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Abstract

We study the complexity of a multilateral negotiation frame-
work where autonomous agents agree on a sequence of
deals to exchange sets of discrete resources in order to both
further their own goals and to achieve a distribution of re-
sources that is socially optimal. When analysing such a
framework, we can distinguish different aspects of complex-
ity: How many deals are required to reach an optimal allo-
cation of resources? How many communicative exchanges
are required to agree on one such deal? How complex a
communication language do we require? And finally, how
complex is the reasoning task faced by each agent? This pa-
per presents a number of results pertaining, in particular, to
the first of these questions.

1. Introduction

Negotiation in general, and the allocation of resources by
means of negotiation in particular, are widely regarded as
important topics in multiagent systems research. In this pa-
per, we study the complexity of a multilateral negotiation
framework where autonomous agents agree on a sequence
of deals to exchange sets of discrete (i.e. non-divisible) re-
sources. While, at the local level, agents arrange deals to
further their own individual goals, at the global level (say,
from a system designer’s point of view) we are interested in
negotiation processes that lead to allocations of resources
that aresocially optimal. Several formal models of social
optimality that are applicable to our framework have been
studied in welfare economics [8]. In this paper, we are
mostly concerned with maximising utilitarian social wel-
fare, but also with negotiating Pareto optimal allocations of
resources (these concepts will be defined in Section 2).

Previous work has addressed the emergence of states
that are optimal from a social point of view, depending on
the kinds of acceptability criteria used by individual agents
when deciding whether or not to agree to a proposed ex-
change of resources [3, 4, 10]. A first analysis of the com-
plexity of certain aspects of this framework has recently

been given by Dunneet al. [2]. In the present paper, we
put particular emphasis on thecommunication complexity
of multilateral trading. That is, we are more interested in the
length of negotiation processes and the amount of informa-
tion that needs to be exchanged between agents than in the
computational complexity associated with the tasks individ-
ual agents need to carry out for negotiation to take place.

The remainder of this paper is structured as follows.
In Section 2 we review the multilateral trading framework
of [4] and quote several results on the reachability of so-
cially optimal allocations of resources by means of specific
classes of deals. Section 3 identifies different aspects of the
complexity of trading resources. While we take the frame-
work of [4] as a reference model, most of these issues are
likely to be relevant to any scenario where agents negoti-
ate over resources. The first type of complexity identified in
Section 3 concerns the number of deals that need to be im-
plemented for an agent society to converge to an optimal
state. In Section 4 we prove several upper bounds on this
number of deals. Different results apply in different cases,
depending on the class of deals considered and whether we
are interested in either the number of deals in the short-
est path to an optimal allocation or the number of deals in
the longest possible path before any negotiation process is
bound to terminate. Section 5 concludes.

2. Resource Allocation by Negotiation

In this section, we introduce the framework ofresource al-
location by negotiationput forward in [4] and recall some
of the results presented there.

2.1. The Negotiation Framework

An instance of our negotiation framework consists of a finite
set of (at least two)agentsA and a finite set of non-divisible
resourcesR. A resourceallocationA is a partitioning of the
setR amongst the agents inA. For instance, given an allo-
cationA with A(i) = {r3, r7}, agenti would own resources
r3 andr7. Given a particular allocation of resources, agents



may agree on a (multilateral)deal to exchange some of the
resources they currently hold. In general, a single deal may
involve any number of resources and any number of agents.
It transforms an allocation of resourcesA into a new allo-
cationA′; that is, we can define a deal as a pairδ = (A,A′)
of allocations (withA 6= A′).

A deal may be coupled with a number of monetary side
payments to compensate some of the agents involved for
an otherwise disadvantageous deal. Rather than specifying
for each pair of agents how much the former is supposed to
pay to the latter, we simply say how much money each and
every agent either pays out or receives. This can be mod-
elled using apayment functionp mapping agents inA to
real numbers. Such a function has to satisfy the side con-
straint

∑
i∈A p(i) = 0, i.e. the overall amount of money in

the system remains constant. Ifp(i) > 0, then agenti pays
the amount ofp(i), while p(i) < 0 means that itreceives
the amount of−p(i). We distinguishdeals with moneyand
deals without money. For the latter,p(i) is required to be0
for every agenti ∈ A. Note that for the framework with-
out money, it would be sufficient to model an agent’s pref-
erences by means of a (not necessarily strict) total order
over alternative bundles of resources. We use utility func-
tions nevertheless, but for presentational reasons alone.

