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We show that there exists a polynomial automorphism f of C 3 of degree 2 such that for every automorphism g sufficiently close to f , g admits a tangency between the stable and unstable laminations of some hyperbolic set. As a consequence, for each d ≥ 2, there exists an open set of polynomial automorphisms of degree at most d in which the automorphisms having infinitely many sinks are dense. To prove these results, we give a complex analogous to the notion of blender introduced by Bonatti and Díaz.

1. Introduction 1.1. Background. Hyperbolic systems such as the horseshoe introduced by Smale were originally conjectured to be dense in the set of parameters in the 1960's. This was quickly discovered to be false in general for diffeomorphisms of manifolds of dimension greater than 2 (see [START_REF] Abraham | Nongenericity of Ω-stability[END_REF]). The discovery in the seventies of the so-called Newhouse phenomenon, i.e. the existence of residual sets of C 2 -diffeomorphisms of compact surfaces with infinitely many sinks (periodic attractors) in [START_REF] Newhouse | Diffeomorphisms with infinitely many sinks[END_REF] showed it was false in dimension 2 too. The technical core of the proof is the reduction to a line of tangency between the stable and unstable foliations where two Cantor sets must have persistent intersections. This gives persistent homoclinic tangencies between the stable and unstable foliations, ultimately leading to infinitely many sinks. Indeed, it is a well known fact that a sink is created in the unfolding of a generic homoclinic tangency.

Palis and Viana showed in [START_REF] Palis | High dimensional diffeomorphisms displaying infinitely many periodic attractors[END_REF] an analogous result for real diffeomorphisms in higher dimensions. We say that a saddle periodic point of multipliers |λ1| ≤ |λ2| < 1 < |λ3| is sectionally dissipative if the product of any two of its eigenvalues is less than 1 in modulus, that is, |λ1λ3| < 1 and |λ2λ3| < 1 . More precisely, they proved that near any smooth diffeomorphism of R 3 exhibiting a homoclinic tangency associated to a sectionally dissipative saddle periodic point, there is a residual subset of an open set of diffeomorphisms such that each of its elements displays infinitely many coexisting sinks.

In the complex setting, this reduction is not possible anymore and to get persistent homoclinic tangencies, we have to intersect two Cantor sets in the plane. Let us denote by Aut d (C k ) the space of polynomial automorphisms of C k of degree d for d, k ≥ 2. Buzzard proved in [START_REF] Gregery | Infinitely many periodic attractors for holomorphic maps of 2 variables[END_REF] that there exists an integer d > 0, an automorphism G ∈ Aut d (C 2 ) and a neighborhood N ⊂ Aut d (C 2 ) of G such that N has persistent homoclinic tangencies. Buzzard gives an elegant criterion (see [START_REF] Gregery | Stably intersecting Julia sets of polynomials[END_REF]) which generates the intersection of two planar Cantor sets, hence leading to persistent homoclinic tangencies. In his article, Buzzard uses a Runge approximation argument to get a polynomial automorphism, which implies that the degree d remains unknown and is supposedly very high.

In the article [START_REF] Bonatti | Persistent nonhyperbolic transitive diffeomorphisms[END_REF], Bonatti and Díaz introduced a type of horseshoe they called blender horseshoe. The important property of such hyperbolic sets lies in the fractal configuration of one of their stable/unstable manifold which implies persistent intersections between any well oriented graph and this foliation. In some sense, the foliation behaves just as it had greater Hausdorff dimension than every individual manifold of the foliation. They find how to get robust homoclinic tangencies for some C r -diffeomorphism of R 3 using blenders in [START_REF] Bonatti | Abundance of C 1 -robust homoclinic tangencies[END_REF]. In the article [START_REF] Diaz | Blenders in centre unstable Hénonlike families: with an application to heterodimensional bifurcations[END_REF], one can find real polynomial maps of degree 2 with a blender. Other important studies of persistent tangencies using blenders include [START_REF] Berger | Generic family with robustly infinitely many sinks[END_REF] and [START_REF] Pablo | Robust tangencies of large codimension[END_REF].

