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I present in this paper some tools in Symplectic and Poisson Geometry in view of their
applications in Geometric Mechanics and Mathematical Physics. After a short discussion
of the Lagrangian an Hamiltonian formalisms, including the use of symmetry groups,
and a presentation of the Tulczyjew’s isomorphisms (which explain some aspects of the
relations between these formalisms), I explain the concept of manifold of motions of a
mechanical system and its use, due to J.-M. Souriau, in Statistical Mechanics and Ther-
modynamics. The generalization of the notion of thermodynamic equilibrium in which
the one-dimensional group of time translations is replaced by a multi-dimensional, maybe
non-commutative Lie group, is discussed and examples of applications in Physics are
given.



In memory of Jean-Marie Souriau (1922-2012)

1 Introduction

1.1 Contents of the paper, sources and further reading

This paper presents tools in Symplectic and Poisson Geometry in view of their applica-
tion in Geometric Mechanics and Mathematical Physics. The Lagrangian formalism and
symmetries of Lagrangian systems are discussed in Sections 2 and 3, the Hamiltonian for-
malism and symmetries of Hamiltonian systems in Sections 4 and 5. Section 6 introduces
the concepts of Gibbs state and of thermodynamic equilibrium of a mechanical system,
and presents several examples. For a monoatomic classical ideal gas, eventually in a grav-
ity field, or a monoatomic relativistic gas the Maxwell-Boltzmann and Maxwell-Jiittner
probability distributions are derived. The Dulong and Petit law which governs the specific
heat of solids is obtained. Finally Section 7 presents the generalization of the concept of
Gibbs state, due to Jean-Marie Souriau, in which the group of time translations is replaced
by a (multi-dimensional and eventually non-Abelian) Lie group.

Several books [1, 2, 12, 15, 18, 19, 30, 31, 45, 63] discuss, much more fully than in the
present paper, the contents of Sections 2 to 5. The interested reader is referred to these
books for detailed proofs of results whose proofs are only briefly sketched here. The
recent paper [38] contains detailed proofs of most results presented here in Sections 4 and

5.

The main sources used for Sections 6 and 7 are the book and papers by Jean-Marie
Souriau [55, 54, 56, 57, 58] and the beautiful small book by G. W. Mackey [34].

The Euler-Poincaré equation, which is presented with Lagrangian symmetries at the
end of Section 3, is not really related to symmetries of a Lagrangian system, since the Lie
algebra which acts on the configuration space of the system is not a Lie algebra of sym-
metries of the Lagrangian. Moreover in its intrinsic form that equation uses the concept
of Hamiltonian momentum map presented later, in Section 5. Since the Euler-Poincaré
equation is not used in the following sections, the reader can skip the corresponding sub-
section at his or her first reading.

1.2 Notations

The notations used are more or less those generally used now in Differential Geometry.
The tangent and cotangent bundles to a smooth manifold M are denoted by TM and T*M,
respectively, and their canonical projections by Ty, : TM — M and my; : T*M — M. The
vector spaces of k-multivectors and k-forms on M are denoted by A¥(M) and Q*(M),
respectively, with k € Z and, of course, A¥(M) = {0} and Q*(M) = {0} if k < 0 and
if k > dimM, k-multivectors and k-forms being skew-symmetric. The exterior algebras
of multivectors and forms of all degrees are denoted by A(M) = ©;A*(M) and Q(M) =
©r Q¥ (M), respectively. The exterior differentiation operator of differential forms on a
smooth manifold M is denoted by d : Q(M) — Q(M). The interior product of a differential
form n € Q(M) by a vector field X € A' (M) is denoted by i(X)1.

Let f: M — N be a smooth map defined on a smooth manifold M, with values in another
smooth manifold N. The pull-back of a form 11 € Q(N) by a smooth map f: M — N is
denoted by f*n € Q(M).



A smooth, time-dependent vector field on the smooth manifold M is a smooth map
X : Rx M — TM such that, for each r € R and x € M, X(¢,x) € T:M, the vector space
tangent to M at x. When, for any x € M, X (¢,x) does not depend on 7 € R, X is a smooth
vector field in the usual sense, i.e., an element in AI(M). Of course a time-dependent
vector field can be defined on an open subset of R x M instead than on the whole R x M.
It defines a differential equation

do(r)
dr :X(t7§0(t))7 (*)

said to be associated to X. The (full) flow of X is the map WX, defined on an open subset
of R x R x M, taking its values in M, such that for each 7y € R and xo € M the parametrized
curve t +— WX (1,19, x0) is the maximal integral curve of (x) satisfying ¥ (o, %o, Xo) = Xo.
When £y and ¢ € R are fixed, the map xo — WX (¢, 19, x0) is a diffeomorphism, defined on
an open subset of M (which may be empty) and taking its values in another open subset of

M, denoted by ‘I‘g 0)" When X is in fact a vector field in the usual sense (not dependent on

time), ‘Pg 1) only depends on ¢ —t. Instead of the full flow of X we can use its reduced
flow ®X | defined on an open subset of R x M and taking its values in M, related to the full
flow ¥X by

CIDX(Z,X()> = ‘PX(I,O,X()> , ‘Px(t,t(),xw = q)x(l —to,)C()) .

For each ¢ € R, the map xo — ®*(1,x9) = WX (¢,0,x0) is a diffeomorphism, denoted by
®X, defined on an open subset of M (which may be empty) onto another open subset of
M.

When f : M — N is a smooth map defined on a smooth manifold M, with values in
another smooth manifold N, there exists a smooth map T f : TM — TN called the prolon-
gation of f to vectors, which for each fixed x € M linearly maps T,M into Ty(,)N. When f
is a diffeomorphism of M onto N, T f is an isomorphism of 7'M onto TN. That property
allows us to define the canonical lifts of a vector field X in A!(M) to the tangent bundle
TM and to the cotangent bundle 7*M. Indeed, for each ¢ € R, CI)f( is a diffeomorphism of
an open subset of M onto another open subset of M. Therefore T®Y is a diffeomorphism
of an open subset of TM onto another open subset of 7M. It turns out that when ¢ takes
all possible values in R the set of all diffeomorphisms 7&®¥ is the reduced flow of a vector
field X on TM, which is the canonical lift of X to the tangent bundle TM.

Similarly, the transpose (T®X,)7 of T®X, is a diffeomorphism of an open subset of the
cotangent bundle 7*M onto another open subset of 7*M, and when ¢ takes all possible
values in R the set of all diffeomorphisms (7®X,)7 is the reduced flow of a vector field

X on T*M, which is the canonical lift of X to the cotangent bundle 7*M.

The canonical lifts of a vector field to the tangent and cotangent bundles are used in
Sections 3 and 5. They can be defined too for time-dependent vector fields.

2 The Lagrangian formalism

2.1 The configuration space and the space of kinematic states

The principles of Mechanics were stated by the great English mathematician Isaac Newton
(1642—-1727) in his book Philosophia Naturalis Principia Mathematica published in 1687
[44]. On this basis, a little more than a century later, Joseph Louis Lagrange (1736—1813)
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in his book Mécanique analytique [28] derived the equations (today known as the Euler-
Lagrange equations) which govern the motion of a mechanical system made of any num-
ber of material points or rigid material bodies interacting between them by very general
forces, and eventually submitted to external forces.

In modern mathematical language, these equations are written on the configuration
space and on the space of kinematic states of the considered mechanical system. The
configuration space is a smooth n-dimensional manifold N whose elements are all the
possible configurations of the system (a configuration being the position in space of all
parts of the system). The space of kinematic states is the tangent bundle TN to the con-
figuration space, which is 2n-dimensional. Each element of the space of kinematic states
is a vector tangent to the configuration space at one of its elements, i.e. at a configura-
tion of the mechanical system, which describes the velocity at which this configuration
changes with time. In local coordinates a configuration of the system is determined by
the n coordinates x',...,x" of a point in N, and a kinematic state by the 2n coordinates

x!,. .2 vl .. V" of a vector tangent to N at some element in N.

2.2 The Euler-Lagrange equations

When the mechanical system is conservative, the Euler-Lagrange equations involve a
single real valued function L called the Lagrangian of the system, defined on the product
of the real line R (spanned by the variable ¢ representing the time) with the manifold 7N
of kinematic states of the system. In local coordinates, the Lagrangian L is expressed as a
function of the 2n+ 1 variables, #,x',...,x",v!,... V" and the Euler-Lagrange equations
have the remarkably simple form

d [ JdL JL .
T (a—vi(t,x(t),v(t))) —ﬁ(t,x(t),v(t)) =0, 1<i<n,
where x(t) stands for x! (¢),...,x"(t) and v(¢) for v!(¢),...,v"(t) with, of course,

, dxi(t
Vi(t) = d§>’ 1<i<n.

2.3 Hamilton’s principle of stationary action

The great Irish mathematician William Rowan Hamilton (1805—-1865) observed [16, 17]
that the Euler-Lagrange equations can be obtained by applying the standard techniques of
Calculus of Variations, due to Leonhard Euler (1707-1783) and Joseph Louis Lagrange,
to the action integral

t
I(y) = / | L(t,x(t),v(t))dr, withv(r) = M,
fo dr

where 7 : [to,71] — N is a smooth curve in N parametrized by the time ¢. These equations
express the fact that the action integral I1(y) is stationary with respect to any smooth
infinitesimal variation of y with fixed end-points (7, ¥(fo)) and (¢1,7(t1)). This fact is
today called Hamilton’s principle of stationary action. The reader interested in Calculus
of Variations and its applications in Mechanics and Physics is referred to the books [8,
10, 29].

"Lagrange observed that fact before Hamilton, but in the last edition of his book he chose to derive the
Euler-Lagrange equations by application of the principle of virtual works, using a very clever evaluation of
the virtual work of inertial forces for a smooth infinitesimal variation of the motion.
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2.4 The Euler-Cartan theorem

The Lagrangian formalism is the use of Hamilton’s principle of stationary action for the
derivation of the equations of motion of a system. It is widely used in Mathematical
Physics, often with more general Lagrangians involving more than one independent vari-
able and higher order partial derivatives of dependent variables. For simplicity I will
consider here only the Lagrangians of (maybe time-dependent) conservative mechanical
systems.

An intrinsic geometric expression of the Euler-Lagrange equations, wich does not use
local coordinates, was obtained by the great French mathematician Elie Cartan (1869—
1951). Let us introduce the concepts used by the statement of this theorem.

2.4.1 Definitions. Let N be the configuration space of a mechanical system and let its
tangent bundle 7N be the space of kinematic states of that system. We assume that the
evolution with time of the state of the system is governed by the Euler-Lagrange equations
for a smooth, maybe time-dependent Lagrangian L : R X TN — R.

1. The cotangent bundle 7*N is called the phase space of the system.
2. Themap Ly :RxTN — T*N

Lp(t,v) =dyerL(t,v), t€R, veTN,

where dyerL(2,v) is the vertical differential of L at (t,v), i.e the differential at v of the the
map w > L(t,w), with w € Ty, ! (7w (v)), is called the Legendre map associated to L.

3. Themap Er : Rx TN — R given by
EL(t,v):(LL(t,v),v>—L(t,v), teR,veTN,

is called the the energy function associated to L.
4. The I-formon R x TN

(BL = 529]\7 —EL(t,v>dt,
where 6y is the Liouville 1-form on T*N, is called the Euler-Poincaré 1-form.

2.4.2 Theorem (Euler-Cartan theorem). A smooth curve ¥ : [ty,t;] — N parametrized by
the time t € [to,11] is a solution of the Euler-Lagrange equations if and only if, for each

dy(t
t € [to,t1] the derivative with respect to t of the map t — (t, %) belongs to the kernel

of the 2-form d®y, in other words if and only if

(5o )

The interested reader will find the proof of that theorem in [35], (theorem 2.2, chapter
IV, page 262) or, for hyper-regular Lagrangians (an additional assumption which in fact,
is not necessary) in [59], chapter IV, theorem 2.1 page 167.

2.4.3 Remark. In his book [55], Jean-Marie Souriau uses a slightly different terminol-
ogy: for him the odd-dimensional space R x TN is the evolution space of the system, and
the exact 2-form d@;, on that space is the Lagrange form. He defines that 2-form in a
setting more general than that of the Lagrangian formalism.
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3 Lagrangian symmetries

3.1 Assumptions and notations

In this section N is the configuration space of a conservative Lagrangian mechanical sys-
tem with a smooth, maybe time dependent Lagrangian L : R x TN — R. Let @, be the
Poincaré-Cartan 1-form on the evolution space R x TN.

Several kinds of symmetries can be defined for such a system. Very often, they are
special cases of infinitesimal symmetries of the Poincaré-Cartan form, which play an
important part in the famous Noether theorem.

3.1.1 Definition. An infinitesimal symmetry of the Poincaré-Cartan form @y is a vector
field Z on R x TN such that

L(Z)@, =0,

L(Z) denoting the Lie derivative of differential forms with respect to Z.

3.1.2 Examples.
1.  Let us assume that the Lagrangian L does not depend on the time r € R, i.e. is a

smooth function on 7N. The vector field on R x TN denoted by —, whose projection on

ot

R is equal to 1 and whose projection on TN is 0, is an infinitesimal symmetry of @

2. Let X be a smooth vector field on N and X be its canonical lift to the tangent
bundle TN. We still assume that L does not depend on the time 7. Moreover we assume
that X is an infinitesimal symmetry of the Lagrangian L, i.e. that £(X)L = 0. Considered
as a vector field on R x TN whose projection on the factor R is 0, X is an infinitesimal
symmetry of @j.

3.2 The Noether theorem in Lagrangian formalism

3.2.1 Theorem (E. Noether’s theorem in Lagrangian formalism). Let Z be an infinitesimal
symmetry of the Poincaré-Cartan form @y. For each possible motion vy : [to,t;] — N of
the Lagrangian system, the function i(Z)®y, defined on R x TN, keeps a constant value

dy(t
along the parametrized curve t — <t, %)

Proof. Let vy : [to,t1] — N be a motion of the Lagrangian system, i.e. a solution of the
Euler-Lagrange equations. The Euler-Cartan theorem 2.4.2 proves that, for any ¢ € [, ],

[ d [ dy(r) . dy(r)
— |, — dop(t,—— | =0
1<dt<’dt )) L(’dt
Since Z is an infinitesimal symmetry of @y,

L(Z)op =0.

Using the well known formula relating the Lie derivative, the interior product and the
exterior derivative

L(Z)=i(Z)od+doi(Z)
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3.2.2 Example. When the Lagrangian L does not depend on time, application of Emmy

Noether’s theorem to the vector field 5 shows that the energy E7 remains constant during

any possible motion of the system, since i (%) o = —E.

3.2.3 Remarks.

1.  Theorem 3.2.1 is due to the German mathematician Emmy Noether (1882-1935),
who proved it under much more general assumptions than those used here. For a very
nice presentation of Emmy Noether’s theorems in a much more general setting and their
applications in Mathematical Physics, interested readers are referred to the very nice book
by Yvette Kosmann-Schwarzbach [24].

2. Several generalizations of the Noether theorem exist. For example, if instead of
being an infinitesimal symmetry of @y, i.e. instead of satisfying £(Z)@; = 0 the vector
field Z satisfies

L(Z)@p, = df

where f : R x TM — R is a smooth function, which implies of course £(Z)(d@;) = 0,
the function

\(Z)o, — f

dy(t
keeps a constant value along ¢ — (t, %) .

3.3 The Lagrangian momentum map

The Lie bracket of two infinitesimal symmetries of @; is too an infinitesimal symmetry
of @r. Let us therefore assume that there exists a finite-dimensional Lie algebra of vector
fields on R x TN whose elements are infinitesimal symmetries of @y.

