
HAL Id: hal-01392947
https://hal.science/hal-01392947v1

Submitted on 5 Nov 2016 (v1), last revised 16 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RL-IAC: An Exploration Policy for Online Saliency
Learning on an Autonomous Mobile Robot

Céline Craye, David Filliat, Jean-François Goudou

To cite this version:
Céline Craye, David Filliat, Jean-François Goudou. RL-IAC: An Exploration Policy for Online
Saliency Learning on an Autonomous Mobile Robot. IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Oct 2016, Daejeon, South Korea. �hal-01392947v1�

https://hal.science/hal-01392947v1
https://hal.archives-ouvertes.fr

RL-IAC: An Exploration Policy for Online Saliency Learning on an
Autonomous Mobile Robot

Céline Craye1,2, David Filliat1 and Jean-François Goudou2

Abstract— In the context of visual object search and local-
ization, saliency maps provide an efficient way to find object
candidates in images. Unlike most approaches, we propose a
way to learn saliency maps directly on a robot, by exploring
the environment, discovering salient objects using geometric
cues, and learning their visual aspects. More importantly, we
provide an autonomous exploration strategy able to drive the
robot for the task of learning saliency. For that, we describe the
Reinforcement Learning-Intelligent Adaptive Curiosity algorithm
(RL-IAC), a mechanism based on IAC (Intelligent Adaptive
Curiosity) able to guide the robot through areas of the space
where learning progress is high, while minimizing the time spent
to move in its environment without learning. We demonstrate
first that our saliency approach is an efficient tool to generate
relevant object boxes proposal in the input image and signifi-
cantly outperforms state-of-the-art algorithms. Second, we show
that RL-IAC can drastically decrease the required time for
learning saliency compared to random exploration.

I. INTRODUCTION

Object localization has received a lot of attention in the re-
cent years. Today, deep learning-based methods [19] provide
efficient ways to localize and identify a large set of objects in
a wide variety of complex environments, but, they generaly
require hours or days of offline training, high GPU resources,
thousand to millions of training images, and are not really
flexible to novelty. On the other hand, domestic mobile robots
are meant to evolve essentially in indoor environments,
interacting with a limited amount of objects, for specific tasks
and thus do not require such wide scope capacity. Moreover,
they should be able to adapt to novelty by quickly updating
the representation of their environment, while dealing with
limited computational resources. Lastly, the displacement of
the robot makes it possible to move to favorable observation
conditions in order to improve recognition performances. In
that regard, providing the robot a way to explore, actively
learn and update online its representation and knowledge is
a very desirable property.

Visual exploration of the environment by mobile robots
is generally associated with a way to localize areas of
interest on which the robot should focus on. This localiza-
tion mechanism is typically driven by visual saliency maps
[10], [16] or, if depth information is available, geometrical
segmentation [2], [6]. In the first case, bottom-up saliency
maps [11], [21] highlight in the input image stimuli that are
intrinsically salient in their context. As interesting elements

1U2IS, ENSTA ParisTech, Inria FLOWERS team, Université Paris-
Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex France
celine.craye@ensta-paritech.fr

2Thales - SIX - Theresis - Vision & Sensing 1, avenue Augustin Fresnel,
91767 Palaiseau, France celine.craye@thalesgroup.com

are not always intrinsically salient, some approach suggest
to add top-down modulation of the saliency map in order
to further enhance elements related to a given task [10].
In the second case, indoor object segmentation based on
depth information usually rely on finding planar surfaces
and objects lying on it. Those methods can accurately detect
objects on tables or floor, but are limited by the sensor qual-
ity, geometrical constraints (size or distance to the objects)
and require more computation time than bottom-up saliency
maps. In recent years, other approaches have proposed to
directly generate bounding boxes around potential objects
of interest [1], [22], thus avoiding the traditional sliding
window approach for object recognition. Nevertheless, the
measure used to generate boxes (such as objectness) is often
tightly bounded with the concept of saliency. So far, saliency
maps are mostly used as a black box and are not learned
(although sometimes refined) directly during the exploration
of a particular environment. Our first contribution is to
provide a method that incrementally learns saliency as the
robot observes the environment. The produced saliency maps
are therefore dedicated to the environment that was explored,
but remain flexible to novelty. We further show that these
saliency map can be used to refine object boxes proposals.