While most work on negotiation in multiagent systems
has been concerned with eitherauctionsor bilateral (“one-
to-one”) negotiation [9, 11], we should stress that our sce-
nario of resource allocation by negotiation explicitly ad-
dressesmultilateral exchanges and that it isnot an auction.
Auctions are mechanisms to help agents agree on a price at
which an item (or a set of items) is to be sold [6]. In our
work, on the other hand, we are not concerned with this as-
pect of negotiation, but only with the patterns of resource
exchanges that agents actually carry out.

2.2. Individual Rationality and Social Welfare

To measure their individual welfare, every agenti ∈ A
is equipped with autility function ui mapping sets of re-
sources (subsets ofR) to real numbers. We abbreviate
ui(A) = ui(A(i)) for the utility value assigned by agent
i to the set of resources it holds for allocationA.

An agent may or may not find a particular deal accept-
able. In this paper, we assume that agents arerational in
the sense of never accepting a deal that would not improve
their personal welfare (see [10] for a justification of this ap-
proach). For deals with money, this “myopic” notion of in-
dividual rationality may be formalised as follows:

Definition 1 (Individual rationality) A dealδ = (A,A′)
with money is rational iff there exists a payment functionp
such thatui(A′)− ui(A) > p(i) for all i ∈ A, except pos-
siblyp(i) = 0 for agentsi with A(i) = A′(i).

For the frameworkwithout money, this definition can be
simplified to say that any rational deal should result in a
strict increase in utility for all the agents involved. However,
as discussed in detail in [4], it is useful to slightly weaken
the notion of rationality to be able to compensate for the
fact that the framework without money does not allow us to
model arbitrarily small increases in utility. That is, in sce-
narios where side payments are not possible, agents will be
required to be cooperative in the sense of also accepting
deals that do at least not decrease their personal utility:

Definition 2 (Cooperative rationality) A dealδ = (A,A′)
without money is rational iffui(A) ≤ ui(A′) for all agents
i ∈ A and this inequality is strict in at least one case.

The second part of the definition ensures that at least one
agent (say, the one proposing the deal) will have a strictly
positive payoff for every rational deal. This condition is re-
quired to ensure the termination of negotiation processes.

The notion of rationality provides alocal criterion that
ensures that negotiation is beneficial for all individual par-
ticipants. For aglobal perspective, welfare economics (see
e.g. [8]) provides tools to analyse how the reallocation of
resources affects the well-being of a society of agents as a
whole. Here we are going to be particularly interested in
maximisingsocial welfare:

Definition 3 (Social welfare) The social welfaresw(A) of
an allocation of resourcesA is defined as follows:

sw(A) =
∑
i∈A

ui(A)

We should stress that this is theutilitarian view of social
welfare; other notions of social welfare have been devel-
oped as well [8] and may be usefully exploited in the con-
text of multiagent systems [3].

A related notion is the concept ofPareto optimality,
which may be defined as follows:

Definition 4 (Pareto optimality) An allocationA is called
Pareto optimal iff there is no other allocationA′ such that
sw(A) < sw(A′) andui(A) ≤ ui(A′) for all i ∈ A.

In other words, an allocation is Pareto optimal iff there is no
other allocation that is better for at least one agent without
making any of the others worse off.

2.3. Convergence Results

Proofs for all the theorems quoted in this section may be
found in [4]. The first of these, which is essentially equiva-
lent to a result on sufficient contract types for optimal task
allocations by Sandholm [10], links individual rationality at
the local level with the global concept of social welfare:

Theorem 1 (Maximising social welfare) Any sequence of
rational deals with money will eventually result in an allo-
cation of resources with maximal social welfare.



This means that (1) there can be no infinite sequence of
deals all of which are rational, and (2) once no more rational
deals are possible the system must have reached an alloca-
tion with maximal social welfare. The crucial aspect of The-
orem 1 (and the next three theorems) is thatany sequence
of deals satisfying the rationality condition will cause the
system to converge to an optimal allocation. That is, what-
ever deals are agreed on in the early stages of negotiation,
the system will never get stuck in a local optimum and find-
ing an optimal allocation remains an option throughout.

