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Abstract

I present in this paper some tools in Symplectic and Poisson Geometry in view of their

applications in Geometric Mechanics and Mathematical Physics. After a short discussion

of the Lagrangian an Hamiltonian formalisms, including the use of symmetry groups,

and a presentation of the Tulczyjew’s isomorphisms (which explain some aspects of the

relations between these formalisms), I explain the concept of manifold of motions of a

mechanical system and its use, due to J.-M. Souriau, in Statistical Mechanics and Ther-

modynamics. The generalization of the notion of thermodynamic equilibrium in which

the one-dimensional group of time translations is replaced by a multi-dimensional, maybe

non-commutative Lie group, is discussed and examples of applications in Physics are

given.
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In memory of Jean-Marie Souriau (1922–2012)

1 Introduction

1.1 Contents of the paper, sources and further reading

This paper presents tools in Symplectic and Poisson Geometry in view of their applica-

tion in Geometric Mechanics and Mathematical Physics. The Lagrangian formalism and

symmetries of Lagrangian systems are discussed in Sections 2 and 3, the Hamiltonian for-

malism and symmetries of Hamiltonian systems in Sections 4 and 5. Section 6 introduces

the concepts of Gibbs state and of thermodynamic equilibrium of a mechanical system,

and presents several examples. For a monoatomic classical ideal gas, eventually in a grav-

ity field, or a monoatomic relativistic gas the Maxwell-Boltzmann and Maxwell-Jüttner

probability distributions are derived. The Dulong and Petit law which governs the specific

heat of solids is obtained. Finally Section 7 presents the generalization of the concept of

Gibbs state, due to Jean-Marie Souriau, in which the group of time translations is replaced

by a (multi-dimensional and eventually non-Abelian) Lie group.

Several books [1, 2, 12, 15, 18, 19, 30, 31, 45, 63] discuss, much more fully than in the

present paper, the contents of Sections 2 to 5. The interested reader is referred to these

books for detailed proofs of results whose proofs are only briefly sketched here. The

recent paper [38] contains detailed proofs of most results presented here in Sections 4 and

5.

The main sources used for Sections 6 and 7 are the book and papers by Jean-Marie

Souriau [55, 54, 56, 57, 58] and the beautiful small book by G. W. Mackey [34].

The Euler-Poincaré equation, which is presented with Lagrangian symmetries at the

end of Section 3, is not really related to symmetries of a Lagrangian system, since the Lie

algebra which acts on the configuration space of the system is not a Lie algebra of sym-

metries of the Lagrangian. Moreover in its intrinsic form that equation uses the concept

of Hamiltonian momentum map presented later, in Section 5. Since the Euler-Poincaré

equation is not used in the following sections, the reader can skip the corresponding sub-

section at his or her first reading.

1.2 Notations

The notations used are more or less those generally used now in Differential Geometry.

The tangent and cotangent bundles to a smooth manifold M are denoted by T M and T ∗M,

respectively, and their canonical projections by τM : T M → M and πM : T ∗M → M. The

vector spaces of k-multivectors and k-forms on M are denoted by Ak(M) and Ωk(M),
respectively, with k ∈ Z and, of course, Ak(M) = {0} and Ωk(M) = {0} if k < 0 and

if k > dimM, k-multivectors and k-forms being skew-symmetric. The exterior algebras

of multivectors and forms of all degrees are denoted by A(M) = ⊕kAk(M) and Ω(M) =
⊕kΩk(M), respectively. The exterior differentiation operator of differential forms on a

smooth manifold M is denoted by d : Ω(M)→Ω(M). The interior product of a differential

form η ∈ Ω(M) by a vector field X ∈ A1(M) is denoted by i(X)η .

Let f : M →N be a smooth map defined on a smooth manifold M, with values in another

smooth manifold N. The pull-back of a form η ∈ Ω(N) by a smooth map f : M → N is

denoted by f ∗η ∈ Ω(M).
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A smooth, time-dependent vector field on the smooth manifold M is a smooth map

X : R×M → T M such that, for each t ∈ R and x ∈ M, X(t,x) ∈ TxM, the vector space

tangent to M at x. When, for any x ∈ M, X(t,x) does not depend on t ∈ R, X is a smooth

vector field in the usual sense, i.e., an element in A1(M). Of course a time-dependent

vector field can be defined on an open subset of R×M instead than on the whole R×M.

It defines a differential equation

dϕ(t)

dt
= X

(
t,ϕ(t)

)
, (∗)

said to be associated to X . The (full) flow of X is the map ΨX , defined on an open subset

of R×R×M, taking its values in M, such that for each t0 ∈R and x0 ∈M the parametrized

curve t 7→ ΨX(t, t0,x0) is the maximal integral curve of (∗) satisfying Ψ(t0, t0,x0) = x0.

When t0 and t ∈ R are fixed, the map x0 7→ ΨX(t, t0,x0) is a diffeomorphism, defined on

an open subset of M (which may be empty) and taking its values in another open subset of

M, denoted by ΨX
(t, t0)

. When X is in fact a vector field in the usual sense (not dependent on

time), ΨX
(t, t0)

only depends on t − t0. Instead of the full flow of X we can use its reduced

flow ΦX , defined on an open subset of R×M and taking its values in M, related to the full

flow ΨX by

ΦX(t,x0) = ΨX(t,0,x0) , ΨX(t, t0,x0) = ΦX(t − t0,x0) .

For each t ∈ R, the map x0 7→ ΦX(t,x0) = ΨX(t,0,x0) is a diffeomorphism, denoted by

ΦX
t , defined on an open subset of M (which may be empty) onto another open subset of

M.

When f : M → N is a smooth map defined on a smooth manifold M, with values in

another smooth manifold N, there exists a smooth map T f : T M → T N called the prolon-

gation of f to vectors, which for each fixed x ∈ M linearly maps TxM into Tf (x)N. When f

is a diffeomorphism of M onto N, T f is an isomorphism of T M onto T N. That property

allows us to define the canonical lifts of a vector field X in A1(M) to the tangent bundle

T M and to the cotangent bundle T ∗M. Indeed, for each t ∈ R, ΦX
t is a diffeomorphism of

an open subset of M onto another open subset of M. Therefore T ΦX
t is a diffeomorphism

of an open subset of T M onto another open subset of T M. It turns out that when t takes

all possible values in R the set of all diffeomorphisms T ΦX
t is the reduced flow of a vector

field X on T M, which is the canonical lift of X to the tangent bundle T M.

Similarly, the transpose (T ΦX
−t)

T of T ΦX
−t is a diffeomorphism of an open subset of the

cotangent bundle T ∗M onto another open subset of T ∗M, and when t takes all possible

values in R the set of all diffeomorphisms (T ΦX
−t)

T is the reduced flow of a vector field

X̂ on T ∗M, which is the canonical lift of X to the cotangent bundle T ∗M.

The canonical lifts of a vector field to the tangent and cotangent bundles are used in

Sections 3 and 5. They can be defined too for time-dependent vector fields.

2 The Lagrangian formalism

2.1 The configuration space and the space of kinematic states

The principles of Mechanics were stated by the great English mathematician Isaac Newton

(1642–1727) in his book Philosophia Naturalis Principia Mathematica published in 1687

[44]. On this basis, a little more than a century later, Joseph Louis Lagrange (1736–1813)
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in his book Mécanique analytique [28] derived the equations (today known as the Euler-

Lagrange equations) which govern the motion of a mechanical system made of any num-

ber of material points or rigid material bodies interacting between them by very general

forces, and eventually submitted to external forces.

In modern mathematical language, these equations are written on the configuration

space and on the space of kinematic states of the considered mechanical system. The

configuration space is a smooth n-dimensional manifold N whose elements are all the

possible configurations of the system (a configuration being the position in space of all

parts of the system). The space of kinematic states is the tangent bundle T N to the con-

figuration space, which is 2n-dimensional. Each element of the space of kinematic states

is a vector tangent to the configuration space at one of its elements, i.e. at a configura-

tion of the mechanical system, which describes the velocity at which this configuration

changes with time. In local coordinates a configuration of the system is determined by

the n coordinates x1, . . . ,xn of a point in N, and a kinematic state by the 2n coordinates

x1, . . . ,xn,v1, . . .vn of a vector tangent to N at some element in N.

2.2 The Euler-Lagrange equations

When the mechanical system is conservative, the Euler-Lagrange equations involve a

single real valued function L called the Lagrangian of the system, defined on the product

of the real line R (spanned by the variable t representing the time) with the manifold T N

of kinematic states of the system. In local coordinates, the Lagrangian L is expressed as a

function of the 2n+1 variables, t,x1, . . . ,xn,v1, . . . ,vn and the Euler-Lagrange equations

have the remarkably simple form

d

dt

(
∂L

∂vi

(
t,x(t),v(t)

))
−

∂L

∂xi

(
t,x(t),v(t)

)
= 0 , 1 ≤ i ≤ n ,

where x(t) stands for x1(t), . . . ,xn(t) and v(t) for v1(t), . . . ,vn(t) with, of course,

vi(t) =
dxi(t)

dt
, 1 ≤ i ≤ n .

2.3 Hamilton’s principle of stationary action

The great Irish mathematician William Rowan Hamilton (1805–1865) observed [16, 17]

that the Euler-Lagrange equations can be obtained by applying the standard techniques of

Calculus of Variations, due to Leonhard Euler (1707–1783) and Joseph Louis Lagrange,

to the action integral1

IL(γ) =

∫ t1

t0

L
(
t,x(t),v(t)

)
dt , with v(t) =

dx(t)

dt
,

where γ : [t0, t1]→ N is a smooth curve in N parametrized by the time t. These equations

express the fact that the action integral IL(γ) is stationary with respect to any smooth

infinitesimal variation of γ with fixed end-points
(
t0,γ(t0)

)
and

(
t1,γ(t1)

)
. This fact is

today called Hamilton’s principle of stationary action. The reader interested in Calculus

of Variations and its applications in Mechanics and Physics is referred to the books [8,

10, 29].

1Lagrange observed that fact before Hamilton, but in the last edition of his book he chose to derive the

Euler-Lagrange equations by application of the principle of virtual works, using a very clever evaluation of

the virtual work of inertial forces for a smooth infinitesimal variation of the motion.
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2.4 The Euler-Cartan theorem

The Lagrangian formalism is the use of Hamilton’s principle of stationary action for the

derivation of the equations of motion of a system. It is widely used in Mathematical

Physics, often with more general Lagrangians involving more than one independent vari-

able and higher order partial derivatives of dependent variables. For simplicity I will

consider here only the Lagrangians of (maybe time-dependent) conservative mechanical

systems.

An intrinsic geometric expression of the Euler-Lagrange equations, wich does not use

local coordinates, was obtained by the great French mathematician Élie Cartan (1869–

1951). Let us introduce the concepts used by the statement of this theorem.

2.4.1 Definitions. Let N be the configuration space of a mechanical system and let its

tangent bundle T N be the space of kinematic states of that system. We assume that the

evolution with time of the state of the system is governed by the Euler-Lagrange equations

for a smooth, maybe time-dependent Lagrangian L : R×T N →R.

1. The cotangent bundle T ∗N is called the phase space of the system.

2. The map LL : R×T N → T ∗N

LL(t,v) = dvertL(t,v) , t ∈ R , v ∈ T N ,

where dvertL(t,v) is the vertical differential of L at (t,v), i.e the differential at v of the the

map w 7→ L(t,w), with w ∈ τ−1
N

(
τN(v)

)
, is called the Legendre map associated to L.

3. The map EL : R×T N → R given by

EL(t,v) = 〈LL(t,v),v
〉
−L(t,v) , t ∈ R , v ∈ T N ,

is called the the energy function associated to L.

4. The 1-form on R×T N

ϖ̂L = L∗
LθN −EL(t,v)dt ,

where θN is the Liouville 1-form on T ∗N, is called the Euler-Poincaré 1-form.

2.4.2 Theorem (Euler-Cartan theorem). A smooth curve γ : [t0, t1]→ N parametrized by

the time t ∈ [t0, t1] is a solution of the Euler-Lagrange equations if and only if, for each

t ∈ [t0, t1] the derivative with respect to t of the map t 7→

(
t,

dγ(t)

dt

)
belongs to the kernel

of the 2-form dϖ̂L, in other words if and only if

i

(
d

dt

(
t,

dγ(t)

dt

))
dϖ̂L

(
t,

dγ(t)

dt

)
= 0 .

The interested reader will find the proof of that theorem in [35], (theorem 2.2, chapter

IV, page 262) or, for hyper-regular Lagrangians (an additional assumption which in fact,

is not necessary) in [59], chapter IV, theorem 2.1 page 167.

2.4.3 Remark. In his book [55], Jean-Marie Souriau uses a slightly different terminol-

ogy: for him the odd-dimensional space R×T N is the evolution space of the system, and

the exact 2-form dϖ̂L on that space is the Lagrange form. He defines that 2-form in a

setting more general than that of the Lagrangian formalism.
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3 Lagrangian symmetries

3.1 Assumptions and notations

In this section N is the configuration space of a conservative Lagrangian mechanical sys-

tem with a smooth, maybe time dependent Lagrangian L : R×T N → R. Let ϖ̂L be the

Poincaré-Cartan 1-form on the evolution space R×T N.

Several kinds of symmetries can be defined for such a system. Very often, they are

special cases of infinitesimal symmetries of the Poincaré-Cartan form, which play an

important part in the famous Noether theorem.

3.1.1 Definition. An infinitesimal symmetry of the Poincaré-Cartan form ϖ̂L is a vector

field Z on R×T N such that

L(Z)ϖ̂L = 0 ,

L(Z) denoting the Lie derivative of differential forms with respect to Z.

3.1.2 Examples.

1. Let us assume that the Lagrangian L does not depend on the time t ∈ R, i.e. is a

smooth function on T N. The vector field on R×T N denoted by
∂

∂ t
, whose projection on

R is equal to 1 and whose projection on T N is 0, is an infinitesimal symmetry of ϖ̂L.

2. Let X be a smooth vector field on N and X be its canonical lift to the tangent

bundle T N. We still assume that L does not depend on the time t. Moreover we assume

that X is an infinitesimal symmetry of the Lagrangian L, i.e. that L(X)L = 0. Considered

as a vector field on R×T N whose projection on the factor R is 0, X is an infinitesimal

symmetry of ϖ̂L.

3.2 The Noether theorem in Lagrangian formalism

3.2.1 Theorem (E. Noether’s theorem in Lagrangian formalism). Let Z be an infinitesimal

symmetry of the Poincaré-Cartan form ϖ̂L. For each possible motion γ : [t0, t1] → N of

the Lagrangian system, the function i(Z)ϖ̂L, defined on R×T N, keeps a constant value

along the parametrized curve t 7→

(
t,

dγ(t)

dt

)
.

Proof. Let γ : [t0, t1] → N be a motion of the Lagrangian system, i.e. a solution of the

Euler-Lagrange equations. The Euler-Cartan theorem 2.4.2 proves that, for any t ∈ [t0, t1],

i

(
d

dt

(
t,

dγ(t)

dt

))
dϖ̂L

(
t,

dγ(t)

dt

)
= 0 .

Since Z is an infinitesimal symmetry of ϖ̂L,

L(Z)ϖ̂L = 0 .

Using the well known formula relating the Lie derivative, the interior product and the

exterior derivative

L(Z) = i(Z)◦d+d◦ i(Z)
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we can write

d

dt

(
i(Z)ϖ̃L

(
t,

dγ(t)

dt

))
=

〈
di(Z)ϖ̂L,

d

dt

(
t,

dγ(t)

dt

)〉

=−

〈
i(Z)dϖ̂L,

d

dt

(
t,

dγ(t)

dt

)〉

= 0 .

3.2.2 Example. When the Lagrangian L does not depend on time, application of Emmy

Noether’s theorem to the vector field
∂

∂ t
shows that the energy EL remains constant during

any possible motion of the system, since i

(
∂

∂ t

)
ϖ̂L =−EL.

3.2.3 Remarks.

1. Theorem 3.2.1 is due to the German mathematician Emmy Noether (1882–1935),

who proved it under much more general assumptions than those used here. For a very

nice presentation of Emmy Noether’s theorems in a much more general setting and their

applications in Mathematical Physics, interested readers are referred to the very nice book

by Yvette Kosmann-Schwarzbach [24].

2. Several generalizations of the Noether theorem exist. For example, if instead of

being an infinitesimal symmetry of ϖ̂L, i.e. instead of satisfying L(Z)ϖ̂L = 0 the vector

field Z satisfies

L(Z)ϖ̂L = d f ,

where f : R×T M → R is a smooth function, which implies of course L(Z)(dϖ̂L) = 0,

the function

i(Z)ϖ̂L − f

keeps a constant value along t 7→

(
t,

dγ(t)

dt

)
.

3.3 The Lagrangian momentum map

The Lie bracket of two infinitesimal symmetries of ϖ̂L is too an infinitesimal symmetry

of ϖ̂L. Let us therefore assume that there exists a finite-dimensional Lie algebra of vector

fields on R×T N whose elements are infinitesimal symmetries of ϖ̂L.

3.3.1 Definition. Let ψ : G→ A1(R×TN) be a Lie algebras homomorphism of a finite-

dimensional real Lie algebra G into the Lie algebra of smooth vector fields on R×T N

such that, for each X ∈ G, ψ(X) is an infinitesimal symmetry of ϖ̂L. The Lie algebras

homomorphism ψ is said to be a Lie algebra action onR×T N by infinitesimal symmetries

of ϖ̂L. The map KL : R×TN → G∗, which takes its values in the dual G∗ of the Lie algebra

G, defined by

〈
KL(t,v),X

〉
= i
(
ψ(X)

)
ϖ̂L(t,v) , X ∈ G , (t,v) ∈ R×T N ,

is called the Lagrangian momentum of the Lie algebra action ψ .