Active exploration by robots can be done in many different
ways depending on the task and available hardware. On mo-
bile robots aiming at making a semantic cartography of the
environment, predefined path plans [16], navigation graphs
[13], or frontier-based explorations [12] can drive the robot’s
displacement. In the context of learning an optimal action
policy given visual inputs (typically learning eye saccades
to identify objects), reinforcement learning approaches have
been proposed [4], [18]. The use of intrinsic motivation (i.e.
using a reward system that is not related to an external
goal, but to the acquisition of competences or knowledge)
has also been largely investigated. Oudeyer et al. proposed
to drive exploration using learning or competence progress
[3], [17], while [7] have used the error of prediction of
salient event to speed up a classical reinforcement learning
approach, and [15] have integrated artificial curiosity to deal
with high dimensional visual observation in the context of
reinforcement learning. Our second contribution is to pro-
pose a method, called RL-IAC (for Reinforcement Learning
Intelligent Adaptive Curiosity, that provides an exploration
strategy based on the ideas of the IAC algorithm [17]. One
of the challenges for applying such a method to the task of
saliency learning is that the cost for actions (displacement of
the robot in our case) is not considered in IAC, while it is
critical in our framework. We therefore add a reinforcement-

III-A4
saliency

estimation

Exploitation mode

III-A2
salient object
segmentation

III-A3
saliency learning

(Classifier)

Depth Labels

RGB

Learning mode

IV-D
RL-policy

Progress estimation

Robot
displacement

IV-C
Meta-learner Saliency estimation

True saliency

RGB-D
input

III-A1
feature

extraction

Features

RGB input

III-B
Objects

proposal

RL-IAC

Fig. 1. General architecture of our system

learning module that is retrained after each displacement to
determine the action that is the best compromise between
learning and displacement. Note that RL here is not used as
a final goal (we intend to learn saliency, not displacement),
but as a mean to decide at each step the best actions to follow
in order to learn saliency.

In a previous work [9], we described the core mech-
anism of the online learning of saliency based on depth
segmentation and demonstrated its efficiency compared to
state-of-the-art techniques. We here propose a way to use
the generated saliency maps to produce boxes proposals for
objects in the environment. Second, we presented in [9] some
preliminary results of our exploration mechanism based on
the Intelligent Adaptive Curiosity (IAC) [17], adapted to the
problem of saliency learning. A that time, we succesfully
applied IAC in a semi-simulated setup so that an accurate
saliency model could be learned with a limited number of
relevant visual samples. However, the time spent by the
robot in displacements from a position to another one was
not taken into acount, so that the time really spent during
exploration was not considered. We here propose RL-IAC
(for Reinforcement Learning-IAC) that provides a way to get
a trade-off between the time lost in displacements across the
environment, and the acquisition of relevant visual samples
allowing a faster and better learning.

II. SALIENCY LEARNING AND OBJECT
PROPOSAL

Figure 1 presents the general architecture of our system
along with the corresponding section for each block. In a
learning stage, the system extracts RGB features (see Section
II-A.1) and learns the visual (RGB) aspect of salient elements
within their context using a depth-based object segmentation
as a supervision signal (see Section II-A.2). Based on the
supervision signal and the estimated saliency, we use a meta-
learner to obtain an estimation of the local learning progress
(see Section III-C). Then, based on the progress estimation
in different portions of the environment we evaluate with
an RL approach the best action to take between moving to a
regions that has a higher learning progress, and keep learning
around the current position (Section III-D). Once exploration
and learning are finished, we exploit the model to generate
environment specific saliency maps using the RGB image

(Section II-A.4), and use these saliency maps to generate
boxes that isolate objects of interest (Section II-B).

A. Saliency learning

We here recall the key elements of our saliency learning
approach. Please refer to [8], [9] for further explanations.

1) Feature extraction : A feature extractor is applied
to the RGB image in order to encode the color of each
pixel and its neighborhood at different scales, averaged using
superpixels. The feature extractor is applied on the whole
input frame, and returns a 39 dimensions feature vector for
each pixel. Unlike depth segmentation, features are available
everywhere in the image. Refer to [8] for more details.