1.2. Results and outline. In this article, we generalize Buzzard's Theorem to dimension 3 and show that the degree can be controlled in this case. Here is our main result: Main Theorem. There exists a polynomial automorphism f of degree 2 of C 3 such that for every g ∈ Aut(C 3 ) sufficiently close to f , g admits a tangency between the stable and unstable laminations of some hyperbolic set.

Notice that in the previous result, g is not assumed to be polynomial. Let us present the main ideas of the proof of this result. We consider the following automorphism of C 3 :

(1) f0 : (z1, z2, z3) → (pc(z1) + bz2 + σz3(z1 -α), z1, λz1

+ µz3 + ν)
where pc is a quadratic polynomial and the coefficients b, σ, α, λ, µ, ν are complex numbers. We prove that f0 has a horseshoe H f 0 of index (2, 1): the first direction is strongly expanded, the second one is strongly contracted and the third one is moderately contracted by f0. Informally speaking, the third projection restricted to H f 0 satisfies a special "open covering property" formalized in the following definition. This is an analogous in the complex setting of the notion of cs-blender in the sense of Bonatti and Díaz.

Definition (Blender Property). Let f be a polynomial automorphism of C 3 , D a tridisk of C 3 and H f = +∞ -∞ f n (D) a horseshoe of index (2, 1). We will suppose that there exist k > 1 and three cone fields C u , C ss , C cs such that in D:

(1) C u is f -invariant, (2) C ss is f -1 -invariant,
(3) every vector in C u is expanded by a factor larger than k under f , (4) every vector in C ss is expanded by a factor larger than k under f -1 , (5) every vector in C cs is expanded by a factor larger than 1 under f -1 .

We say that H f is a blender if there exists a non empty open set D D such that every curve tangent to C ss intersecting D intersects the unstable set W u (H f ) of H f . Besides, we show that f0 has a periodic point which is sectionally dissipative. Once the blender is constructed, finding persistent tangencies is not trivial. We introduce manifolds with special geometry called folded manifolds. We prove that any folded manifold which is in good position has a tangency with the unstable manifold of a point of H f 0 . We choose the parameters c, b and σ in order to create an initial heteroclinic tangency between the unstable manifold of a point of H f 0 and a folded manifold. This folded manifold is in good position and included in the stable manifold of another point of H f 0 . This enables us to produce persistent heteroclinic tangencies between stable and unstable manifolds of points of H f 0 . This gives rise to homoclinic tangencies associated to the sectionally dissipative point. By a classical argument going back to Newhouse, this provides a subset of the set of automorphisms of degree 2 in which automorphisms displaying infinitely many sinks are dense.

An important point to notice is that the map f0 defined in Eq. ( 1) is a perturbation of a skew product, with on the basis a Hénon mapping (it is a skew product for σ = 0). The structure of Hénon mapping will be important to create a horseshoe in Proposition 3.1.6 and an initial fold in Proposition 5.1.1 (in particular, see Lemma 5.1.3). The affine third coordinate is chosen so that the horseshoe displays the blender property (see Subsection 3.2). The perturbation term σz3(z1 -α) allows to straighten the fold in a particular direction by iterating in Subsections 5.2 and 5.3.

The plan of the paper is as follows. In Section 2, we choose a family of quadratic polynomials and we fix complex coefficients λ, µ, ν. In Section 3, we introduce the map f0 which depends on three parameters c, b, σ and the associated horseshoe and we show that it has the blender property. Then, in Section 4, we introduce the formalism of folded manifolds and the mechanism which gives persistent tangencies. In Section 5, we prove that it is possible to choose f0 in order to have a heteroclinic tangency. Finally, we prove the main Theorem in Section 6. In Appendix A, we explain how to construct a sink from a sectionally dissipative tangency.