3.3.2 Corollary (of E. Noether’s theorem). Let ψ : G → A1(R×T M) be an action of a

finite-dimensional real Lie algebra G on the evolution space R×T N of a conservative

Lagrangian system, by infinitesimal symmetries of the Poincaré-Cartan form ϖ̂L. For
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each possible motion γ : [t0, t1] → N of that system, the Lagrangian momentum map KL

keeps a constant value along the parametrized curve t 7→

(
t,

dγ(t)

dt

)
.

Proof. Since for each X ∈ G the function (t,v) 7→
〈
KL(t,v),X

〉
keeps a constant value

along the parametrized curve t 7→

(
t,

dγ(t)

dt

)
, the map KL itself keeps a constant value

along that parametrized curve.

3.3.3 Example. Let us assume that the Lagrangian L does not depend explicitly on the

time t and is invariant by the canonical lift to the tangent bundle of the action on N of

the six-dimensional group of Euclidean diplacements (rotations and translations) of the

physical space. The corresponding infinitesimal action of the Lie algebra of infinitesimal

Euclidean displacements (considered as an action on R×T N, the action on the factor R

being trivial) is an action by infinitesimal symmetries of ϖ̂L. The six components of the

Lagrangian momentum map are the three components of the total linear momentum and

the three components of the total angular momentum.

3.3.4 Remark. These results are valid without any assumption of hyper-regularity of the

Lagrangian.

3.4 The Euler-Poincaré equation

In a short Note [47] published in 1901, the great french mathematician Henri Poincaré

(1854–1912) proposed a new formulation of the equations of Mechanics.

Let N be the configuration manifold of a conservative Lagrangian system, with a smooth

Lagrangian L : T N →R which does not depend explicitly on time. Poincaré assumes that

there exists an homomorphism ψ of a finite-dimensional real Lie algebra G into the Lie

algebra A1(N) of smooth vector fields on N, such that for each x ∈ N, the values at x of

the vector fields ψ(X), when X varies in G, completely fill the tangent space TxN. The

action ψ is then said to be locally transitive.

Of course these assumptions imply dimG≥ dimN.

Under these assumptions, Henri Poincaré proved that the equations of motion of the

Lagrangian system could be written on N ×G or on N ×G∗, where G∗ is the dual of the

Lie algebra G, instead of on the tangent bundle T N. When dimG = dimN (which can

occur only when the tangent bundle T N is trivial) the obtained equation, called the Euler-

Poincaré equation, is perfectly equivalent to the Euler-Lagrange equations and may, in

certain cases, be easier to use. But when dimG > dimN, the system made by the Euler-

Poincaré equation is underdetermined.

Let γ : [t0, t1] → N be a smooth parametrized curve in N. Poincaré proves that there

exists a smooth curve V : [t0, t1]→ G in the Lie algebra G such that, for each t ∈ [t0, t1],

ψ
(
V (t)

)(
γ(t)

)
=

dγ(t)

dt
. (∗)

When dimG> dimN the smooth curve V in G is not uniquely determined by the smooth

curve γ in N. However, instead of writing the second-order Euler-Lagrange differential

equations on T N satisfied by γ when this curve is a possible motion of the Lagrangian

system, Poincaré derives a first order differential equation for the curve V and proves
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that it is satisfied, together with Equation (∗), if and only if γ is a possible motion of the

Lagrangian system.

Let ϕ : N ×G→ T N and L : N ×G→ R be the maps

ϕ(x,X) = ψ(X)(x) , L(x,X) = L◦ϕ(x,X) .

We denote by d1L : N ×G → T ∗N and by d2L : N ×G → G∗ the partial differentials of

L : N×G→R with respect to its first variable x ∈N and with respect to its second variable

X ∈ G.

The map ϕ : N ×G→ T N is a surjective vector bundles morphism of the trivial vector

bundle N ×G into the tangent bundle T N. Its transpose ϕT : T ∗N → N ×G∗ is therefore

an injective vector bundles morphism, which can be written

ϕT (ξ ) =
(
πN(ξ ),J(ξ )

)
,

where πN : T ∗N →N is the canonical projection of the cotangent bundle and J : T ∗N → G∗

is a smooth map whose restriction to each fibre T ∗
x N of the cotangent bundle is linear, and

is the transpose of the map X 7→ ϕ(x,X) = ψ(X)(x).

3.4.1 Remark. The homomorphism ψ of the Lie algebra G into the Lie algebra A1(N)
of smooth vector fields on N is an action of that Lie algebra, in the sense defined below

(5.2.1). That action can be canonically lifted into a Hamiltonian action of G on T ∗N, en-

dowed with its canonical symplectic form dθN (5.2.4). The map J is in fact a Hamiltonian

momentum map for that Hamiltonian action (5.3.1).

Let LL = dvertL : T N → T ∗N be the Legendre map defined in 2.4.1.

3.4.2 Theorem (Euler-Poincaré equation). With the above defined notations, let γ : [t0, t1]→
N be a smooth parametrized curve in N and V : [t0, t1] → G be a smooth parametrized

curve such that, for each t ∈ [t0, t1],

ψ
(
V (t)

)(
γ(t)

)
=

dγ(t)

dt
. (∗)

The curve γ is a possible motion of the Lagrangian system if and only if V satisfies the

equation

(
d

dt
− ad∗V (t)

)(
J ◦LL ◦ϕ

(
γ(t),V(t)

))
− J ◦d1L

(
γ(t),V(t)

)
= 0 . (∗∗)

The interested reader will find a proof of that theorem in local coordinates in the original

Note by Poincaré [47]. More intrinsic proofs can be found in [37, 38]. Another proof is

possible, in which that theorem is deduced from the Euler-Cartan theorem 2.4.2.

3.4.3 Remark. Equation (∗) is called the compatibility condition and Equation (∗∗) is

the Euler-Poincaré equation. It can be written under the equivalent form

(
d

dt
− ad∗V (t)

)(
d2L
(
γ(t),V(t)

))
− J ◦d1L

(
γ(t),V(t)

)
= 0 . (∗∗∗)

Examples of applications of the Euler-Poincaré equation can be found in [18, 37, 38]

and, for an application in Thermodynamics, [6].
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4 The Hamiltonian formalism

The Lagrangian formalism can be applied to any smooth Lagrangian. Its application

yields second order differential equations on R× N (in local coordinates, the Euler-

Lagrange equations) which in general are not solved with respect to the second order

derivatives of the unknown functions with respect to time. The classical existence and

unicity theorems for the solutions of differential equations (such as the Cauchy-Lipschitz

theorem) therefore cannot be applied to these equations.

Under the additional assumption that the Lagrangian is hyper-regular, a very clever

change of variables discovered by William Rowan Hamilton 2 [16, 17] allows a new for-

mulation of these equations in the framework of symplectic geometry. The Hamiltonian

formalism discussed below is the use of these new equations. It was later generalized

independently of the Lagrangian formalism.

4.1 Hyper-regular Lagrangians

4.1.1 Assumptions made in this section

We consider in this section a smooth, maybe time-dependent Lagrangian L :R×T N →R,

which is such that the Legendre map (2.4.1) LL : R×T N → T ∗N satisfies the following

property: for each fixed value of the time t ∈ R, the map v 7→ LL(t,v) is a smooth dif-

feomorphism of the tangent bundle T N onto the cotangent bundle T ∗N. An equivalent

assumption is the following: the map (idR,LL) : (t,v) 7→
(
t,LL(t,v)

)
is a smooth diffeo-

morphism of R×T N onto R×T ∗N. The Lagrangian L is then said to be hyper-regular.

The equations of motion can be written on R×T ∗N instead of R×T N.

4.1.2 Definitions. Under the assumption 4.1.1, the function HL : R×T ∗N →R given by

HL(t, p) = EL ◦ (idR,LL)
−1(t, p) , t ∈ R , p ∈ T ∗N ,

(EL : R×T N → R being the energy function defined in 2.4.1) is called the Hamiltonian

associated to the hyper-regular Lagrangian L.

The 1-form defined on R×T ∗N

ϖ̂HL
= θN −HLdt ,

where θN is the Liouville 1-form on T ∗N, is called the Poincaré-Cartan 1-form in the

Hamiltonian formalism.

4.1.3 Remark. The Poincaré-Cartan 1-form ϖ̂L on R×T N, defined in 2.4.1, is the pull-

back, by the diffeomorphism (idR,LL) : R× T N → R× T ∗N, of the Poincaré-Cartan

1-form ϖ̂HL
in the Hamiltonian formalism on R×T ∗N defined above.

4.2 Presymplectic manifolds

4.2.1 Definitions. A presymplectic form on a smooth manifold M is a 2-form ω on M

which is closed, i.e. such that dω = 0. A manifold M equipped with a presymplectic form

ω is called a presymplectic manifold and denoted by (M,ω).

The kernel kerω of a presymplectic form ω defined on a smooth manifold M is the set

of vectors v ∈ T M such that i(v)ω = 0.

2Lagrange obtained however Hamilton’s equations before Hamilton, but only in a special case, for the

slow “variations of constants” such as the orbital parameters of planets in the solar system [26, 27].
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4.2.2 Remarks. A symplectic form ω on a manifold M is a presymplectic form which,

moreover, is non-degenerate, i.e. such that for each x ∈ M and each non-zero vector

v ∈ TxM, there exists another vector w ∈ TxM such that ω(x)(v,w) 6= 0. Or in other words,

a presymplectic form ω whose kernel is the set of null vectors.

The kernel of a presymplectic form ω on a smooth manifold M is a vector sub-bundle

of T M if and only if for each x ∈ M, the vector subspace TxM of vectors v ∈ TxM which

satisfy i(v)ω = 0 is of a fixed dimension, the same for all points x ∈ M. A presymplectic

form which satisfies that condition is said to be of constant rank.

4.2.3 Proposition. Let ω be a presymplectic form of constant rank (4.2.2) on a smooth

manifold M. The kernel kerω of ω is a completely integrable vector sub-bundle of T M,

which defines a foliation Fω of M into connected immersed submanifolds which, at each

point of M, have the fibre of kerω at that point as tangent vector space.

We now assume in addition that this foliation is simple, i.e. such that the set of leaves

of Fω , denoted by M/kerω , has a smooth manifold structure for which the canonical

projection p : M →M/kerω (which associates to each point x∈M the leaf which contains

x) is a smooth submersion. There exists on M/kerω a unique symplectic form ωr such

that

ω = p∗ωr .

Proof. Since dω = 0, the fact that kerω is completely integrable is an immediate conse-

quence of the Frobenius’ theorem ([59], chapter III, theorem 5.1 page 132). The existence

and unicity of a symplectic form ωr on M/kerω such that ω = p∗ωr results from the fact

that M/kerω is built by quotienting M by the kernel of ω .

4.2.4 Presymplectic manifolds in Mechanics

Let us go back to the assumptions and notations of 4.1.1. We have seen in 4.1.3 that the

Poincaré-Cartan 1-form in Hamiltonian formalism ϖ̂HL
on R× T ∗N and the Poincaré-

Cartan 1-form in Lagrangian formalism ϖ̂L on R×T N are related by

ϖ̂L = (idR,LL)
∗ϖ̂HL

.

Their exterior differentials dϖ̂L and dϖ̂HL
both are presymplectic 2-forms on the odd-

dimensional manifolds R×T N and R×T ∗N, respectively. At any point of these man-

ifolds, the kernels of these closed 2 forms are one-dimensional. They therefore (4.2.3)

determine foliations into smooth curves of these manifolds. The Euler-Cartan theorem

(2.4.2) shows that each of these curves is a possible motion of the system, described ei-

ther in the Lagrangian formalism, or in the Hamiltonian formalism, respectively.

The set of all possible motions of the system, called by Jean-Marie Souriau the mani-

fold of motions of the system, is described by the quotient (R×T N)/kerdϖ̂L in the La-

grangian formalism, and by the quotient (R×T ∗N)/kerdϖ̂HL
in the Hamiltonian formal-

ism. Both are (maybe non-Hausdorff) symplectic manifolds, the projections on these quo-

tient manifolds of the presymplectic forms dϖ̂L and dϖ̂HL
both being symplectic forms.

Of course the diffeomorphism (idR,LL) : R×TN → R×T ∗N projects onto a symplec-

tomorphism between the Lagrangian and Hamiltonian descriptions of the manifold of

motions of the system.
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4.3 The Hamilton equation

4.3.1 Proposition. Let N be the configuration manifold of a Lagrangian system whose

Lagrangian L : R×T N → R, maybe time-dependent, is smooth and hyper-regular, and

HL : R×T ∗N →R be the associated Hamiltonian (4.1.2). Let ϕ : [t0, t1]→ N be a smooth

curve parametrized by the time t ∈ [t0, t1], and let ψ : [t0, t1]→ T ∗N be the parametrized

curve in T ∗N

ψ(t) = LL

(
t,

dγ(t)

dt

)
, t ∈ [t0, t1] ,

where LL : R×T N → T ∗N is the Legendre map (2.4.1).

The parametrized curve t 7→ γ(t) is a motion of the system if and only if the parametrized

curve t 7→ ψ(t) satisfies the equatin, called the Hamilton equation,

i

(
dψ(t)

dt

)
dθN =−dHLt ,

where dHLt = dHL −
∂HL

∂ t
dt is the differential of the function HLt : T ∗N → R in which

the time t is considered as a parameter with respect to which there is no differentiation.

When the parametrized curve ψ satisfies the Hamilton equation stated above, it satisfies

too the equation, called the energy equation

d

dt

(
HL

(
t,ψ(t)

))
=

∂HL

∂ t

(
t,ψ(t)

)
.

Proof. These results directly follow from the Euler-Cartan theorem (2.4.2).

4.3.2 Remarks. The 2-form dθN is a symplectic form on the cotangent bundle T ∗N,

called its canonical symplectic form. We have shown that when the Lagrangian L is

hyper-regular, the equations of motion can be written in three equivalent manners:

1. as the Euler-Lagrange equations on R×T M,

2. as the equations given by the kernels of the presymplectic forms dϖ̂L or dϖ̂HL
which

determine the foliations into curves of the evolution spaces R× T M in the La-

grangian formalism, or R×T ∗M in the Hamiltonian formalism,

3. as the Hamilton equation associated to the Hamiltonian HL on the symplectic man-

ifold (T ∗N,dθN), often called the phase space of the system.

4.3.3 The Tulczyjew isomorphisms

Around 1974, W.M. Tulczyjew [61, 62] discovered 3 two remarkable vector bundles iso-

morphisms αN : T T ∗N → T ∗T N and βN : T T ∗N → T ∗T ∗N.

The first one αN is an isomorphism of the bundle (T T ∗N,T πN,T N) onto the bundle

(T ∗T N,πT N ,TN), while the second βN is an isomorphism of the bundle (T T ∗N,τT ∗N,T
∗N)

3βN was probably known long before 1974, but I believe that αN , much more hidden, was noticed by

Tulczyjew for the first time.
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onto the bundle (T ∗T ∗N,πT∗N,T
∗N). The diagram below is commutative.

T ∗T ∗N

πT∗N
��

T T ∗N
βN

oo

τT∗Nyyss
ss
ss
ss
ss

T πN %%J
JJ

JJ
JJ

JJ
J

αN // T ∗T N

πTN

��

T ∗N

πN
%%K

KK
KK

KK
KK

KK
T N

τN
yyss
ss
ss
ss
ss
s

N

Since they are the total spaces of cotangent bundles, the manifolds T ∗T N and T ∗T ∗N

are endowed with the Liouville 1-forms θT N and θT ∗N , and with the canonical symplec-

tic forms dθT N and dθT∗N , respectively. Using the isomorphisms αN and βN , we can

therefore define on T T ∗N two 1-forms α∗
NθT N and β ∗

NθT ∗N , and two symplectic 2-forms

α∗
N(dθT N) and β ∗

N(dθT∗N). The very remarkable property of the isomorphisms αN and βN

is that the two symplectic forms so obtained on T T ∗N are equal:

α∗
N(dθTN) = β ∗

N(dθT∗N) .

The 1-forms α∗
NθT N and β ∗

NθT ∗N are not equal, their difference is the differential of a

smooth function.

4.3.4 Lagrangian submanifolds

In view of applications to implicit Hamiltonian systems, let us recall here that a La-

grangian submanifold of a symplectic manifold (M,ω) is a submanifold N whose di-

mension is half the dimension of M, on which the form induced by the symplectic form

ω is 0.

Let L : T N →R and H : T ∗N →R be two smooth real valued functions, defined on T N

and on T ∗N, respectively. The graphs dL(T N) and dH(T ∗N) of their differentials are La-

grangian submanifolds of the symplectic manifolds (T ∗T N,dθT N) and (T ∗T ∗N,dθT ∗N).
Their pull-backs α−1

N

(
dL(T N)

)
and β−1

N

(
dH(T ∗N)

)
by the symplectomorphisms αN and

βN are therefore two Lagrangian submanifolds of the manifold T T ∗N endowed with the

symplectic form α∗
N(dθTN), which is equal to the symplectic form β ∗

N(dθT∗N).

The following theorem enlightens some aspects of the relationships between the Hamil-

tonian and the Lagrangian formalisms.

4.3.5 Theorem (W.M. Tulczyjew). With the notations specified above (4.3.4), let XH :

T ∗N → T T ∗N be the Hamiltonian vector field on the symplectic manifold (T ∗N,dθN)
associated to the Hamiltonian H : T ∗N → R, defined by i(XH)dθN =−dH. Then

XH(T
∗N) = β−1

N

(
dH(T ∗N)

)
.

Moreover, the equality

α−1
N

(
dL(T N)

)
= β−1

N

(
dH(T ∗N)

)

holds if and only if the Lagrangian L is hyper-regular and such that

dH = d
(
EL ◦L

−1
L

)
,

where LL : T N → T ∗N is the Legendre map and EL : T N → R the energy associated to

the Lagrangian L.
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The interested reader will find the proof of that theorem in the works of W. Tulczyjew

([61, 62]).

