicial complex K contains
∆(k)
t as a homological minor provided that fk(K) ≥ C · fk−1(K) for some suitable constant

C = C(k, t). If true, this conjecture, together with the extension of Theorem 2 to homological
almost-embeddings, would imply Conjecture 16.

We remark that Conjecture 1 is also closely related to the combinatorial theory of face
numbers of triangulated spheres and manifolds, in particular the Generalized Lower Bound
Theorem for polytopes (which is the main ingredient in Kühnel’s proof of his special case)
and conjectured generalizations thereof to triangulated spheres and manifolds. A detailed
discussion of these questions goes beyond the scope of this extended abstract, and we refer
the reader to [12] and [13, Ch. 4].
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