Note: This article is a complete rewriting of a first version released on arXiv in November 2016. In that version the polynomial automorphism f was of degree 5. To the best of the author's knowledge, the notion of blender was used there for the first time in holomorphic dynamics. Notice that blenders also appeared in complex dynamics in [START_REF] Dujardin | Non density of stability for holomorphic mappings on P k[END_REF] and [START_REF] Taflin | Blenders near polynomial product maps of C 2[END_REF].
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Preliminaries

2.1. Choice of a quadratic polynomial. In the following, we will consider the Euclidean norm on C n for n ∈ {1, 2, 3}. Notation 2.1.3. For every z ∈ C 3 and i ∈ {1, 2, 3}, we denote by pr i (z) = zi the i thcoordinate of z.

In the following proposition, we carefully choose a family of quadratic polynomials with special properties. Proposition 2.1.4. For every integer q > 1, there exists a disk C ⊂ C of center c0 ∈ C, a holomorphic family (pc)c∈C of quadratic polynomials, two integers m and r (with r independent of q), a constant χ > 1 and a disk D with D ⊂ D such that: Proof. We begin by working with the family of quadratic polynomials pc(z) = z 2 + c, we will rescale at the end of the proof. We begin by taking the only real quadratic polynomial pa(z) = z 2 + a with one parabolic cycle δa of period 3. In particular, a < -1 and a ∈ D(0, 2). For any z ∈ C such that |z| ≥ 10, we have |pa(z

)| = |z 2 + a| ≥ 10|z| -|a| ≥ 10|z| -2 and then |p n a (z)| → +∞.
This shows that the Julia set of pa is strictly included in D(0, 10). Simple calculations show that z 2 + a has two real fixed points

α + a = 1 2 (1 + √ 1 -4a) > 1 2 (1 + √ 5) > 1 and α - a = 1 2 (1 - √ 1 -4a) < 1 2 (1 - √ 5) < -6 10 .
We take two open disks B + ⊂ D(0, 10) and B -⊂ D(0, 10) respectively centered around α + a and α - a which are both disjoint from the orbit of the critical point 0 of z 2 + a (this is possible since the critical orbit tends to the parabolic orbit of z 2 + a). Since α + a and α - a are repulsive fixed points of pa, there exists some χ > (B+) = B + . Hence, denoting r = 2 + 2r, we have B+ B+ and p r a sends B+ biholomorphically onto B + . We denote by γa the periodic point of pa of period r which is the unique fixed point of the restriction of p r a to B+. We notice that γa = α + a . Similarly, we can define B-B-such that p r a sends B-biholomorphically onto B -and p r/2 a (γa) = p 1+r a (γa) = α - a is the unique fixed point of the restriction of p r a to B-.

Since α + a = α - a , it is not possible to satisfy simultaneously γa +pa(γa)+• • •+p r-1 a (γa) = rα + a and γa + pa(γa) + • • • + p r-1 a (γa) = rα - a .
In the following, we will denote by αa a point in {α + a , α - a } such that the inequality γa + pa(γa) The parameter a belongs to the Mandelbrot set. Misiurewicz parameters are dense inside the Mandelbrot set so it is possible to find a parameter c inside the interior of Ca such that the critical point 0 is preperiodic for pc. The critical point 0 is sent after a finite number of iterations of pc on a periodic orbit. This periodic orbit is accumulated by preimages of αc by iterates of pc. Then by the Argument Principle it is possible to take a new Misiurewicz parameter c0 in the interior of Ca such that 0 is still preperiodic but with associated orbit the fixed point αc 0 . There exists an integer m such that p m c 0 (0) = αc 0 with pc 0 (0 [START_REF] Douady | On the dynamics of polynomial-like mappings[END_REF]. For the parameter c0, δc 0 is repulsive of multiplier νc 0 such that 1 < |νc 0 | < (1 + 10 -10 ) 1/qr . We pick some ball C ⊂ Ca of center c0 where this is still true.