When L is not hyper-regular, α−1
N

(
dL(T N)

)
still is a Lagrangian submanifold of the

symplectic manifold
(
T T ∗N,α∗

N(dθTN)
)
, but it is no more the graph of a smooth vector

field XH defined on T ∗N. Tulczyjew proposes to consider this Lagrangian submanifold as

an implicit Hamilton equation on T ∗N.

These results can be extended to Lagrangians and Hamiltonians which may depend on

time.

4.4 The Hamiltonian formalism on symplectic and Poisson manifolds

4.4.1 The Hamilton formalism on symplectic manifolds

In pure mathematics as well as in applications of mathematics to Mechanics and Physics,

symplectic manifolds other than cotangent bundles are encountered. A theorem due to the

french mathematician Gaston Darboux (1842–1917) asserts that any symplectic manifold

(M,ω) is of even dimension 2n and is locally isomorphic to the cotangent bundle to a n-

dimensional manifold: in a neighbourhood of each of its point there exist local coordinates

(x1, . . . ,xn, p1, . . . , pn), called Darboux coordinates with which the symplectic form ω is

expressed exactly as the canonical symplectic form of a cotangent bundle:

ω =
n

∑
i=1

dpi ∧dxi .

Let (M,ω) be a symplectic manifold and H : R×M → R a smooth function, said to be

a time-dependent Hamiltonian. It determines a time-dependent Hamiltonian vector field

XH on M, such that

i(XH)ω =−dHt ,

Ht : M →R being the function H in which the variable t is considered as a parameter with

respect to which no differentiation is made.

The Hamilton equation determined by H is the differential equation

dψ(t)

dt
= XH

(
t,ψ(t)

)
.

The Hamiltonian formalism can therefore be applied to any smooth, maybe time depen-

dent Hamiltonian on M, even when there is no associated Lagrangian.

The Hamiltonian formalism is not limited to symplectic manifolds: it can be applied,

for example, to Poisson manifolds [32], contact manifolds and Jacobi manifolds [33]. For

simplicity I will consider only Poisson manifolds. Readers interested in Jacobi manifolds

and their generalizations are referred to the papers by A. Lichnerowicz quoted above and

to the very important paper by A. Kirillov [23].

4.4.2 Definition. A Poisson manifold is a smooth manifold P whose algebra of smooth

functions C∞(P,R) is endowed with a bilinear composition law, called the Poisson bracket,

which associates to any pair ( f ,g) of smooth functions on P another smooth function de-

noted by { f ,g}, that composition satisfying the three properties

1. it is skew-symmetric,

{g, f}=−{ f ,g},
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2. it satisfies the Jacobi identity{
f ,{g,h}

}
+
{

g,{h, f}
}
+
{

h,{ f ,g}
}
= 0,

3. it satisfies the Leibniz identity

{ f ,gh}= { f ,g}h+g{ f ,h}.

4.4.3 Examples.

1. On the vector space of smooth functions defined on a symplectic manifold (M,ω),
there exists a composition law, called the Poisson bracket, which satisfies the properties

stated in 4.4.2. Let us recall briefly its definition. The symplectic form ω allows us to

associate, to any smooth function f ∈ C∞(M,R), a smooth vector field X f ∈ A1(M,R),
called the Hamiltonian vector field associated to f , defined by

i(X f )ω =−d f .

The Poisson bracket { f ,g} of two smooth functions f and g ∈C∞(M,R) is defined by the

three equivalent equalities

{ f ,g}= i(X f )dg =−i(Xg)d f = ω(X f ,Xg) .

Any symplectic manifold is therefore a Poisson manifold.

The Poisson bracket of smooth functions defined on a symplectic manifold (when that

symplectic manifold is a cotangent bundle) was discovered by Siméon Denis Poisson

(1781–1840) [48].

2. Let G be a finite-dimensional real Lie algebra, and let G∗ be its dual vector space.

For each smooth function f ∈ C∞(G∗,R) and each ζ ∈ G∗, the differential d f (ζ ) is a

linear form on G∗, in other words an element of the dual vector space of G∗. Identifying

with G the dual vector space of G∗, we can therefore consider d f (ζ ) as an element in G.

With this identification, we can define the Poisson bracket of two smooth functions f and

g ∈C∞(G∗,R) by

{ f ,g}(ζ ) =
[
d f (ζ ),dg(ζ )

]
, ζ ∈ G∗ ,

the bracket in the right hand side being the bracket in the Lie algebra G. The Poisson

bracket of functions in C∞(G∗,R) so defined satifies the properties stated in 4.4.2. The

dual vector space of any finite-dimensional real Lie algebra is therefore endowed with

a Poisson structure, called its canonical Lie-Poisson structure or its Kirillov-Kostant-

Souriau Poisson structure. Discovered by Sophus Lie, this structure was indeed redis-

covered independently by Alexander Kirillov, Bertram Kostant and Jean-Marie Souriau.

3. A symplectic cocycle of a finite-dimensional, real Lie algebra G is a skew-symmetric

bilinear map Θ : G×G→ G∗ which satisfies, for all X , Y and Z ∈ G,

Θ
(
[X ,Y ],Z

)
+Θ

(
[Y,Z],X

)
+Θ

(
[Z,X ],Y

)
= 0 .

The canonical Lie-Poisson bracket of two smooth functions f and g ∈ C∞(G∗,R) can be

modified by means of the symplectic cocycle Θ, by setting

{ f ,g}Θ(ζ ) =
[
d f (ζ ),dg(ζ )

]
−Θ

(
d f (ζ ),dg(ζ )

)
, ζ ∈ G∗ .

This bracket still satifies the properties stated in 4.4.2, therefore defines on G∗ a Poisson

structure called its canonical Lie-Poisson structure modified by Θ.
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4.4.4 Properties of Poisson manifolds

The interested reader will find the proofs of the properties recalled here in [63], [31], [30]

or [45].

1. On a Poisson manifold P, the Poisson bracket { f ,g} of two smooth functions f and

g can be expressed by means of a smooth field of bivectors Λ:

{ f ,g}= Λ(d f ,dg) , f and g ∈C∞(P,R) ,

called the Poisson bivector field of P. The considered Poisson manifold is often denoted

by (P,Λ). The Poisson bivector field Λ identically satisfies

[Λ,Λ] = 0 ,

the bracket [ , ] in the left hand side being the Schouten-Nijenhuis bracket. That bivector

field determines a vector bundle morphism Λ♯ : T ∗P → T P, defined by

Λ(η,ζ ) =
〈
ζ ,Λ♯(η)

〉
,

where η and ζ ∈ T ∗P are two covectors attached to the same point in P.

Readers interested in the Schouten-Nijenhuis bracket will find thorough presentations

of its properties in [25] or [36].

2. Let (P,Λ) be a Poisson manifold. A (maybe time-dependent) vector field on P can be

associated to each (maybe time-dependent) smooth function H : R×P → R. It is called

the Hamiltonian vector field associated to the Hamiltonian H, and denoted by XH . Its

expression is

XH(t,x) = Λ♯(x)
(
dHt(x)

)
,

where dHt(x) = dH(t,x)−
∂H(t,x)

∂ t
dt is the differential of the function deduced from H

by considering t as a parameter with respect to which no differentiation is made.

The Hamilton equation determined by the (maybe time-dependent) Hamiltonian H is

dϕ(t)

dt
= XH(

(
t,ϕ(t)

)
= Λ♯(dHt)

(
ϕ(t)

)
.

3. Any Poisson manifold is foliated, by a generalized foliation whose leaves may not

be all of the same dimension, into immersed connected symplectic manifolds called the

symplectic leaves of the Poisson manifold. The value, at any point of a Poisson manifold,

of the Poisson bracket of two smooth functions only depends on the restrictions of these

functions to the symplectic leaf through the considered point, and can be calculated as the

Poisson bracket of functions defined on that leaf, with the Poisson structure associated to

the symplectic structure of that leaf. This property was discovered by Alan Weinstein, in

his very thorough study of the local structure of Poisson manifolds [64].

5 Hamiltonian symmetries

5.1 Presymplectic, symplectic and Poisson maps and vector fields

Let M be a manifold endowed with some structure, which can be either
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• a presymplectic structure, determined by a presymplectic form, i.e., a 2-form ω
which is closed (dω = 0),

• a symplectic structure, determined by a symplectic form ω , i.e., a 2-form ω which

is both closed (dω = 0) and nondegenerate (kerω = {0}),

• a Poisson structure, determined by a smooth Poisson bivector field Λ satisfying

[Λ,Λ] = 0.

5.1.1 Definition. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of

a presymplectic (resp., symplectic, resp. Poisson) manifold (M,ω) (resp. (M,Λ)) is a

smooth diffeomorphism f : M → M such that f ∗ω = ω (resp. f ∗Λ = Λ).

5.1.2 Definition. A smooth vector field X on a presymplectic (resp. symplectic, resp.

Poisson) manifold (M,ω) (resp. (M,Λ)) is said to be a presysmplectic (resp. symplectic,

resp. Poisson) vector field if L(X)ω = 0 (resp. if L(X)Λ = 0), where L(X) denotes the

Lie derivative of forms or mutivector fields with respect to X .

5.1.3 Definition. Let (M,ω) be a presymplectic or symplectic manifold. A smooth vector

field X on M is said to be Hamiltonian if there exists a smooth function H : M →R, called

a Hamiltonian for X , such that

i(X)ω =−dH .

Not any smooth function on a presymplectic manifold can be a Hamiltonian.

5.1.4 Definition. Let (M,Λ) be a Poisson manifold. A smooth vector field X on M is said

to be Hamiltonian if there exists a smooth function H ∈C∞(M,R), called a Hamiltonian

for X , such that X = Λ♯(dH). An equivalent definition is that

i(X)dg = {H,g} for any g ∈C∞(M,R) ,

where {H,g}= Λ(dH,dg) denotes the Poisson bracket of the functions H and g.

On a symplectic or a Poisson manifold, any smooth function can be a Hamiltonian.

5.1.5 Proposition. A Hamiltonian vector field on a presymplectic (resp. symplectic, resp.

Poisson) manifold automatically is a presymplectic (resp. symplectic, resp. Poisson)

vector field.

The proof of this result, which is easy, can be found in any book on symplectic and

Poisson geoemetry, for example [31], [30] or [45].

5.2 Lie algebras and Lie groups actions

5.2.1 Definitions. An action on the left (resp. an action on the right) of a Lie group G on a

smooth manifold M is a smooth map Φ : G×M →M (resp. a smooth map Ψ : M×G→M)

such that

• for each fixed g ∈ G, the map Φg : M → M defined by Φg(x) = Φ(g,x) (resp. the

map Ψg : M → M defined by Ψg(x) = Ψ(x,g)) is a smooth diffeomorphism of M,

• Φe = idM (resp. Ψe = idM), e being the neutral element of G,

• for each pair (g1,g2) ∈ G×G, Φg1
◦Φg2

= Φg1g2
(resp. Ψg1

◦Ψg2
= Ψg2g1

).
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An action of a Lie algebra G on a smooth manifold M is a Lie algebras morphism of G

into the Lie algebra A1(M) of smooth vector fields on M, i.e. a linear map ψ : G→ A1(M)
which associates to each X ∈ G a smooth vector field ψ(X) on M such that for each pair

(X ,Y ) ∈ G×G, ψ
(
[X ,Y ]

)
=
[
ψ(X),ψ(Y )

]
.

5.2.2 Proposition. An action Ψ, either on the left or on the right, of a Lie group G on

a smooth manifold M, automatically determines an action ψ of its Lie algebra G on that

manifold, which associates to each X ∈ G the vector field ψ(X) on M, often denoted by

XM and called the fundamental vector field on M associated to X. It is defined by

ψ(X)(x) = XM(x) =
d

ds

(
Ψexp(sX)(x)

) ∣∣
s=0

, x ∈ M ,

with the following convention: ψ is a Lie algebras homomorphism when we take for Lie

algebra G of the Lie group G the Lie algebra or right invariant vector fields on G if Ψ is

an action on the left, and the Lie algebra of left invariant vector fields on G if Ψ is an

action on the right.

Proof. If Ψ is an action of G on M on the left (respectively, on the right), the vector

field on G which is right invariant (respectively, left invariant) and whose value at e is

X , and the associated fundamental vector field XM on M, are compatible by the map

g 7→ Ψg(x). Therefore the map ψ : G → A1(M) is a Lie algebras homomorphism, if we

take for definition of the bracket on G the bracket of right invariant (respectively, left

invariant) vector fields on G.

5.2.3 Definitions. When M is a presymplectic (or a symplectic, or a Poisson) manifold,

an action Ψ of a Lie group G (respectively, an action ψ of a Lie algebra G) on the manifold

M is called a presymplectic (or a symplectic, or a Poisson) action if for each g ∈ G, Ψg is

a presymplectic, or a symplectic, or a Poisson diffeomorphism of M (respectively, if for

each X ∈ G, ψ(X) is a presymplectic, or a symplectic, or a Poisson vector field on M.

5.2.4 Definitions. An action ψ of a Lie algeba G on a presymplectic or symplectic mani-

fold (M,ω), or on a Poisson manifold (M,Λ), is said to be Hamiltonian if for each X ∈ G,

the vector field ψ(X) on M is Hamiltonian.

An action Ψ (either on the left or on the right) of a Lie group G on a presymplectic or

symplectic manifold (M,ω), or on a Poisson manifold (M,Λ), is said to be Hamiltonian

if that action is presymplectic, or symplectic, or Poisson (according to the structure of M),

and if in addition the associated action of the Lie algebra G of G is Hamiltonian.

5.2.5 Remark. A Hamiltonian action of a Lie group, or of a Lie algebra, on a presym-

plectic, symplectic or Poisson manifold, is automatically a presymplectic, symplectic or

Poisson action. This result immediately follows from 5.1.5

5.3 Momentum maps of Hamiltonian actions

5.3.1 Proposition. Let ψ be a Hamiltonian action of a finite-dimensional Lie algebra

G on a presymplectic, symplectic or Poisson manifold (M,ω) or (M,Λ). There exists a

smooth map J : M → G∗, taking its values in the dual space G∗ of the Lie algebra G, such

that for each X ∈ G the Hamiltonian vector field ψ(X) on M admits as Hamiltonian the

function JX : M → R, defined by

JX(x) =
〈
J(x),X

〉
, x ∈ M .
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The map J is called a momentum map for the Lie algebra action ψ . When ψ is the action

of the Lie algebra G of a Lie group G associated to a Hamiltonian action Ψ of a Lie group

G, J is called a momentum map for the Hamiltonian Lie group action Ψ.

The proof of that result, which is easy, can be found for example in [31], [30] or [45].

5.3.2 Remark. The momentum map J is not unique:

• when (M,ω) is a connected symplectic manifold, J is determined up to addition of

an arbitrary constant element in G∗;

• when (M,Λ) is a connected Poisson manifold, the momentum map J is determined

up to addition of an arbitrary G∗-valued smooth map which, coupled with any X ∈
G, yields a Casimir of the Poisson algebra of (M,Λ), i.e. a smooth function on

M whose Poisson bracket with any other smooth function on that manifold is the

function identically equal to 0.

5.4 Noether’s theorem in Hamiltonian formalism

5.4.1 Theorem (Noether’s theorem in Hamiltonian formalism). Let X f and Xg be two

Hamiltonian vector fields on a presymplectic or symplectic manifold (M,ω), or on a

Poisson manifold (M,Λ), which admit as Hamiltonians, respectively, the smooth functions

f and g on the manifold M. The function f remains constant on each integral curve of Xg

if and only if g remains constant on each integral curve of X f .

Proof. The function f is constant on each integral curve of Xg if and only if i(Xg)d f =
0, since each integral curve of Xg is connected. We can use the Poisson bracket, even

when M is a presymplectic manifold, since the Poisson bracket of two Hamiltonians on a

presymplectic manifold still can be defined. So we can write

i(Xg)d f = {g, f}=−{ f ,g}=−i(X f )dg .

5.4.2 Corollary (of Noether’s theorem in Hamiltonian formalism). Let ψ : G → A1(M)
be a Hamiltonian action of a finite-dimensional Lie algebra G on a presymplectic or

symplectic manifold (M,ω), or on a Poisson manifold (M,Λ), and let J : M → G∗ be

a momentum map of this action. Let XH be a Hamiltonian vector field on M admitting

as Hamiltonian a smooth function H. If for each X ∈ G we have i
(
ψ(X)

)
(dH) = 0, the

momentum map J remains constant on each integral curve of XH .

Proof. This result is obtained by applying 5.4.1 to the pairs of Hamiltonian vector fields

made by XH and each vector field associated to an element of a basis of G.

5.5 Symplectic cocycles

5.5.1 Theorem (J.M. Souriau). Let Φ be a Hamiltonian action (either on the left or on

the right) of a Lie group G on a connected symplectic manifold (M,ω) and let J : M → G∗

be a momentum map of this action. There exists an affine action A (either on the left or on

the right) of the Lie group G on the dual G∗ of its Lie algebra G such that the momentum

map J is equivariant with respect to the actions Φ of G on M and A of G on G∗, i.e. such

that

J ◦Φg(x) = Ag ◦ J(x) for all g ∈ G , x ∈ M .
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The action A can be written, with g ∈ G and ξ ∈ G∗,

{
A(g,ξ ) = Ad∗

g−1(ξ )+θ(g) if Φ is an action on the left,

A(ξ ,g) = Ad∗g(ξ )−θ(g−1) if Φ is an action on the right.

Proof. Let us assume that Φ is an action on the left. The fundamental vector field XM

associated to each X ∈ G is Hamiltonian, with the function JX : M → R, given by

JX(x) =
〈
J(x),X

〉
, x ∈ M ,

as Hamiltonian. For each g ∈ G the direct image (Φg−1)∗(XM) of XM by the symplectic

diffeomorphism Φg−1 is Hamiltonian, with JX ◦Φg as Hamiltonian. An easy calculation

shows that this vector field is the fundamental vector field associated to Adg−1(X) ∈ G.