2) Depth-based object segmentation : The object seg-
menter is based on the depth map and detects objects lying
on planar surfaces (typically tables or floor), with a size
between 10 and 150 centimeters. We use an adapted version
of the method proposed by [6]. The segmentation is based
on detecting the floor plane in the depth map, removing
walls, and creating clusters with points that neither belong to
the floor nor to the walls to create object candidates. Those
clusters of points are also used in Section II-B to generate
SegBoxes. Then, the segmentation mask is constructed as
follows (See Fig. 4, last row for illustrations): Grey areas
of the segmentation mask are pixels where depth value is
unavailable (dark gray), pixels that either belong to the
floor or walls are labeled not salient (black). To avoid false
positives as much as possible, we categorize as undetermined
(light gray) the clusters that are either too small, too large, or
having a contact with the border of the frame. Other clusters
are considered as salient object, labeled salient (white).

3) Online learning: The classifier is continuously updated
based on the saliency labels provided by the segmentation
mask and the corresponding RGB features. Each pixel of
the input image is associated with a feature vector from the
feature extractor and a label from the segmentation. We train
our classifier with the feature-label samples (we only keep
those that were labeled salient or not salient) in order to
predict the saliency of a given pixel. The classifier used in
our implementation is a modified random forest, designed to
re-train a model on-the-fly as new samples arrive (See more
details in [9]). After each update, the classifier is able to
estimate the saliency of an input based on the model trained
with the previous observations, and the RGB image only.

4) Saliency estimation: The saliency maps are constructed
by applying the classifier to RGB images. For each pixel, the
classifier outputs a score between 0 and 1 that is used as its
associated saliency (see Fig. 4, fourth row for examples).
Although less accurate than depth segmentation, saliency
maps provide a more complete estimation of the saliency,
for each pixel of the image.

B. Object bounding boxes proposal

This section presents a new contribution that is a practical
application to the saliency learning. The saliency map pro-
vides an indication of the interestingness of a given pixel. In
order to localize objects in an image, an additional step is

necessary to group salient pixels into object candidates. To
this end, we use two types of bounding boxes proposal, and
we select or reject each of them based on a score related
to saliency. The first bounding boxes are obtained by the
EdgeBoxes [22] algorithm: we compute for a given RGB
input the 100 most likely EdgeBoxes, and their associated
edge score (hinb in [22]). The second type of bounding boxes
are obtained with the segmentation result (called SegBoxes
here for simplicity): during segmentation, pixels of the depth
map are clusterized in order to create object candidates
(See Section II-A.2). Among object candidates, some are
labeled salient, some should be salient objects but are labeled
undetermined because they touch a border or are poorly
segmented, and some are just artifacts. We define Segboxes
as the bounding boxes around all objects candidates (labeled
salient or undetermined) of the segmentation mask.

For both EdgeBoxes and SegBoxes, we associate each box
B with a score related to saliency (called here the saliency
consistency score, or SCscore), representing the ratio of
salient pixels in the box:

SCscore(B) =
1

wB × hB

∑
i,j∈B

S(i, j) (1)

where S(i, j) is the saliency of the pixel at (i, j) , obtained
from the saliency map and wB and hB are the width and
height of B. The highest the score is for a given box, the most
likely it is to contain a salient object. For the EdgeBoxes, the
SCscore is multiplied by hinb . This way, small boxes found
within a salient object might be rejected if the hinb score
is low enough. Last we filter out Segboxes and Edgeboxes
with a final score below a certain threshold and keep the
remaining ones. We found SCscore = 0.2 for SegBoxes
and SCscore× hinb = 0.01 to be good thresholds.

III. RL-IAC

In the scope of an autonomous, life-long exploration and
learning, the robot must be equipped with an exploration
strategy able to drive the robot’s actions. This one has a
critical impact on the learning quality and efficiency, and
should allow the robot to collect interesting examples, while
avoiding problems such as catastrophic forgetting. Ideally,
exploration should be such that the robot focuses on areas
where learning is neither trivial nor impossible. This avoids
decreasing in the learning quality because of irrelevant
samples, and speeds up learning by focusing on appropriate
areas first.