3.3.1 Definition. Let y: G — A!(R x TN) be a Lie algebras homomorphism of a finite-
dimensional real Lie algebra G into the Lie algebra of smooth vector fields on R x TN
such that, for each X € G, w(X) is an infinitesimal symmetry of @;. The Lie algebras
homomorphism  is said to be a Lie algebra action on R x TN by infinitesimal symmetries
of ;. The map Ky : R x TN — G*, which takes its values in the dual §* of the Lie algebra
G, defined by

(Ki(t,9),X) =i(w(X))BL(t,v), X€G, (1v)€RXTN,
is called the Lagrangian momentum of the Lie algebra action y.

3.3.2 Corollary (of E. Noether’s theorem). Let w: G — A'(R x TM) be an action of a
finite-dimensional real Lie algebra G on the evolution space R X TN of a conservative
Lagrangian system, by infinitesimal symmetries of the Poincaré-Cartan form ®y. For

7



each possible motion vy : [tg,t;] — N of that system, the Lagrangian momentum map Kj,
: dy(r)
keeps a constant value along the parametrized curve t — | t, —a )

Proof. Since for each X € § the function (¢,v) — (K.(,v),X) keeps a constant value

dy(z
along the parametrized curve t — (t, %), the map K itself keeps a constant value

along that parametrized curve. L

3.3.3 Example. Let us assume that the Lagrangian L does not depend explicitly on the
time ¢ and is invariant by the canonical lift to the tangent bundle of the action on N of
the six-dimensional group of Euclidean diplacements (rotations and translations) of the
physical space. The corresponding infinitesimal action of the Lie algebra of infinitesimal
Euclidean displacements (considered as an action on R x TN, the action on the factor R
being trivial) is an action by infinitesimal symmetries of @;. The six components of the
Lagrangian momentum map are the three components of the total linear momentum and
the three components of the total angular momentum.

3.3.4 Remark. These results are valid without any assumption of hyper-regularity of the
Lagrangian.

3.4 The Euler-Poincaré equation

In a short Note [47] published in 1901, the great french mathematician Henri Poincaré
(1854-1912) proposed a new formulation of the equations of Mechanics.

Let N be the configuration manifold of a conservative Lagrangian system, with a smooth
Lagrangian L : TN — R which does not depend explicitly on time. Poincaré assumes that
there exists an homomorphism y of a finite-dimensional real Lie algebra G into the Lie
algebra A'(N) of smooth vector fields on N, such that for each x € N, the values at x of
the vector fields y(X), when X varies in G, completely fill the tangent space T,N. The
action y is then said to be locally transitive.

Of course these assumptions imply dim§ > dim V.

Under these assumptions, Henri Poincaré proved that the equations of motion of the
Lagrangian system could be written on N x G or on N x §*, where G* is the dual of the
Lie algebra G, instead of on the tangent bundle TN. When dim§ = dimN (which can
occur only when the tangent bundle T'N is trivial) the obtained equation, called the Euler-
Poincaré equation, is perfectly equivalent to the Euler-Lagrange equations and may, in
certain cases, be easier to use. But when dim§ > dim AN, the system made by the Euler-
Poincaré equation is underdetermined.

Let v : [to,t1] — N be a smooth parametrized curve in N. Poincaré proves that there
exists a smooth curve V : [to,#;] — G in the Lie algebra G such that, for each 7 € [to, 1],

dy(r)
y(V(0)(x(1) = - (%)
When dim G > dim N the smooth curve V in G is not uniquely determined by the smooth
curve ¥ in N. However, instead of writing the second-order Euler-Lagrange differential
equations on TN satisfied by ¥ when this curve is a possible motion of the Lagrangian

system, Poincaré derives a first order differential equation for the curve V and proves

8



that it is satisfied, together with Equation (x), if and only if v is a possible motion of the
Lagrangian system.

Let:NxG— TNand L:N x G — R be the maps

(p<x7X) = W(X)(x)7 L<x7X) = Lo(p(x,X) :

We denote by djL: N x G — T*N and by doL : N x G — G* the partial differentials of
L: N x G — R with respect to its first variable x € N and with respect to its second variable
Xel.

The map ¢ : N x G — TN is a surjective vector bundles morphism of the trivial vector
bundle N x G into the tangent bundle T'N. Its transpose (pT :T*N — N x G* is therefore
an injective vector bundles morphism, which can be written

o (&) = (nn(8).4(8)).

where 7y : T*N — N is the canonical projection of the cotangent bundle and J : T*N — G*
is a smooth map whose restriction to each fibre 7,” N of the cotangent bundle is linear, and
is the transpose of the map X — ¢(x,X) = y(X)(x).

3.4.1 Remark. The homomorphism y of the Lie algebra G into the Lie algebra A'(N)
of smooth vector fields on N is an action of that Lie algebra, in the sense defined below
(5.2.1). That action can be canonically lifted into a Hamiltonian action of G on T*N, en-
dowed with its canonical symplectic form d@y (5.2.4). The map J is in fact a Hamiltonian
momentum map for that Hamiltonian action (5.3.1).

Let L7 = dyertl : TN — T*N be the Legendre map defined in 2.4.1.

3.4.2 Theorem (Euler-Poincaré equation). With the above defined notations, let v : [ty, ;] —
N be a smooth parametrized curve in N and V : [to,t;] — G be a smooth parametrized
curve such that, for each t € [ty, 1],

dy(r)
y(V(0) () = - (%)
The curve v is a possible motion of the Lagrangian system if and only if V satisfies the
equation

(5 ~adiin ) (o200 (rOV () T E(OV@) =0. ()

The interested reader will find a proof of that theorem in local coordinates in the original
Note by Poincaré [47]. More intrinsic proofs can be found in [37, 38]. Another proof is
possible, in which that theorem is deduced from the Euler-Cartan theorem 2.4.2.

3.4.3 Remark. Equation (x) is called the compatibility condition and Equation (xx) is
the Euler-Poincaré equation. It can be written under the equivalent form

(% — ad:}(r)) (dQZ(Y(I),V(I))> —Jod1Z(}/(z‘),V(z‘)) =0. ()

Examples of applications of the Euler-Poincaré equation can be found in [18, 37, 38]
and, for an application in Thermodynamics, [6].
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4 The Hamiltonian formalism

The Lagrangian formalism can be applied to any smooth Lagrangian. Its application
yields second order differential equations on R x N (in local coordinates, the Euler-
Lagrange equations) which in general are not solved with respect to the second order
derivatives of the unknown functions with respect to time. The classical existence and
unicity theorems for the solutions of differential equations (such as the Cauchy-Lipschitz
theorem) therefore cannot be applied to these equations.

Under the additional assumption that the Lagrangian is hyper-regular, a very clever
change of variables discovered by William Rowan Hamilton > [16, 17] allows a new for-
mulation of these equations in the framework of symplectic geometry. The Hamiltonian
formalism discussed below is the use of these new equations. It was later generalized
independently of the Lagrangian formalism.

4.1 Hyper-regular Lagrangians
4.1.1 Assumptions made in this section

We consider in this section a smooth, maybe time-dependent Lagrangian L: R x TN — R,
which is such that the Legendre map (2.4.1) £ : R x TN — T*N satisfies the following
property: for each fixed value of the time € R, the map v +— L (¢,v) is a smooth dif-
feomorphism of the tangent bundle 7N onto the cotangent bundle 7*N. An equivalent
assumption is the following: the map (idg, £1) : (t,v) — (¢,£.(t,v)) is a smooth diffeo-
morphism of R x TN onto R x T*N. The Lagrangian L is then said to be hyper-regular.
The equations of motion can be written on R x 7*N instead of R x T'N.

4.1.2 Definitions. Under the assumption 4.1.1, the function Hz : R x T*N — R given by
HL(t7p):ELo(idR7LL)_](t7p)7 t€R7p€T*N7

(EL : Rx TN — R being the energy function defined in 2.4.1) is called the Hamiltonian
associated to the hyper-regular Lagrangian L.

The 1-form defined on R x T*N
0/5[-1L = QN —HLdt,

where Oy is the Liouville 1-form on T*N, is called the Poincaré-Cartan 1-form in the
Hamiltonian formalism.

4.1.3 Remark. The Poincaré-Cartan 1-form (fiL on R xX TN, defined in 2.4.1, is the pull-
back, by the diffeomorphism (idg,£7) : R x TN — R x T*N, of the Poincaré-Cartan
1-form @y, in the Hamiltonian formalism on R x T*N defined above.

4.2 Presymplectic manifolds

4.2.1 Definitions. A presymplectic form on a smooth manifold M is a 2-form ® on M
which is closed, i.e. such that dow = 0. A manifold M equipped with a presymplectic form
o is called a presymplectic manifold and denoted by (M, ).

The kernel ker @ of a presymplectic form @ defined on a smooth manifold M is the set
of vectors v € TM such thati(v)w = 0.

2Lagrange obtained however Hamilton’s equations before Hamilton, but only in a special case, for the
slow ““variations of constants” such as the orbital parameters of planets in the solar system [26, 27].
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4.2.2 Remarks. A symplectic form ® on a manifold M is a presymplectic form which,
moreover, is non-degenerate, i.e. such that for each x € M and each non-zero vector
v € TyM, there exists another vector w € T,M such that @(x)(v,w) # 0. Or in other words,
a presymplectic form @ whose kernel is the set of null vectors.

The kernel of a presymplectic form @ on a smooth manifold M is a vector sub-bundle
of TM if and only if for each x € M, the vector subspace T,M of vectors v € T,M which
satisfy i(v)@ = 0 is of a fixed dimension, the same for all points x € M. A presymplectic
form which satisfies that condition is said to be of constant rank.

4.2.3 Proposition. Let @ be a presymplectic form of constant rank (4.2.2) on a smooth
manifold M. The kernel ker ® of ® is a completely integrable vector sub-bundle of TM,
which defines a foliation F y of M into connected immersed submanifolds which, at each
point of M, have the fibre of ker @ at that point as tangent vector space.

We now assume in addition that this foliation is simple, i.e. such that the set of leaves
of F, denoted by M /ker @, has a smooth manifold structure for which the canonical
projection p : M — M / ker @ (which associates to each point x € M the leaf which contains
x) is a smooth submersion. There exists on M /ker ® a unique symplectic form @, such
that

o=po,.

Proof. Since dw = 0, the fact that ker @ is completely integrable is an immediate conse-
quence of the Frobenius’ theorem ([59], chapter III, theorem 5.1 page 132). The existence
and unicity of a symplectic form ®, on M /ker @ such that @ = p* @, results from the fact
that M/ ker @ is built by quotienting M by the kernel of m. O

4.2.4 Presymplectic manifolds in Mechanics

Let us go back to the assumptions and notations of 4.1.1. We have seen in 4.1.3 that the
Poincaré-Cartan 1-form in Hamiltonian formalism @y, on R x T*N and the Poincaré-
Cartan 1-form in Lagrangian formalism @y on R x TN are related by

o = (idg, L1)* @y, .

Their exterior differentials d@; and d(fiHL both are presymplectic 2-forms on the odd-
dimensional manifolds R x TN and R x T*N, respectively. At any point of these man-
ifolds, the kernels of these closed 2 forms are one-dimensional. They therefore (4.2.3)
determine foliations into smooth curves of these manifolds. The Euler-Cartan theorem
(2.4.2) shows that each of these curves is a possible motion of the system, described ei-
ther in the Lagrangian formalism, or in the Hamiltonian formalism, respectively.

The set of all possible motions of the system, called by Jean-Marie Souriau the mani-
fold of motions of the system, is described by the quotient (R x TN)/kerd®y in the La-
grangian formalism, and by the quotient (R x T*N)/kerd@y, in the Hamiltonian formal-
ism. Both are (maybe non-Hausdorff) symplectic manifolds, the projections on these quo-
tient manifolds of the presymplectic forms d@; and d(BHL both being symplectic forms.
Of course the diffeomorphism (idg, L) : R x TN — R x T*N projects onto a symplec-
tomorphism between the Lagrangian and Hamiltonian descriptions of the manifold of
motions of the system.
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4.3 The Hamilton equation

4.3.1 Proposition. Let N be the configuration manifold of a Lagrangian system whose
Lagrangian L : R x TN — R, maybe time-dependent, is smooth and hyper-regular, and
Hyp : R X T*N — R be the associated Hamiltonian (4.1.2). Let @ : [ty,t;] — N be a smooth
curve parametrized by the time t € [to,t1], and let Y : [to,t;] — T*N be the parametrized
curve in T*N

y(r)=LL (t,dZ—(tt)) , 1€ lto,t1],

where L1 : R X TN — T*N is the Legendre map (2.4.1).

The parametrized curve t — Y(t) is a motion of the system if and only if the parametrized
curve t — Y (t) satisfies the equatin, called the Hamilton equation,

(dy (1) o
1 < dr ) dGN = dHL;,

o0H,
where dHy; = dH|, — 8—tL dt is the differential of the function Hy,; : T*N — R in which

the time t is considered as a parameter with respect to which there is no differentiation.

When the parametrized curve Y satisfies the Hamilton equation stated above, it satisfies
too the equation, called the energy equation

S ) = 21y 0),

Proof. These results directly follow from the Euler-Cartan theorem (2.4.2). U

4.3.2 Remarks. The 2-form d6@y is a symplectic form on the cotangent bundle 7*N,
called its canonical symplectic form. We have shown that when the Lagrangian L is
hyper-regular, the equations of motion can be written in three equivalent manners:

1. as the Euler-Lagrange equations on R x TM,

2. as the equations given by the kernels of the presymplectic forms d@y, or d(BHL which
determine the foliations into curves of the evolution spaces R x TM in the La-
grangian formalism, or R x 7*M in the Hamiltonian formalism,

3. as the Hamilton equation associated to the Hamiltonian Hy, on the symplectic man-
ifold (T*N,d6y), often called the phase space of the system.

4.3.3 The Tulczyjew isomorphisms
Around 1974, W.M. Tulczyjew [61, 62] discovered 3 two remarkable vector bundles iso-
morphisms o : TT*N — T*TN and By : TT*N — T*T*N.

The first one oy is an isomorphism of the bundle (TT*N,T 7wy, TN) onto the bundle
(T*TN, nrn, TN), while the second By is an isomorphism of the bundle (TT*N, tr+«n, T*N)

3By was probably known long before 1974, but I believe that oy, much more hidden, was noticed by
Tulczyjew for the first time.
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onto the bundle (T*T*N, wr+n, T*N). The diagram below is commutative.

T*T*N <— il

”T*Nl
TN

T*N \
B

Since they are the total spaces of cotangent bundles, the manifolds 7*TN and T*T*N
are endowed with the Liouville 1-forms 07y and O7+y, and with the canonical symplec-
tic forms dOry and dOr«y, respectively. Using the isomorphisms ay and By, we can
therefore define on 77T*N two 1-forms oy 67y and By 07+n, and two symplectic 2-forms
oy (dOrn) and By (dOr+y). The very remarkable property of the isomorphisms ogy and By
is that the two symplectic forms so obtained on TT*N are equal:

oy (dBry) = By(dOrn) .

T*TN

Lo

The 1-forms ay0ry and ByOr:n are not equal, their difference is the differential of a
smooth function.

4.3.4 Lagrangian submanifolds

In view of applications to implicit Hamiltonian systems, let us recall here that a La-
grangian submanifold of a symplectic manifold (M, ®) is a submanifold N whose di-
mension is half the dimension of M, on which the form induced by the symplectic form
o is 0.