The function

x 7→
〈
J(x),Adg−1(X)

〉
=
〈
Ad∗

g−1 ◦J(x),X
〉

is therefore a Hamiltonian for that vector field. These two functions defined on the con-

nected manifold M, which both are admissible Hamiltonians for the same Hamiltonian

vector field, differ only by a constant (which may depend on g ∈ G). We can set, for any

g ∈ G,

θ(g) = J ◦Φg(x)−Ad∗
g−1 ◦J(x)

and check that the map A : G×G∗ → G∗ defined in the statement is indeed an action for

which J is equivariant.

A similar proof, with some changes of signs, holds when Φ is an action on the right.

5.5.2 Proposition. Under the assumptions and with the notations of 5.5.1, the map θ :

G → G∗ is a cocycle of the Lie group G with values in G∗, for the coadjoint representation.

It means that is satisfies, for all g and h ∈ G,

θ(gh) = θ(g)+Ad∗
g−1

(
θ(h)

)
.

More precisely θ is a symplectic cocycle. It means that its differential Teθ : TeG ≡ G→ G∗

at the neutral element e ∈ G can be considered as a skew-symmetric bilinear form on G:

Θ(X ,Y) =
〈
Teθ(X),Y

〉
=−

〈
Teθ(Y ),X

〉
.

The skew-symmetric bilinear form Θ is a symplectic cocycle of the Lie algebra G. It means

that it is skew-symmetric and satisfies, for all X, Y and Z ∈ G,

Θ
(
[X ,Y ],Z

)
+Θ

(
[Y,Z],X

)
+Θ

(
[Z,X ],Y

)
= 0 .

Proof. These properties easily follow from the fact that when Φ is an action on the left,

for g and h ∈ G, Φg ◦Φh = Φgh (and a similar equality when Φ is an action on the right).

The interested reader will find more details in [31], [55] or [38].

5.5.3 Proposition. Still under the assumptions and with the notations of 5.5.1, the com-

position law which associates to each pair ( f ,g) of smooth real-valued functions on G∗

the function { f ,g}Θ given by

{ f ,g}Θ(x) =
〈
x, [d f (x),dg(x)]

〉
−Θ

(
d f (x),dg(x)

)
, x ∈ G∗ ,

(G being identified with its bidual G∗∗), determines a Poisson structure on G∗, and the

momentum map J : M →G∗ is a Poisson map, M being endowed with the Poisson structure

associated to its symplectic structure.
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Proof. The fact that the bracket ( f ,g) 7→ { f ,g}Θ on C∞(G∗,R) is a Poisson bracket was

already indicated in 4.4.3. It can be verified by easy calculations. The fact that J is a

Poisson map can be proven by first looking at linear functions on G∗, i.e. elements in G.

The reader will find a detailed proof in [38].

5.5.4 Remark. When the momentum map J is replaced by another momentum map J1 =
J+µ , where µ ∈ G∗ is a constant, the symplectic Lie group cocycle θ and the symplectic

Lie algebra cocycle Θ are replaced by θ1 and Θ1, respectively, given by

θ1(g) = θ(g)+µ −Ad∗
g−1(µ) , g ∈ G ,

Θ1(X ,Y ) = Θ(X ,Y)+
〈
µ, [X ,Y ]

〉
, X and Y ∈ G .

These formulae show that θ1 − θ and Θ1 −Θ are symplectic coboundaries of the Lie

group G and the Lie algebra G. In other words, the cohomology classes of the cocycles θ
and Θ only depend on the Hamiltonian action Φ of G on the symplectic manifold (M,ω).

5.6 The use of symmetries in Hamiltonian Mechanics

5.6.1 Symmetries of the phase space

Hamiltonian Symmetries are often used for the search of solutions of the equations of

motion of mechanical systems. The symmetries considered are those of the phase space

of the mechanical system. This space is very often a symplectic manifold, either the

cotangent bundle to the configuration space with its canonical symplectic structure, or

a more general symplectic manifold. Sometimes, after some simplifications, the phase

space is a Poisson manifold.

The Marsden-Weinstein reduction procedure [39, 43] or one of its generalizations [45]

is the method most often used to facilitate the determination of solutions of the equations

of motion. In a first step, a possible value of the momentum map is chosen and the

subset of the phase space on which the momentum map takes this value is determined.

In a second step, that subset (when it is a smooth manifold) is quotiented by its isotropic

foliation. The quotient manifold is a symplectic manifold of a dimension smaller than

that of the original phase space, and one has an easier to solve Hamiltonian system on

that reduced phase space.

When Hamiltonian symmetries are used for the reduction of the dimension of the phase

space of a mechanical system, the symplectic cocycle of the Lie group of symmetries

action, or of the Lie algebra of symmetries action, is almost always the zero cocycle.

For example, if the group of symmetries is the canonical lift to the cotangent bundle of

a group of symmetries of the configuration space, not only the canonical symplectic form,

but the Liouville 1-form of the cotangent bundle itself remains invariant under the action

of the symmetry group, and this fact implies that the symplectic cohomology class of the

action is zero.

5.6.2 Symmetries of the space of motions

A completely different way of using symmetries was initiated by Jean-Marie Souriau,

who proposed to consider the symmetries of the manifold of motions of the mechanical

system. He observed that the Lagrangian and Hamiltonian formalisms, in their usual

formulations, involve the choice of a particular reference frame, in which the motion is

described. This choice destroys a part of the natural symmetries of the system.
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For example, in classical (non-relativistic) Mechanics, the natural symmetry group of

an isolated mechanical system must contain the symmetry group of the Galilean space-

time, called the Galilean group. This group is of dimension 10. It contains not only

the group of Euclidean displacements of space which is of dimension 6 and the group of

time translations which is of dimension 1, but the group of linear changes of Galilean

reference frames which is of dimension 3.

If we use the Lagrangian formalism or the Hamiltonian formalism, the Lagrangian or

the Hamiltonian of the system depends on the reference frame: it is not invariant with

respect to linear changes of Galilean reference frames.

It may seem strange to consider the set of all possible motions of a system, which is

unknown as long as we have not determined all these possible motions. One may ask if it

is really useful when we want to determine not all possible motions, but only one motion

with prescribed initial data, since that motion is just one point of the (unknown) manifold

of motion!

Souriau’s answers to this objection are the following.

1. We know that the manifold of motions has a symplectic structure, and very often

many things are known about its symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural mathematical object

which does not depend on the choice of a particular reference frame (even if the decrip-

tions given to that object by different observers depend on the reference frames used by

these observers): it is the evolution space of the system.

The knowledge of the equations which govern the system’s evolution allows the full

mathematical description of the evolution space, even when these equations are not yet

solved.

Moreover, the symmetry properties of the evolution space are the same as those of the

manifold of motions.

For example, the evolution space of a classical mechanical system with configuration

manifold N is

1. in the Lagrangian formalism, the space R× T N endowed with the presymplectic

form dϖ̂L, whose kernel is of dimension 1 when the Lagrangian L is hyper-regular,

2. in the Hamiltonian formalism, the space R×T ∗N with the presymplectic form dϖ̂H ,

whose kernel too is of dimension 1.

The Poincaré-Cartan 1-form ϖ̂L in the Lagrangian formalism, or ϖ̂H in the Hamiltonian

formalism, depends on the choice of a particular reference frame, made for using the La-

grangian or the Hamiltonian formalism. But their exterior differentials, the presymplectic

forms dϖ̂L or dϖ̂H , do not depend on that choice, modulo a simple change of variables in

the evolution space.

Souriau defined this presymplectic form in a framework more general than those of

Lagrangian or Hamiltonian formalisms, and called it the Lagrange form. In this more

general setting, it may not be an exact 2-form. Souriau proposed as a new Principle, the

assumption that it always projects on the space of motions of the system as a symplectic

form, even in Relativistic Mechanics in which the definition of an evolution space is not

clear. He called this new principle the Maxwell Principle.

V. Bargmann proved that the symplectic cohomology of the Galilean group is of di-

mension 1, and Souriau proved that the cohomology class of its action on the manifold
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of motions of an isolated classical (non-relativistic) mechanical system can be identified

with the total mass of the system ([55], chapter III, page 153).

Readers interested in the Galilean group and momentum maps of its actions are referred

to the recent book by G. de Saxcé and C. Vallée [52].

6 Statistical Mechanics and Thermodynamics

6.1 Basic concepts in Statistical Mechanics

During the XVIII–th and XIX–th centuries, the idea that material bodies (fluids as well

as solids) are assemblies of a very large number of small, moving particles, began to

be considered by some scientists, notably Daniel Bernoulli (1700–1782), Rudolf Clau-

sius (1822–1888), James Clerk Maxwell (1831–1879) and Ludwig Eduardo Boltzmann

(1844–1906), as a reasonable possibility. Attemps were made to explain the nature of

some measurable macroscopic quantities (for example the temperature of a material body,

the pressure exerted by a gas on the walls of the vessel in which it is contained), and the

laws which govern the variations of these macroscopic quantities, by application of the

laws of Classical Mechanics to the motions of these very small particles. Described in the

framework of the Hamiltonian formalism, the material body is considered as a Hamilto-

nian system whose phase space is a very high dimensional symplectic manifold (M,ω),
since an element of that space gives a perfect information about the positions and the

velocities of all the particles of the system. The experimental determination of the exact

state of the system being impossible, one only can use the probability of presence, at each

instant, of the state of the system in various parts of the phase space. Scientists introduced

the concept of a statistical state, defined below.

6.1.1 Definition. Let (M,ω) be a symplectic manifold. A statistical state is a probability

measure µ on the manifold M.

6.1.2 The Liouville measure on a symplectic manifold

On each symplectic manifold (M,ω), with dimM = 2n, there exists a positive measure

λω , called the Liouville measure. Let us briefly recall its definition. Let (U,ϕ) be a Dar-

boux chart of (M,ω) (4.4.1). The open subset U of M is, by means of the diffeomorphism

ϕ , identified with an open subset ϕ(U) of R2n on which the coordinates (Darboux coor-

dinates) will be denoted by (p1, . . . , pn,x
1, . . . ,xn). With this identification, the Liouville

measure (restricted to U ) is simply the Lebesgue measure on the open subset ϕ(U) of

R
2n. In other words, for each Borel subset A of M contained in U , we have

λω(A) =

∫

ϕ(A)
dp1 . . . dpn dx1 . . . dxn .

One can easily check that this definition does not depend on the choice of the Darboux co-

ordinates (p1, . . . , pn,x
1, . . . ,xn) on ϕ(A). By using an atlas of Darboux charts on (M,ω),

one can easily define λω(A) for any Borel subset A of M.

6.1.3 Definition. A statistical state µ on the symplectic manifold (M,ω) is said to be con-

tinuous (respectively, is said to be smooth) if it has a continuous (respectively, a smooth)

density with respect to the Liouville measure λω , i.e. if there exists a continuous function

(respectively, a smooth function) ρ : M →R such that, for each Borel subset A of M

µ(A) =

∫

A
ρdλω .
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6.1.4 Remark. The density ρ of a continuous statistical state on (M,ω) takes its values

in R
+ and of course satisfies ∫

M
ρdλω = 1 .

For simplicity we only consider in what follows continuous, very often even smooth

statistical states.

6.1.5 Variation in time of a statistical state

Let H be a smooth time independent Hamiltonian on a symplectic manifold (M,ω), XH

the associated Hamiltonian vector field and ΦXH its reduced flow. We consider the me-

chanical system whose time evolution is described by the flow of XH .

If the state of the system at time t0, assumed to be perfectly known, is a point z0 ∈ M,

its state at time t1 is the point z1 = ΦXH
t1−t0

(z0).

Let us now assume that the state of the system at time t0 is not perfectly known, but

that a continuous probability measure on the phase space M, whose density with respect

to the Liouville measure λω is ρ0, describes the probability distribution of presence of the

state of the system at time t0. In other words, ρ0 is the density of the statistical state of the

system at time t0. For any other time t1, the map ΦXH
t1−t0

is a symplectomorphism, therefore

leaves invariant the Liouville measure λω . The probability density ρ1 of the statistical

state of the system at time t1 therefore satisfies, for any x0 ∈ M for which x1 = ΦXH
t1−t0

(x0)
is defined,

ρ1(x1) = ρ1

(
ΦXH

t1−t0
(x0)

)
= ρ0(x0) .

Since
(
ΦXH

t1−t0

)−1
= ΦXH

t0−t1
, we can write

ρ1 = ρ0 ◦ΦXH
t0−t1

.

6.1.6 Definition. Let ρ be the density of a continuous statistical state µ on the symplectic

manifold (M,ω). The number

s(ρ) =
∫

M
ρ log

(
1

ρ

)
dλω

is called the entropy of the statistical state µ or, with a slight abuse of language, the

entropy of the density ρ .

6.1.7 Remarks.

1. By convention we state that 0 log

(
1

0

)
= 0. With that convention the function

x 7→ x log

(
1

x

)
is continuous on R

+. If the integral on the right hand side of the equality

which defines s(ρ) does not converge, we state that s(ρ) = −∞. With these conventions,

s(ρ) exists for any continuous probability density ρ .

2. The above definition (6.1.6) of the entropy of a statistical state, founded on ideas

developed by Boltzmann in his Kinetic Theory of Gases [9], specially in the derivation

of his famous (and controversed) Theorem Êta, is too related with the ideas of Claude

Shannon [53] on Information theory. The use of Information theory in Thermodynamics

was more recently proposed by Jaynes [21, 22] and Mackey [34]. For a very nice discus-

sion of the use of probability concepts in Physics and application of Information theory

in Quantum Mechanics, the reader is referred to the paper by R. Balian [3].
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The entropy s(ρ) of a probability density ρ has very remarkable variational properties

discussed in the following definitions and proposition.

6.1.8 Definitions. Let ρ be the density of a smooth statistical state on a symplectic man-

ifold (M,ω).

1. For each function f defined on M, taking its values in R or in some finite-

dimensional vector space, such that the integral on the right hand side of the equality

Eρ( f ) =
∫

M
f ρdλω

converges, the value Eρ( f ) of that integral is called the mean value of f with respect to ρ .

2. Let f be a smooth function on M, taking its values in R or in some finite-

dimensional vector space, satisfying the properties stated above. A smooth infinitesi-

mal variation of ρ with fixed mean value of f is a smooth map, defined on the product

]− ε,ε[×M, with values in R
+, where ε > 0,

(τ,z) 7→ ρ(τ,z) , τ ∈]− ε,ε[, z ∈ M ,

such that

• for τ = 0 and any z ∈ M, ρ(0,z) = ρ(z),

• for each τ ∈]−ε,ε[ , z 7→ ρτ(z) = ρ(τ,z) is a smooth probability density on M such

that

Eρτ ( f ) =
∫

M
ρτ f dλω = Eρ( f ) .

3. The entropy function s is said to be stationary at the probability density ρ with

respect to smooth infinitesimal variations of ρ with fixed mean value of f , if for any

smooth infinitesimal variation (τ,z) 7→ ρ(τ,z) of ρ with fixed mean value of f

ds(ρτ)

dτ

∣∣∣
τ=0

= 0 .

6.1.9 Proposition. Let H : M → R be a smooth Hamiltonian on a symplectic manifold

(M,ω) and ρ be the density of a smooth statistical state on M such that the integral

defining the mean value Eρ(H) of H with respect to ρ converges. The entropy function

s is stationary at ρ with respect to smooth infinitesimal variations of ρ with fixed mean

value of H, if and only if there exists a real b ∈ R such that, for all z ∈ M,

ρ(z) =
1

P(b)
exp
(
−bH(z)

)
, with P(b) =

∫

M
exp(−bH)dλω .

Proof. Let τ 7→ ρτ be a smooth infinitesimal variation of ρ with fixed mean value of H.

Since

∫

M
ρτdλω and

∫

M
ρτHdλω do not depend on τ , it satisfies, for all τ ∈]− ε,ε[ ,

∫

M

∂ρ(τ,z)

∂τ
dλω(z) = 0 ,

∫

M

∂ρ(τ,z)

∂τ
H(z)dλω(z) = 0 .

Moreover an easy calculation leads to

ds(ρτ)

dτ

∣∣∣
τ=0

=−

∫

M

∂ρ(τ,z)

∂τ

∣∣∣
τ=0

(1+ log
(
ρ(z)

)
dλω(z) .
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A well known result in calculus of variations shows that the entropy function s is station-

ary at ρ with respect to smooth infinitesimal variations of ρ with fixed mean value of H, if

and only if there exist two real constants a and b, called Lagrange multipliers, such that,

for all z ∈ M,

1+ log(ρ)+a+bH = 0 ,

which leads to

ρ = exp(−1−a−bH) .

By writing that

∫

M
ρdλω = 1, we see that a is determined by b:

exp(1+a) = P(b) =
∫

M
exp(−bH)dλω .

6.1.10 Definitions. Let H : M → R be a smooth Hamiltonian on a symplectic manifold

(M,ω). For each b ∈ R such that the integral on the right side of the equality

P(b) =

∫

M
exp(−bH)dλω

converges, the smooth probability measure on M with density (with respect to the Liou-

ville measure)

ρ(b) =
1

P(b)
exp
(
−bH

)

is called the Gibbs statistical state associated to b. The function P : b 7→ P(b) is called the

partition function.

The following proposition shows that the entropy function, not only is stationary at any

Gibbs statistical state, but in a certain sense attains at that state a strict maximum.