For the framework without money, we can only guaran-
tee negotiation outcomes that are Pareto optimal:

Theorem 2 (Pareto optimal outcomes)Any sequence of
rational deals without money will eventually result in a
Pareto optimal allocation of resources.

A drawback of the general frameworks, to which Theo-
rems 1 and 2 apply, is that these results only hold if deals
involving any number of resources and agents are admis-
sible [4, 10]. In some cases this problem can be allevi-
ated by putting suitable restrictions on the utility functions
agents may use to model their preferences. For instance, a
utility function is calledadditive iff the value ascribed to
a set of resources is always the sum of the values of its
members. In scenarios where utility functions may be as-
sumed to be additive, it is possible to guarantee optimal out-
comes even when agents only negotiate deals involving a
single resource and a pair of agents at a time (so-calledone-
resource-at-a-time deals):

Theorem 3 (Additive scenarios) If all utility functions are
additive, then any sequence of rational one-resource-at-a-
time deals with money will eventually result in an allocation
of resources with maximal social welfare.

If we merely wish to model whether or not an agentneeds
a particular resource, it is sufficient to use additive utility
functions which assign either0 or 1 to each single resource.
If all agents use these0-1 functionsto model their prefer-
ences, then the previous result can be further strengthened
to apply also to deals without money:

Theorem 4 (0-1 scenarios)If all utility functions are 0-1
functions, then any sequence of rational one-resource-at-a-
time deals without money will eventually result in an allo-
cation of resources with maximal social welfare.

A question that naturally arises when we consider these con-
vergence results is,how manydeals of the class in question
(such as the class of rational one-resource-at-a-time deals
without money) are actually required to reach the respec-
tive optimal allocation of resources. We are going to dis-
cuss this question in detail in Section 4. First, however, we
are going to take a somewhat broader perspective and anal-
yse what different aspects of complexity should be consid-
ered in the context of a negotiation framework such as ours.

3. Aspects of Complexity

The aim of this paper is to study the complexity of trad-
ing within the negotiation framework lined out in the previ-
ous section. As it happens, there is not just a single notion
of complexity that is of relevance here. In fact, we can dis-
tinguish at least four differentaspects of complexity. They
are epitomised by the following questions:

(1) How many deals are required to reach an optimal allo-
cation of resources?

(2) How many dialogue moves need to be exchanged to
agree on one such deal?

(3) How expressive a communication language do we re-
quire?

(4) How complex is the reasoning task faced by an agent
when deciding on its next dialogue move?

The first type of complexity takes individual deals as prim-
itives, abstracting from their inherent complexity, and eval-
uates the length of a negotiation process as a whole. Fol-
lowing a top-downapproach, this is the first aspect of com-
plexity to consider. We are going to analyse the number of
deals required to reach optimal allocations for several in-
stances of our negotiation framework in Section 4.

At the next lower level, we have to consider the com-
plexity of negotiating asingledeal in such a sequence. This
issue is addressed by the second type of complexity iden-
tified above. It concerns the number of messages that need
to be sent back and forth between the agents participating
in negotiation before a deal can be agreed upon. At the next
lower level, we have to consider the complexity of decid-
ing what message to send at any given point in a negotia-
tion process; this is the fourth type of complexity. The third
type is somewhat orthogonal to the other points as it con-
cerns the complexity of alanguage:how rich a agent com-
munication language do we require, for instance, to be able
to specify proposals and counter-proposals?

In the remainder of this section, we are going to discuss
some of these issues further and point out connections to re-
lated work in the literature.

3.1. Communication Complexity

The first three of the four questions at the beginning of the
section relate to what we may call thecommunication com-
plexity of our negotiation framework. In the literature on
distributed computing, this term is used to refer to the num-
ber of bits that the nodes in a distributed system need to
exchange in order to jointly compute the value of a given
function [7]. The so-called two-party model of communica-
tion complexity introduced by Yao [12] addresses the fol-
lowing problem: Two agents each hold ann-bit string and
their goal is to communicate in order to compute the value



of a (boolean) function over these two strings. The question
then is: What is the minimal number of bits that need to be
exchanged to be able to compute that function? In particu-
lar, the model isnot concerned with the computational re-
sources required by the agents, but only with the amount of
communication needed. The communication complexity of
a protocol is the maximal number of bits exchanged when
following that protocol (in the worst case). The communi-
cation complexity of afunctionis the communication com-
plexity of the best protocol that computes that function.