LetL: TN — Rand H : T*N — R be two smooth real valued functions, defined on TN
and on T*N, respectively. The graphs dL(TN) and dH (T*N) of their differentials are La-
grangian submanifolds of the symplectic manifolds (7*TN,d6ry) and (T*T*N,dO7+y).
Their pull-backs o (dL(TN)) and By ! (dH(T*N)) by the symplectomorphisms oy and
By are therefore two Lagrangian submanifolds of the manifold 77*N endowed with the
symplectic form ay,(d67y), which is equal to the symplectic form B3 (d67+y).

The following theorem enlightens some aspects of the relationships between the Hamil-
tonian and the Lagrangian formalisms.

4.3.5 Theorem (W.M. Tulczyjew). With the notations specified above (4.3.4), let Xy :
T*N — TT*N be the Hamiltonian vector field on the symplectic manifold (T*N,d6y)
associated to the Hamiltonian H : T*N — R, defined by i(Xy)d6y = —dH. Then

Xu(T*N) = By ' (dH(T*N)).

Moreover, the equality
4y (AL(TN)) = By (@H(TW)

holds if and only if the Lagrangian L is hyper-regular and such that
dH =d(E oL, "),

where Ly : TN — T*N is the Legendre map and Ep : TN — R the energy associated to
the Lagrangian L.

13



The interested reader will find the proof of that theorem in the works of W. Tulczyjew
([61, 62]).

When L is not hyper-regular, ;' (dL(TN)) still is a Lagrangian submanifold of the
symplectic manifold (TT*N , oc]f,(dGTN)), but it is no more the graph of a smooth vector
field Xy defined on T*N. Tulczyjew proposes to consider this Lagrangian submanifold as
an implicit Hamilton equation on T*N.

These results can be extended to Lagrangians and Hamiltonians which may depend on
time.

4.4 The Hamiltonian formalism on symplectic and Poisson manifolds
4.4.1 The Hamilton formalism on symplectic manifolds

In pure mathematics as well as in applications of mathematics to Mechanics and Physics,
symplectic manifolds other than cotangent bundles are encountered. A theorem due to the
french mathematician Gaston Darboux (1842—1917) asserts that any symplectic manifold
(M, ) is of even dimension 27 and is locally isomorphic to the cotangent bundle to a n-
dimensional manifold: in a neighbourhood of each of its point there exist local coordinates
(x',...,x", p1,...,pn), called Darboux coordinates with which the symplectic form  is
expressed exactly as the canonical symplectic form of a cotangent bundle:

n
W= Z dp; Adx'.
i=1
Let (M, ®) be a symplectic manifold and H : R x M — R a smooth function, said to be
a time-dependent Hamiltonian. It determines a time-dependent Hamiltonian vector field

Xy on M, such that

H; : M — R being the function H in which the variable 7 is considered as a parameter with
respect to which no differentiation is made.

The Hamilton equation determined by H is the differential equation

dy(7)
dr

=Xu(t,9(1)).

The Hamiltonian formalism can therefore be applied to any smooth, maybe time depen-
dent Hamiltonian on M, even when there is no associated Lagrangian.

The Hamiltonian formalism is not limited to symplectic manifolds: it can be applied,
for example, to Poisson manifolds [32], contact manifolds and Jacobi manifolds [33]. For
simplicity I will consider only Poisson manifolds. Readers interested in Jacobi manifolds
and their generalizations are referred to the papers by A. Lichnerowicz quoted above and
to the very important paper by A. Kirillov [23].

4.4.2 Definition. A Poisson manifold is a smooth manifold P whose algebra of smooth
functions C*(P,R) is endowed with a bilinear composition law, called the Poisson bracket,
which associates to any pair (f, g) of smooth functions on P another smooth function de-
noted by { f, g}, that composition satisfying the three properties

1. itis skew-symmetric,

{g7f} = _{f7g},

14



2. it satisfies the Jacobi identity

{f{g:n}}+{g{nf}}+{n{f.8}} =0,

3. it satisfies the Leibniz identity

{f.gh} ={f,gth+g{f h}.

4.4.3 Examples.

1. On the vector space of smooth functions defined on a symplectic manifold (M, ®),
there exists a composition law, called the Poisson bracket, which satisfies the properties
stated in 4.4.2. Let us recall briefly its definition. The symplectic form @ allows us to
associate, to any smooth function f € C*(M,R), a smooth vector field Xy € A'(M,R),
called the Hamiltonian vector field associated to f, defined by

i(Xp)o=—df .

The Poisson bracket { f, g} of two smooth functions f and g € C*(M,R) is defined by the
three equivalent equalities

{f,8} =i(Xp)dg = —i(X,)df = o(Xf,X,).

Any symplectic manifold is therefore a Poisson manifold.

The Poisson bracket of smooth functions defined on a symplectic manifold (when that
symplectic manifold is a cotangent bundle) was discovered by Siméon Denis Poisson
(1781-1840) [48].

2.  Let G be a finite-dimensional real Lie algebra, and let §* be its dual vector space.
For each smooth function f € C*(G*,R) and each { € G*, the differential df({) is a
linear form on G*, in other words an element of the dual vector space of G*. Identifying
with G the dual vector space of §*, we can therefore consider df({) as an element in G.
With this identification, we can define the Poisson bracket of two smooth functions f and
g€ C”(5",R) by

{f,83(0) = [df(£),dg(§)], Ceg,

the bracket in the right hand side being the bracket in the Lie algebra G. The Poisson
bracket of functions in C*(G*,R) so defined satifies the properties stated in 4.4.2. The
dual vector space of any finite-dimensional real Lie algebra is therefore endowed with
a Poisson structure, called its canonical Lie-Poisson structure or its Kirillov-Kostant-
Souriau Poisson structure. Discovered by Sophus Lie, this structure was indeed redis-
covered independently by Alexander Kirillov, Bertram Kostant and Jean-Marie Souriau.

3. A symplectic cocycle of a finite-dimensional, real Lie algebra G is a skew-symmetric
bilinear map ® : § x § — G* which satisfies, for all X, Y and Z € G,

O([X,Y],Z2) +0([Y,Z],X) +0([Z.X],Y) =0.

The canonical Lie-Poisson bracket of two smooth functions f and g € C*(G*,R) can be
modified by means of the symplectic cocycle ©, by setting

{f.8}e(8) = [df(£),dg(8)] —©(df(),dg(8)), (e§".

This bracket still satifies the properties stated in 4.4.2, therefore defines on §* a Poisson
structure called its canonical Lie-Poisson structure modified by ©.
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4.4.4 Properties of Poisson manifolds

The interested reader will find the proofs of the properties recalled here in [63], [31], [30]
or [45].

1. On a Poisson manifold P, the Poisson bracket { f,g} of two smooth functions fand
g can be expressed by means of a smooth field of bivectors A:

{f.g} =A(df,dg), fandgeC”(P,R),

called the Poisson bivector field of P. The considered Poisson manifold is often denoted
by (P,A). The Poisson bivector field A identically satisfies

[A7A] =0,

the bracket |, | in the left hand side being the Schouten-Nijenhuis bracket. That bivector
field determines a vector bundle morphism A? : T*P — TP, defined by

AM,8) = (C, A (1)),

where 1 and § € T*P are two covectors attached to the same point in P.

Readers interested in the Schouten-Nijenhuis bracket will find thorough presentations
of its properties in [25] or [36].
2. Let (P,A) be a Poisson manifold. A (maybe time-dependent) vector field on P can be
associated to each (maybe time-dependent) smooth function H : R x P — R. It is called
the Hamiltonian vector field associated to the Hamiltonian H, and denoted by Xp. Its
expression is
Xp(t,x) = A¥(x) (dH, (x))

JH(t
where dH,(x) = dH (t,x) — ;t’x) dr is the differential of the function deduced from H

by considering ¢ as a parameter with respect to which no differentiation is made.

The Hamilton equation determined by the (maybe time-dependent) Hamiltonian H is

d‘ﬁ—@ =Xu((1.9(1)) = A(dH,)(9(1)) .

3. Any Poisson manifold is foliated, by a generalized foliation whose leaves may not
be all of the same dimension, into immersed connected symplectic manifolds called the
symplectic leaves of the Poisson manifold. The value, at any point of a Poisson manifold,
of the Poisson bracket of two smooth functions only depends on the restrictions of these
functions to the symplectic leaf through the considered point, and can be calculated as the
Poisson bracket of functions defined on that leaf, with the Poisson structure associated to
the symplectic structure of that leaf. This property was discovered by Alan Weinstein, in
his very thorough study of the local structure of Poisson manifolds [64].

5 Hamiltonian symmetries

5.1 Presymplectic, symplectic and Poisson maps and vector fields

Let M be a manifold endowed with some structure, which can be either

16



* a presymplectic structure, determined by a presymplectic form, i.e., a 2-form @
which is closed (dw = 0),

* a symplectic structure, determined by a symplectic form @, i.e., a 2-form ® which
is both closed (d@ = 0) and nondegenerate (ker @ = {0}),

* a Poisson structure, determined by a smooth Poisson bivector field A satisfying
[A,A] =0.

5.1.1 Definition. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of
a presymplectic (resp., symplectic, resp. Poisson) manifold (M, ®) (resp. (M,A)) is a
smooth diffeomorphism f : M — M such that f*® = o (resp. f*A = A).

5.1.2 Definition. A smooth vector field X on a presymplectic (resp. symplectic, resp.
Poisson) manifold (M, ) (resp. (M, A)) is said to be a presysmplectic (resp. symplectic,
resp. Poisson) vector field if £(X)w = 0 (resp. if L(X)A = 0), where £(X) denotes the
Lie derivative of forms or mutivector fields with respect to X.

5.1.3 Definition. Let (M, ®) be a presymplectic or symplectic manifold. A smooth vector
field X on M is said to be Hamiltonian if there exists a smooth function H : M — R, called
a Hamiltonian for X, such that

i(X)o=—dH.

Not any smooth function on a presymplectic manifold can be a Hamiltonian.

5.1.4 Definition. Let (M, A) be a Poisson manifold. A smooth vector field X on M is said
to be Hamiltonian if there exists a smooth function H € C*(M,R), called a Hamiltonian
for X, such that X = A*(dH). An equivalent definition is that

i(X)dg={H,g} foranygeC”(M,R),
where {H, g} = A(dH,dg) denotes the Poisson bracket of the functions H and g.
On a symplectic or a Poisson manifold, any smooth function can be a Hamiltonian.

5.1.5 Proposition. A Hamiltonian vector field on a presymplectic (resp. symplectic, resp.
Poisson) manifold automatically is a presymplectic (resp. symplectic, resp. Poisson)
vector field.

The proof of this result, which is easy, can be found in any book on symplectic and

Poisson geoemetry, for example [31], [30] or [45].

5.2 Lie algebras and Lie groups actions

5.2.1 Definitions. An action on the left (resp. an action on the right) of a Lie group G on a
smooth manifold M is a smooth map @ : G x M — M (resp. asmoothmap W : M x G — M)
such that

« for each fixed g € G, the map ®, : M — M defined by P, (x) = P(g,x) (resp. the
map W, : M — M defined by W, (x) = W¥(x,g)) is a smooth diffeomorphism of M,

* &, =idy, (resp. ¥, = idy), e being the neutral element of G,

« for each pair (g1,82) € G X G, @y, 0Dy, = Py o, (resp. Pg, 0¥y, = Pyog,)-
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An action of a Lie algebra G on a smooth manifold M is a Lie algebras morphism of G
into the Lie algebra A' (M) of smooth vector fields on M, i.e. a linear map v : G — A (M)
which associates to each X € G a smooth vector field y(X) on M such that for each pair

(X.¥) € 5% G y((X.¥]) = [w(x), y(¥)].

5.2.2 Proposition. An action Y, either on the left or on the right, of a Lie group G on
a smooth manifold M, automatically determines an action y of its Lie algebra G on that
manifold, which associates to each X € G the vector field y(X) on M, often denoted by
Xy and called the fundamental vector field on M associated to X. It is defined by

VX)) = X (1) = - (P @) | _gr xEM,

ds
with the following convention: Y is a Lie algebras homomorphism when we take for Lie
algebra G of the Lie group G the Lie algebra or right invariant vector fields on G if ¥ is
an action on the left, and the Lie algebra of left invariant vector fields on G if ¥ is an
action on the right.

Proof. If W is an action of G on M on the left (respectively, on the right), the vector
field on G which is right invariant (respectively, left invariant) and whose value at e is
X, and the associated fundamental vector field X3, on M, are compatible by the map
g+ Wy(x). Therefore the map y : G — A!(M) is a Lie algebras homomorphism, if we
take for definition of the bracket on G the bracket of right invariant (respectively, left
invariant) vector fields on G. (]

5.2.3 Definitions. When M is a presymplectic (or a symplectic, or a Poisson) manifold,
an action W of a Lie group G (respectively, an action y of a Lie algebra §) on the manifold
M is called a presymplectic (or a symplectic, or a Poisson) action if for each g € G, ¥y is
a presymplectic, or a symplectic, or a Poisson diffeomorphism of M (respectively, if for
each X € G, y(X) is a presymplectic, or a symplectic, or a Poisson vector field on M.

5.2.4 Definitions. An action y of a Lie algeba G on a presymplectic or symplectic mani-
fold (M, ), or on a Poisson manifold (M, A), is said to be Hamiltonian if for each X € G,
the vector field y(X) on M is Hamiltonian.

An action W (either on the left or on the right) of a Lie group G on a presymplectic or
symplectic manifold (M, w), or on a Poisson manifold (M, A), is said to be Hamiltonian
if that action is presymplectic, or symplectic, or Poisson (according to the structure of M),
and if in addition the associated action of the Lie algebra G of G is Hamiltonian.

5.2.5 Remark. A Hamiltonian action of a Lie group, or of a Lie algebra, on a presym-
plectic, symplectic or Poisson manifold, is automatically a presymplectic, symplectic or
Poisson action. This result immediately follows from 5.1.5

5.3 Momentum maps of Hamiltonian actions

5.3.1 Proposition. Let Y be a Hamiltonian action of a finite-dimensional Lie algebra
G on a presymplectic, symplectic or Poisson manifold (M,®) or (M,A). There exists a
smooth map J : M — G¥, taking its values in the dual space G* of the Lie algebra G, such
that for each X € G the Hamiltonian vector field y(X) on M admits as Hamiltonian the
function Jx : M — R, defined by

Jx(x) = (J(x),X), xeM.
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The map J is called a momentum map for the Lie algebra action y. When  is the action
of the Lie algebra G of a Lie group G associated to a Hamiltonian action ¥ of a Lie group
G, J is called a momentum map for the Hamiltonian Lie group action V.

The proof of that result, which is easy, can be found for example in [31], [30] or [45].
5.3.2 Remark. The momentum map J is not unique:

» when (M, ) is a connected symplectic manifold, J is determined up to addition of
an arbitrary constant element in §*;

» when (M, A) is a connected Poisson manifold, the momentum map J is determined
up to addition of an arbitrary §*-valued smooth map which, coupled with any X €
G, yields a Casimir of the Poisson algebra of (M,A), i.e. a smooth function on
M whose Poisson bracket with any other smooth function on that manifold is the
function identically equal to 0.

5.4 Noether’s theorem in Hamiltonian formalism

5.4.1 Theorem (Noether’s theorem in Hamiltonian formalism). Let Xy and X, be two
Hamiltonian vector fields on a presymplectic or symplectic manifold (M,®), or on a
Poisson manifold (M, A), which admit as Hamiltonians, respectively, the smooth functions
f and g on the manifold M. The function f remains constant on each integral curve of X,
if and only if g remains constant on each integral curve of Xy.