6.1.11 Proposition. Let H : M → R be a smooth Hamiltonian on a symplectic manifold

(M,ω) and b∈R be such that the integral defining the value P(b) of the partition function

P at b converges. Let

ρb =
1

P(b)
exp(−bH)

be the probability density of the Gibbs statistical state associated to b. We assume that the

Hamiltonian H is bounded by below, i.e. that there exists a constant m such that m≤H(z)
for any z ∈ M. Then the integral defining

Eρb
(H) =

∫

M
ρbHdλω

converges. For any other smooth probability density ρ1 such that

Eρ1
(H) = Eρb

(H) ,

we have

s(ρ1)≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.
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Proof. Since m≤H, the function ρb exp(−bH) satisfies 0≤ ρb exp(−bH)≤ exp(−mb)ρb,

therefore is integrable on M. Let ρ1 be any smooth probability density on M satisfying

Eρ1
(H) = Eρb

(H). The function defined on R
+

x 7→ h(x) =





x log

(
1

x

)
if x > 0

0 if x = 0

being convex, its graph is below the tangent at any of its points
(
x0,h(x0)

)
. We therefore

have, for all x > 0 and x0 > 0,

h(x)≤ h(x0)− (1+ logx0)(x− x0) = x0 − x(1+ logx0) .

With x = ρ1(z) and x0 = ρb(z), z being any element in M, that inequality becomes

h
(
ρ1(z)

)
= ρ1(z) log

(
1

ρ1(z)

)
≤ ρb(z)−

(
1+ logρb(z)

)
ρ1(z) .

By integration over M, using the fact that ρb is the probability density of the Gibbs state

associated to b, we obtain

s(ρ1)≤ 1−1−
∫

M
ρ1 logρbdλω = s(ρb) .

We have proven the inequality s(ρ1) ≤ s(ρb). If ρ1 = ρb, we have of course the equality

s(ρ1) = s(ρb). Conversely if s(ρ1) = s(ρb), the functions defined on M

z 7→ ϕ1(z) = ρ1(z) log

(
1

ρ1(z)

)
and z 7→ ϕ(z) = ρb(z)−

(
1+ logρb(z)

)
ρ1(z)

are continuous on M except, maybe, for ϕ , at points z at which ρb(z) = 0 and ρ1(z) 6= 0,

but the set of such points is of measure 0 since ϕ is integrable. They satisfy the inequality

ϕ1 ≤ ϕ . Both are integrable on M and have the same integral. The function ϕ − ϕ1

is everywhere ≥ 0, is integrable on M and its integral is 0. That function is therefore

everywhere equal to 0 on M. We can write, for any z ∈ M,

ρ1(z) log

(
1

ρ1(z)

)
= ρb(z)−

(
1+ logρb(z)

)
ρ1(z) . (∗)

For each z ∈ M such that ρ1(z) 6= 0, we can divide that equality by ρ1(z). We obtain

ρb(z)

ρ1(z)
− log

(
ρb(z)

ρ1(z)

)
= 1 .

Since the function x 7→ x − logx reaches its minimum, equal to 1, for a unique value

of x > 0, that value being 1, we see that for each z ∈ M at which ρ1(z) > 0, we have

ρ1(z) = ρb(z). At points z ∈ M at which ρ1(z) = 0, the above equality (∗) shows that

ρb(z) = 0. Therefore ρ1 = ρb.

The following proposition shows that a Gibbs statistical state remains invariant under

the flow of the Hamiltonian vector field XH . In that sense, one can say that a Gibbs

statistical state is a statistical equilibrium state. Of course, there exist statistical states

which remain invariant under the flow of XH other than Gibbs states.
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6.1.12 Proposition. Let H be a smooth Hamiltonian bounded by below on a symplectic

manifold (M,ω), b ∈ R be such that the integral defining the value P(b) of the partition

function P at b converges. The Gibbs state associated to b remains invariant under the

flow of of the Hamiltonian vector field XH .

Proof. The density ρb of the Gibbs state associated to b, with respect to the Liouville

measure λω , is

ρb =
1

P(b)
exp(−bH) .

Since H is constant along each integral curve of XH , ρb too is constant along each integral

curve of XH . Moreover, the Liouville measure λω remains invariant under the flow of XH .

Therefore the Gibbs probability measure associated to b too remains invariant under that

flow.

6.2 Thermodynamic equilibria and thermodynamic functions

6.2.1 Assumptions made in this section.

Any Hamiltonian H defined on a symplectic manifold (M,ω) considered in this section

will be assumed to be smooth, bounded by below and such that for any real b > 0, each

one of the three functions, defined on M, z 7→ exp
(
−bH(z)

)
, z 7→

∣∣H(z)
∣∣exp

(
−bH(z)

)

and z 7→
(
H(z)

)2
exp
(
−bH(z)

)
is everywhere smaller than some function defined on M

integrable with respect to the Liouville measure λω . The integrals which define

P(b) =

∫

M
exp(−bH)dλω and Eρb

(H) =

∫

M
H exp(−bH)dλω

therefore converge.

6.2.2 Proposition. Let H be a Hamiltonian defined on a symplectic manifold (M,ω)
satisfying the assumptions indicated in 6.2.1. For any real b > 0 let

P(b) =

∫

M
exp(−bH)dλω and ρb =

1

P(b)
exp(−bH)

be the value at b of the partition function P and the probability density of the Gibbs

statistical state associated to b, and

E(b) = Eρb
(H) =

1

P(b)

∫

M
H exp(−bH)dλω

be the mean value of H with respect to the probability density ρb. The first and second

derivatives with respect to b of the partition function P exist, are continuous functions of

b given by

dP(b)

db
=−P(b)E(b) ,

d2P(b)

db2
=
∫

M
H2 exp(−bH)dλω = P(b)Eρb

(H2) .

The derivative with respect to b of the function E exists and is a continuous function of b

given by

dE(b)

db
=−

1

P(b)

∫

M

(
H −Eρb

(H)
)2

dλω =−Eρb

((
H −Eρb

(H)
)2
)
.
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We have always
dE(b)

db
≤ 0, and when H is not a constant function on M,

dE(b)

db
< 0.

Let S(b) be the entropy s(ρb) of the Gibbs statistical state associated to b. The function

S can be expressed in terms of P and E as

S(b) = log
(
P(b)

)
+bE(b) .

Its derivative with respect to b exists and is a continuous function of b given by

dS(b)

db
= b

dE(b)

db
.

Proof. Using the assumptions 6.2.1, we see that the functions b 7→P(b) and b 7→Eρb
(H)=

E(b), defined by integrals on M, have a derivative with respect to b which is continuous

and which can be calculated by derivation under the sign

∫

M
. The indicated results easily

follow, if we observe that for any function f on M such that Eρb
( f ) and Eρb

( f 2) exist, we

have the formula, well known in Probability theory,

Eρb
( f 2)−

(
Eρb

( f )
)2

= Eρb

((
f −Eρb

( f )
)2
)
.

We have always
dE(b)

db
≤ 0, the inequality being strict when H is not a constant function

on M, since that quantity is the opposite of the mean value of a continuous non-negative

function, not everywhere 0 when H is not a constant function on M.

6.2.3 Physical meaning of the introduced functions

Let us consider a physical system, for example a gas contained in a vessel bounded by

rigid, thermally insulated walls, at rest in a Galilean reference frame. We assume that its

evolution can be mathematically described by means of a Hamiltonian system on a sym-

plectic manifold (M,ω) whose Hamiltonian H satisfies the assumptions 6.2.1. For physi-

cists, a Gibbs statistical state, i.e. a probability measure of density ρb =
1

P(b)
exp(−bH)

on M, is a thermodynamic equilibrium of the physical system. The set of possible ther-

modynamic equilibria of the system is therefore indexed by a real parameter b > 0. The

following argument will show what physical meaning can have that parameter.

Let us consider two similar physical systems, mathematically described by two Hamil-

tonian systems, of Hamiltonians H1 on the symplectic manifold (M1,ω1) and H2 on the

symplectic manifold (M2,ω2). We first assume that they are independent and both in ther-

modynamic equilibrium, with different values b1 and b2 of the parameter b. We denote

by E1(b1) and E2(b2) the mean values of H1 on the manifold M1 with respect to the Gibbs

state of density ρ1,b1
and of H2 on the manifold M2 with respect to the Gibbs state of

density ρ2,b2
. We assume now that the two systems are coupled in a way allowing an ex-

change of energy. For example, the two vessels containing the two gases can be separated

by a wall allowing a heat transfer between them. Coupled together, they make a new

physical system, mathematically described by a Hamiltonian system on the symplectic

manifold (M1 ×M2, p∗1ω1 + p∗2ω2), where p1 : M1 ×M2 → M1 and p2 : M1 ×M2 → M2

are the canonical projections. The Hamiltonian of this new system can be made as close

to H1 ◦ p1 +H2 ◦ p2 as one wishes, by making very small the coupling between the two

systems. The mean value of the Hamiltonian of the new system is therefore very close to
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E1(b1)+E2(b2). When the total system will reach a state of thermodynamic equilibrium,

the probability densities of the Gibbs states of its two parts, ρ1,b′ on M1 and ρ2,b′ on M2

will be indexed by the same real number b′ > 0, which must be such that

E1(b
′)+E2(b

′) = E1(b1)+E2(b2) .

By 6.2.2, we have, for all b > 0,

dE1(b)

db
≤ 0 ,

dE2(b)

db
≤ 0 .

Therefore b′ must lie between b1 and b2. If, for example, b1 < b2, we see that E1(b
′) ≤

E1(b1) and E2(b
′) ≥ E2(b2). In order to reach a state of thermodynamic equilibrium,

energy must be transferred from the part of the system where b has the smallest value,

towards the part of the system where b has the highest value, until, at thermodynamic

equilibrium, b has the same value everywhere. Everyday experience shows that thermal

energy flows from parts of a system where the temperature is higher, towards parts where

it is lower. For this reason physicists consider the real variable b as a way to appreciate

the temperature of a physical system in a state of thermodynamic equilibrium. More

precisely, they state that

b =
1

kT

where T is the absolute temperature and k a constant depending on the choice of units

of energy and temperature, called Boltzmann’s constant in honour of the great Austrian

scientist Ludwig Eduard Boltzmann (1844–1906).

For a physical system mathematically described by a Hamiltonian system on a symplec-

tic manifold (M,ω), with H as Hamiltonian, in a state of thermodynamic equilibrium,

E(b) and S(b) are the internal energy and the entropy of the system.

6.2.4 Towards thermodynamic equilibrium

Everyday experience shows that a physical system, when submitted to external condi-

tions which remain unchanged for a sufficiently long time, very often reaches a state of

thermodynamic equilibrium. At first look, when perfecty defined states are considered,

it seems that Lagrangian or Hamiltonian systems with time-independent Lagrangians or

Hamiltonians cannot exhibit a similar behaviour. Let us indeed consider a mechanical

system whose configuration space is a smooth manifold N, described in the Lagrangian

formalism by a smooth time-independent hyper-regular Lagarangian L : T N → R or, in

the Hamiltonian formalism, by the associated Hamiltonian HL : T ∗N → R. Let t 7→
−→
x(t)

be a motion of that system, −→x0 =
−−→
x(t0) and −→x1 =

−−→
x(t0) be the configurations of the system

for that motion at times t0 and t1. There exists another motion t 7→
−−→
x′(t) of the system

for which
−−−→
x′(t0) =

−→x1 and
−−−→
x′(t1) =

−→x0 : since the equations of motion are invariant by time

reversal, the motion t 7→
−−→
x′(t) is obtained simply by taking as initial condition at time t0

−−−→
x′(t0) =

−−→
x(t1) and

d
−−→
x′(t)

dt

∣∣∣
t=t0

= −
d
−→
x(t)

dt

∣∣∣
t=t1

. Another more serious argument against a

kind of thermodynamic behaviour of Lagarangian or Hamiltonian systems rests on the fa-

mous recurrence theorem due to H. Poincaré [46]. This theorem asserts indeed that when

the useful part of the phase space of the system is of a finite total measure, almost all

points in an arbitrarily small open subset of the phase space are recurrent, i.e., the motion
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starting of such a point at time t0 repeatedly crosses that open subset again and again,

infinitely many times when t →+∞.

If instead of perfectly defined states, i.e., points in phase space, we now consider sta-

tistical states, it is not so obvious that a Lagrangian or Hamiltonian system, with a time-

independent Lagrangian or Hamiltonian, starting at time t0 from a given statistical state,

cannot evolve in such a way that its statistical state converges, when t → +∞, towards

an equilibrium statistical state, and more precisely towards a Gibbs statistical state. Of

course we should specify in what sense, of for which topology, such a convergence may

occur, and what physical meaning should be given to a statistical state of a physical sys-

tem. A positive partial answer was given by Ludwig Boltzmann when, developing his

kinetic theory of gases, he proved his famous (but controversed) Êta theorem stating that

the entropy of the statistical state of a gas of small particles is a monotonously increasing

function of time. This question, linked with ergodic theory and with the problem of time

irreversibility in Physics, is still the subject of important researches, both by physicists and

by mathematicians. Many physicists however consider that question of academic interest

only, because the behaviour of particules is only approximately described by the laws of

Classical Mechanics. They think that the question must be dealt with in the framework of

Quantum Mechanics, which only provides probability estimates and offers a more accu-

rate description of their behaviour. The reader is referred to the paper [3] by R. Balian for

a more thorough discussion of that question.

6.3 Examples of thermodynamic equilibria

6.3.1 Classical monoatomic ideal gas

In Classical Mechanics, a dilute gas contained in a vessel at rest in a Galilean reference

frame is mathematically described by a Hamiltonian system made by a large number of

very small massive particles, which interact by very brief collisions between themselves

or with the walls of the vessel, whose motions between two collisions are free. Let us first

assume that these particles are material points and that no external field is acting on them,

other than that describing the interactions by collisions with the walls of the vessel.

The Hamiltonian of one particle in a part of the phase space in which its motion is free

is simply
1

2m
‖−→p ‖2 =

1

2m
(p2

1 + p2
2 + p2

3) , with −→p = m−→v ,

where m is the mass of the particle, −→v its velocity vector and −→p its linear momentum

vector (in the considered Galilean reference frame), p1, p2 and p3 the components of −→p
in a fixed orhtonormal basis of the physical space.

Let N be the total number of particles, which may not have all the same mass. We use a

integer i ∈ {1, 2, . . . , N} to label the particles and denote by mi,
−→xi , −→vi , −→pi the mass and

the vectors position, velocity and linear momentum of the i-th particle.

The Hamiltonian of the gas is therefore

H =
N

∑
i=1

1

2mi
‖−→pi‖

2+ terms involving the collisions between particles and with the walls .

Interactions of the particles with the walls of the vessel are essential for allowing the

motions of particles to remain confined. Interactions between particles are essential to

allow the exchanges between them of energy and momentum, which play an important
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part in the evolution with time of the statistical state of the system. However it appears

that while these terms are very important to determine the system’s evolution with time,

they can be neglected, when the gas is dilute enough, if we only want to determine the

final statistical state of the system, once a thermodynamic equilibrium is established. The

Hamiltonian used will therefore be

H =
N

∑
i=1

1

2mi
‖−→pi‖

2 .

The partition function is

P(b) =

∫

M
exp(−bH)dλω =

∫

D
exp

(
−b

N

∑
i=1

1

2mi
‖−→p i‖

2

)
N

∏
i=1

(d−→xi d−→pi ) ,

where D is the domain of the 6N-dimensional space spanned by the position vectors −→xi

and linear momentum vectors −→pi of the particles in which all the −→xi lie within the vessel

containing the gas. An easy calculation leads to

P(b) =V N

(
2π

b

)3N/2 N

∏
i=1

(mi
3/2) =

N

∏
i=1

[
V

(
2πmi

b

)3/2
]
,

where V is the volume of the vessel which contains the gas. The probability density of

the Gibbs state associated to b, with respect to the Liouville measure, therefore is

ρb =
N

∏
i=1

[
1

V

(
b

2πmi

)3/2

exp

(
−b‖−→pi‖

2

2mi

)]
.

We observe that ρb is the product of the probability densities ρi,b for the i-th particle

ρi,b =
1

V

(
b

2πmi

)3/2

exp

(
−b‖−→pi‖

2

2mi

)
.

The 2N stochastic vectors −→xi and −→pi , i = 1, . . . , N are therefore independent. The po-

sition −→xi of the i-th particle is uniformly distributed in the volume of the vessel, while

the probability measure of its linear momentum −→pi is the classical Maxwell-Boltzmann

probability distribution of linear momentum for an ideal gas of particles of mass mi, first

obtained by Maxwell in 1860. Moreover we see that the three components pi1, pi2 and pi3

of the linear momentum −→pi in an orhonormal basis of the physical space are independent

stochastic variables.

By using the formulae given in 6.2.2 the internal energy E(b) and the entropy S(b) of

the gas can be easily deduced from the partition function P(b). Their expressions are

E(b) =
3N

2b
, S(b) =

3

2

N

∑
i=1

logmi +

(
3

2

(
1+ log(2π)

)
+ logV

)
N −

3N

2
logb .

We see that each of the N particles present in the gas has the same contribution
3

2b
to

the internal energy E(b), which does not depend on the mass of the particle. Even more:

each degree of freedom of each particle, i.e. each of the the three components of the

the linear momentum of the particle on the three axes of an orthonormal basis, has the
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same contribution
1

2b
to the internal energy E(b). This result is known in Physics under

the name Theorem of equipartition of the energy at a thermodynamic equilibrium. It can

be easily generalized for polyatomic gases, in which a particle may carry, in addition to

the kinetic energy due to the velocity of its centre of mass, a kinetic energy due to the

particle’s rotation around its centre of mass. The reader can consult the books by Souriau

[55] and Mackey [34] where the kinetic theory of polyatomic gases is discussed.

The pressure in the gas, denoted by Π(b) because the notation P(b) is already used for

the partition function, is due to the change of linear momentum of the particles which

occurs at a collision of the particle with the walls of the vessel containing the gas (or with

a probe used to measure that pressure). A classical argument in the kinetic theory of gases

(see for example [13] or [14]) leads to

Π(b) =
2

3

E(b)

V
=

N

bV
.

This formula is the well known equation of state of an ideal monoatomic gas relating the

number of particles by unit of volume, the pressure and the temperature.