Our exploration strategy, that we call Reinforcement
Learning-IAC (or RL-IAC), uses learning progress as an
intrinsic reward as suggested by the IAC (Intelligent Adaptive
Curiosity) algorithm [17]. In this section, we first recall
the main components of IAC. We then explain the major
challenges of applying such an algorithm to our problem,
and describe the proposed solution to this end.

A. IAC

IAC is originaly designed to learn a sensorimotor mapping.
The robot takes actions and learns to predict the consequence

of these actions on the environment through sensor feed-
backs. In IAC, the robot is learning this mapping by taking
actions that maximize the learning progress. Therefore, the
algorithm makes the robot focus on cases that are neither too
easy nor too hard, so that progresses are constantly made
and no time is wasted in unlearnable situations. The key
components of the algorithm are:
• a learner that learns a mapping X → Y between motor

commands X and sensor inputs Y .
• a separation of the motor space into regions. This

separation is essential as it allows a local estimation
of the learning evolution.

• a meta-learner that monitors the learning evolution in
each region and estimates progresses. Progresses are
estimated based on the evolution of the error between
the learner estimate and the actual sensor input.

To apply the algorithm, the following procedure is used:
The robot takes an action (for example, moving its arm with
the input motor command X) in a given region Ri. It receives
a sensor feedback about the consequence of the action (for
example, the 2D position Y of the hand of the robot in the
frame of a camera), while the learner tries to predict the
sensor feedback Ỹ based on the X input and previously seen
samples. The learner is then updated based on the (X,Y)
sample, whereas the prediction error ‖Y −Ỹ ‖ is added to the
error history of the meta-learner region Ri. Last, the progress
in region Ri is re-evaluated based on the error history over
the last few samples. The next action to be taken from the
robot is then randomly chosen in the region that has the
highest learning progress.

B. Application to saliency learning on a mobile robot

IAC needs a few adjustments to be applied to our problem.
This section lists the main aspects to be considered.

1) Role of the motor commands: The mapping learned
in IAC is between motor command and sensor input. Our
saliency algorithm learns a mapping between sensor inputs
X (the RGB-features) and other sensor inputs Y (the depth-
based segmentation). Motor commands in our case are used
to move the robot across the environment to a new position
and orientation. As a result, we do not use motor command
directly as new samples for our learner, but as a way to
receive new incoming samples (from the RGB-D input),
by showing a different point of view of the environment.
Once learning is finished, the model is then completely
independent from any motor command.

2) Regions definition: In IAC, the regions are obtained by
incrementally splitting the input (X) space of the mapping
which is also the motor space. In our case, the X space of
the mapping is the 39 dimensions space of the RGB-features
which is not well-suited to define regions. The first reason is
the dimensionality, much higher than spaces where IAC has
been used. The second is the accessibility of examples. In
IAC, examples are accessible by sending a motor command
X and receiving the sensor feedback Y . In our case, to get
a specific X and associated label Y , the robot has to move
to a point of view that contains X , which is not feasible in

practice as we do not know the occurences of X before we
have seen them. In our implementation, we therefore choose
to define regions in the space of positions and orientations
accessible by the robot. This space only has 3 dimensions
(2 dimensions for the location, 1 for the orientation) and is
strongly related with motor commands, that modify the state
of our robot in this space.

3) Cost for actions: In IAC, the cost for taking actions
is not considered. In that case, a greedy policy that choses
the regions with highest learning progress is enough. For a
mobile robot moving in a large environment (e.g. a building),
the displacements between two regions can be extremely
time consuming, making the greedy policy inefficient. We
therefore propose to extend the IAC policy with a RL module
that estimates the best trade-off policy between progresses
and displacement. At each step, given the RL policy, the
robot can choose between moving to a region with higher
progress, or stay nearby and keep learning.

C. Progress estimation

In our approach, the learner is the classifier that learns
saliency from RGB features and depth-based segmentation
(see Section II-A.3). The space that is separated into region
is the space of position/orientations accessible by the robot.
A regions is a subset of positions (x, y, θ) that the robot can
reach. Thus, the robot is in region Ri at time t if its current
position (x(t), y(t), θ(t)) ∈ Ri. An action in this space is
a displacement of the robot to a given position (x′, y′, θ′).
In our current implementation, the geometry of the robot’s
environment is supposed to be known, and the regions are
defined arbitrarily prior to the experiment.