While we do not use the term communication complex-
ity in precisely the same sense, there are a number of par-
allels to be observed. The communication complexity of ar-
ranging a single deal is a combination of the number of di-
alogue moves that need to be sent and the amount of infor-
mation contained in a single message. The communication
complexity of reaching an optimal allocation of resources is
a combination of the number of deals required and the com-
plexity of arranging an individual deal.

Recall that our negotiation framework makes multilat-
eral deals anecessity; this is the price to pay for the sim-
plicity of our agent model based on the notion of rational-
ity. If agents only agree to deals that improve their own wel-
fare (rather than being prepared to accept a temporary loss
in utility in view of potential future rewards), then deals
involving any number of agents as well as resources may
be required to be able to guarantee socially optimal out-
comes [4, 10]. Truly multilateral trading, i.e. negotiating
deals that involve more than just two agents, however, is
considerably more complex than the more widely studied
bilateral trading. As pointed out by Feldman [5], if the costs
of arranging a multilateral deal were proportional to the
number of pairs in a group of agents, then they would rise
quadraticallywith the size of the group (because there are
n · (n−1)/2 pairs in a group ofn agents); and if they were
proportional to the number of subgroups in a group, then
they would riseexponentially(because there are2n sub-
groups). These observations directly affect the second type
of complexity, i.e. the number of dialogue moves that need
to be exchanged to agree on a deal between several agents.

3.2. Minimal Requirements for Protocols

In what follows, we briefly discuss some of the very ba-
sic considerations pertaining to our third type of complex-
ity, i.e. the complexity of the communication language (in-
cluding an appropriate interaction protocol) used to nego-
tiate. While it is generally considered desirable that both
dialogue moves and protocol rules are as simple as possi-
ble, it is also important to find the right balance between
simplicity and expressive power. A restricted communica-
tion language may, for instance, have negative impacts on
the length of a negotiation dialogue or the quality of the

deal agreed upon (which in turn would negatively affect the
overall number of deals required).

Any communication language for negotiation in our
framework is likely to include at least performatives such
aspropose, accept, andreject, to be able to communicate
a proposed deal to (a set of) potential trading partners and
to either accept or reject such a proposal, respectively (for
the terminology used to describe communication protocols
see, for instance, [11]). Naturally, asophisticatedprotocol
would also include performatives to enable agents to nego-
tiate aspects of a deal step by step, but the above seem to be
minimal requirements for any suitable protocol. The con-
tent of aproposemove would have to include a full specifi-
cation of the deal in question, i.e. we require acontent lan-
guagethat is rich enough to express which resources are to
be moved from which agent to which other agent (possi-
bly together with the specification of a payment function).
Amongst other things, the complexity of this content lan-
guage would depend on the number of distinct deals that
are possible at any one point during negotiation.

3.3. Computational Complexity

The fourth type of complexity identified earlier, i.e. the
complexity of the reasoning task faced by an agent when de-
ciding on its next step in a negotiation dialogue, is the only
kind of computationalcomplexity we have considered.

Dunne et al. [2] study the computational complexity
of deciding whether one-resource-at-a-time trading (with
money) is sufficient to move to a given allocation with
higher social welfare than the current one. This is what one
may want to call the complexity of a “meta-property” of
the framework. Agents engaged in negotiation are not ac-
tually going to analyse this kind of “global” question, but
rather try to agree on deals at the local level. The types
of complexity we have identified here all relate directly to
the problems faced by agents when engaged in negotiation,
while the decision problem of Dunneet al. is more likely to
be tackled by an outside observer. Nevertheless, these dif-
ferent views on the complexity of negotiation are strongly
inter-related: The complexity of negotiating an optimal al-
location, in a distributed manner, by means of a sequence
of one-resource-at-a-time deals is bound to be at least as
high as that of the problem of deciding whether such a se-
quence exists in the first place (Dunneet al.have shown that
their decision problem is NP-hard).

Finally, it is clear that our classification does not cover
all aspects of complexity. For instance, we may also con-
sider the complexity of determining whether a given bundle
yields higher individual welfare than the current one (al-
though the problem of preference elicitation lies outside the
scope of this paper as we take utility functions as given), or
the complexity of deciding whether a given dialogue move



actually conforms to the communication protocol chosen
for negotiation (although this is a problem faced by the sys-
tem infrastructure rather than by individual agents).