With b=
1

kT
, the above expressions are exactly those used in classical Thermodynamics

for an ideal monoatomic gas.

6.3.2 Classical ideal monoatomic gas in a gravity field

Let us now assume that the gas, contained in a cylindrical vessel of section Σ and length

h, with a vertical axis, is submitted to the vertical gravity field of intensity g directed

downwards. We choose Cartesian coordinates x, y, z, the z axis being vertical directed

upwards, the bottom of the vessel being in the horizontal surface z = 0. The Hamiltonian

of a free particle of mass m, position and linear momentum vectors −→x (components x, y,

z) and −→p (components px, py and pz) is

1

2m
(p2

x + p2
y + p2

z )+mgz .

As in the previous section we neglect the parts of the Hamiltonian of the gas correspond-

ing to collisions between the particles, or between a particle and the walls of the vessel.

The Hamiltonian of the gas is therefore

H =
N

∑
i=1

(
1

2mi
(p2

i x + p2
i y + p2

i z)+migzi

)
.

Calculations similar to those of the previous section lead to

P(b) =
N

∏
i=1

[
Σ

(
2πmi

b

)3/2
1− exp(−migbh)

migb

]
,

ρb =
1

P(b)
exp

[
−b

N

∑
i=1

(
‖−→pi‖

2

2mi
+migzi

)]
.

The expression of ρb shows that the 2N stochastic vectors −→xi and −→pi still are independent,

and that for each i ∈ {1, . . . ,N}, the probability law of each stochastic vector −→pi is the
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same as in the absence of gravity, for the same value of b. Each stochastic vector −→xi

is no more uniformly distributed in the vessel containing the gas: its probability density

is higher at lower altitudes z, and this nonuniformity is more important for the heavier

particles than for the lighter ones.

As in the previous section, the formulae given in 6.2.2 allow the calculation of E(b) and

S(b). We observe that E(b) now includes the potential energy of the gas in the gravity

field, therefore should no more be called the internal energy of the gas.

6.3.3 Relativistic monoatomic ideal gas

In a Galilean reference frame, we consider a relativistic point particle of rest mass m,

moving at a velocity −→v . We denote by v the modulus of −→v and by c the modulus of the

velocity of light. The motion of the particle can be mathematically described by means of

the Euler-Lagrange equations, with the Lagrangian

L =−mc2

√
1−

v2

c2
.

The components of the linear momentum −→p of the particle, in an orthonormal frame at

rest in the considered Galilean reference frame, are

pi =
∂L

∂vi
=

mvi

√
1−

v2

c2

, therefore −→p =
m−→v√
1−

v2

c2

.

Denoting by p the modulus of −→p , the Hamiltonian of the particle is

H =−→p ·−→v −L =
mc2

√
1−

v2

c2

= c
√

p2 +m2c2 .

Let us consider a relativistic gas, made of N point particles indexed by i ∈ {1, . . . ,N},

mi being the rest mass of the i-th particle. With the same assumptions as those made in

Section 6.3.1, we can take for Hamiltonian of the gas

H = c
N

∑
i=1

√
pi

2 +m2c2 .

With the same notations as those of Section 6.3.1, the partition function P of the gas takes

the value, for each b > 0,

P(b) =

∫

D
exp

(
−bc

N

∑
i=1

√
(pi)2 +m2c2

)
N

∏
i=1

(d−→xi d−→pi ) .

This integral can be expressed in terms of the Bessel function K2, whose expression is,

for each x > 0,

K2(x) = x

∫ +∞

0
exp(−xch χ)sh2 χ ch χdχ .
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We have

P(b) =

(
4πVc

b

)N N

∏
i=1

(
mi

2K2(mibc2)
)
,

ρb =
1

P(b)
exp

(
−bc

N

∑
i=1

√
pi

2 +mi
2c2

)
.

This probability density of the Gibbs state shows that the 2N stochastic vectors −→xi and
−→pi are independent, that each −→xi is uniformly distributed in the vessel containing the gas

and that the probability density of each −→pi is exactly the probability distribution of the

linear momentum of particles in a relativistic gas called the Maxwell-Jüttner distribution,

obtained by Ferencz Jüttner (1878–1958) in 1911, discussed in the book by the Irish

mathematician and physicist J. L. Synge [60].

Of course, the formulae given in 6.2.2 allow the calculation of the internal energy E(b),
the entropy S(b) and the pressure Π(b) of the relativistic gas.

6.3.4 Relativistic ideal gas of massless particles

We have seen in the previous chapter that in an inertial reference frame, the Hamiltonian

of a relativistic point particle of rest mass m is c
√

p2 +m2c2, where p is the modulus of

the linear momentum vector −→p of the particle in the considered reference frame. This

expression still has a meaning when the rest mass m of the particle is 0. In an orthonormal

reference frame, the equations of motion of a particle whose motion is mathematically

described by a Hamiltonian system with Hamiltonian

H = cp = c
√

p1
2 + p2

2 + p3
2

are 



dxi

dt
=

∂H

∂ pi
= c

pi

p

dpi

dt
=−

∂H

∂xi
= 0 ,

(1 ≤ i ≤ 3) ,

which shows that the particle moves on a straight line at the velocity of light c. It seems

therefore reasonable to describe a gas of N photons in a vessel of volume V at rest in an

inertial reference frame by a Hamiltonian system, with the Hamiltonian

H = c
N

∑
i=1

‖−→pi‖= c
N

∑
i=1

√
pi1

2 + pi2
2 + pi3

2 .

With the same notations as those used in the previous section, the partition function P of

the gas takes the value, for each b > 0,

P(b) =
∫

D
exp

(
−bc

N

∑
i=1

‖−→pi‖

)
N

∏
i=1

(d−→xi d−→pi ) =

(
8πV

c3b3

)N

.

The probability density of the corresponding Gibbs state, with respect to the Liouville

measure λω = ∏N
i=1(d

−→xi d−→pi ), is

ρb =
N

∏
i=1

(
c3b3

8πV

)
exp(−bc‖−→pi‖) .
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This formula appears in the books by Synge [60] and Souriau [55]. Physicists consider

it as not adequate for the description of a gas of photons contained in a vessel at thermal

equilibrium because the number of photons in the vessel, at any given temperature, cannot

be imposed: it results from the processes of absorption and emission of photons by the

walls of the vessel, heated at the imposed temperature, which spontaneously occur. In

other words, this number is a stochastic function whose probability law is imposed by

Nature. Souriau proposes, in his book [55], a way to account for the possible variation

of the number of photons. Instead of using the phase space of the system of N massless

relativistic particles contained in a vessel, he uses the manifold of motions MN of that

system (which is symplectomorphic to its phase space). He considers that the manifold

of motions M of a system of photons in the vessel is the disjoint union

M =
⋃

N∈N

MN ,

of all the manifolds of motions MN of a system of N massless relativistic particles in the

vessel, for all possible values of N ∈ N. For N = 0 the manifold M0 is reduced to a sin-

gleton with, as Liouville measure, the measure which takes the value 1 on the only non

empty part of that manifold (the whole manifold M0). Moreover, since any photon cannot

be distinguished from any other photon, two motions of the system with the same num-

ber N of massless particles which only differ by the labelling of these particles must be

considered as identical. Souriau considers too that since the number N of photons freely

adjusts itself, the value of the parameter b =
1

kT
must, at thermodynamic equilibrium, be

the same in all parts MN of the system, N ∈N. He uses too the fact that a photon can have

two different states of (circular) polarization. With these assumptions the value at any b

of the partition function of the system is

P(b) =
+∞

∑
N=0

1

N!

(
16πV

c3b3

)N

= exp

(
16πV

c3b3

)
.

The number N of photons in the vessel at thermodynamic equilibrium is a stochastic

function which takes the value n with the probability

Probability
(
[N = n]

)
=

1

n!

(
16πV

c3b3

)n

exp

(
−

16πV

c3b3

)
.

The expression of the partition function P allows the calculation of the internal energy,

the entropy and all other thermodynamic functions of the system. However, the formula

so obtained for the distribution of photons of various energies at a given temperature does

not agree with the law, in very good agreement with experiments, obtained by Max Planck

(1858–1947) in 1900. An assembly of photons in thermodynamic equilibrium evidently

cannot be described as a classical Hamiltonian system. This fact played an important part

for the development of Quantum Mechanics.

6.3.5 Specific heat of solids

The motion of a one-dimensional harmonic oscillator can be described by a Hamiltonian

system with, as Hamiltonian,

H(p,q) =
p2

2m
+

µq2

2
.
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The idea that the heat energy of a solid comes from the small vibrations, at a microscopic

scale, of its constitutive atoms, lead physicists to attempt to mathematically describe a

solid as an assembly of a large number N of three-dimensional harmonic oscillators. By

dealing separately with each proper oscillation mode, the solid can even be described as

an assembly of 3N one-dimensional harmonic oscillators. Exanges of energy between

these oscillators is allowed by the existence of small couplings between them. However,

for the determination of the thermodynamic equilibria of the solid we will, as in the pre-

vious section for ideal gases, consider as negligible the energy of interactions between the

oscillators. We therefore take for Hamiltonian of the solid

H =
3N

∑
i=1

(
pi

2

2mi
+

µiqi
2

2

)
.

The value of the paritition function P, for any b > 0, is

P(b) =

∫

R6N
exp

[
−b

3N

∑
i=1

(
pi

2

2mi
+

µiqi
2

2

)]
3N

∏
i=1

(dpidqi) =
3N

∏
i=1

(
1

νi

)
b−3N ,

where

νi =
1

2π

√
µi

mi

is the frequency of the i-th harmonic oscillator.

The internal energy of the solid is

E(b) =−
dlogP(b)

db
=

3N

b
.

We observe that it only depends on the the temperature and on the number of atoms in

the solid, not on the frequencies νi of the harmonic oscillators. With b =
1

kT
this result is

in agreement with the empirical law for the specific heat of solids discovered in 1819 by

the French scientists Pierre Louis Dulong (1785–1838) and Alexis Thérèse Petit (1791–

1820). This law is in good agreement with experiments at high temperature only. That fact

was an important argument for a treatment of the specific heat of solids in the framework

of Quantum Mechanics.

7 Generalization for Hamiltonian actions

7.1 Generalized Gibbs states

In his book [56] and in several papers [54, 57, 58], J.-M. Souriau extends the concept of a

Gibbs state for a Hamiltonian action of a Lie group G on a symplectic manifold (M,ω).
Usual Gibbs states defined in section 6 for a smooth Hamiltonian H on a symplectic

manifold (M,ω) appear as special cases, in which the Lie group is a one-parameter group.

If the symplectic manifold (M,ω) is the phase space of the Hamiltonian system, that one-

parameter group, whose parameter is the time t, is the group of evolution, as a function

of time, of the state of the system, starting from its state at some arbitrarily chosen initial

time t0. If (M,ω) is the symplectic manifold of all the motions of the system, that one-

parameter group, whose parameter is a real τ ∈R, is the transformation group which maps

one motion of the system with some initial state at time t0 onto the motion of the system

with the same initial state at another time (t0+ τ). We discuss below this generalization.
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7.1.1 Notations and conventions

In this section, Φ : G×M → M is a Hamiltonian action (for example on the left) of a Lie

group G on a symplectic manifold (M,ω). We denote by G the Lie algebra of G, by G∗

its dual space and by J : M → G∗ a momentum map of the action Φ.

7.1.2 Definitions. A generalized temperature is an element b ∈ G such that the integral in

the right hand side of the equality

P(b) =
∫

M
exp
(
−〈J,b〉

)
dλω

is normally convergent, which means that there exists an open neighbourhood U in G and

a positive-valued function f : M → R
+, integrable on M with respect to the Liouville

measure λω , satisfying, for any b′ ∈U , exp
(
−〈J,b′〉

)
≤ f .

The partition function associated to the momentum map J is the function P, defined on

the set Ω of generalized temperatures, with values in R
+, which associates to each b ∈ Ω

the real P(b) defined by the above equality.

The generalized Gibbs state associated to a generalized temperature b ∈ Ω is the prob-

ability measure on M with density, with respect to the Liouville measure λω ,

ρb =
1

P(b)
exp
(
−〈J,b〉

)
.

7.1.3 Proposition. With the notations and assumptions of 7.1.1 and 7.1.2, let us assume

in addition that the set Ω of generalized temperatures is not empty. Then Ω is a convex

open subset of G which does not depend on the choice of the momentum map J, and the

partition function P : Ω → R
+ is a differentiable function of class C∞ whose differentials

of all orders can be calculated by differentiations with respect to generalized temperature

b of the integral expressing P(b), under the integration sign
∫

M .

Proof. Let us follow the proof given by Souriau in [56]. Definitions 7.1.2 prove that when

b∈G is a generalized temperature, there exists an open neighbourhood U of b all of whose

elements are generalized temperatures. The set Ω of generalized temperatures is therefore

an open subset of G. If we replace the momentum map J by J +µ , where µ is a constant

element in G∗, the function exp
(
−〈J,b〉) is replaced by exp

(
−〈µ,b〉

)
exp
(
−〈J,b〉), which

is normally integrable on M if and only if the function exp
(
−〈J,b〉) itself is normally

integrable on M. Therefore the set Ω does not depend on the choice of J.

Let b0 and b1 be two distinct elements in Ω, U0 and U1 be open neighbourhoods, respec-

tively of b0 and of b1, f0 and f1 be positive valued functions defined on M, integrable with

respect to the Liouville measure λω , satisfying exp
(
−〈J,b′0〉

)
≤ f0 and exp

(
−〈J,b′1〉

)
≤

f1 for any b′0 ∈U0 and b′1 ∈U1. For any λ ∈ [0,1], Uλ = {(1−λ )b′0+λb′1

∣∣ b′0 ∈U0 , b′1 ∈
U1} is an open neighbourhood of bλ = (1−λ )b0+λb1, the function fλ = (1−λ ) f0+λ f1

is integrable on M with respect to the Liouville measure and satisfies, for each b′λ ∈ Uλ ,

exp
(
−〈J,b′λ 〉

)
≤ fλ . Therefore bλ ∈ Ω, which proves that Ω is convex.

The k-th differential of exp
(
−〈J,b〉

)
with respect to b is

Dk
(

exp
(
−〈J,b〉

))
= (−1)kJ⊗k exp

(
−〈J,b〉

)
.

Let us choose a norm on G. We define a norm on the space Lk(G,R) of k-multilinear

forms on G by setting, for each ξ ∈ Lk(G,R),

‖ξ‖= sup
Xi∈G , ‖Xi‖=1 , 1≤i≤k

∣∣ξ (X1, . . . ,Xk)
∣∣ .
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Let b ∈ Ω ce a generalized temperature, ε > 0 be a constant and f be a positive valued

function integrable on M with respect to the measure λω which satisfies exp
(
−〈J,b′〉

)
≤ f

for any b′ ∈ G such that ‖b′−b‖ ≤ ε . Let b′′ ∈ G satisfying ‖b′′−b‖ ≤
ε

2
. For any X ∈ G

satisfying ‖X‖= 1,

∣∣〈J,X〉
∣∣≤ 2k

ε
exp
( ε

2k

∣∣〈J,X〉
∣∣
)
,

therefore

∣∣〈J,X〉
∣∣k exp

(
−〈J,b′′〉

)
≤

(
2k

ε

)k

exp
(
−〈J,b′′±

ε

2
X〉
)
,

where the sign ± is chosen in such a way that −〈J,±εX〉 ≥ 0. Since ‖b−b′′±
ε

2
X‖ ≤ ε ,

we have ∥∥∥Dk
(

exp
(
−〈J,b′′〉

))∥∥∥≤ 2k

ε
f ,

which proves that for any integer k > 0 the k-th differential, with respect to b, of the

function exp
(
−〈J,b〉

)
is normally integrable on M with respect to the Liouville measure

λω . The partition function P is therefore of class C∞ on Ω, and its differerentials of all

orders can be calculated by differentiation under the integration sign
∫

M.

The following Proposition generalizes 6.1.11.

7.1.4 Proposition. Assumptions and notations are the same as in 7.1.3. Let b ∈ Ω be a

generalized temperature. The integral in the right hand side of the below equality, which

defines the mean value of the momentum J for the generalized Gibbs state associated to

b,

Eρb
(J) =

1

P(b)

∫

M
J exp

(
−〈J,b〉

)
dλω

converges. For any other probability density ρ1 such that Eρ1
(J) = Eρb

(J), we have

s(ρ1)≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.

Proof. The convergence of the integral defining Eρb
(J) follows from 7.1.3. The remaining

of the proof is the same as that of Proposition 6.1.11.

7.1.5 Proposition. Assumptions and notations are the same as in 7.1.3. Let b ∈ Ω be a

generalized temperature. The generalized Gibbs state associated to b remains invariant

under the restriction of the Hamiltonian action Φ to the one-parameter subgroup of G

generated by b,
{

exp(τb)
∣∣ τ ∈ R

}
.

Proof. The orbits of the action on M of the subgroup
{

exp(τb)
∣∣ τ ∈ R

}
of G are the

integral curves of the Hamiltonian vector field whose Hamiltonian is 〈J,b〉, which of

course is constant on each of these curves. Therefore the proof of 6.1.12 is valid for that

subgroup.
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7.2 Generalized thermodynamic functions

7.2.1 Proposition. Let Φ : G×M → M be a Hamiltonian action of a Lie group G on a

symplectic manifold (M,ω), such that the set Ω of generalized temperatures (7.1.2) is not

empty. For each generalized temperature b ∈ Ω, let

EJ(b) = Eρb
(J) =

1

P(b)

∫

M
J exp

(
−〈J,b〉

)
dλω ,

S(b) = s(ρb) =
∫

M
ρb log

(
1

ρb

)
dλω ,

where ρb is the probability density of the generalized Gibbs state associated to b (7.1.2).