+ • • • + p r-1 a (γa) = rαa is sat- isfied.
) = 0, • • • , p m-1 c 0 (0) = 0. The inequality d dc p m c (0) -αc = 0 at c = c0 is a direct consequence of Lemma 1, Chapter 5 of
For each c ∈ C, we do a rescaling by an affine map so that after rescaling B ⊂ D(0, 10) is sent on D = D(0, 1). Properties 1, 2, 4 and 6 are still true. Property 5 is still true with a disk D(0, R) with a fixed R > 0 instead of D(0, 10). Notation 2.2.2. We denote µ0 = (1 -10 -4 )

1 qr • e i• π
2qr which depends on the integer q. In particular, we have the following equality:

µ qr 0 = (1 -10 -4 ) • e i• π 2 .
In the following result, we iterate q times the maps h1 and h2 with a specific choice for the integer q. Remind that A, B and R were defined in Proposition 2.1.4. Proposition 2.2.3. There exists an integer q ≥ 100 such that, after reducing C if necessary, the following holds for every c ∈ C:

(1) |(h q j ) | < 10 -10 for j ∈ {1, 2} on a neighborhood D of D with D ⊂ D ⊂ D , (2) diam h q j (D ) ≤ 10 -11 • dist(h q j (D ), ∂D) for j ∈ {1, 2}, (3) for every z ∈ h q 1 (D ) and 0 ≤ n ≤ qr 1 -10 -10 r -1 R -1 min(1, |A -B|) : µ 0 0 p n+r-1 c (z) + • • • + µ r-1 0 p n c (z) ∈ D(A, 10 -10 • |A -B|) , (4) 
for every z ∈ h q 2 (D ) and 0 ≤ n ≤ qr 1 -10 -10 r -1 R -1 min(1, |A -B|) :

µ 0 0 p n+r-1 c (z) + • • • + µ r-1 0 p n c (z) ∈ D(B, 10 -10 • |A -B|) .
Proof. We first show the result for c = c0. According to property (3) of Proposition 2.1.4, |(p r c ) | > 2 on a neighborhood of D1 ∪ D2. Then, taking q ≥ 100 such that 2 q > 10 10 , we have |(h q j ) | < 10 -10 on some disk D with D ⊂ D ⊂ D . Since hj is a contraction such that n≥0 h n 1 (D ) = {αc} and n≥0 h n 2 (D ) = {γc}, increasing the value of q if necessary, we have that diam (h q j (D ) ≤ 10 -11 • dist(h q j (D ), ∂D). When q → +∞, we both have µ k 0 → 1 and p n+k c 0 (z) → αc 0 uniformly in 0 ≤ k < r, 0 ≤ n ≤ qr(1 -10 -10 r -1 R -1 min(1, |A -B|)) and z ∈ h q 1 (D ). Then, increasing the value of q if necessary, we have that µ 0 0 p n+r-1 c 0

(z) + • • • + µ r-1 0 p n c 0 (z) ∈ D(A, 10 -10 |A -B|).
The proof of the last item is similar. Since all these conditions are open, reducing the ball C of center c0 if necessary, they remain true for every c ∈ C. Notation 2.2.4. Since r is independent of q (see Proposition 2.1.4), we can increase q so that r ≤ 10 -10 qR -1 min(1, |A -B|). From now on, we fix such a value of q and the associated value µ0.

2.3.