4. Number of Deals

In this section, we are going to address the question charac-
terising the first type of communication complexity identi-
fied earlier:How many deals are required to reach an opti-
mal allocation of resources?

We are going to study this question in the concrete con-
text of the negotiation framework set out in Section 2 and,
specifically, we are going to analyse how many deals are re-
quired to reach the optimal allocations referred to in each
of the four convergence theorems quoted towards the end
of that section. The class of deals considered (with or with-
out money; one-resource-at-a-time or general) as well as the
type of optimality that can be achieved (maximal social wel-
fare or Pareto optimality) differ for each of these theorems.
For instance, related to Theorem 3, we are going to inves-
tigate how many rational one-resource-at-a-time deals with
money are required to reach an allocation with maximal so-
cial welfare in an additive scenario.1

Of course,0 is always going to be alower bound:If the
initial allocation of resources is itself optimal, then not a
single deal will be required to reach an optimal allocation.
Hence, we are only going to be interested in upper bounds.
In fact, there are two types of upper bounds: the maximal
length of theshortest pathto an optimal allocation and the
maximal length of thelongest pathto such an allocation.

4.1. Maximising Social Welfare

Let us first consider scenarios where there are no restric-
tions on utility functions and where any rational deal with
money is admissible (the framework of Theorem 1). In this
context, our question reads:How many rational deals with
money are required to reach an allocation with maximal so-
cial welfare?The—possibly somewhat surprising—answer
to this question is: “1”. To back up this claim, we require
the following lemma, which has been proved in [4]:

Lemma 1 (Rational deals w. money)A dealδ = (A,A′)
with money is rational iffsw(A) < sw(A′).

The upper bound for the shortest path to an optimal alloca-
tion follows immediately:

Theorem 5 (Shortest path w. money)An allocation with
maximal social welfare can always be reached by means
of (at most) a single rational deal with money.

1 In a recent paper, Dunne [1] addresses a related problem and analy-
ses the number of deals meeting certain structural requirements (such
as being one-resource-at-a-time deals) needed to reach a given target
allocation (whenever this is possible at all) in general scenarios.

Proof. Let A be the initial allocation of resources and sup-
poseA does not have maximal social welfare (otherwise the
theorem holds vacuously). Then, for any allocationA′ with
maximal social welfare, we havesw(A) < sw(A′). Hence,
by Lemma 1, the dealδ = (A,A′) must be rational, i.e.A′

can be reached by means of a single rational deal. 2

Naturally, agents would have to be very lucky to negotiate
such a perfect deal in the first round. The central point of
Theorem 1 is a very different one, however: even if agents
are not that lucky and farsighted, they are going to reach
an optimal allocationeventually, provided they only agree
on deals that are rational. How many deals would be re-
quired in the very worst case? Lemma 1 shows that any ra-
tional deal will result in a strict increase in social welfare.
Hence, certainly no allocation can be visited twice. To see
whether there could be a scenario where each and every al-
location gets visited once, we need to check whether it is
possible that all allocations have distinct social welfare.

Lemma 2 (Distinct welfare) There exist utility functions
such that distinct allocations have distinct social welfare.

Proof. Let m = |A| be the number of agents in our so-
ciety. To simplify our presentation, we identify the set of
agents with an initial segment of the non-negative integers,
i.e.A = {0, 1, . . . ,m−1}. Furthermore, letn = |R| be the
number of resources in the system, i.e. there are2n differ-
ent bundles an agent may hold. We first define a “base util-
ity function” u∗ that assigns to each bundle an integer be-
tween0 and2n−1, without assigning the same number to
any two distinct bundles. We then define the utility func-
tion ui of each agenti ∈ A as follows:

ui(R) = u∗(R) · (2n)i (for bundlesR ⊆ R)

These utility functions verify the claim of the lemma: for
any two allocationsA andA′, sw(A) will be different from
sw(A′) wheneverA 6= A′. To see this, recall the defini-
tion of social welfare:

sw(A) =
∑
i∈A

ui(A(i)) =
∑
i∈A

u∗(A(i)) · (2n)i

This sum may be thought of as the representation ofsw(A)
in a number system with base2n: u∗(A(i)) contributes the
digit andi determines the position of that digit. IfA 6= A′,
then the bundleA(i) will differ from A′(i) for at least one
agenti ∈ A, i.e. sw(A) will differ from sw(A′) in at least
one position. 2

We are now ready to establish an upper bound for the length
of the longest path of deals before we converge to an allo-
cation with maximal social welfare:

Theorem 6 (Longest path w. money)A sequence of ra-
tional deals with money can consist of up to|A||R|−1 deals,
but not more.