The functions EJ : Ω → G∗ and S : Ω →R so defined, called, respectively, the mean value

of J and the entropy in the generalized Gibbs state associated to b, are differentiable

of class C∞ and can be expressed in terms of the partition function P : Ω → R
+ or its

logarithm logP : Ω → R and their differentials (7.1.2) as follows,

EJ(b) =−
1

P(b)
DP(b) =−D(logP)(b) ,

S(b) = (logP)(b)+
〈
EJ(b),b

〉
= (logP)(b)−

〈
D(logP)(b),b

〉
.

For each b ∈ Ω, the differential at b of the map EJ (which is a linear map defined on G,

with values in its dual G∗) is given by

〈
DEJ(b)(Y ),Z

〉
=
〈
EJ(b),Y

〉〈
EJ(b),Z

〉
−Eρb

(
〈J,Y 〉〈J,Z〉

)
, with Y and Z ∈ G ,

where we have written, as in 6.1.8,

Eρb

(
〈J,Y〉〈J,Z〉

)
=

1

P(b)

∫

M
〈J,Y 〉〈J,Z〉exp

(
−〈J,b〉

)
dλω .

At each b ∈ Ω, the differential of the entropy function S (7.1.4), which is a linear map

defined on G, with values in R, in other words an element of G∗, is given by

〈
DS(b),Y

〉
=
〈
DEJ(b)(Y ),b

〉
, Y ∈ G .

Proof. Proposition 7.1.3 asserts that the partition function P is of class C∞ and that its

differentials of all orders can be calculated by differentiation under the integration sign∫
M . The expressions of EJ and S easily follow, show that these functions are of class C∞

and easily allow the determination of their differentials.

7.2.2 Corollary. With the same assumptions and notations as those in Proposition 7.2.1,

for any b ∈ Ω and Y ∈ G,

〈
DEJ(b)(Y ),Y

〉
=−

1

P(b)

∫

M

〈
J −EJ(b),Y

〉2
exp
(
−〈J,b〉

)
dλω .

We always have
〈
DEJ(b)(Y ),Y

〉
≤ 0, and when 〈J,Y 〉 is not a constant function on

M, i.e., when the subgroup of G generated by the flow of the Hamiltonian vector field

with 〈J,Y 〉 as Hamiltonian acts effectively on the symplectic manifold (M,ω), we have〈
DEJ(b)(Y ),Y

〉
< 0.
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Proof. The above equality follows from the well known result in Probability theory al-

ready used in the proof of 6.2.2. We observe that
〈
DEJ(b)(Y ),Y

〉
is the opposite of the

square of the standard deviation of the stochastic variable 〈J,Y 〉, for the probability mea-

sure of density ρb on M with respect to the Liouville measure λω , i.e., for the generalized

Gibbs state associated to b. That quantity is therefore always ≤ 0, and is equal to 0 if and

only if 〈J,Y 〉 is a constant function on M.

7.2.3 Theorem. With the same assumptions and notations as those in Proposition 7.2.1,

we assume in addition that the Hamiltonian action Φ of the Lie group G on the symplectic

manifold (M,ω) is effective, i.e., such that for any X ∈ G\{0} the function 〈J,X〉 is not

constant on M. The map EJ then is a diffeomorphism of the open subset of generalized

temperatures Ω ⊂ G onto an open subset Ω∗ ⊂ G∗.

Proof. Since, by 7.2.2, for each b ∈ Ω and Y ∈ G\{0} we have
〈
DEJ(b)(Y ),Y

〉
< 0, for

any b ∈ Ω the differential DEJ of EJ is invertible. The map EJ , which is known to be

differentiable of class C∞, is therefore open. To prove that this map is a diffeomorphism

onto an open subset of G∗, it is enough to prove that it is injective. Let us asssume that

there exists two elements b0 and b1 ∈ Ω, b1−b0 6= 0, such that EJ(b1) = EJ(b0). Since Ω
is convex (7.1.3), b(λ ) = (1−λ )b0 +λb1 ∈ Ω for any λ ∈ [0,1], and we have

0 =
〈
EJ(b1)−EJ(b0),b1 −b0

〉
=

∫ 1

0

〈
DEJ

(
b(λ )

)
(b1 −b0),b1 −b0

〉
dλ .

The integrated function in the right hand side of this double equality is continuous and

by 7.2.2 its values are everywhere < 0 on [0,1]. Its integral therefore cannot be equal

to 0. We have proven that EJ(b1) cannot be equal to EJ(b0). The map EJ therefore is

injective.

7.2.4 Remarks.

1. With the assumptions of 7.2.3 since, for any b ∈ Ω, EJ(b) =−D(logP)(b), we have,

for any Y ∈ G\{0}

D2(logP)(b)(Y,Y ) =−
〈
DEJ(b)(Y ),Y

〉
> 0 .

The second differential of logP therefore is, at each b ∈ Ω, a symmetric definite positive

bilinear form. Frédéric Barbaresco [7] ha shown that it is linked to the Fisher metric

which appers in Information theory.

2. The equality

S(b) =
〈
D(− logP)(b),b

〉
− (− logP)(b)

expresses the fact that the functions − logP : Ω → R and S ◦E−1
J : Ω∗ → R are Legendre

transforms of each other: they are related by the same formula as that which relates, in

Calculus of variations on a smooth manifold N, an hyper-regular Lagrangian L : T N →R

and the associated Hamiltonian H : T ∗N → R. In that setting the Legendre map LL :

T N → T ∗N is the vertical differential of the Lagrangian L, and its inverse is the vertical

differential of the Hamiltonian. Here the Legendre map is EJ : Ω → Ω∗, equal to the

differential D(− logP) of the function − logP, which plays the part of the Lagrangian. Its

inverse EJ
−1 : Ω∗ → Ω is equal to the differential D(S ◦EJ

−1) of the function S ◦EJ
−1,

which plays the part of the Hamiltonian:

EJ = D(− logP) , (EJ)
−1 = D(S ◦EJ

−1) .

41



Legendre transforms were used in Thermodynamics by the French scientist François Massieu

in his very early works [40, 41], more systematically presented in [42], in which he in-

troduced his characteristic functions (today called thermodynamic potentials) allowing

the determination of all the thermodynamic functions of a physical system by partial

derivations of a suitably chosen characteristic function. For a modern presentation of that

subject the reader is referred to [4] and [11], chapter 5, pp. 131–152.

The momentum map J of the Hamiltonian action Φ is not uniquely determined: for any

constant µ ∈ G∗, J1 = J + µ too is a momentum map for Φ. The following proposition

indicates how the generalized thermodynamic functions P, EJ and S change when J is

replaced by J1.

7.2.5 Proposition. With the same assumptions and notations as those in Proposition

7.2.1, let µ ∈ G∗ be a constant. When the momentum map J is replaced by J1 = J+µ , the

open subset Ω of G remains unchanged, while the generalized thermodynamic functions

P, EJ and S, are replaced, respectively, by P1, EJ1
and S1, given by

P1(b) = exp
(
−〈µ,b〉

)
P(b), EJ1

(b) = EJ(b)+µ , S1(b) = S(b) .

The Gibbs satistical state and its density ρb with respect to the Liouville measure λω

remain unchanged.

Proof. We have

exp
(
−〈J +µ,b〉

)
= exp

(
−〈µ,b〉

)
exp
(
−〈J,b〉

)
.

The indicated results follow by easy calculations.

The following proposition indicates how the generalized thermodynamic functions P,

EJ and S vary along orbits of the adjoint action of the Lie group G on its Lie algebra G.

7.2.6 Proposition. The assumptions and notations are the same as those in Proposition

7.2.1. The open subset Ω of G is an union of orbits of the adjoint action of G on G. In

other words, for each b ∈ Ω and each g ∈ G, Adg b ∈ Ω. Moreover, let θ : G → G∗ be the

symplectic cocycle of G for the coadjoin action of G on G∗ such that, for any g ∈ G,

J ◦Φg = Ad∗
g−1 ◦J +θ(g) .

Then for each b ∈ Ω and each g ∈ G

P(Adg b) = exp
(〈

θ(g−1),b
〉)

P(b) = exp
(
−
〈
Ad∗g θ(g),b

〉)
P(b) ,

EJ(Adg b) = Ad∗
g−1 EJ(b)+θ(g) ,

S(Adg b) = S(b) .

Proof. We have

P(Adg b) =
∫

M
exp
(
−〈J,Adg b〉

)
dλω =

∫

M
exp
(
−〈Ad∗g J,b〉

)
dλω

=
∫

M
exp
(
−
〈
J ◦Φg−1 −θ(g−1,b

〉)
dλω

= exp
(〈

θ(g−1),b
〉)

P(b) = exp
(
−
〈
Ad∗g θ(g),b

〉)
P(b) ,

since θ(g−1) =−Ad∗g θ(g). By using 7.2.1 and 7.1.4, the other results easily follow.
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7.2.7 Remark. The equality

EJ(Adg b) = Ad∗
g−1 EJ(b)+θ(g)

means that the map EJ : Ω → G∗ is equivariant with respect to the adjoint action of G on

the open subset Ω of its Lie algebra G and its affine action on the left on G∗

(g,ξ ) 7→ Ad∗
g−1 ξ +θ(g) , g ∈ G , ξ ∈ G∗ .

7.2.8 Proposition. The assumptions and notations are the same as those in Proposition

7.2.1. For each b ∈ Ω and each X ∈ G, we have
〈
EJ(b), [X ,b]

〉
=
〈
Θ(X),b

〉
,

DEJ(b)
(
[X ,b]

)
=−ad∗X EJ(b)+Θ(X) ,

where Θ = Teθ : G→ G∗ is the 1-cocycle of the Lie algebra G associated to the 1-cocycle

θ of the Lie group G.

Proof. Let us set g = exp(τX) in the first equality in 7.2.6, derive that equality with

respect to τ , and evaluate the result at τ = 0. We obtain

DP(b)
(
[X ,b]

)
=−P(b)

〈
Θ(X),b

〉
.

Since, by the first equality of 7.2.1, DP(b)=−P(b)EJ(b), the first stated equality follows.

Let us now set g = exp(τX) in the second equality in 7.2.6, derive that equality with

respect to τ , and evaluate the result at τ = 0. We obtain the second equality stated.

7.2.9 Corollary. With the assumptions and notations of 7.2.8, let us define, for each b∈Ω,

a linear map Θb : G→ G∗ by setting

Θb(X) = Θ(X)− ad∗X EJ(b) .

The map Θb is a symplectic 1-cocycle of the Lie algebra G for the coadjoint representa-

tion, which satisfies

Θb(b) = 0 .

Moreover if we replace the momentum map J by J1 = J + µ , with µ ∈ G∗ constant, the

1-cocycle Θb remains unchanged.

Proof. For X , Y and Z in G, since Θ is a 1-cocycle, ∑
circ(X ,Y,Z)

meaning a sum over circular

permutations of X , Y and Z, using the Jacobi identity in G, we have

∑
circ(X ,Y,Z)

〈
Θb(X), [Y,Z]

〉
= ∑

circ(X ,Y,Z)

〈
−ad∗X EJ(b), [Y,Z]

〉

= ∑
circ(X ,Y,Z)

〈
−EJ(b),

[
X , [Y,Z]

]〉

= 0 .

The linear map Θb is therefore a 1 cocycle, even a symplectic 1-cocycle since for all X

and Y ∈ G,
〈
Θb(X),Y

〉
=−

〈
Θb(Y ),X

〉
.

Using the first equality stated in 7.2.8, we have for any X ∈ G

〈
Θb(b),X

〉
=
〈
Θ(b)− ad∗b EJ(b),X

〉
=−

〈
Θ(X),b

〉
+
〈
EJ(b), [X ,b]

〉
= 0 .

If we replace J by J1 = J +µ , the map X 7→ Θ(X) is replaced by X 7→ Θ1(X) = Θ(X)+
ad∗X µ and EJ(b) by EJ1

(b) = EJ(b)+µ , therefore Θb remains unchanged.
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The following lemma will allow us to define, for each b ∈ Ω, a remarkable symmetric

bilinear form on the vector subspace [b,G] =
{
[b,X ] ;X ∈ G

}
of the Lie algebra G.

7.2.10 Lemma. Let Ξ be a 1-cocycle of a finite-dimensional Lie algebra G for the coad-

joint representation. For each b ∈ kerΞ, let Fb = [G,b] be the set of elements X ∈ G which

can be written X = [X1,b] for some X1 ∈ G. Then Fb is a vector subspace of G, and the

value of the right hand side of the equality

Γb(X ,Y) =
〈
Ξ(X1),Y

〉
, with X1 ∈ G , X = [X1,b] ∈ Fb , Y ∈ Fb ,

depends only on X and Y , not on the choice of X1 ∈ G such that X = [X1,b]. That equality

defines a bilinear form Γb on Fb which is symmetric, i.e. satisfies

Γb(X ,Y) = Γb(Y,X) for all X and Y ∈ Fb .

Proof. Let X1 and X ′
1 ∈ G be such that [X1,b] = [X ′

1,b] = X . Let Y1 ∈ G be such that

[Y1,b] =Y . We have
〈
Ξ(X1−X ′

1),Y
〉
=
〈
Ξ(X1−X ′

1), [Y1,b]
〉

=−
〈
Ξ(Y1), [b,X1−X ′

1]
〉
−
〈
Ξ(b), [X1−X ′

1,Y1]
〉

= 0

since Ξ(b) = 0 and [b,X1−X ′
1] = 0. We have shown that

〈
Ξ(X1),Y

〉
=
〈
Ξ(X ′

1),Y
〉
. There-

fore Γb is a bilinear form on Fb. Similarly
〈
Ξ(X1),Y

〉
=
〈
Ξ(X1), [Y1,b]

〉
=−

〈
Ξ(Y1), [b,X1]

〉
−
〈
Ξ(b), [X1,Y1]

〉
=
〈
Ξ(Y1),X

〉
,

which proves that Γb is symmetric.

7.2.11 Theorem. The assumptions and notations are the same as those in Proposition

7.2.1. For each b ∈ Ω, there exists on the vector subspace Fb = [G,b] of elements X ∈ G

which can be written X = [X1,b] for some X1 ∈ G, a symmetric negative bilinear form Γb

given by

Γb(X ,Y ) =
〈
Θb(X1),Y

〉
, with X1 ∈ G , X = [X1,b] ∈ Fb , Y ∈ Fb ,

where Θb : G→ G∗ is the symplectic 1-cocycle defined in 7.2.9.

Proof. We have seen in 7.2.9 that b ∈ kerΘb. The fact that the equality given in the

statement above defines indeed a symmetric bilinear form on Fb directly follows from

Lemma 7.2.10. We only have to prove that this symmetric bilinear form is negative. Let

X ∈ Fb and X1 ∈ G such that X = [X1,b]. Using 7.2.8 and 7.2.2, we have

Γb(X ,X) =
〈
Θb(X1), [X1,b]

〉
=
〈
Θ(X1)− ad∗X1

EJ(b), [X1,b]
〉
=
〈
DEJ(b)[X1,b], [X1,b]

〉

≤ 0 .

The symmetric bilinear form Γb on Fb is therefore negative.

7.2.12 Remarks. Let b ∈ Ω be a generalized temperature.

1. The symmetric negative bilinear form Γb defined in 7.2.11 is the restriction to the

vector subspace Fb of G of the opposite of the symmetric positive bilinear form on G

defined in 7.2.2. We have seen that when he action Φ of the Lie group G on the symplectic

manifold (M,ω) is effective, that form is non-degenerate.

2. The vector subspace Γb of G made by elements X ∈ G which can be written as X =
[X1,b], with X1 ∈ G, has a very simple geometric interpretation: it is the set of directions

tangent at b to the adjoint orbit of that point. Therefore when the action Φ is effective,

the bilinear forms −Γb, for all elements b of an adjoint orbit contained in Ω, determine a

Riemannian metric on that orbit.
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7.3 Examples of generalized Gibbs states

7.3.1 Action of the group of rotations on a sphere

The symplectic manifold (M,ω) considered here is the two-dimensional sphere of radius

R centered at the origin O of a three-dimensional oriented Euclidean vector space
−→
E ,

equipped with its area element as symplectic form. The group G of rotations around the

origin (isomorphic to SO(3)) acts on the sphere M by a Hamiltonian action. The Lie

algebra G of G can be identified with
−→
E , the fundamental vector field on M associated

to an element
−→
b in G ≡

−→
E being the vector field on M whose value at a point m ∈ M is

given by the vector product
−→
b ×

−→
Om. The dual G∗ of G will be too identified with

−→
E , the

coupling by duality being given by the Euclidean scalar product. The momentum map

J : M → G∗ ≡
−→
E is given by

J(m) =−R
−→
Om , m ∈ M .

Therefore, for any
−→
b ∈ G≡

−→
E ,

〈
J(m),

−→
b
〉
=−R

−→
Om ·

−→
b .

Let
−→
b be any element in G≡

−→
E . To calculate the partition function P(

−→
b ) we choose an

orthonormal basis (−→ex ,
−→ey ,

−→ez ) of
−→
E such that

−→
b = ‖

−→
b ‖−→ez , with ‖

−→
b ‖ ∈ R

+, and we use

angular coordinates (ϕ,θ) on the sphere M. The coordinates of a point m ∈ M are

x = Rcosθ cosϕ , y = Rcosθ sinϕ , z = Rsinθ .

We have

P(
−→
b ) =

∫ 2π

0

(∫ π/2

−π/2
R2 exp(R‖

−→
b ‖sinθ dθ

)
dϕ =

4πR

‖
−→
b ‖

sh
(
R‖

−→
b ‖
)
.

The probability density (with respect to the natural area measure on the sphere M) of the

generalized Gibbs state associated to
−→
b is

ρb(m) =
1

P(
−→
b )

exp(
−→
Om ·

−→
b ) , m ∈ M .

We observe that ρb reaches its maximal value at the point m ∈ M such that
−→
Om =

R
−→
b

‖
−→
b ‖

and its minimal value at the diametrally opposed point.