Choice of the parameters λ and ν. In this Subsection, we introduce two new coefficients λ and ν. These constants will apppear on the third coordinate of the polynomial automorphisms of C 3 we are going to work with. This will be used to create a horseshoe in Proposition 3.1.6 and to show that this horseshoe displays the blender property in Subsection 3.2. Notation 2.3.1. We denote by A = (µ r-1 (2)

0 αc 0 + • • • + µ 0 0 p r-1 c 0 (αc 0 )) and B = (µ r-1 0 γc 0 + • • • + µ 0 0 p r-1 c 0 (γc 0 )). By Proposition 2.2.3, A ∈ D(A,
|A -B | > 1 2 |A -B| > 1 2 .
Proposition 2.3.2. There exist two constants λ, ν such that |λ| < 1 and satisfying:

λA (1 + µ r 0 + • • • + µ qr-r 0 ) + ν(1 + µ0 + • • • + µ qr-1 0 ) = 9 10 • 10 -4 , λB (1 + µ r 0 + • • • + µ qr-r 0 ) + ν(1 + µ0 + • • • + µ qr-1 0 ) = - 9 10 • 10 -4 .
Proof. We have:

1 + µ r 0 + • • • + µ qr-r 0 = (1 -µ qr 0 )/(1 -µ r 0 )
. By Notation 2.2.2, we have

µ qr 0 = (1 -10 -4 ) • e i• π 2 = 1 and then 1 + µ r 0 + • • • + µ qr-r 0 = 0. Similarly we have 1 + µ0 + • • • + µ qr-1 0 = (1 -µ qr 0 )/(1 -µ0) = 0. Since A = B
, it is possible to pick two coefficients λ and ν so that the images of these two complex numbers by the affine map

z → λ(1 + µ r 0 + • • • + µ qr-r 0 )z + ν(1 + µ0 + • • • + µ qr-1 0
) are respectively equal to 9 10 • 10 -4 and -9 10 • 10 -4 . It remains to show that |λ| < 1. To this end, we will need the following technical lemma: Lemma 2.3.3. The complex number µ0 satisfies the following inequality:

q 2 ≤ 1 + |µ r 0 | + |µ0| 2r + • • • + |µ0| qr-r ≤ 10 • |1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 | . Proof. We have 1 2 ≤ 1, 1 2 ≤ |µ r 0 |, • • • , 1 2 ≤ |µ qr-r 0
| so the first inequality is trivial. Since every term µ nr 0 (0 ≤ n < q) has a positive real part and since this real part is larger than

1 2 for 0 ≤ n ≤ 1 2 (q -1), we have 1 2 (q -1) • 1 2 ≤ Re(1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 ) and then 1 + |µ r 0 | + |µ0| 2r + • • • + |µ0| qr-r ≤ q ≤ 10 • 1 2 (q -1) • 1 2 ≤ 10 • |1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 |. The proof is complete.
We are now in position to end the proof of Lemma 2.3.2. By definition of λ and ν, we have |λ||A -

B ||1 + µ r 0 + • • • + µ qr-r 0 | = 2 • 9 10 • 10 -4 . We already proved that |A -B | > 1 2
in Eq. ( 2) and by Lemma 2.3.3 we also have

|1 + µ r 0 + • • • + µ qr-r 0 | ≥ q/20 ≥ 100/20 ≥ 1.
This implies that |λ| < 1 and so the result is proven. Corollary 2.3.4. Reducing C if necessary, there exists a neighborhood Bµ of µ0 such that for every c ∈ C and µ ∈ Bµ it holds:

(1) for every z ∈ h q 1 (D ), we have:

ν + λp qr-1 c (z) + µ(ν + • • • + µ(ν + λz)) ∈ D( 9 10 
• 10 -4 , 10 -10 ) ,

(2) for every z ∈ h q 2 (D ), we have:

ν + λp q-1 c (z) + µ(ν + • • • + µ(ν + λz)) ∈ D(- 9 10 
• 10 -4 , 10 -10 ) .