Proof. There are|A||R| different allocations of resources
(each of the resources inR may be owned by any of the
agents inA). By Lemma 2, there exist utility functions such
that all allocations have distinct social welfare. If the ini-
tial allocation is the allocation with the lowest social wel-
fare and each deal takes us to the next best allocation, then
we get a sequence consisting of exactly|A||R|−1 deals. By
Lemma 1, each of these deals is rational.

Furthermore, there can be no sequence consisting of
more than|A||R| − 1 rational deals, because there are only
|A||R| different allocations, and every deal has to take us to
an allocation with a social welfare that is higher than that of
any of the previous allocations. 2

Together with Theorem 1, this means that any sequence of
rational deals with money will result in an allocation with
maximal social welfare after at most|A||R| − 1 steps. Fur-
thermore, this bound is tight, i.e. there are cases where ex-
actly |A||R| − 1 deals are implemented before the optimal
allocation is reached.

Does this bound change if we put restrictions on the class
of admissible utility functions? It appears that for many nat-
ural restrictions, even very strong ones such as additivity,
the upper bound wouldnot be affected. As long as it is pos-
sible to assign distinct utilities to distinct bundles and there
are no restrictions on the overall range of utility values, we
can emulate the construction used in the proof of Lemma 2.

4.2. Pareto Optimal Outcomes

We now turn our attention to the framework without money.
The following lemma will be useful to prove our result con-
cerning the shortest path to a Pareto optimal allocation (the
existence of which has been established by Theorem 2).

Lemma 3 (Concatenating deals)Let δ1 = (A,A′) and
δ2 = (A′, A′′) be rational deals without money. Then the
dealδ3 = (A,A′′) is also rational without money.

Proof.The claim follows immediately from Definition 2.2

Note that an analogue result for rational dealswith money
could easily be proved by reference to Lemma 1.

By Theorem 2, if agents negotiate rational deals without
money, then society will eventually converge to a state with
a Pareto optimal allocation of resources. The shortest path
to such an allocation, again, consists of just a single deal:

Theorem 7 (Shortest path w/o money)A Pareto optimal
allocation can always be reached by means of (at most) a
single rational deal without money.

Proof. Given any initial allocationA, by Theorem 2, there
exist a Pareto optimal allocationA′ and a finite sequence of
deals〈δ1 =(A0, A1), δ2 =(A1, A2), . . . , δn =(An−1, An)〉
such that each of theδi is a rational deal without money,
A = A0, andA′ = An. By induction over the lengthn of

this sequence and using Lemma 3 in the induction step, it is
easy to show that the single dealδ = (A0, An) will also be
rational without money. 2

For the framework with money, we have shown that a se-
quence of rational deals can consist of up to|A||R| − 1 in-
dividual deals (Theorem 6). We would get the same result
for the framework without moneyif it were possible to de-
sign utility functions in such a way that for any two alloca-
tions either the first is at least as good for all agents and bet-
ter for some of them or vice versa (but no two allocation are
incomparable in this sense). It turns out that this is not the
case, i.e. we obtain a better bound for the longest path of ra-
tional deals in cases where side payments are not allowed:

Theorem 8 (Longest path w/o money)Any sequence of
rational deals without money must consist of less than
|A| · (2|R| − 1) deals.

Proof. Observe that for any rational deal without money at
least one agent needs to make a strict welfare improvement.
That agent would certainly have to change the bundle of re-
sources it holds. At no later stage, it could again hold the
previous bundle (this very point is different for the frame-
work with money!). Hence, we can compute an upper bound
for the number of times any particular agenti will be the
one to have the strict improvement: it will be1 less than the
number of possible bundles, i.e.2|R| − 1. Now, even if ev-
ery single agent in the system could have a strict improve-
ment that many times, we would get|A|·(2|R|−1) as an up-
per bound. Given that for each deal at leasttwo agents will
change their bundle, this would be rather generous a bound,
i.e. the maximal length of a sequence of rational deals with-
out money must certainly be less than|A| · (2|R| − 1). 2

The bound of Theorem 8 is not tight: there can be no ac-
tual trading scenario where a sequence of|A| · (2|R| − 1)
rational deals without money take place. Also observe that
|A| · (2|R| − 1) may in fact be less than|A||R| − 1 (the
bound established in Theorem 6) for very small values of
|A| and|R|. In such cases, clearly, the sharper upper bound
of |A||R| − 1 applies as well.