As in IAC, the meta-learner stores for each region a
history of the learning error based on the differences between
estimated saliency (from the learner estimation) and observed
saliency (from the segmentation algorithm). Each time a new
frame is acquired in region Ri, saliency map is estimated and
segmentation mask is computed. By keeping only salient
and not salient pixels from the segmentation, we generate
the observation set O, and by taking the associated saliency
response for each of these pixels, we obtain the estimation
set E. Thus, error evaluation Erri(ti) is obtained after a
new frame is acquired in region Ri after ti observations in
the region by the following formula:

Erri(ti) = 1− F1(Oti , Eti) (2)

where F1(., .) is the F1 score 1.
An estimation of the learning progress in region i, is

obtained by a linear regression of the error rate history Erri
over the last τ samples (τ = 10 in our case):Erri(t− τ)...

Erri(t)

 = βi(t)×

t− τ...
t

+

ε(t− τ)...
ε(t)

 (3)

1F1 = 2tp
2tp+fp+fn

, where tp, fp and fn are the true positives, false
positives and false negatives. We use the F1 score as our error metrics for
Erri, because not salient pixels are representing more than 80% of the
samples, making accuracy inappropriate for error estimation.

 Lab
 Corridor
 Office
 Hall
 Robot path
 Region centroid
 Actions

5 m

Fig. 2. Navigation graph used for displacing the robot. The path followed
by the robot to record the sequence is represented by a purple line. Nodes of
the navigation graph are represented by the region centroids, and available
actions to move to adjacent regions are represented by arrows.

with ε(t) the residual error. The learning progress LPi in
region i is defined as the derivative of the learning curve (or
the opposite of the error rate) in that region:

LPi(t) = −βi(t) (4)

D. Exploration policy

Because of the displacement time, the exploration strategy
that only follows the highest learning progress is not well-
suited as is. Therefore, we propose to use Q-learning [20] to
constantly re-estimate the best policy to find a good tradeoff
between moving and learning, given the progress in each
region. The idea is to simulate future displacements of the
robot, and to determine the policy that optimizes progress
(or reward). The next displacement is taken by following
this policy, the progress in regions is updated, and a new
policy is re-estimated.

The problem is modeled as a navigation graph where states
are the regions in which progress is evaluated. Adjacent
regions are connected by edges in the graph, and the cost
for moving to an adjacent region is defined by the time
a robot would take to move between the centroids of the
two regions. See Figure 2 for an example of navigation
graph. The robot can move to adjacent regions or stay
within the current region by taking a displacement action in
M = {up, down, left, right, stay}, or learn in the current
region. If the action learn is selected, the robot grabs an
RGB-D input, process it and updates the saliency learner as
well as the meta-learners. If the action is in M , the robot
moves to the corresponding adjacent region, randomly selects
a new position (x′, y′, θ′) in it and stops at this position.

Suppose that at time t the robot is in region Ri. Each
region Rj of the environment is then associated with an
estimated learning progress LPj(t). To decide the next action
to take, we simulate 1000 episodes for an horizon of time
N = 3600s (i.e. from t to t + N) in which the robot
takes action in the environment and collects reward based on
learning progress. The time spent for displacement depends

on the distance between centroids of two regions, whereas
the time spent for learning is set as 1s (See Section IV-B for
more details about those values). For each episode, the initial
state is always Ri. The learning progress is considered as
constant during the whole episode, and the reward received
when taking an action a in region Rj is as follows:

r(Rj , a) =

{
LPj(t) if a = learn
0 otherwise (5)

Based on the simulated episodes, we determine an optimal
policy by updating a Q-matrix according to the following rule

Q(sk, ak) = r(sk, ak) + γ Max
a′∈M∪{learn}

Q(sk+1, a
′) (6)

with γ the discount factor (0.1 in our implementation), sk
the region where the robot is after k actions, ak the action to
take next, and sk+1 the region after taking action ak. Once all
the episodes have been simulated, we select the next action
at taken by the robot such that

at = Argmax
a′∈M∪{learn}

(Q(Ri, a
′)) (7)

After this action is taken, learning progress is re-estimated
and a new batch of episodes is simulated to train a new Q
matrix and decide the next action to take.