7.3.2 The Galilean group, its Lie algebra and its actions

In view of the presentation, made below, of some physically meaningful generalized

Gibbs states for Hamiltonian actions of subgroups of the Galilean group, we recall in

this section some notions about the space-time of classical (non-relativistic) Mechanics,

the Galilean group, its Lie algebra and its Hamiltonian actions. The interested reader will

find a much more detailed treatment on these subjects in the book by Souriau [55] or in the

recent book by G. de Saxcé and C. Vallée [52]. The paper [51] presents a nice application

of Galilean invariance in Thermodynamics.
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The space-time of classical Mechanics is a four-dimensional real affine space which,

once an inertial reference frame, units of length and time, orthonormal bases of space

and time are chosen, can be identified with R
4 ≡ R

3 ×R (coordinates x, y, z, t). The

first three coordinates x, y and z can be considered as the three components of a vector
−→r ∈ R

3, therefore an element of space-time can be denoted by (−→r , t). However, as the

action of the Galilean group will show, the splitting of space-time into space and time

is not uniquely determined, it depends on the choice of an inertial reference frame. In

classical Mechanics, there exists an absolute time, but no absolute space. There exists

instead a space (which is an Euclidean affine three-dimensional space) for each value of

the time. The spaces for two distinct values of the time should be considered as disjoint.

The space-time being identified with R
3 ×R as explained above, the Galilean group G

can be identified with the set of matrices of the form




A
−→
b

−→
d

0 1 e

0 0 1


 , with A ∈ SO(3) ,

−→
b and

−→
d ∈ R

3 , e ∈ R , (∗)

the vector space R
3 being oriented and endowed with its usual Euclidean structure, the

matrix A ∈ SO(3) acting on it.

The action of the Galilean group G on space-time, identified as indicated above with

R
3 ×R, is the affine action



−→r
t

1


 7→




A
−→
b

−→
d

0 1 e

0 0 1





−→r
t

1


=




A−→r + t
−→
b +

−→
d

t + e

1


 .

The Lie algebra G of the Galilean group G can be identified with the space of matrices of

the form 


j(−→ω )
−→
β

−→
δ

0 0 ε
0 0 0


 , with

−→ω ,
−→
β and

−→
δ ∈ R

3 , ε ∈ R . (∗∗)

We have denoted by j(−→ω ) the 3×3 skew-symmetric matrix

j(−→ω ) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 .

The matrix j(−→ω ) is an element in the Lie algebra so(3), and its action on a vector −→r ∈R
3

is given by the vector product

j(−→ω )−→r =−→ω ×−→r .

Let us consider a mechanical system made by a point particle of mass m whose position

and velocity at time t, in the reference frame allowing the identification of space-time

with R
3 ×R, are the vectors −→r and −→v ∈ R

3. The action of an element of the Galilean

group on −→r ,−→v and t can be written as



−→r −→v
t 1

1 0


 7→




A
−→
b

−→
d

0 1 e

0 0 1





−→r −→v
t 1

1 0


=




A−→r + t
−→
b +

−→
d A−→v +

−→
b

t + e 1

1 0


 .
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Souriau has shown in his book [55] that this action is Hamiltonian, with the map J, defined

on the evolution space of the particle, with value in the dual G∗ of the Lie algebra G of the

Galilean group, as momentum map

J(−→r , t,−→v ,m) = m

(
−→r ×−→v , −→r − t−→v , −→v ,

1

2
‖−→v ‖2

)
.

Let b =




j(
−→
ω )

−→
β

−→
δ

0 0 ε
0 0 0


 be an element in G. Its coupling with J(−→r , t,−→v ,m) ∈ G∗ is

given by the formula

〈
J(−→r , t,−→v ,m),b

〉
= m

(
−→ω · (−→r ×−→v )− (−→r − t−→v ) ·

−→
β +−→v ·

−→
δ −

1

2
‖−→v ‖2ε

)
.

7.3.3 One-parameter subgroups of the Galilean group

In his book [55], J.-M. Souriau has shown that when the Lie group action Φ is the action of

the full Galilean group on the space of motions of an isolated mechanical system, the open

subset Ω of the Lie algebra G of the Galilean group made by generalized temperatures

(7.1.2) is empty. In other words, generalized Gibbs states of the full Galilean group do

not exist. However, generalized Gibbs states for one-parameter subgroups of the Galilean

group do exist which have an interesting physical meaning.

Let us consider the element b of G given by formula (∗) of 7.3.2, and assume that ε 6= 0.

The one-parameter subgroup G1 of the Galilean group generated by b is the set of matrices

exp(τb), with τ ∈ R. We have

exp(τb) =




A(τ)
−→
b (τ)

−→
d (τ)

0 1 τε
0 0 1


 ,

with

A(τ) = exp
(
τ j(−→ω )

)
,

−→
b (τ) =

(
∞

∑
n=1

τn

n!

(
j(−→ω )

)n−1

)
−→
β ,

−→
d (τ) =

(
∞

∑
n=1

τn

n!

(
j(−→ω )

)n−1

)
−→
δ + ε

(
∞

∑
n=2

τn

n!

(
j(−→ω )

)n−2

)
−→
β ,

with the usual convention that
(

j(
−→
ω )
)0

is the unit matrix.

The physical meaning of this one-parameter subgroup of the Galilean group can be

understood as follows. Let us call fixed the affine Euclidean reference frame of space

(O,−→ex ,
−→ey ,

−→ez ) used to represent, at time t = 0, a point in space by a vector −→r or by

its three components x, y and z. Let us set τ =
t

ε
. For each time t ∈ R, the action

of A(τ) = A
( t

ε

)
maps the fixed reference frame (O,−→ex ,

−→ey ,
−→ez ) onto another affine Eu-

clidean reference frame
(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
, which we call the moving reference

frame. The velocity and the acceleration of the relative motion of the moving reference
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frame with respect to the fixed reference frame is given, at time t = 0, by the fundamental

vector field associated to the element b of the Lie algebra G of the Galilean group: we see

that each point in space has a motion composed of a rotation around the axis through O

parallel to
−→ω , at an angular velocity

‖−→ω ‖

ε
, and simultaneously a uniformly accelerated

motion of translation at an initial velocity

−→
δ

ε
and acceleration

−→
β

ε
. At time t, the velocity

and acceleration of the moving reference frame with respect to its instantaneous position

at that time can be described in a similar manner, but instead of O,
−→ω ,

−→
β and

−→
δ we must

use the corresponding transformed elements by the action of A(τ) = A
( t

ε

)
.

7.3.4 A gas contained in a moving vessel

We consider a mechanical system made by a gas of N point particles, indexed by i ∈
{1,2, . . . ,N}, contained in a vessel with rigid, undeformable walls, whose motion in space

is given by the action of the one-parameter subgroup G1 of the Galilean group made by

the A
( t

ε

)
, with t ∈ R, above described. We denote by mi,

−→ri (t) and −→vi (t) the mass,

position vector and velocity vector, respectively, of the i-th particle at time t. Since the

motion of the vessel containing the gas is precisely given by the action of G1, the bound-

ary conditions imposed to the system are invariant by that action, which leaves invariant

the evolution space of the mechanical system, is Hamiltonian and projects onto a Hamilto-

nian action of G1 on the symplectic manifold of motions of the system. We can therefore

consider the generalized Gibbs states of the system, as discussed in 7.1. We must evaluate

the momentum map J of that action and its coupling with the element b ∈ G. As in 6.3.1

we will neglect, for that evaluation, the contributions of the collisions of the particles be-

tween themselves and with the walls of the vessel. The momentum map can therefore be

evaluated as if all particles were free, and its coupling 〈J,b〉 with b is the sum ∑N
i=1〈Ji,b〉

of the momentum map Ji of the i-th particle, considered as free, with b. We have

〈
Ji(

−→ri , t,
−→vi ,mi),b

〉
= mi

(
−→
ω · (−→ri ×

−→vi )− (−→ri − t−→vi ) ·
−→
β +−→vi ·

−→
δ −

1

2
‖−→vi ‖

2ε
)
.

Following Souriau [55], chapter IV, pages 299–303, we observe that 〈Ji,b〉 is invariant by

the action of G1. We can therefore define −→ri0, t0 and −→vi0 by setting



−→ri0

−→vi0

t0 1

1 0


= exp

(
−

t

ε
b
)


−→ri

−→vi

t 1

1 0




and write 〈
Ji(

−→ri , t,
−→vi ,mi),b

〉
=
〈
Ji(

−→ri0, t0,
−→vi0,mi),b

〉
.

The vectors −→ri0 and −→vi0 have a clear physical meaning: they are the vectors −→ri and
−→vi as seen by an observer moving with the moving affine Euclidean reference frame(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
. Moreover, as can be easily verified, t0 = 0 of course. We

therefore have

〈
Ji(

−→ri , t,
−→vi ,mi),b

〉
= mi

(
−→ω · (−→ri0×

−→vi0)−
−→ri0 ·

−→
β +−→vi0 ·

−→
δ −

1

2
‖−→vi0‖

2ε
)

= mi

(
−→vi0 · (

−→ω ×−→ri0 +
−→
δ )−−→ri0 ·

−→
β −

1

2
‖−→vi0‖

2ε
)
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where we have used the well known property of the mixed product

−→ω · (−→ri0×
−→vi0) =

−→vi0 · (
−→ω ×−→ri0) .

Let us set
−→
U ∗ =

1

ε
(−→ω ×−→ri0 +

−→
δ ) .

Using −→vi0 −
−→
U ∗ and

−→
U ∗ instead of −→vi0, we can write

〈
Ji(

−→ri , t,
−→vi ,mi),b

〉
= miε

(
−

1

2
‖−→vi0 −

−→
U ∗‖2 −−→ri0 ·

−→
β

ε
+

1

2
‖
−→
U ∗‖2

)
.

We observe that the vector
−→
U ∗ only depends on ε ,

−→ω ,
−→
δ , which are constants once the

element b ∈ G is chosen, and of −→ri0, not on −→vi0. It has a clear physical meaning: it is the

value of the velocity of the moving affine reference frame with respect to the fixed affine

reference frame, at point −→ri0 seen by an observer linked to the moving reference frame.

Therefore the vector −→wi0 =
−→vi0−

−→
U ∗ is the relative velocity of the i-th particle with respect

to the moving affine reference frame, seen by an observer linked to the moving reference

frame.

The three components of −→ri0 and the three components of −→pi0 = mi
−→wi0 make a system

of Darboux coordinates on the six-dimensional symplectic manilold (Mi,ωi) of motions

of the i-th particle. With a slight abuse of notations, we can consider the momentum map

Ji as defined on the space of motions of the i-th particle, instead of being defined on the

evolution space of this particle, and write

〈
Ji(

−→ri0,
−→pi,0),b

〉
=−ε

(
1

2mi
‖−→pi0‖

2 +mi fi(
−→ri0)

)
, −→pi0 = mi

−→wi0 = mi(
−→vi0 −

−→
U ∗) , (∗)

and

fi(
−→ri0) =

−→ri0 ·

−→
β

ε
−

1

2ε2
‖−→ω ×−→ri0‖

2 −

−→
δ

ε
·

(−→ω

ε
×−→ri0

)
−

1

2ε2
‖
−→
δ ‖2 .

The above equality (∗) is well suited for the determination of generalized Gibbs states

of the system. Let k ∈ R be a real. For each i ∈ {1, . . . ,N}, the integral on the manifold

of motions of the i-th particle, with respect to the Liouville measure λωi
, of the function

exp
(
−〈Ji,kb〉

)
, depending on kb as a parameter, is normally convergent in the sense of

7.1.2 if and only if kε < 0. It means that the set of generalized temperatures, for the

action of the one-dimensional group G1 on the manifold of motions of the i-th particle, is

the half-line

Ω =
{

kb
∣∣ k ∈ R such that kε < 0

}
,

contained in the Lie algebra G1 of G1. By replacing eventually b by its opposite, which

does not change the one-dimensional group G1, we can arrange things in such a way that

ε < 0. The matrix b itself is then a generalized temperature, for which we can calculate

the partition function and all the generalized thermodynamic functions of the gas made

by the i-th particle, for all i ∈ {1, . . . ,N}. We have

Pi(b) =

∫

Mi

exp
(
−〈Ji,b〉

)
dλωi

, EJi
(b) =

1

Pi(b)

∫

Mi

Ji exp
(
−〈Ji,b〉

)
dλωi

.
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The generalized Gibbs state determined by b (7.1.2) has the smooth density, with respect

to the Liouville measure ∏N
i=1 λωi

on the symplectic manifold of motions ΠN
i=1(Mi,ωi),

ρ(b) =
N

∏
i=1

ρi(b) , with ρi(b) =
1

Pi(b)
exp
(
−〈Ji,b〉

)
.

The partition function, whose expression is

P(b) =
N

∏
i=1

Pi(b) ,

can be used, with the help of the formulae given in 7.2, to determine all the generalized

thermodynamic functions of the gas in a generalized Gibbs state.

7.3.5 Remarks.

1. The physical meaning of the parameter ε which appears in the expression of the

matrix b is clearly apparent in the above expression (∗) of 〈Ji,b〉:

ε =−
1

kT
,

T being the absolute temperature and k the Boltzmann’s constant.

2. The same expression (∗) above shows that the relative motion of the gas with re-

spect to the moving vessel in which it is contained, seen by an observer linked to that

moving vessel, is described by a Hamiltonian system in which the kinetic and potential

energies of the i-th particle are, respectively,
1

2mi
‖−→pi0‖

2 and mi fi(
−→ri0). This result can be

obtained in another way: by deriving the Hamiltonian which governs the relative motion

of a mechanical system with respect to a moving frame, as used by Jacobi [20] to deter-

mine the famous Jacobi integral of the restricted circular three-body problem (in which

two big planets move on concentric circular orbits around their common center of mass,

and a third planet of negligible mass moves in the gravitational field created by the two

big planets).

3. The generalized Gibbs state of the system imposes to the various parts of the system,

i.e., to the various particles, to be at the same temperature T =−
1

kε
and to be statistically

at rest in the same moving reference frame.

7.3.6 Three examples

1. Let us set
−→
ω = 0 and

−→
β = 0. The motion of the moving vessel containing the gas

(with respect to the so called fixed reference frame) is a translation at a constant velocity
−→
δ

ε
. The function fi(

−→ri0) is then a constant. In the moving reference frame, which is

an inertial frame, we recover the thermodynamic equilibrium state of a monoatomic gas

discussed in 6.3.1.

2. Let us set now
−→ω = 0 and

−→
δ = 0. The motion of the moving vessel containing the

gas (with respect to the so called fixed reference frame) is now an uniformly accelerated

translation, with acceleration

−→
β

ε
. The function fi(

−→ri0) now is

fi(
−→ri0) =

−→ri0 ·

−→
β

ε
.
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In the moving reference frame, which is no more inertial, we recover the thermodynamic

equilibrium state of a monoatomic gas in a gravity field −→g =−

−→
β

ε
discussed in 6.3.2.

3. Let us now set
−→ω = ω−→ez ,

−→
β = 0 and

−→
δ = 0. The motion of the moving vessel

containing the gas (with respect to the so called fixed reference frame) is now a rotation

around the coordinate z axis at a constant angular velocity
ω

ε
. The function fi(

−→ri0) is now

fi(
−→ri0) =−

ω2

2ε2
‖−→ez ×

−→ri0‖
2 .

The length ∆ = ‖−→ez ×
−→ri,0‖ is the distance between the i-th particle and the axis of rotation

of the moving frame (the coordinate z axis). Moreover, we have seen that ε =
−1

kT
. There-

fore in the generalized Gibbs state, the probability density ρi(b) of presence of the i-th

particle in its symplectic manifold of motion Mi,ωi, with respect to the Liouville measure

λωi
, is

ρi(b) =
1

Pi(b)
exp
(
−〈Ji,b〉

)
= Constant · exp

(
−

1

2mikT
‖−→pi0‖

2 +
mi

2kT

(ω

ε

)2

∆2

)
.

This formula describes the behaviour of a gas made of point particles of various masses

in a centrifuge rotating at a constant angular velocity
ω

ε
: the heavier particles concentrate

farther from the rotation axis than the lighter ones.

7.3.7 Other applications of generalized Gibbs states

Applications of generalized Gibbs states in Thermodynamics of Continua, with the use of

affine tensors, are presented in the papers by G. de Saxcé [49, 50].

Several applications of generalized Gibbs states of subgroups of the Poincaré group

were considered by J.-M. Souriau. For example, he presents in his book [55], chapter IV,

page 308, a generalized Gibbs state which describes the behaviour of a gas in a relativistic

centrifuge, and in his papers [56, 57], very nice applications of such generalized Gibbs

states in Cosmology.
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Reprinted in 2016.

[11] Callen, H. B., Thermodynamics and an Introduction to Thermostatics, second edi-

tion, John Wiley and Sons, New York, 1985.

[12] Cannas da Silva, A., Lectures on symplectic geometry, Lecture Notes in Mathemat-

ics n. 1764, Springer, 2001, corrected printing 2008.

[13] HyperPhysics, Kinetic Theory, Georgia State University, 2016,

http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html
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nal of Differential Geometry 12 (1977), pp. 253–300.

[33] Lichnerowicz, A., Les variétés de Jacobi et leurs algèbres de Lie associées, Journal
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[36] Marle, C.-M., Calculus on Lie algebroids, Lie groupoids and Poisson manifolds,

Dissertationes Mathematicae 457, Warszawa (2008) 1–57.
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lated in French by Émilie du Chastelet (1756).

[45] Ortega, J.-P., and Ratiu, T.-S., Momentum maps and Hamiltonian reduction,
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[51] de Saxcé, G., and Vallée, C., Bargmann group, momentum tensor and Galilean in-

variance of Clausius-Duhem inequality. International Journal of Engineering Sci-

ence, Vol. 50, 1, January 2012, pp. 216–232.
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