Proof. The function f is constant on each integral curve of X, if and only if i(X,)df =
0, since each integral curve of X, is connected. We can use the Poisson bracket, even
when M is a presymplectic manifold, since the Poisson bracket of two Hamiltonians on a
presymplectic manifold still can be defined. So we can write

i(Xg)df ={g, [} = —{f.¢} = —i(Xy)dg. O

5.4.2 Corollary (of Noether’s theorem in Hamiltonian formalism). Let w : G — A'(M)
be a Hamiltonian action of a finite-dimensional Lie algebra G on a presymplectic or
symplectic manifold (M,®), or on a Poisson manifold (M,A), and let J : M — G* be
a momentum map of this action. Let Xy be a Hamiltonian vector field on M admitting
as Hamiltonian a smooth function H. If for each X € G we have i(l//(X)) (dH) =0, the
momentum map J remains constant on each integral curve of Xg.

Proof. This result is obtained by applying 5.4.1 to the pairs of Hamiltonian vector fields
made by Xy and each vector field associated to an element of a basis of G. [l

5.5 Symplectic cocycles

5.5.1 Theorem (J.M. Souriau). Let ® be a Hamiltonian action (either on the left or on
the right) of a Lie group G on a connected symplectic manifold (M, ®) and let J : M — G*
be a momentum map of this action. There exists an affine action A (either on the left or on
the right) of the Lie group G on the dual G* of its Lie algebra G such that the momentum
map J is equivariant with respect to the actions ® of G on M and A of G on G*, i.e. such
that

Jo®,(x) =Ag0J(x) forallge G, xeM.
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The action A can be written, with g € G and & € G,

A(g,8) = Ad;,, (E)+0(g) if D is an action on the left,
A.g) = Adz,(ﬁ) —0(g") if®isan action on the right.

Proof. Let us assume that @ is an action on the left. The fundamental vector field Xy,
associated to each X € G is Hamiltonian, with the function Jx : M — R, given by

Jx(x)=(J(x),X), xeM,

as Hamiltonian. For each g € G the direct image (®,-1).(Xy) of Xy by the symplectic
diffeomorphism CIJgfl is Hamiltonian, with Jx o ®, as Hamiltonian. An easy calculation
shows that this vector field is the fundamental vector field associated to Ad,-1(X) € §.
The function

x> (J(x),Adg1 (X)) = (Ad; o/ (x),X)

is therefore a Hamiltonian for that vector field. These two functions defined on the con-
nected manifold M, which both are admissible Hamiltonians for the same Hamiltonian
vector field, differ only by a constant (which may depend on g € G). We can set, for any
gE€q,

0(g) =JoPg(x) — Adz,,l oJ(x)
and check that the map A : G x §* — G* defined in the statement is indeed an action for
which J is equivariant.

A similar proof, with some changes of signs, holds when @ is an action on the right. [

5.5.2 Proposition. Under the assumptions and with the notations of 5.5.1, the map 0 :
G — G* is a cocycle of the Lie group G with values in G*, for the coadjoint representation.
It means that is satisfies, for all g and h € G,

6(gh) = 6(g) +Ad; 1 (6(h)).

More precisely 0 is a symplectic cocycle. It means that its differential T,0 : T,G =G — G*
at the neutral element e € G can be considered as a skew-symmetric bilinear form on G:

O(X.Y)=(T.0(X),Y)=—(T.0(Y).X).

The skew-symmetric bilinear form @ is a symplectic cocycle of the Lie algebra S. It means
that it is skew-symmetric and satisfies, for all X, Y and Z € G,

O([x,Y],2) +0O([Y,Z],X) +©([Z,X],Y) =0.

Proof. These properties easily follow from the fact that when & is an action on the left,
for g and h € G, @, 0P), = Py, (and a similar equality when & is an action on the right).
The interested reader will find more details in [31], [55] or [38]. L]

5.5.3 Proposition. Still under the assumptions and with the notations of 5.5.1, the com-
position law which associates to each pair (f,g) of smooth real-valued functions on G*

the function { f,g}e given by
{f.gle(x) = (x,[df(x),dg(x)]) — ©(df(x),dg(x)), x€G",

(G being identified with its bidual G**), determines a Poisson structure on G*, and the
momentum map J : M — G* is a Poisson map, M being endowed with the Poisson structure
associated to its symplectic structure.
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Proof. The fact that the bracket (f,g) — {f,g}e on C*(G*,R) is a Poisson bracket was
already indicated in 4.4.3. It can be verified by easy calculations. The fact that J is a

Poisson map can be proven by first looking at linear functions on §*, i.e. elements in G.
The reader will find a detailed proof in [38]. ]

5.5.4 Remark. When the momentum map J is replaced by another momentum map J; =
J+ u, where u € G* is a constant, the symplectic Lie group cocycle 6 and the symplectic
Lie algebra cocycle ® are replaced by 0; and @, respectively, given by

61(g) =0(8) +u—Ady (1), g€G,
©(X,Y)=0(X,Y)+(u,[X,Y]), XandY €§.

These formulae show that 8; — 8 and ®1 — © are symplectic coboundaries of the Lie
group G and the Lie algebra G. In other words, the cohomology classes of the cocycles 0
and © only depend on the Hamiltonian action ® of G on the symplectic manifold (M, ®).

5.6 The use of symmetries in Hamiltonian Mechanics
5.6.1 Symmetries of the phase space

Hamiltonian Symmetries are often used for the search of solutions of the equations of
motion of mechanical systems. The symmetries considered are those of the phase space
of the mechanical system. This space is very often a symplectic manifold, either the
cotangent bundle to the configuration space with its canonical symplectic structure, or
a more general symplectic manifold. Sometimes, after some simplifications, the phase
space is a Poisson manifold.

The Marsden-Weinstein reduction procedure [39, 43] or one of its generalizations [45]
is the method most often used to facilitate the determination of solutions of the equations
of motion. In a first step, a possible value of the momentum map is chosen and the
subset of the phase space on which the momentum map takes this value is determined.
In a second step, that subset (when it is a smooth manifold) is quotiented by its isotropic
foliation. The quotient manifold is a symplectic manifold of a dimension smaller than
that of the original phase space, and one has an easier to solve Hamiltonian system on
that reduced phase space.

When Hamiltonian symmetries are used for the reduction of the dimension of the phase
space of a mechanical system, the symplectic cocycle of the Lie group of symmetries
action, or of the Lie algebra of symmetries action, is almost always the zero cocycle.

For example, if the group of symmetries is the canonical lift to the cotangent bundle of
a group of symmetries of the configuration space, not only the canonical symplectic form,
but the Liouville 1-form of the cotangent bundle itself remains invariant under the action
of the symmetry group, and this fact implies that the symplectic cohomology class of the
action is zero.

5.6.2 Symmetries of the space of motions

A completely different way of using symmetries was initiated by Jean-Marie Souriau,
who proposed to consider the symmetries of the manifold of motions of the mechanical
system. He observed that the Lagrangian and Hamiltonian formalisms, in their usual
formulations, involve the choice of a particular reference frame, in which the motion is
described. This choice destroys a part of the natural symmetries of the system.
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For example, in classical (non-relativistic) Mechanics, the natural symmetry group of
an isolated mechanical system must contain the symmetry group of the Galilean space-
time, called the Galilean group. This group is of dimension 10. It contains not only
the group of Euclidean displacements of space which is of dimension 6 and the group of
time translations which is of dimension 1, but the group of linear changes of Galilean
reference frames which is of dimension 3.

If we use the Lagrangian formalism or the Hamiltonian formalism, the Lagrangian or
the Hamiltonian of the system depends on the reference frame: it is not invariant with
respect to linear changes of Galilean reference frames.

It may seem strange to consider the set of all possible motions of a system, which is
unknown as long as we have not determined all these possible motions. One may ask if it
is really useful when we want to determine not all possible motions, but only one motion
with prescribed initial data, since that motion is just one point of the (unknown) manifold
of motion!

Souriau’s answers to this objection are the following.

1.  We know that the manifold of motions has a symplectic structure, and very often
many things are known about its symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural mathematical object
which does not depend on the choice of a particular reference frame (even if the decrip-
tions given to that object by different observers depend on the reference frames used by
these observers): it is the evolution space of the system.

The knowledge of the equations which govern the system’s evolution allows the full
mathematical description of the evolution space, even when these equations are not yet
solved.

Moreover, the symmetry properties of the evolution space are the same as those of the
manifold of motions.

For example, the evolution space of a classical mechanical system with configuration
manifold N is

1. in the Lagrangian formalism, the space R x TN endowed with the presymplectic
form d@;, whose kernel is of dimension 1 when the Lagrangian L is hyper-regular,

2. in the Hamiltonian formalism, the space R x T*N with the presymplectic form d®@y,
whose kernel too is of dimension 1.

The Poincaré-Cartan 1-form (fiL in the Lagrangian formalism, or @y in the Hamiltonian
formalism, depends on the choice of a particular reference frame, made for using the La-
grangian or the Hamiltonian formalism. But their exterior differentials, the presymplectic
forms d@;, or d@y, do not depend on that choice, modulo a simple change of variables in
the evolution space.

Souriau defined this presymplectic form in a framework more general than those of
Lagrangian or Hamiltonian formalisms, and called it the Lagrange form. In this more
general setting, it may not be an exact 2-form. Souriau proposed as a new Principle, the
assumption that it always projects on the space of motions of the system as a symplectic
form, even in Relativistic Mechanics in which the definition of an evolution space is not
clear. He called this new principle the Maxwell Principle.

V. Bargmann proved that the symplectic cohomology of the Galilean group is of di-
mension 1, and Souriau proved that the cohomology class of its action on the manifold
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of motions of an isolated classical (non-relativistic) mechanical system can be identified
with the fotal mass of the system ([55], chapter III, page 153).

Readers interested in the Galilean group and momentum maps of its actions are referred
to the recent book by G. de Saxcé and C. Vallée [52].

6 Statistical Mechanics and Thermodynamics

6.1 Basic concepts in Statistical Mechanics

During the XVIII-th and XIX—th centuries, the idea that material bodies (fluids as well
as solids) are assemblies of a very large number of small, moving particles, began to
be considered by some scientists, notably Daniel Bernoulli (1700-1782), Rudolf Clau-
sius (1822-1888), James Clerk Maxwell (1831-1879) and Ludwig Eduardo Boltzmann
(1844-1906), as a reasonable possibility. Attemps were made to explain the nature of
some measurable macroscopic quantities (for example the temperature of a material body,
the pressure exerted by a gas on the walls of the vessel in which it is contained), and the
laws which govern the variations of these macroscopic quantities, by application of the
laws of Classical Mechanics to the motions of these very small particles. Described in the
framework of the Hamiltonian formalism, the material body is considered as a Hamilto-
nian system whose phase space is a very high dimensional symplectic manifold (M, ),
since an element of that space gives a perfect information about the positions and the
velocities of all the particles of the system. The experimental determination of the exact
state of the system being impossible, one only can use the probability of presence, at each
instant, of the state of the system in various parts of the phase space. Scientists introduced
the concept of a statistical state, defined below.

6.1.1 Definition. Let (M, ) be a symplectic manifold. A statistical state is a probability
measure [ on the manifold M.

6.1.2 The Liouville measure on a symplectic manifold

On each symplectic manifold (M, ®), with dimM = 2n, there exists a positive measure
Ao, called the Liouville measure. Let us briefly recall its definition. Let (U, @) be a Dar-
boux chart of (M, w) (4.4.1). The open subset U of M is, by means of the diffeomorphism
@, identified with an open subset @(U) of R?* on which the coordinates (Darboux coor-
dinates) will be denoted by (p1, ..., pn,x',...,x"). With this identification, the Liouville
measure (restricted to U) is simply the Lebesgue measure on the open subset ¢ (U) of
R2". In other words, for each Borel subset A of M contained in U, we have

lw(A):/ dpy...dp,dx!... dx".
¢(A)

One can easily check that this definition does not depend on the choice of the Darboux co-
ordinates (pi,...,pn,x',...,x") on @(A). By using an atlas of Darboux charts on (M, ®),
one can easily define A, (A) for any Borel subset A of M.

6.1.3 Definition. A statistical state yt on the symplectic manifold (M, ) is said to be con-
tinuous (respectively, is said to be smooth) if it has a continuous (respectively, a smooth)
density with respect to the Liouville measure Ay, i.e. if there exists a continuous function
(respectively, a smooth function) p : M — R such that, for each Borel subset A of M

H(A) = /Apd/lw-
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6.1.4 Remark. The density p of a continuous statistical state on (M, ®) takes its values
in R and of course satisfies
M

For simplicity we only consider in what follows continuous, very often even smooth
statistical states.

6.1.5 Variation in time of a statistical state

Let H be a smooth time independent Hamiltonian on a symplectic manifold (M, ®), Xy
the associated Hamiltonian vector field and ®*# its reduced flow. We consider the me-
chanical system whose time evolution is described by the flow of Xp.

If the state of the system at time #y, assumed to be perfectly known, is a point zo € M,
its state at time ¢, is the point z; = CID?](“L o (20)-

Let us now assume that the state of the system at time #( is not perfectly known, but
that a continuous probability measure on the phase space M, whose density with respect
to the Liouville measure A, is po, describes the probability distribution of presence of the
state of the system at time #y. In other words, py is the density of the statistical state of the
system at time #o. For any other time 7, the map CIJff*i o 18 @ symplectomorphism, therefore
leaves invariant the Liouville measure Ag,. The probability density p; of the statistical
state of the system at time #; therefore satisfies, for any xo € M for which x| = CIJZ"L 10(X0)
is defined,

p1(x1) = p1 (P, (x0)) = Po(xo) -

Since (@7, )" =&}

fo—1,» WE Can write

p] :pooq)glil‘] .

6.1.6 Definition. Let p be the density of a continuous statistical state tt on the symplectic
manifold (M, ®). The number

s(p) = /Mplog (%) dAg

is called the entropy of the statistical state u or, with a slight abuse of language, the
entropy of the density p.

6.1.7 Remarks.

1
1. By convention we state that Olog <6) = (0. With that convention the function

1
x +— xlog | — | is continuous on R™. If the integral on the right hand side of the equality
x

which defines s(p) does not converge, we state that s(p) = —eo. With these conventions,
s(p) exists for any continuous probability density p.

2. The above definition (6.1.6) of the entropy of a statistical state, founded on ideas
developed by Boltzmann in his Kinetic Theory of Gases [9], specially in the derivation
of his famous (and controversed) Theorem Eta, is too related with the ideas of Claude
Shannon [53] on Information theory. The use of Information theory in Thermodynamics
was more recently proposed by Jaynes [21, 22] and Mackey [34]. For a very nice discus-
sion of the use of probability concepts in Physics and application of Information theory
in Quantum Mechanics, the reader is referred to the paper by R. Balian [3].
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The entropy s(p) of a probability density p has very remarkable variational properties
discussed in the following definitions and proposition.

6.1.8 Definitions. Let p be the density of a smooth statistical state on a symplectic man-
ifold (M, ®).

1. For each function f defined on M, taking its values in R or in some finite-
dimensional vector space, such that the integral on the right hand side of the equality

Ep(f) = /M fpdie

converges, the value &, (f) of that integral is called the mean value of f with respect to p.

2. Let f be a smooth function on M, taking its values in R or in some finite-
dimensional vector space, satisfying the properties stated above. A smooth infinitesi-
mal variation of p with fixed mean value of f is a smooth map, defined on the product
| — €,€[ xM, with values in R", where € > 0,

(T,Z)'—)[)(T,Z), TE]—S,E[,ZEM,
such that
e fort=0andany z€ M, p(0,z) = p(2),

* foreach T €] —¢€, €[, z— pr(z) = p(7,2) is a smooth probability density on M such
that

Epelf) = /M pefdio = E,(f).