Note that each Q-learning policy is obtained by consider-
ing the reward as constant in time. This assumption is wrong
in practice, as each new learn action influences the learning
progress (and therefore, the reward) that would eventually
decrease to 0 when the learner cannot be any better. However,
the assumption is accurate enough to estimate the next action
to take. As the Q matrix is re-estimated before each new
action, this approximation does not introduce a significant
bias. Moreover, to force the robot to quickly get a first
estimation of the progress in each region, we forced the
progress in a given region to be very high as long as less than
three samples were collected in that region. This additional
constraint has the same effect as the R-MAX [5] exploration
policy. Last, we used an epsilon-greedy strategy to move to
a random region 10% of the time.

IV. EXPERIMENTAL RESULTS

For experimental results, we used two different Kinect
datasets composed of RGB-D data with associated camera
positions (x, y, θ) obtained by a SLAM algorithm. The
saliency and associated object proposal were evaluated on
the images of the dataset without considering the position
of the camera (see Section IV-A). The exploration strategy
was evaluated by simulating the displacement of the robot
to one of the position/orientation available in the dataset and
getting the associated RGB-D data(see Section IV-B).

The first dataset was collected from a pioneer 3DX robot,
with a Kinect RGB-D camera mounted at 1 meter from the
ground and tilted slightly downward. We manually controlled
the robot in an office building in order to visit coridors,
laboratory, hall and offices. We recorded a 15 minutes length
video sequence at 20Hz with the robot moving at a 0.3m/s
average speed, in which a large variety of views were

captured (See Figure 2). The second one is a publicly avail-
able dataset called RGB-D scenes dataset [14]. The dataset
consists of 8 video sequences of indoor scenes of everyday-
life objects lying on tables. For both datasets, we manually
labeled 100 frames to obtain a ground truth bounding boxes
and masks to create an evaluation set. Those frames were
removed from the dataset and used for evaluation only.

A. Object proposal

Before presenting the saliency learning progression, we
analyze the performance reached when enough samples are
used to train the classifier. The evaluation in this section is
done with a saliency model that was learned from the entire
training sequences and evaluated on the testing datasets. In
[9], we demonstrated that our saliency model outperformed
several state-of-the-art saliency techniques when trained and
evaluated on a similar environment. We now demonstrate that
these saliency maps can be used to improve the relevance of
the EdgeBoxes [22] and SegBoxes (See Section II-B). To this
end, we ran the EdgeBoxes algorithm for each frame of the
evaluation set, we collected the 100 best ranked bounding
boxes along with their hinb score. We calculated the SCscore
for each box based on Eq. 1 and used it to produce a
new ranking for the bounding boxes. We also generated the
SegBoxes and filtered out the one with an SCscore above 0.2.
When combined with the EdgeBoxes proposal, the SegBoxes
bounding boxes were ranked before the EdgeBoxes, as they
are much more likely to actually contain objects.

The evaluation metrics is the detection rate versus the
number of proposal, based on the intersection over union
measure (IoU=0.7 in our case) to count the number of
detections. This measure is used by [22] to evaluate their
performance over state of the art approaches. Results are
displayed in Figure 3 for the two datasets. The curves
represent the performance for :
• EdgeBoxes alone (EdgeBoxes),
• EdgeBoxes re-ranked by the SCscore (Edge-

Boxes+SCscore),
• EdgeBoxes re-ranked by the SCscore produced by

a bottom-up saliency map method called BMS
[21](EB+BMS SCscore),

• SegBoxes filtered by the SCscore (SegBoxes+SCscore)
• the combination of re-ranked EdgeBoxes and SegBoxes

(EB+SegBoxes+SCscore).
As expected, the use of the SCscore on EdgeBoxes allows

a much better detection rate on both datasets. Moreover,
using a bottom-up saliency map such as BMS instead of
our saliency slightly improves the performance on the RGB-
D scenes dataset, but performs worse on the other one. The
SegBoxes are often very relevant, but the number of proposal
is low (less that 8 in any cases), and they do not cover the
entire image (reflective objects are poorly detected, objects
more than 4 meters away from the Kinect are not processed).
For that reason, the SegBoxes alone have a limited detection
rate, but they provide a set of boxes that is complementary to
the EdgeBoxes. When SegBoxes proposal are combined with
EdgeBoxes, the detection is significantly improved. Figure