It is possible to show that any precise upper bound for the
length of the longest path of rational deals without money
would have to be at least3 · 2|R| − 2|R|+1−n − n− 1 with
n = min{|A|−2, |R|}. To support this claim, we consider
the following scenario. Suppose agent1 has no preferences
at all and all other agents assign distinct utility values to the
2|R| − 1 possible bundles of resources. Furthermore, sup-
pose agent2 assigns maximal utility to the empty set of re-
sources and minimal utility to the full set, while each of the
remaining agents assign maximal utility to some set con-
sisting of only a single resource and minimal utility to the
empty set. If|A| − 2 ≤ |R|, then suppose this preferred re-
source is different for each one of them; otherwise suppose
that the next|R| agents have distinct preferred resources.



Finally, suppose agent2 initially holds the full setR. De-
finen = min{|A|−2, |R|}; i.e.n ≥ 0.

We describe a sequence of rational deals with-
out money consisting ofn + 1 phases. In phase1,
agent1 and2 implement2|R| − 1 deals, each time mov-
ing to the next best bundle for agent2. After this phase,
agent 1 owns all resources in the system. The remain-
ing n phases all have the same structure: Just before phase
k (for 2 ≤ k ≤ n + 1), agent1 owns |R| + 2 − k re-
sources. Then agent1 and agentk implement a sequence
of deals such that agentk moves through all the sub-
sets of the resources previously owned by agent1, mov-
ing to the next best bundle in each step. This makes
2|R|+2−k − 1 rational deals during phasek. Afterwards,
agent 1 owns all the resources it owned at the begin-
ning of that phase, except agentk’s most preferred item.
Altogether, the number of deals in the sequence can be com-
puted as follows:

(2|R| − 1) +
n+1∑
k=2

(2|R|+2−k − 1)

= (2|R| − 1) + 2|R|+1 − 2|R|+2−(n+1) − n

= 3 · 2|R| − 2|R|+1−n − n− 1

(Note that these transformations are correct for anyn ≥ 0.)
This confirms our lower bound for the length of the longest
possible path of rational deals without money. It is our intu-
ition that this may well be a closer approximation to a pre-
cise bound than the proven upper bound of Theorem 8. In
particular, it appears that the number of agents in a system
has only little influence on this value whenever the num-
ber of resources is sufficiently high.

Unlike for the framework with money, now restrictions
on utility functions are very likely to improve the upper
bound on the longest path. For instance, a restriction to
monotonicutility functions (that is, functions such that
agents never value a set of items less than any of its sub-
sets) will prevent an agent from accepting a deal where it
does not receive at least one new item.

4.3. Additive Scenarios

Theorem 3 shows that, in additive scenarios, one-resource-
at-a-time deals (with money) are sufficient to guarantee op-
timal outcomes of rational negotiation. This is certainly a
big advantage as far as agreeing on individual deals is con-
cerned, but when restricting ourselves to one-resource-at-a-
time deals, we cannot maintain the upper bound of Theo-
rem 5 anymore. Instead, we obtain the following result:

Theorem 9 (Shortest path in additive scenarios)If util-
ity functions are additive, then an allocation with maximal
social welfare can always be reached by a sequence of at
most|R| rational one-resource-at-a-time deals with money.

Proof. Suppose all utility functions are additive. Given an
initial allocationA, by Theorem 3, there exists a sequence
of rational one-resource-at-a-time deals leading to an allo-
cation A′ with maximal social welfare. Consider any re-
sourcer with r ∈ A(i) and r ∈ A′(j) for two distinct
agentsi, j ∈ A. By Definition 1, any such resourcer having
been transferred must be valued higher by the agent hold-
ing it in the final allocation than by the agent holding it
at the beginning, also ifr has been owned by several dif-
ferent agents at some point during negotiation. That is, we
haveui(r) < uj(r), i.e. thedirect deal of transferringr
from i to j would also be rational. Hence, the number of re-
sources owned by distinct agents inA andA′ (at most|R|)
is a (tight) upper bound for the shortest path. 2

Our result for the longest path in additive scenarios follows:

Theorem 10 (Longest path in additive scenarios)If all
utility functions are additive, then a sequence of ratio-
nal one-resource-at-a-time deals with money can consist of
up to|R| · (|A| − 1) deals, but not more.