3. The entropy function s is said to be stationary at the probability density p with
respect to smooth infinitesimal variations of p with fixed mean value of f, if for any
smooth infinitesimal variation (7,z) — p(7,z) of p with fixed mean value of f

ds(p<)
dt I7=0

6.1.9 Proposition. Let H : M — R be a smooth Hamiltonian on a symplectic manifold
(M,®) and p be the density of a smooth statistical state on M such that the integral
defining the mean value €,(H) of H with respect to p converges. The entropy function
s is stationary at p with respect to smooth infinitesimal variations of p with fixed mean
value of H, if and only if there exists a real b € R such that, for all z € M,

p(z) = ﬁexp(—bH(z)), with P(b) = /Mexp(—bH)dQLw.

Proof. Let T +— p; be a smooth infinitesimal variation of p with fixed mean value of H.

Since / prdAy, and / prHdA, do not depend on T, it satisfies, for all T €] — €, ¢,
M M

/M aPS?Z) dAp(z) =0, ; %:_,Z)H(Z)dlw(z) _o.

Moreover an easy calculation leads to

ds(pe) | dp(7,z2)
r_o__/M at

dt
25
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A well known result in calculus of variations shows that the entropy function s is station-
ary at p with respect to smooth infinitesimal variations of p with fixed mean value of H, if
and only if there exist two real constants a and b, called Lagrange multipliers, such that,
forallz e M,

1+log(p)+a+bH =0,
which leads to

p=exp(—l—a—bH).

By writing that / pdAy, =1, we see that a is determined by b:
M

exp(1 +a) = P(b) = /M exp(—bH)dAo . O

6.1.10 Definitions. Let H : M — R be a smooth Hamiltonian on a symplectic manifold
(M, ). For each b € R such that the integral on the right side of the equality

P(b) = /M exp(—bH)dA

converges, the smooth probability measure on M with density (with respect to the Liou-
ville measure)

p(b) = % exp(—bH)

is called the Gibbs statistical state associated to b. The function P : b — P(b) is called the

partition function.

The following proposition shows that the entropy function, not only is stationary at any
Gibbs statistical state, but in a certain sense attains at that state a strict maximum.

6.1.11 Proposition. Let H : M — R be a smooth Hamiltonian on a symplectic manifold
(M, ) and b € R be such that the integral defining the value P(b) of the partition function
P at b converges. Let

be the probability density of the Gibbs statistical state associated to b. We assume that the
Hamiltonian H is bounded by below, i.e. that there exists a constant m such that m < H(z)
for any z € M. Then the integral defining

M
converges. For any other smooth probability density p such that

SPI (H) = 8Pb<H)7

we have
s(p1) < s(pp),

and the equality s(p1) = s(pp) holds if and only if p; = py.
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Proof. Since m < H, the function p, exp(—bH ) satisfies 0 < p,exp(—bH) < exp(—mb)pp,
therefore is integrable on M. Let p; be any smooth probability density on M satisfying
&p (H) = &p,(H). The function defined on R*

1
xlog | — ifx>0

x+— h(x) = x
0 ifx=0

being convex, its graph is below the tangent at any of its points (xo, h(xo)). We therefore
have, for all x > 0 and xy > 0,

h(x) < h(xg) — (14+1logxg)(x —x0) = x0 —x(1 +logxp).

With x = p;(z) and xo = p,(z), z being any element in M, that inequality becomes

(1)) = pr(a)1og () < pola)~ (1 +logpu(2)pu()

By integration over M, using the fact that p, is the probability density of the Gibbs state
associated to b, we obtain

s(p) <1—1— /M p1logpyde = s(py).

We have proven the inequality s(p1) < s(pp). If p1 = pp, we have of course the equality
s(p1) = s(pp). Conversely if s(p;) = s(pp), the functions defined on M

< 01(2) = p1(2) log (p%@) and 25 0(2) = py(2) — (1 +logpy(2))pi (2)

are continuous on M except, maybe, for ¢, at points z at which p,(z) = 0 and p;(z) # 0,
but the set of such points is of measure O since @ is integrable. They satisty the inequality
¢ < ¢@. Both are integrable on M and have the same integral. The function ¢ — @
is everywhere > 0, is integrable on M and its integral is 0. That function is therefore
everywhere equal to 0 on M. We can write, for any z € M,

1
1 — | = — (141 .
pr(2)1og () = pu(2) -~ (1-+1ogps(2))pr 2 )
For each z € M such that p;(z) # 0, we can divide that equality by p;(z). We obtain
Py () (Pb (Z))
—1lo =
P ()

Since the function x — x — logx reaches its minimum, equal to 1, for a unique value
of x > 0, that value being 1, we see that for each z € M at which p;(z) > 0, we have
p1(z) = pp(z). At points z € M at which p;(z) = 0, the above equality (*) shows that
p»(z) = 0. Therefore p; = py. O

The following proposition shows that a Gibbs statistical state remains invariant under
the flow of the Hamiltonian vector field Xy. In that sense, one can say that a Gibbs
statistical state is a statistical equilibrium state. Of course, there exist statistical states
which remain invariant under the flow of Xy other than Gibbs states.
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6.1.12 Proposition. Let H be a smooth Hamiltonian bounded by below on a symplectic
manifold (M,®), b € R be such that the integral defining the value P(b) of the partition
function P at b converges. The Gibbs state associated to b remains invariant under the
flow of of the Hamiltonian vector field Xy.

Proof. The density p, of the Gibbs state associated to b, with respect to the Liouville
measure A, is

Py = 55 exp(—bH).

Since H is constant along each integral curve of Xz, pj too is constant along each integral
curve of Xy. Moreover, the Liouville measure Ay, remains invariant under the flow of Xp.

Therefore the Gibbs probability measure associated to b too remains invariant under that
flow. U

6.2 Thermodynamic equilibria and thermodynamic functions
6.2.1 Assumptions made in this section.

Any Hamiltonian H defined on a symplectic manifold (M, @) considered in this section
will be assumed to be smooth, bounded by below and such that for any real » > 0, each
one of the three functions, defined on M, z — exp(—bH(z)), z+— ’H(z) } exp(—bH(z))

and z+— (H (z))2exp(—bH (z)) is everywhere smaller than some function defined on M
integrable with respect to the Liouville measure Ay. The integrals which define

P(b) = /M exp(—bH)dAy and &, (H) = /M Hexp(—bH)dAq

therefore converge.

6.2.2 Proposition. Let H be a Hamiltonian defined on a symplectic manifold (M, ®)
satisfying the assumptions indicated in 6.2.1. For any real b > 0 let

P(b) = /M exp(—bH)dAy and pbzﬁexp(—bH)

be the value at b of the partition function P and the probability density of the Gibbs
statistical state associated to b, and

E(b) = &, (H) = ﬁ /M Hexp(—bH)dAg

be the mean value of H with respect to the probability density p,. The first and second
derivatives with respect to b of the partition function P exist, are continuous functions of
b given by

dP(D)
db

d’P(b)

=—P(b)E(D), T

:/MHzexp(—bH)dla):P(b>8pb(H2>-

The derivative with respect to b of the function E exists and is a continuous function of b
given by

dE(b) 1 2 2

b P /M(H—gpb(m) Ao = _8Pb((H_8Pb(H)) ) :
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dE(b) dE(D)
b a Y

Let S(b) be the entropy s(pp) of the Gibbs statistical state associated to b. The function
S can be expressed in terms of P and E as

We have always <0, and when H is not a constant function on M,

S(b) =log(P(b)) +bE(b).

Its derivative with respect to b exists and is a continuous function of b given by

ds(b) de(b)
d 7 db

Proof. Using the assumptions 6.2.1, we see that the functions b+ P(b) and b— €, (H) =
E (D), defined by integrals on M, have a derivative with respect to b which is continuous

and which can be calculated by derivation under the sign / . The indicated results easily
M

follow, if we observe that for any function £ on M such that £, (f) and €, (f?) exist, we
have the formula, well known in Probability theory,

En (12— (€, (1)’ =&n ((F= €0, (1))
dE(b)
db

on M, since that quantity is the opposite of the mean value of a continuous non-negative
function, not everywhere O when H is not a constant function on M. L

We have always < 0, the inequality being strict when H is not a constant function

6.2.3 Physical meaning of the introduced functions

Let us consider a physical system, for example a gas contained in a vessel bounded by
rigid, thermally insulated walls, at rest in a Galilean reference frame. We assume that its
evolution can be mathematically described by means of a Hamiltonian system on a sym-
plectic manifold (M, ®) whose Hamiltonian H satisfies the assumptions 6.2.1. For physi-
1

cists, a Gibbs statistical state, i.e. a probability measure of density p, = % exp(—bH)
on M, is a thermodynamic equilibrium of the physical system. The set of possible ther-
modynamic equilibria of the system is therefore indexed by a real parameter b > 0. The
following argument will show what physical meaning can have that parameter.

Let us consider two similar physical systems, mathematically described by two Hamil-
tonian systems, of Hamiltonians H; on the symplectic manifold (M}, ;) and H, on the
symplectic manifold (M,, @,). We first assume that they are independent and both in ther-
modynamic equilibrium, with different values b and b, of the parameter . We denote
by E|(by) and E;(b,) the mean values of H; on the manifold M; with respect to the Gibbs
state of density p; ,, and of H, on the manifold M, with respect to the Gibbs state of
density p; 5,. We assume now that the two systems are coupled in a way allowing an ex-
change of energy. For example, the two vessels containing the two gases can be separated
by a wall allowing a heat transfer between them. Coupled together, they make a new
physical system, mathematically described by a Hamiltonian system on the symplectic
manifold (M x My, pjw; + p5a»), where py : My x My — My and po : My X My — M,
are the canonical projections. The Hamiltonian of this new system can be made as close
to Hy o p1 + H, o pp as one wishes, by making very small the coupling between the two
systems. The mean value of the Hamiltonian of the new system is therefore very close to
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E|(b1) + Ex(b2). When the total system will reach a state of thermodynamic equilibrium,
the probability densities of the Gibbs states of its two parts, py ; on My and p; ;y on M,
will be indexed by the same real number 5" > 0, which must be such that

E; (b,> +E2(bl) =E (b1> +E2(b2> .
By 6.2.2, we have, for all b > 0,

dE; (b)
db

dEs(b)
db

<0, <0.

Therefore b’ must lie between by and b,. If, for example, by < by, we see that E{(b') <
E\(by) and E»(b") > E»(by). In order to reach a state of thermodynamic equilibrium,
energy must be transferred from the part of the system where b has the smallest value,
towards the part of the system where b has the highest value, until, at thermodynamic
equilibrium, b has the same value everywhere. Everyday experience shows that thermal
energy flows from parts of a system where the temperature is higher, towards parts where
it is lower. For this reason physicists consider the real variable b as a way to appreciate
the temperature of a physical system in a state of thermodynamic equilibrium. More

precisely, they state that

1
b=—
kT

where T is the absolute temperature and k a constant depending on the choice of units
of energy and temperature, called Boltzmann’s constant in honour of the great Austrian
scientist Ludwig Eduard Boltzmann (1844—1906).

For a physical system mathematically described by a Hamiltonian system on a symplec-
tic manifold (M, ®), with H as Hamiltonian, in a state of thermodynamic equilibrium,
E(b) and S(b) are the internal energy and the entropy of the system.

6.2.4 Towards thermodynamic equilibrium

Everyday experience shows that a physical system, when submitted to external condi-
tions which remain unchanged for a sufficiently long time, very often reaches a state of
thermodynamic equilibrium. At first look, when perfecty defined states are considered,
it seems that Lagrangian or Hamiltonian systems with time-independent Lagrangians or
Hamiltonians cannot exhibit a similar behaviour. Let us indeed consider a mechanical
system whose configuration space is a smooth manifold N, described in the Lagrangian
formalism by a smooth time-independent hyper-regular Lagarangian L : TN — R or, in

the Hamiltonian formalism, by the associated Hamiltonian Hy, : T*N — R. Let ¢ — x(¢
be a motion of that system, g = x(tp) and X = x(t(); be the configurations of the system
for that motion at times 7y and 7;. There exists another motion ¢ — x'(7) of the system

for which x'(#p) = x{ and x'(¢;) = x(: since the equations of motion are invariant by time

reversal, the motion ¢ — x/(¢) is obtained simply by taking as initial condition at time %,
- dx/( dx(z . .

X (tg) = x(1 ) and dg ) ( . Another more serious argument against a
=n

kind of thermodynamic beilat{)/iour ofd iagarangian or Hamiltonian systems rests on the fa-
mous recurrence theorem due to H. Poincaré [46]. This theorem asserts indeed that when
the useful part of the phase space of the system is of a finite total measure, almost all
points in an arbitrarily small open subset of the phase space are recurrent, i.e., the motion
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starting of such a point at time #y repeatedly crosses that open subset again and again,
infinitely many times when ¢t — +-oco.

If instead of perfectly defined states, i.e., points in phase space, we now consider sta-
tistical states, it is not so obvious that a Lagrangian or Hamiltonian system, with a time-
independent Lagrangian or Hamiltonian, starting at time 7o from a given statistical state,
cannot evolve in such a way that its statistical state converges, when ¢ — oo, towards
an equilibrium statistical state, and more precisely towards a Gibbs statistical state. Of
course we should specify in what sense, of for which topology, such a convergence may
occur, and what physical meaning should be given to a statistical state of a physical sys-
tem. A positive partial answer was given by Ludwig Boltzmann when, developing his
kinetic theory of gases, he proved his famous (but controversed) Eta theorem stating that
the entropy of the statistical state of a gas of small particles is a monotonously increasing
function of time. This question, linked with ergodic theory and with the problem of time
irreversibility in Physics, is still the subject of important researches, both by physicists and
by mathematicians. Many physicists however consider that question of academic interest
only, because the behaviour of particules is only approximately described by the laws of
Classical Mechanics. They think that the question must be dealt with in the framework of
Quantum Mechanics, which only provides probability estimates and offers a more accu-
rate description of their behaviour. The reader is referred to the paper [3] by R. Balian for
a more thorough discussion of that question.

6.3 Examples of thermodynamic equilibria
6.3.1 Classical monoatomic ideal gas

In Classical Mechanics, a dilute gas contained in a vessel at rest in a Galilean reference
frame is mathematically described by a Hamiltonian system made by a large number of
very small massive particles, which interact by very brief collisions between themselves
or with the walls of the vessel, whose motions between two collisions are free. Let us first
assume that these particles are material points and that no external field is acting on them,
other than that describing the interactions by collisions with the walls of the vessel.

The Hamiltonian of one particle in a part of the phase space in which its motion is free
is simply
1 o Lo 5 9 .
NP = (pi+p3+p3), with P =mV,

where m is the mass of the particle, Vits velocity vector and ? its linear momentum
vector (in the considered Galilean reference frame), p;, p> and p3 the components of
in a fixed orhtonormal basis of the physical space.

Let N be the total number of particles, which may not have all the same mass. We use a
integeri € {1, 2, ..., N} to label the particles and denote by m;, X, ﬁ the mass and
the vectors position, velocity and linear momentum of the i-th particle.