4 shows sample results to compare the ground truth (first
row), the top 5 EdgeBoxes proposals (second rows), the top
5 EdgeBoxes+SCscore proposals (third row, blue) as well as
the SegBoxes proposals (third row, yellow). The SegBoxes
almost always provides relevant boxes, but it also misses a
lot of objects, either because they are too far to be segmented
(sample 5, 7), or because segmentation failed (sample 4). In
this case, the remaining objects location are recovered by the
EdgeBoxes. Moreover, the use of the SCscore to modify the
ranking of the EdgeBoxes allows to favor boxes that surround
salient elements while removing distractors such as windows
or cables (sample 2, 7, 8). Last, it is possible to cope with
frames that does not contain any salient object (sample 6)
by filtering boxes with an SCscore above a certain threshold
(0.01 in our case).

B. Exploration strategy

We now look at the evolution of the saliency quality during
incremental learning. We use again the two datasets, and
associate a navigation graph to both of them. The navigation
graph of the sequence recorded in our building (displayed
on Figure 2) has been manually designed based on the
robot path during the sequence. The centroids were chosen
to be roughly equally spaced. For the RGB-D dataset, the
navigation graph represents a building in which each room
contains a sequence (8 in total) of the dataset. Each room
is divided into 6 regions, and some regions are connected
to other rooms (as if there was doors between rooms). To
simulate the displacement of the robot and the acquisition of
new frames, we associate a set of frames to each region of the
navigation graph, based on their recorded (x, y, θ) positions.
When the exploration policy sends a command to move the
robot to a region Ri, we randomly select a frame that belongs
to Ri, and calculate the time the robot would take to move to
this position based on the euclidean distance at a 0.3m/speed.
The action learn consists in grabbing an RGB-D input and
launching the saliency learning procedure that contains the
following steps and execution time 2:
• feature extraction: 60ms
• depth segmentation: 20 to 1000ms based on the geo-

metrical complexity of the input
• saliency estimation: 30ms
• meta-learner update: 10ms
• learner update: 10 to 5000s based on the number of sam-

ples from the begining of the experiments. The learner
is trained in a separate process that keeps running while
the robot is moving.

• calculate a new RL policy: 100ms
To demonstrate the benefits of exploring the environment

using RL-IAC, we compare the evolution of the saliency
when exploring the environment with different strategies.
Each exploration strategy was tested 10 times on each
dataset and considers the average and variance over those
experiments. The performance of the system was evaluated

2Our implementation was tested on Ubuntu 14.4 with an Intel Core i3-
3240, CPU at 3.4GHz quadcore processor

using the evolution of the overall error rate of the system:
based on the reference frames on which a ground truth is
available, we compare the estimated saliency map for all of
these frames with the available ground truth. We then use the
formula provided by equation 2 on each frame and take the
average error. Note that the overall error rate is an extrinsic
metrics used to evaluate the performance of the system. It
then differs from the region error rate, the intrinsic metrics
(based on segmentation rather than ground truth) used to
get an estimate of the error in each region in Section III-C.
Figure 5 shows the evolution of the overall error rate in time
on both environments, for 4 exploration strategies:

• RND: Random selection of a region and a position in
it. Find the fastest path in the navigation graph to reach
this position. Move to that position. Once arrived, take
action learn that updates the saliency learner and meta-
learner. After learning, select a new position to reach.

• IAC: Same as RND, except that the region selected is
the one with highest learning progress.

• RND+learn: Same as RND, except that during displace-
ment, the action learn is taken once in each visited
region, rather than just in the region of destination.

• RL-IAC, as described in Section III.

On both datasets, RL-IAC is the one with the fastest de-
creasing error. IAC is, with RND, the slowest approach.
Note that RND and IAC were both evaluated in [9], but
the evaluation was done by drawing the error rate vs the
number of observations. Here, we simulate the time the robot
would actually take to move in the environment and learn,
thus making the experiment more realistic. The RND+learn
experiment provides a more realistic exploration scenario
where the robot keeps learning while moving, the error rate
then decreases much faster, but still slower than RL-IAC.