Proof. In additive scenarios, any rational one-resource-at-
a-time deal must reallocate a single resourcer to an agent
that valuesr at least slightly higher than its previous owner.
Hence, in the worst case, every single resource could be
passed through the entire agent society, i.e. we obtain a tight
upper bound of|R| · (|A| − 1). 2

Hence, in additive scenarios it is advantageous to re-
strict oneself to one-resource-at-a-time deals—also from
the viewpoint of reducing the number of deals that have to
be implemented in the worst case (besides the obvious ad-
vantage of simplifying the task of agreeing on a single deal).

4.4. 0-1 Scenarios

Finally, we consider the 0-1 scenarios of Theorem 4. Inter-
estingly, in these scenarios the upper bounds for the shortest
and the longest path to an optimal allocation coincide.

Theorem 11 (Shortest path in 0-1 scenarios)If all utility
functions are 0-1 functions, then an allocation with max-
imal social welfare can always be reached by a sequence
of at most|R| rational one-resource-at-a-time deals with-
out money.

Proof. By Theorem 4, an allocation with maximal welfare
can always be reached bysomesequence of rational one-
resource-at-a-time deals without money, provided all utility
functions are 0-1 functions. For eachr ∈ R owned by dis-
tinct agents in the initial and the final allocation, the one-
resource-at-a-time deal of movingr from the agent owning
it at the beginning to the one owning it in the end is ra-
tional without money. As up to|R| items may have to be
moved, this is a tight upper bound for the shortest path.2



k1 k2 k3 k4
Utility functions no restrictions no restrictions additive functions 0-1 functions
Side payments allowed? yes no yes no
Deal types any any one-resource-at-a-time one-resource-at-a-time

Shortest path 1 1 |R| |R|
Longest path |A||R| − 1 < |A| · (2|R| − 1) |R| · (|A| − 1) |R|

Table 1. How many rational deals are required to reach an optimal allocation?

Theorem 12 (Longest path in 0-1 scenarios)If all utility
functions are 0-1 functions, then a sequence of rational one-
resource-at-a-time deals without money can consist of up to
|R| deals, but not more.

Proof. In 0-1 scenarios, any agent receiving a resourcer
by means of a rational one-resource-at-a-time deal without
money must assign utility1 to that resource. That agent
would never agree to giver away again (provided only
one-resource-at-a-time deals without money are admissi-
ble). Hence,|R| must be a (tight) upper bound for the num-
ber of deals that could possibly be negotiated. 2

5. Conclusion

This paper has addressed the communication complexity
of an abstract multilateral trading framework where “my-
opic” agents negotiate with each other over the realloca-
tion of a number of resources until an optimal allocation
has been reached. The overall complexity of the framework,
we have argued, relates to different (but connected) aspects:
(1) the number of deals required to reach an optimal allo-
cation, (2) the number of dialogue moves required to agree
on a deal, (3) the expressiveness of the communication lan-
guage used, and (4) the complexity of the reasoning task
faced by an agent when deciding on its next move.

We have studiedoneof these aspects of complexity in
detail, namely the number of deals required for an agent
society to converge to an allocation of resources that is so-
cially optimal. In particular, we have given upper bounds on
the length of a sequence of rational deals for each of the four
instances of our negotiation framework for which we have
previously proved existential convergence results in [4]. Ta-
ble 1 provides a summary of the results obtained. For each
of the variants of the framework considered, it shows the
upper bounds for both the shortest and the longest path to
an optimal allocation as a function of|A|, the number of
agents, and|R|, the number of resources. With one excep-
tion (namely the result for the longest path in general sce-
narios without money), all these bounds aretight, i.e. we
can find examples where the length of the respective path
is exactly as shown in Table 1. In our future work, we hope
to also address the other aspects of complexity identified in

Section 3. In particular, the design of suitable communica-
tion protocols for multilateral trading poses an important,
albeit difficult, problem.
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