The Hamiltonian of the gas is therefore

N
1 N
H = j %2 1 terms involving the collisions between particles and with the walls.
p g p

=1 2mi

Interactions of the particles with the walls of the vessel are essential for allowing the
motions of particles to remain confined. Interactions between particles are essential to
allow the exchanges between them of energy and momentum, which play an important
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part in the evolution with time of the statistical state of the system. However it appears
that while these terms are very important to determine the system’s evolution with time,
they can be neglected, when the gas is dilute enough, if we only want to determine the
final statistical state of the system, once a thermodynamic equilibrium is established. The
Hamiltonian used will therefore be

=

Z il

The partition function is

P(b):/Mexp(—bH)d),a,—/exp< Z

i=1

N
) [Tdxdp;),

where D is the domain of the 6 N-dimensional space spanned by the position vectors x

and linear momentum vectors ﬁ of the particles in which all the X/ lie within the vessel
containing the gas. An easy calculation leads to

P(b) = VN(z;)zzv/zlz_vI ar ﬁ[ <2nm,>3/2],

i=1 i=1

where V' is the volume of the vessel which contains the gas. The probability density of
the Gibbs state associated to b, with respect to the Liouville measure, therefore is

ML b NP —bl P
pb_glv <27‘cm,-) exp( 2m,- ) '

We observe that p, is the product of the probability densities p; ;, for the i-th particle

L b N\ (=b|p)?
b= | =— exp| —— | -
Pib V \27nm; P 2m;

The 2N stochastic vectors x; and ﬁ, i=1, ..., N are therefore independent. The po-
sition X of the i-th particle is uniformly distributed in the volume of the vessel, while
the probability measure of its linear momentum ﬁ is the classical Maxwell-Boltzmann
probability distribution of linear momentum for an ideal gas of particles of mass m;, first
obtained by Maxwell in 1860. Moreover we see that the three components p;, p;2 and p;3
of the linear momentum ﬁ in an orhonormal basis of the physical space are independent
stochastic variables.

By using the formulae given in 6.2.2 the internal energy E(b) and the entropy S(b) of
the gas can be easily deduced from the partition function P(b). Their expressions are

E(b) =3

3 3 3N
_EZ ogm; + ( 1+10g(2n))+10gV)N—710gb.
. . oo 3
We see that each of the N particles present in the gas has the same contribution % to

the internal energy E(b), which does not depend on the mass of the particle. Even more:
each degree of freedom of each particle, i.e. each of the the three components of the
the linear momentum of the particle on the three axes of an orthonormal basis, has the
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1
same contribution — to the internal energy E(b). This result is known in Physics under

the name Theorem of equipartition of the energy at a thermodynamic equilibrium. It can
be easily generalized for polyatomic gases, in which a particle may carry, in addition to
the kinetic energy due to the velocity of its centre of mass, a kinetic energy due to the
particle’s rotation around its centre of mass. The reader can consult the books by Souriau
[55] and Mackey [34] where the kinetic theory of polyatomic gases is discussed.

The pressure in the gas, denoted by I1() because the notation P(b) is already used for
the partition function, is due to the change of linear momentum of the particles which
occurs at a collision of the particle with the walls of the vessel containing the gas (or with
a probe used to measure that pressure). A classical argument in the kinetic theory of gases
(see for example [13] or [14]) leads to

2E(b) N
o) =-——==—.
(b) 3V bv
This formula is the well known equation of state of an ideal monoatomic gas relating the
number of particles by unit of volume, the pressure and the temperature.

1
With b = T the above expressions are exactly those used in classical Thermodynamics

for an ideal monoatomic gas.

6.3.2 Classical ideal monoatomic gas in a gravity field

Let us now assume that the gas, contained in a cylindrical vessel of section ¥ and length
h, with a vertical axis, is submitted to the vertical gravity field of intensity g directed
downwards. We choose Cartesian coordinates x, y, z, the z axis being vertical directed
upwards, the bottom of the vessel being in the horizontal surface z = 0. The Hamiltonian
of a free particle of mass m, position and linear momentum vectors X (components x, y,
z) and 7 (components p,, py and p;) is

1
%(p§+p§+p§)+mgz

As in the previous section we neglect the parts of the Hamiltonian of the gas correspond-
ing to collisions between the particles, or between a particle and the walls of the vessel.
The Hamiltonian of the gas is therefore

HZ(

Calculations similar to those of the previous section lead to

lLVI <2nm,)3/2 l—exp(—m,-gbh)]

i=1 migb

_ o~ (1P
Pb—ﬁexplbgl(zm, )|

1

"’sz +pzz) +mlgzl) .

The expression of p;, shows that the 2N stochastic vectors X/ and ﬁ still are independent,

and that for each i € {1,...,N}, the probability law of each stochastic vector p; is the
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same as in the absence of gravity, for the same value of . Each stochastic vector X

is no more uniformly distributed in the vessel containing the gas: its probability density
is higher at lower altitudes z, and this nonuniformity is more important for the heavier
particles than for the lighter ones.

As in the previous section, the formulae given in 6.2.2 allow the calculation of E(b) and
S(b). We observe that E(b) now includes the potential energy of the gas in the gravity
field, therefore should no more be called the internal energy of the gas.

6.3.3 Relativistic monoatomic ideal gas

In a Galilean reference frame, we consider a relativistic point particle of rest mass m,
moving at a velocity V. We denote by v the modulus of V and by ¢ the modulus of the
velocity of light. The motion of the particle can be mathematically described by means of
the Euler-Lagrange equations, with the Lagrangian

2
L:—mcz\/l—v—z.
c

The components of the linear momentum ? of the particle, in an orthonormal frame at
rest in the considered Galilean reference frame, are

aL i —
pi:—.:L, therefore 7: ny .
v 2 V2
1——= 1——=
c? c?
Denoting by p the modulus of ?, the Hamiltonian of the particle is
mc?
H:?-7—L: E— =c\/p?+mc?.
v
1 — =
c2
Let us consider a relativistic gas, made of N point particles indexed by i € {1,...,N},

m; being the rest mass of the i-th particle. With the same assumptions as those made in
Section 6.3.1, we can take for Hamiltonian of the gas

/D2 ¥ m2c2.

=

H=c

i=1

With the same notations as those of Section 6.3.1, the partition function P of the gas takes
the value, for each b > 0,

N N
P(b) = /Dexp (—bc; \/ (pi)? —|—m2c2> H(dﬁdﬁ)

This integral can be expressed in terms of the Bessel function K>, whose expression is,

for each x > 0,
o0
K> (x) = x/ exp(—xchy)sh? ychydy.
0
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We have

AV LY
P(b) = (4712/ ) H(m,-ng(mibcz)),

i=1
1 N
Py = % exp —bc; VP2 +mic? | .

This probability density of the Gibbs state shows that the 2N stochastic vectors X and
ﬁ? are independent, that each X7 s uniformly distributed in the vessel containing the gas
and that the probability density of each ﬁ is exactly the probability distribution of the
linear momentum of particles in a relativistic gas called the Maxwell-Jiittner distribution,
obtained by Ferencz Jiittner (1878-1958) in 1911, discussed in the book by the Irish
mathematician and physicist J. L. Synge [60].

Of course, the formulae given in 6.2.2 allow the calculation of the internal energy E (D),
the entropy S(b) and the pressure I1(b) of the relativistic gas.

6.3.4 Relativistic ideal gas of massless particles

We have seen in the previous chapter that in an inertial reference frame, the Hamiltonian
of a relativistic point particle of rest mass m is ¢/ p* +m?c2, where p is the modulus of
the linear momentum vector ? of the particle in the considered reference frame. This
expression still has a meaning when the rest mass m of the particle is 0. In an orthonormal
reference frame, the equations of motion of a particle whose motion is mathematically
described by a Hamiltonian system with Hamiltonian

H=cp=c\Vpi2+p2+ps?

are

dxi oH P
dp_ oH _
dt ~ oxi

which shows that the particle moves on a straight line at the velocity of light c. It seems
therefore reasonable to describe a gas of N photons in a vessel of volume V at rest in an
inertial reference frame by a Hamiltonian system, with the Hamiltonian

N N
H=cY |7/l =cY Vi +pi2+pis®.
i=1 =1

With the same notations as those used in the previous section, the partition function P of
the gas takes the value, for each b > 0,

P(b) = /eXP< bCZHPzH>H P) = (%)N

The probability density of the corresponding Gibbs state, with respect to the Liouville
measure Ag = [TV, (dx;dp), is

B2
oy — (—) exp(~be| B
L1\ 8nv '
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This formula appears in the books by Synge [60] and Souriau [55]. Physicists consider
it as not adequate for the description of a gas of photons contained in a vessel at thermal
equilibrium because the number of photons in the vessel, at any given temperature, cannot
be imposed: it results from the processes of absorption and emission of photons by the
walls of the vessel, heated at the imposed temperature, which spontaneously occur. In
other words, this number is a stochastic function whose probability law is imposed by
Nature. Souriau proposes, in his book [55], a way to account for the possible variation
of the number of photons. Instead of using the phase space of the system of N massless
relativistic particles contained in a vessel, he uses the manifold of motions My of that
system (which is symplectomorphic to its phase space). He considers that the manifold
of motions M of a system of photons in the vessel is the disjoint union

M= ] My,
NeN

of all the manifolds of motions My of a system of N massless relativistic particles in the
vessel, for all possible values of N € N. For N = 0 the manifold M is reduced to a sin-
gleton with, as Liouville measure, the measure which takes the value 1 on the only non
empty part of that manifold (the whole manifold M;). Moreover, since any photon cannot
be distinguished from any other photon, two motions of the system with the same num-
ber N of massless particles which only differ by the labelling of these particles must be
considered as identical. Souriau considers too that since the number N of photons freely

1
adjusts itself, the value of the parameter b = T must, at thermodynamic equilibrium, be

the same in all parts My of the system, N € N. He uses too the fact that a photon can have
two different states of (circular) polarization. With these assumptions the value at any b
of the partition function of the system is

e f1env\Y 167V
P(b) :NZ_"OM (—c3b3 ) = exp (—c3b3 ) :

The number N of photons in the vessel at thermodynamic equilibrium is a stochastic
function which takes the value n with the probability

1 /167V\" 167V
Probability ([N = n]) = <3—7rb3) exp (—3—23) .
c c

" n!

The expression of the partition function P allows the calculation of the internal energy,
the entropy and all other thermodynamic functions of the system. However, the formula
so obtained for the distribution of photons of various energies at a given temperature does
not agree with the law, in very good agreement with experiments, obtained by Max Planck
(1858-1947) in 1900. An assembly of photons in thermodynamic equilibrium evidently
cannot be described as a classical Hamiltonian system. This fact played an important part
for the development of Quantum Mechanics.

6.3.5 Specific heat of solids

The motion of a one-dimensional harmonic oscillator can be described by a Hamiltonian

system with, as Hamiltonian,
P’ uq

H(P,CI):%'FT-

36



The idea that the heat energy of a solid comes from the small vibrations, at a microscopic
scale, of its constitutive atoms, lead physicists to attempt to mathematically describe a
solid as an assembly of a large number N of three-dimensional harmonic oscillators. By
dealing separately with each proper oscillation mode, the solid can even be described as
an assembly of 3N one-dimensional harmonic oscillators. Exanges of energy between
these oscillators is allowed by the existence of small couplings between them. However,
for the determination of the thermodynamic equilibria of the solid we will, as in the pre-
vious section for ideal gases, consider as negligible the energy of interactions between the
oscillators. We therefore take for Hamiltonian of the solid

H= Z(Zm, Hid: )

The value of the paritition function P, for any b > 0, is

3N Pi2 ,uiqiz 3N 3N 3N
P(b) = /RéNexp —b; (Zmi + > ) 111 dpidg;) H( )b

where
.le
v.
’ 27r
is the frequency of the i-th harmonic oscillator.
The internal energy of the solid is
dlogP(b) 3N
b b

We observe that it only depends on the the temperature and on the number of atoms in

E(b) = —

1
the solid, not on the frequencies v; of the harmonic oscillators. With b = T this result is

in agreement with the empirical law for the specific heat of solids discovered in 1819 by
the French scientists Pierre Louis Dulong (1785-1838) and Alexis Thérese Petit (1791-
1820). This law is in good agreement with experiments at high temperature only. That fact
was an important argument for a treatment of the specific heat of solids in the framework
of Quantum Mechanics.

7 Generalization for Hamiltonian actions

7.1 Generalized Gibbs states

In his book [56] and in several papers [54, 57, 58], J.-M. Souriau extends the concept of a
Gibbs state for a Hamiltonian action of a Lie group G on a symplectic manifold (M, ).
Usual Gibbs states defined in section 6 for a smooth Hamiltonian H on a symplectic
manifold (M, @) appear as special cases, in which the Lie group is a one-parameter group.
If the symplectic manifold (M, ) is the phase space of the Hamiltonian system, that one-
parameter group, whose parameter is the time z, is the group of evolution, as a function
of time, of the state of the system, starting from its state at some arbitrarily chosen initial
time #9. If (M, ®) is the symplectic manifold of all the motions of the system, that one-
parameter group, whose parameter is areal T € R, is the transformation group which maps
one motion of the system with some initial state at time #y onto the motion of the system
with the same initial state at another time (fo + 7). We discuss below this generalization.
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7.1.1 Notations and conventions

In this section, @ : G x M — M is a Hamiltonian action (for example on the left) of a Lie
group G on a symplectic manifold (M, ). We denote by G the Lie algebra of G, by G*
its dual space and by J : M — G* a momentum map of the action .

7.1.2 Definitions. A generalized temperature is an element b € G such that the integral in
the right hand side of the equality

P(b) = /M exp(— (7,6))dAe

is normally convergent, which means that there exists an open neighbourhood U in § and
a positive-valued function f : M — R™, integrable on M with respect to the Liouville
measure A, satisfying, for any b’ € U, exp(—(J, b)) < f.

The partition function associated to the momentum map J is the function P, defined on
the set Q of generalized temperatures, with values in R™, which associates to each b € Q
the real P(b) defined by the above equality.

The generalized Gibbs state associated to a generalized temperature b € € is the prob-
ability measure on M with density, with respect to the Liouville measure A,

1
Pp = % exp(—(J,b)) .
7.1.3 Proposition. With the notations and assumptions of 7.1.1 and 7.1.2, let us assume
in addition that the set Q of generalized temperatures is not empty. Then € is a convex
open subset of G which does not depend on the choice of the momentum map J, and the
partition function P : Q — R is a differentiable function of class C* whose differentials
of all orders can be calculated by differentiations with respect to generalized temperature
b of the integral expressing P(b), under the integration sign [y,.

Proof. Let us follow the proof given by Souriau in [56]. Definitions 7.1.2 prove that when
b € G is a generalized temperature, there exists an open neighbourhood U of b all of whose
elements are generalized temperatures. The set Q of generalized temperatures is therefore
an open subset of G. If we replace the momentum map J by J + u, where u is a constant
element in G*, the function exp(—(J,b)) is replaced by exp(—(u,b)) exp(—(J, b)), which
is normally integrable on M if and only if the function exp(—(J,b)) itself is normally
integrable on M. Therefore the set Q does not depend on the choice of J.

Let by and b be two distinct elements in Q, Uy and U be open neighbourhoods, respec-
tively of by and of by, fy and f; be positive valued functions defined on M, integrable with
respect to the Liouville measure A, satisfying exp(—(J,b()) < fo and exp(—(J,b})) <
fi for any by € Up and b € Uy. Forany A € [0,1], Uy = {(1—A)by+Ab} | by € Uy, b} €
U, } is an open neighbourhood of by = (1 —A4)bg+ Aby, the function f} = (1—A4) fo+Afi
is integrable on M with respect to the Liouville measure and satisfies, for each b;l e Uy,
exp(—(J,b})) < fi. Therefore by € Q, which proves that & is convex.