To get a better insight of the way exploration is done by
the robot, we divide the building of our dataset in 4 main
areas, namely lab, office, corridor and hall (See Figure 2). In
these area the difficulty to learn saliency is not the same. For
example, the corridor does not contain any salient element
(Fig 4, sample 6), whereas the hall is a very large room with
many salient items and many distractors (Fig 4, sample 8,9).
We compare in Figure 6 the average percentage of time spent
in each area when using RL-IAC and when using random
(RND+learn) exploration strategies. In the case of random
exploration, the time spent in each area is roughly the same
all along the sequence. 40% to 50% of the time is spent in
the corridor, whereas 10% is spent in the office. With RL-
IAC, the time spent in the corridor (the less ‘interesting’ area)
oscillates between 30% and 20%, except at the beginning,
and almost 20% is spent in the office. Moreover, the time
spent in exploring each area is evolving in time: The time
spent in the office finally decreases to 0%, because the model
does not make any more progress in there, in the middle of
the sequence, most of the time is spent exploring the lab,
while most of the time is spent in the hall at the end of the
exploration.

No boxes
0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
RGB-D scenes

EdgeBoxes
EdgeBoxes+SCscore
EB+BMS SCscore
EB+SegBoxes+SCscore
SegBoxes+SCscore

No boxes
0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
ra

te

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Robot sequence

EdgeBoxes
EdgeBoxes+SCscore
EB+BMS SCscore
EB+SegBoxes+SCscore
SegBoxes+SCscore

(a) (b)
Fig. 3. Detection rate vs number of boxes proposal comparison on the RGB-D scenes dataset (a) and on the robot sequence (b).

 1 2 3 4 5 6 7 8 9

Ground truth

EdgeBoxes

EB+SegBoxes
+ SCscore

Saliency map

Depth
segmentation

Fig. 4. Sample results for boxes proposal. First row: the RGB-input along with the ground truth bounding boxes. Second row: top 5 bounding boxes
proposed by EdgeBoxes. Third row: in blue, the top 5 boxes proposed by EdgeBoxes+SCscore. In yellow, the SegBoxes. To get a better insight of the
saliency bias and the SegBoxes, the corresponding saliency and segmentation are displayed in rows 4 and 5.

time (in s)
0 200 400 600 800 1000 1200 1400

E
rr

or
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error rate RGB-D scenes

RND
IAC
RND+learn
RL-IAC

time (in s)
0 500 1000 1500 2000 2500 3000 3500

E
rr

or
 r

at
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Error rate robot sequence

RND
IAC
RND+learn
RL-IAC

(a) (b)
Fig. 5. Overall error rate and variance evolution versus simulated time for a few exploration strategies. Results are obtained both on (a) RGB-D scenes
artificial building and (b) our building

time (in s)
0 400 800 1200 1600 2000 2400 2800 3200

%
 ti

m
e

in
 s

ec
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time allocated in each section - Random exploration

lab
corridor
office
hall

time (in s)
0 400 800 1200 1600 2000 2400 2800 3200

%
 ti

m
e

in
 s

ec
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time allocated in each section - RL-IAC exploration

lab
corridor
office
hall

(a) (b)
Fig. 6. Time spend for (a) random position selection (b) RL-IAC

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to incremen-
tally learn visual saliency, using an exploration strategy based
on learning progress and reinforcement learning. We show
that this method could be used to produce relevant bounding
boxes around objects of interest that could be further used for
recognition. To allow the robot to autonomously discover and
learn about its environment, we proposed a method called
RL-IAC, that finds the best compromise between spending
time moving to an area with higher progress, or keep learning
in a less progressing area nearby. We show that this type of
exploration strategy makes learning faster and better than it
would be with random exploration.

In a future work, we would like to investigate the use of
other types of intrinsic motivation (such as novelty or un-
certainty) to drive the robot’s actions. The use of navigation
graphs is also pretty restrictive as it forces an operator to
manually determine regions and the robot’s trajectories. An
exploration that would incrementally generate regions and
transitions would be more appropriate. We could also apply
this framework with other definitions of saliency. Instead of
a generic object segmentation, we could for example use
objects detectors and specialize our saliency to find those
objects within their environments.