The k-th differential of exp(—(J,b)) with respect to b is

DF (exp(—(],b>)> = (—l)kJ®kexp(—<J,b>) .

Let us choose a norm on G. We define a norm on the space £¥(G,R) of k-multilinear
forms on § by setting, for each & € £(G,R),

1€l = sup E(X1,. . X)) -
Xi€§, |IXil|=1, 1<i<k
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Let b € Q ce a generalized temperature, € > 0 be a constant and f be a positive valued
function integrable on M with respect to the measure A4 which satisfies exp (— (J,b' )) <f

. . &
for any b’ € G such that |p’ — b|| < €. Let b” € § satisfying ||b” —b|| < 5 Forany X & S
satisfying || X|| =1,

0.0 < e (53]

therefore

[(J,X) \"exp(—(J, b)) < (%k)kexp (—<J, b+ §x>) ,

€
where the sign =+ is chosen in such a way that —(J, =¢X) > 0. Since ||b—b" + §X|| <eg,
we have

[ (o) [ <

which proves that for any integer k£ > 0O the k-th differential, with respect to b, of the
function exp(—(J , b)) is normally integrable on M with respect to the Liouville measure
Aw-. The partition function P is therefore of class C* on Q, and its differerentials of all
orders can be calculated by differentiation under the integration sign [,,. U

The following Proposition generalizes 6.1.11.

7.1.4 Proposition. Assumptions and notations are the same as in 7.1.3. Let b € Q be a
generalized temperature. The integral in the right hand side of the below equality, which
defines the mean value of the momentum J for the generalized Gibbs state associated to
b,

1
Eo,(J)=——= [ J —(J,b))dA
Pb( ) P(b)/[[/[ exp( < ) >) (0]
converges. For any other probability density py such that Ep,(J) = Ep,(J), we have

s(p1) < s(Ps)
and the equality s(p1) = s(pp) holds if and only if p1 = pp.

Proof. The convergence of the integral defining €, (/) follows from 7.1.3. The remaining
of the proof is the same as that of Proposition 6.1.11. U

7.1.5 Proposition. Assumptions and notations are the same as in 7.1.3. Let b € Q be a
generalized temperature. The generalized Gibbs state associated to b remains invariant
under the restriction of the Hamiltonian action ® to the one-parameter subgroup of G
generated by b, {exp(tb) ‘ TeR}.

Proof. The orbits of the action on M of the subgroup {exp(rb) } T E R} of G are the
integral curves of the Hamiltonian vector field whose Hamiltonian is (J,b), which of
course is constant on each of these curves. Therefore the proof of 6.1.12 is valid for that
subgroup. L
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7.2 Generalized thermodynamic functions

7.2.1 Proposition. Let @ : G x M — M be a Hamiltonian action of a Lie group G on a
symplectic manifold (M, ®), such that the set Q of generalized temperatures (7.1.2) is not
empty. For each generalized temperature b € Q, let

Ey(b) = €,(J) = %/MJexp(—(J,b))dlw,
S(b) = s(pp) = /Mpblog <é) dAw,

where py, is the probability density of the generalized Gibbs state associated to b (7.1.2).
The functions Ej : Q — G* and S : Q — R so defined, called, respectively, the mean value
of J and the entropy in the generalized Gibbs state associated to b, are differentiable
of class C* and can be expressed in terms of the partition function P : Q — R or its
logarithm log P : Q — R and their differentials (7.1.2) as follows,

Ey(b) = —ﬁm@) — _D(logP)(b).

S(b) = (logP)(b) + <E_](b),b> = (logP)(b) — <D(10gP)(b),b>.

For each b € Q, the differential at b of the map E; (which is a linear map defined on G,
with values in its dual G*) is given by

(DE;(b)(Y),Z) = (E;(b),Y){E;(b),Z) — &, ({J,Y){J,Z)), withY andZ € G,

where we have written, as in 6.1.8,

&0, ((.Y)(1,2)) :ﬁ/M<J,Y><J,Z>exp(—(J,b))d),a,.

At each b € Q, the differential of the entropy function S (7.1.4), which is a linear map
defined on G, with values in R, in other words an element of G, is given by

(DS(b),Y) =(DE;(b)(Y),b), Y€S.

Proof. Proposition 7.1.3 asserts that the partition function P is of class C* and that its
differentials of all orders can be calculated by differentiation under the integration sign
Jur- The expressions of E; and S easily follow, show that these functions are of class C*
and easily allow the determination of their differentials. L

7.2.2 Corollary. With the same assumptions and notations as those in Proposition 7.2.1,
foranyb € QandY € G,

(DE;(b)(Y),Y) = ——— /M (J—Es(b),Y) exp(—(J,b))dAo.

We always have (DE;(b)(Y),Y) < 0, and when (J,Y) is not a constant function on
M, i.e., when the subgroup of G generated by the flow of the Hamiltonian vector field

with (J,Y) as Hamiltonian acts effectively on the symplectic manifold (M, ®), we have
(DE;(b)(Y),Y) < 0.
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Proof. The above equality follows from the well known result in Probability theory al-
ready used in the proof of 6.2.2. We observe that (DE;(b)(Y),Y) is the opposite of the
square of the standard deviation of the stochastic variable (J,Y), for the probability mea-
sure of density p, on M with respect to the Liouville measure Ay, i.e., for the generalized
Gibbs state associated to b. That quantity is therefore always < 0, and is equal to O if and
only if (J,Y) is a constant function on M. O

7.2.3 Theorem. With the same assumptions and notations as those in Proposition 7.2.1,
we assume in addition that the Hamiltonian action ® of the Lie group G on the symplectic
manifold (M, ®) is effective, i.e., such that for any X € G\{0} the function (J,X) is not
constant on M. The map Ej then is a diffeomorphism of the open subset of generalized
temperatures  C G onto an open subset Q* C G*.

Proof. Since, by 7.2.2, for each b € Q and Y € §\{0} we have (DE;(b)(Y),Y) <0, for
any b € Q the differential DE; of Ej is invertible. The map E;, which is known to be
differentiable of class C*, is therefore open. To prove that this map is a diffeomorphism
onto an open subset of G*, it is enough to prove that it is injective. Let us asssume that
there exists two elements by and by € Q, by — by # 0, such that E;(by) = Ej(bp). Since Q
is convex (7.1.3), b(A) = (1 —A)bg+ Ab; € Q forany A € [0, 1], and we have

1
0= (E;(by) — Ey(by), b — bo) = /0 <DE, (b(A)) (b1 — bo), by — b0>d7L .

The integrated function in the right hand side of this double equality is continuous and
by 7.2.2 its values are everywhere < 0 on [0, 1]. Its integral therefore cannot be equal
to 0. We have proven that E;(b;) cannot be equal to Ej(by). The map E; therefore is
injective. L

7.2.4 Remarks.
1. With the assumptions of 7.2.3 since, for any b € Q, E;(b) = —D(logP)(b), we have,
forany ¥ € G\{0}

D*(logP)(b)(Y,Y) = —(DE;(b)(Y),Y) > 0.

The second differential of log P therefore is, at each b € Q, a symmetric definite positive
bilinear form. Frédéric Barbaresco [7] ha shown that it is linked to the Fisher metric
which appers in Information theory.
2. The equality

= (D(—1logP)(b),b) — (—logP)(b

expresses the fact that the functions —logP : Q — R and So EJ_l : Q" — R are Legendre
transforms of each other: they are related by the same formula as that which relates, in
Calculus of variations on a smooth manifold N, an hyper-regular Lagrangian L : TN — R
and the associated Hamiltonian H : T*N — R. In that setting the Legendre map £ :
TN — T*N is the vertical differential of the Lagrangian L, and its inverse is the vertical
differential of the Hamiltonian. Here the Legendre map is E; : Q — QF, equal to the
differential D(—1log P) of the function — log P, which plays the part of the Lagrangian. Its
inverse E; ' : Q* — Q is equal to the differential D(So E;~!) of the function So E; !,
which plays the part of the Hamiltonian:

E;=D(—logP), (E;)"'=D(SoE;™").
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Legendre transforms were used in Thermodynamics by the French scientist Frangois Massieu
in his very early works [40, 41], more systematically presented in [42], in which he in-
troduced his characteristic functions (today called thermodynamic potentials) allowing
the determination of all the thermodynamic functions of a physical system by partial
derivations of a suitably chosen characteristic function. For a modern presentation of that
subject the reader is referred to [4] and [11], chapter 5, pp. 131-152.

The momentum map J of the Hamiltonian action ® is not uniquely determined: for any
constant 4 € §*, J; =J+ U too is a momentum map for ®. The following proposition
indicates how the generalized thermodynamic functions P, E; and S change when J is
replaced by Jj.

7.2.5 Proposition. With the same assumptions and notations as those in Proposition
7.2.1, let i € G* be a constant. When the momentum map J is replaced by J| = J + U, the
open subset Q of G remains unchanged, while the generalized thermodynamic functions
P, Ej and S, are replaced, respectively, by Py, E;, and Sy, given by

Pi(b) = exp(~(.b))P(b).  Ey,(b) = E(b) +11. Si(b)=S(b).

The Gibbs satistical state and its density p, with respect to the Liouville measure Ay
remain unchanged.

Proof. We have
exp(—(/+ b)) = exp(—(u,b)) exp(—(J,b)).
The indicated results follow by easy calculations. O

The following proposition indicates how the generalized thermodynamic functions P,
Ej and S vary along orbits of the adjoint action of the Lie group G on its Lie algebra G.

7.2.6 Proposition. The assumptions and notations are the same as those in Proposition
7.2.1. The open subset Q of G is an union of orbits of the adjoint action of G on G. In
other words, for each b € Q and each g € G, Adgb € Q. Moreover, let 0 : G — G* be the
symplectic cocycle of G for the coadjoin action of G on G* such that, for any g € G,

Jod, = Adz,,l oJ+06(g).
Then for each b € Q and each g € G

P(Adgh) = exp((@(g’l),b>)P(b) - exp(—<Ad; 8(g),b>)P(b) ,
Ej(Adgb) = Ad,_ E;(D) +6(g),
S(Adyb) = S(b).
Proof. We have
P(Adyb) = /M exp(—(J,Adgb))dAe = /M exp(—(Ad;J,b))dAe
- /Mexp(—<Jo<I>g1 ~0(s7"b)) dko

- exp(<6(g’1),b>)P(b) - exp(—<Adj; 6(g),b>)P(b) ,

since B(g™!) = — Ady 0(g). By using 7.2.1 and 7.1.4, the other results easily follow. [
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7.2.7 Remark. The equality
E;j(Adyb) = Ad;1 E;(b)+6(g)

means that the map E; : Q — G* is equivariant with respect to the adjoint action of G on
the open subset Q of its Lie algebra G and its affine action on the left on G*

(8,8) ~ Ad, 15 +6(g), g€G, Seg".

7.2.8 Proposition. The assumptions and notations are the same as those in Proposition
7.2.1. For each b € Q and each X € G, we have

DE;(b)([X,b]) = —ady E;(b) + O(X),
where ® =T,0 : G — G* is the 1-cocycle of the Lie algebra G associated to the 1-cocycle
0 of the Lie group G.

Proof. Let us set g = exp(7X) in the first equality in 7.2.6, derive that equality with
respect to 7, and evaluate the result at T = 0. We obtain

DP(b)([X,b]) = —P(b){O(X),b).

Since, by the first equality of 7.2.1, DP(b) = —P(b)E;(b), the first stated equality follows.
Let us now set g = exp(7X) in the second equality in 7.2.6, derive that equality with
respect to T, and evaluate the result at T = 0. We obtain the second equality stated. L

7.2.9 Corollary. With the assumptions and notations of 7.2.8, let us define, for each b € €,
a linear map ®p, : G — G* by setting

®,(X) = O(X) — ad Ey(b).

The map Oy, is a symplectic 1-cocycle of the Lie algebra G for the coadjoint representa-
tion, which satisfies
®,(b) =0.

Moreover if we replace the momentum map J by Jy = J + U, with © € G* constant, the
1-cocycle ®y, remains unchanged.

Proof. For X,Y and Z in G, since O is a 1-cocycle, Z meaning a sum over circular
cire(X,Y.Z)
permutations of X, Y and Z, using the Jacobi identity in G, we have

Z <®b<X)7[Y7Z]>: Z <_ad§(EJ<b)v[sz]>

cire(X,Y,Z) cire(X,Y,Z)

= Y (-EW®),[x[r.2)])

cire(X,Y,Z)
=0.

The linear map Oy, is therefore a 1 cocycle, even a symplectic 1-cocycle since for all X
andY € G, (0,(X),Y) = —(0,(Y),X).
Using the first equality stated in 7.2.8, we have for any X € §
(®,(b),X) = (O(b) —ad; E;(b),X ) = —(O(X),b) + (E;(b),[X,b]) = 0.
If we replace J by J; = J + u, the map X — ©O(X) is replaced by X — 0;(X) = 0O(X) +
ady 1 and E;(b) by Ej, (b) = E;(b) + u, therefore ®, remains unchanged. O
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The following lemma will allow us to define, for each b € Q, a remarkable symmetric
bilinear form on the vector subspace [b, ] = {[b,X];X € G} of the Lie algebra §.

7.2.10 Lemma. Let E be a 1-cocycle of a finite-dimensional Lie algebra G for the coad-
joint representation. For each b € kerE, let Fj, =[G, b] be the set of elements X € G which
can be written X = [X1,b] for some X| € G. Then Fy is a vector subspace of G, and the
value of the right hand side of the equality

Ih(X,Y)=(E(X1),Y), withX;€SG,X=[X\,b|€F,,Y E€F,

depends only on X and Y, not on the choice of X| € G such that X = [X,b]. That equality
defines a bilinear form 'y, on F, which is symmetric, i.e. satisfies

Ih(X,Y)=TW(Y,X) forallX andY € F.

Proof. Let X; and X| € G be such that [X;,b] = [X{,b] = X. Let Y} € G be such that
[Y1,b] =Y. We have

(E(X1 —X1),Y) = (E(X1 —X{), [1,b])
<3 ), b, X1 —X{]) — (E(b), [X1 — X[, Y1])

since (b) = 0 and [b,X; —X;] = 0. We have shown that (E(X;),Y) = (E(X{),Y ). There-
fore I'y, is a bilinear form on F,. Similarly

(E2(X1),Y) =(E(X1),[Y1,b]) = —(E(1),[b, X1]) — (E(b), [X1,11]) = (E(1).X),
which proves that I';, is symmetric. O

7.2.11 Theorem. The assumptions and notations are the same as those in Proposition
7.2.1. For each b € Q, there exists on the vector subspace F, = [G,b] of elements X € G
which can be written X = [X1,b| for some X\ € G, a symmetric negative bilinear form Ty,
given by

Iy(X,Y)=(Oy(X,),Y), withX,€G,X=[X;,b|€F,,YEF,,
where Op 1 G — G* is the symplectic 1-cocycle defined in 7.2.9.

Proof. We have seen in 7.2.9 that b € ker®,,. The fact that the equality given in the
statement above defines indeed a symmetric bilinear form on F;, directly follows from
Lemma 7.2.10. We only have to prove that this symmetric bilinear form is negative. Let
X € F, and X; € G such that X = [X],b]. Using 7.2.8 and 7.2.2, we have

[H(X,X)= <®b X1),[X1,b > <® X1) —aXm EJ(b),[X],b]>:<DEj(b)[X|,b],[X|,b]>
<O0.
The symmetric bilinear form I';, on Fj, is therefore negative. L

7.2.12 Remarks. Let b € Q be a generalized temperature.
1. The symmetric negative bilinear form I';, defined in 7.2.11 is the restriction to the
vector subspace Fj, of G of the opposite of the symmetric positive bilinear form on G
defined in 7.2.2. We have seen that when he action ® of the Lie group G on the symplectic
manifold (M, @) is effective, that form is non-degenerate.

2. The vector subspace I', of G made by elements X € G which can be written as X =
[X1,b], with X; € G, has a very simple geometric interpretation: it is the set of directions
tangent at b to the adjoint orbit of that point. Therefore when the action @ is effective,
the bilinear forms —I',, for all elements b of an adjoint orbit contained in €, determine a
Riemannian metric on that orbit.
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7.3 Examples of generalized Gibbs states
7.3.1 Action of the group of rotations on a sphere

The symplectic manifold (M, ®) considered here is the two-dimensional sphere of radius
R centered at the origin O of a three-dimensional oriented Euclidean vector space ﬁ,
equipped with its area element as symplectic form. The group G of rotations around the
origin (isomorphic to SO(3)) acts on the sphere M by a Hamiltonian action. The Lie
algebra G of G _San be identified with E, the fundamental vector field on M associated
toanelement b in G = ﬁ being the vector field on M whose value at a point m € M is

— =

given by the vector product b x Om. The dual G* of G will be too identified with f, the
coupling by duality being given by the Euclidean scalar product. The momentum map
J:M — G* = E is given by

J(m):—RO—n>1, meM.

_>
Therefore, forany b € G = ﬁ,

(J(m), ) =—ROm- b .

— —
Let b be any element in § = E . To calculate the partition function P( b ) we choose an

, e — R
orthonormal basis (e_;,e_;,?g) of E such that b = |5 ||eZ, with || & || € R, and we use
angular coordinates (¢, 0) on the sphere M. The coordinates of a point m € M are

x=RcosOcos@p, y=RcosOsin@, z=Rsinb.

We have

2n /2
P(?):/ (/ / Rzexp(RH?Hsinede) d@:%sh(zenﬁn).
0 —n/2 b

The probability density (with respect to the natural area measure on the sphere M) of the
generalized Gibbs state associated to b is

1 — —
pp(m)=——=—exp(Om-b), meM.
P(b)
_>
. . . — Rb
We observe that p, reaches its maximal value at the point m € M such that Om = ﬂ
b

and its minimal value at the diametrally opposed point.

7.3.2 The Galilean group, its Lie algebra and its actions

In view of the presentation, made below, of some physically meaningful generalized
Gibbs states for Hamiltonian actions of subgroups of the Galilean group, we recall in
this section some notions about the space-time of classical (non-relativistic) Mechanics,
the Galilean group, its Lie algebra and its Hamiltonian actions. The interested reader will
find a much more detailed treatment on these subjects in the book by Souriau [55] or in the
recent book by G. de Saxcé and C. Vallée [52]. The paper [51] presents a nice application
of Galilean invariance in Thermodynamics.
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The space-time of classical Mechanics is a four-dimensional real affine space which,
once an inertial reference frame, units of length and time, orthonormal bases of space
and time are chosen, can be identified with R* = R3 x R (coordinates x, y, z, t). The
first three coordinates x, y and z can be considered as the three components of a vector
7 € R3, therefore an element of space-time can be denoted by (7,1‘). However, as the
action of the Galilean group will show, the splitting of space-time into space and time
is not uniquely determined, it depends on the choice of an inertial reference frame. In
classical Mechanics, there exists an absolute time, but no absolute space. There exists
instead a space (which is an Euclidean affine three-dimensional space) for each value of
the time. The spaces for two distinct values of the time should be considered as disjoint.

The space-time being identified with R? x R as explained above, the Galilean group G
can be identified with the set of matrices of the form

AT d .
0 1 e|, WithAeSO@3), b andd €R?, e R, (%)
0 0 1

the vector space R3 being oriented and endowed with its usual Euclidean structure, the
matrix A € SO(3) acting on it.

The action of the Galilean group G on space-time, identified as indicated above with
R3 x R, is the affine action

7

— —
A D d\ (7 AT +1b+d
r =10 1 e | = t+e
1 0 0 1 1 1
The Lie algebra G of the Galilean group G can be identified with the space of matrices of
the form - SN
(o) p o N .
0 0 ¢], with??,ﬁand?eR,seR. ()
0 0 O

We have denoted by ](3) the 3 x 3 skew-symmetric matrix

0 -0 o
j(ﬁ) =| o 0 —o
-y, O 0

The matrix j (3) is an element in the Lie algebra so(3), and its action on a vector 77 € R3
is given by the vector product

(BT =8 x7.

Let us consider a mechanical system made by a point particle of mass m whose position
and velocity at time ¢, in the reference frame allowing the identification of space-time
with R3 x R, are the vectors 7 and V € R3. The action of an element of the Galilean
group on 7,V and f can be written as

— — —
7V A D d\ (7 AT +1D+d AV+D
t 11—=10 1 e t 1| = t+e 1
1 0 0 0 1 1 0 1 0
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Souriau has shown in his book [55] that this action is Hamiltonian, with the map J, defined
on the evolution space of the particle, with value in the dual §* of the Lie algebra G of the
Galilean group, as momentum map

H7 0.7 m) :m(7 T TV T %mz) .

o - =
i) B 6 . o . .
Let b = 0 0 & | beanelementin G. Its coupling with J(?,t, V,m) € G*is
0 0 O

—_

given by the formula

U7 m) by =m(B (P x ) (P —i7) B+ 78 5 V]%).

7.3.3 One-parameter subgroups of the Galilean group

In his book [55], J.-M. Souriau has shown that when the Lie group action @ is the action of
the full Galilean group on the space of motions of an isolated mechanical system, the open
subset Q of the Lie algebra G of the Galilean group made by generalized temperatures
(7.1.2) is empty. In other words, generalized Gibbs states of the full Galilean group do
not exist. However, generalized Gibbs states for one-parameter subgroups of the Galilean
group do exist which have an interesting physical meaning.

Let us consider the element b of G given by formula (x) of 7.3.2, and assume that € # 0.
The one-parameter subgroup G of the Galilean group generated by b is the set of matrices
exp(th), with T € R. We have

A(r) B(r) d(v)
exp(th)=| 0 1 T |,
0 0 1

with

d()= (i] (@) 1) 5 (iz—'f(ﬂm)“) B

with the usual convention that (j (3)) ¥ is the unit matrix.

The physical meaning of this one-parameter subgroup of the Galilean group can be
understood as follows. Let us call fixed the affine Euclidean reference frame of space
(O,e_x>,e_y>,e_z>) used to represent, at time ¢t = 0, a point in space by a vector 7 or by

. t . .
its three components x, y and z. Let us set T = e For each time ¢t € R, the action

t
of A(T) =A (E> maps the fixed reference frame (O, ey, e_y>, ¢2) onto another affine Eu-

clidean reference frame (0(;),2(0,?;(0,?;(:)), which we call the moving reference
frame. The velocity and the acceleration of the relative motion of the moving reference

47



frame with respect to the fixed reference frame is given, at time ¢ = 0, by the fundamental
vector field associated to the element b of the Lie algebra G of the Galilean group: we see
that each point in space has a motion composed of a rotation around the axis through O

el
€

parallel to 8, at an angular velocity

, and simultaneously a uniformly accelerated
_>

motion of translation at an initial velocity — and acceleration E . At time , the velocity
and acceleration of the moving reference frame with respect to 1ts 1nstantaneous position

at that time can be described in a similar manner, but instead of O, 3 [3 and 5 we must

t
use the corresponding transformed elements by the action of A(7) = A (E) .

7.3.4 A gas contained in a moving vessel

We consider a mechanical system made by a gas of N point particles, indexed by i €
{1,2,...,N}, contained in a vessel with rigid, undeformable walls, whose motion in space
is given by the action of the one-parameter subgroup G of the Galilean group made by

t
the A (E>’ with # € R, above described. We denote by m;, 77 (¢) and v{(¢) the mass,

position vector and velocity vector, respectively, of the i-th particle at time . Since the
motion of the vessel containing the gas is precisely given by the action of Gy, the bound-
ary conditions imposed to the system are invariant by that action, which leaves invariant
the evolution space of the mechanical system, is Hamiltonian and projects onto a Hamilto-
nian action of G on the symplectic manifold of motions of the system. We can therefore
consider the generalized Gibbs states of the system, as discussed in 7.1. We must evaluate
the momentum map J of that action and its coupling with the element b € G. As in 6.3.1
we will neglect, for that evaluation, the contributions of the collisions of the particles be-
tween themselves and with the walls of the vessel. The momentum map can therefore be
evaluated as if all particles were free, and its coupling (J,b) with b is the sum Y% | (J;, )
of the momentum map J; of the i-th particle, considered as free, with 5. We have

<Ji(7i>,t,7i>,mi),b>:mi(3'<7i>><7i>)_(7i>_”i) B+i- 5__” H28>'

Following Souriau [55], chapter IV, pages 299-303, we observe that (J;, b) is invariant by
the action of G|. We can therefore define 17), fo and \% by setting

o 1 | =exp (——b) r 1
10 € 10

and write
<Ji(7i>7t77i>7mi)7b> = <Ji(%7t07%7mi)7b> :

The vectors 7;4 and v;( have a clear physical meaning: they are the vectors 7/ and
v/ as seen by an observer moving with the moving affine Euclidean reference frame
(O(t),ex(t), ey (1), e:(t)). Moreover, as can be easily verified, f) = 0 of course. We

therefore have

— = 1
<J(rl7t7vl7ml b> ml(ﬁ (IOX 10) % ﬁ+m6_5"m”28>
= — 1
= mi(T5 (@ x 7o+ &)~ B 5 |IPe)
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where we have used the well known property of the mixed product
@ - (76 % Vi) = Vi (@ x 7).

Let us set

ﬁ*:%(ﬁx%—i—?).

Using % — ﬁ* and 7* instead of %, we can write

_)
(T, 5 mi) b) = mie (—% [ O S |!7*H2> .
e 2
%

We observe that the vector ﬁ* only depends on €, B, o , which are constants once the
element b € G is chosen, and of 77§, not on v;¢. It has a clear physical meaning: it is the
value of the velocity of the moving affine reference frame with respect to the fixed affine
reference frame, at point 7:( seen by an observer linked to the moving reference frame.
Therefore the vector Wi = v — 7* is the relative velocity of the i-th particle with respect
to the moving affine reference frame, seen by an observer linked to the moving reference
frame.

The three components of 774 and the three components of ﬁ — m;w;(, make a system
of Darboux coordinates on the six-dimensional symplectic manilold (M;, ®;) of motions
of the i-th particle. With a slight abuse of notations, we can consider the momentum map
J; as defined on the space of motions of the i-th particle, instead of being defined on the
evolution space of this particle, and write

1
Zmi

HﬂHermifi(%)) P = miwiy = mi(— U*), (%)

The above equality (x) is well suited for the determination of generalized Gibbs states
of the system. Let k € R be a real. For each i € {1,...,N}, the integral on the manifold
of motions of the i-th particle, with respect to the Liouville measure A, of the function
exp(—(]i,kb>), depending on kb as a parameter, is normally convergent in the sense of
7.1.2 if and only if k& < 0. It means that the set of generalized temperatures, for the
action of the one-dimensional group G; on the manifold of motions of the i-th particle, is
the half-line

Q= {kb | k € R such that ke <0},

contained in the Lie algebra G; of G|. By replacing eventually b by its opposite, which
does not change the one-dimensional group G, we can arrange things in such a way that
€ < 0. The matrix b itself is then a generalized temperature, for which we can calculate
the partition function and all the generalized thermodynamic functions of the gas made
by the i-th particle, for all i € {1,...,N}. We have

1
Pi(b)

E(b):/M'exp(—<J,~,b>)d7Lwi, E;(b) = /A/[‘J,-exp(—(J,-,b))dlwi.
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The generalized Gibbs state determined by b (7.1.2) has the smooth density, with respect
to the Liouville measure Hi-vzl A, on the symplectic manifold of motions Hi.\': | (M, o),

N
p(4) =TTpi0). with pi(5) = %exp(—wb» -

The partition function, whose expression is

can be used, with the help of the formulae given in 7.2, to determine all the generalized
thermodynamic functions of the gas in a generalized Gibbs state.

7.3.5 Remarks.
1. The physical meaning of the parameter € which appears in the expression of the
matrix b is clearly apparent in the above expression (k) of (J;,b):
1
T’
T being the absolute temperature and k the Boltzmann’s constant.

£=—

2. The same expression (x) above shows that the relative motion of the gas with re-
spect to the moving vessel in which it is contained, seen by an observer linked to that
moving vessel, is described by a Hamiltonian system in which the kinetic and potential

1
energies of the i-th particle are, respectively, - 76| and m;f;(7;3). This result can be
m

obtained in another way: by deriving the Hamiltonian which governs the relative motion
of a mechanical system with respect to a moving frame, as used by Jacobi [20] to deter-
mine the famous Jacobi integral of the restricted circular three-body problem (in which
two big planets move on concentric circular orbits around their common center of mass,
and a third planet of negligible mass moves in the gravitational field created by the two
big planets).

3. The generalized Gibbs state of the system imposes to the various parts of the system,
. . 1 .
i.e., to the various particles, to be at the same temperature 7 = e and to be statistically

at rest in the same moving reference frame.

7.3.6 Three examples

_>
1. Letusset @ =0 and B = 0. The motion of the moving vessel containing the gas
(iv>ith respect to the so called fixed reference frame) is a translation at a constant velocity

- The function f;(r;3) is then a constant. In the moving reference frame, which is

an inertial frame, we recover the thermodynamic equilibrium state of a monoatomic gas
discussed in 6.3.1.

_>
2. Letussetnow & =0and § = 0. The motion of the moving vessel containing the
gas (with respect to the so call_e>d fixed reference frame) is now an uniformly accelerated

translation, with acceleration _[2 . The function f;(7;4) now is
B
N =
fi(rio) =Ti0- e
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In the moving reference frame, which is no more inertial, we recgver the thermodynamic

p

equilibrium state of a monoatomic gas in a gravity field ? = discussed in 6.3.2.

_)
3. Let us now set & = a)e_z>, B =0 and ? = 0. The motion of the moving vessel
containing the gas (with respect to the so called fixed reference frame) is now a rotation

around the coordinate z axis at a constant angular velocity px The function f;(774) is now

o
F) = 525 122 < T2,
The length A = || &2 x ;7)|| is the distance between the i-th particle and the axis of rotation

. . . —1
of the moving frame (the coordinate z axis). Moreover, we have seen that € = T There-

fore in the generalized Gibbs state, the probability density p;(b) of presence of the i-th
particle in its symplectic manifold of motion M;, @;, with respect to the Liouville measure
)ua)i, is

1 ;)2
Pib) = 55 exp(—100)) = Constant-exp (—5 L+ g (2) )

Pi(b) 2mikT 2kT \ &

This formula describes the behaviour of a gas made of point particles of various masses
in a centrifuge rotating at a constant angular velocity E: the heavier particles concentrate
farther from the rotation axis than the lighter ones.

7.3.7 Other applications of generalized Gibbs states

Applications of generalized Gibbs states in Thermodynamics of Continua, with the use of
affine tensors, are presented in the papers by G. de Saxcé [49, 50].

Several applications of generalized Gibbs states of subgroups of the Poincaré group
were considered by J.-M. Souriau. For example, he presents in his book [55], chapter 1V,
page 308, a generalized Gibbs state which describes the behaviour of a gas in a relativistic
centrifuge, and in his papers [56, 57], very nice applications of such generalized Gibbs
states in Cosmology.
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