Proof. We first prove the result for c = c0 and µ = µ0. According to Proposition 2.3.2, we have:

ν + λp qr-1 c 0 (z) + µ0(ν + • • • + µ0(ν + λz)) - 9 10 • 10 -4 = λ l-1 n=0 (p qr-1-n c 0 (z) -αc 0 )µ n 0 + λ qr-1 n=l (p qr-1-n c 0 (z) -αc 0 )µ n 0 ,
where l is the smallest integer such that l ≥ 10 -10 qR -1 min(1, |A -B|) and which is a multiple of r. By Notation 2.2.4, we have l ≤ 2 • 10 -10 qR -1 min(1, |A -B|). In particular, qr -l is a multiple of r. Using the third item of Proposition 2.2.3, it holds:

|λ qr-1 n=l (p qr-1-n c 0 (z) -αc 0 )µ n 0 | ≤ |λ| • 10 -10 |A -B| • (1 + |µ0| r + |µ0| 2r + • • • + |µ0| qr-r ) .
We already proved that

|A -B | > 1 2 |A -B| in Eq. (2). In particular, this implies that |λ| • |A -B| • |1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 | < |λ| • 2|A -B | • |1 + µ r 0 + • • • + µ qr-r 0 |. Then, by Proposition 2.3.2, this yields |λ| • |A -B| • |1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 | < 2 • 2 • 9 10 • 10 -4 . By Lemma 2.3.3, it also holds: 1+|µ r 0 |+|µ0| 2r +• • •+|µ0| qr-r ≤ 10•|1+µ r 0 +µ 2r 0 +• • •+µ qr-r 0 |.
All this together implies the following:

(3) |λ qr-1 n=l (p qr-1-n c 0 (z) -αc 0 )µ n 0 | ≤ 10 -10 • 10 • 2 • 2 • 9 10 • 10 -4 ≤ 10 -11 .
Since both D and the Julia set of pc 0 are included in D(0, R) (see item 5 of Proposition 2.1.4), we also have:

|λ l-1 n=0 (p qr-1-n c 0 (z) -αc 0 )µ n 0 | ≤ |λ| • 2R • (1 + |µ0| + |µ0| 2 + • • • + |µ0| l-1 ) ≤ |λ| • 2R • l .
Since l ≤ 2 • 10 -10 qR -1 min(1, |A -B|) and then using the inequality |A -B| < 2|A -B | from Eq. ( 2), the latter is smaller than:

|λ| • 2R • 2 • 10 -10 q R • min(1, |A -B|) ≤ 10 -8 • |λ| • q 2 • |A -B| 2 ≤ 10 -8 • |λ| • q 2 • |A -B | .
Using successively the inequality q 2 ≤ 10

• |1 + µ r 0 + µ 2r 0 + • • • + µ qr-r 0 | from Lemma 2.3.3 and then Proposition 2.3.2, the latter is finally smaller than 10 -8 • |λ| • |A -B | • 10 • |1 + µ0 + µ 2 0 + • • • + µ qr-r 0 | ≤ 10 -7 • 2 • 9 10
• 10 -4 and so:

(4) |λ l-1 n=0 (p qr-1-n c 0 (z) -αc 0 )µ n 0 | ≤ 2 • 10 -11 .
Then we just have to sum the two inequalities of Eq. (3) and Eq. ( 4) to prove the result for c = c0 and µ = µ0. By continuity and since the inequality is open, it remains true for every µ in some ball Bµ of center µ0 and c ∈ C after reducing C if necessary. Then item 1 is true and the proof of item 2 is similar. The result is proven.

Remark 2.3.5. We reduce Bµ so that we both have |µ| < (1 -10 -4 + 10 -10 ) 1 qr , |µ| 2qr > 1 -2 • 10 -4 and µ qr ⊂ D(µ qr 0 , 10 -10 ) for every µ ∈ Bµ.

2.4.

Adjusting the parameter µ. In this subsection, we slightly perturb the coefficient µ0 into a new value µ in order to satisfy some equality for a product of matrices. Notice that this choice has nothing to do with the next section and the blender property, it will be useful in Section 5.

Notation 2.4.1. We denote β0 = 0, β1 = pc 0 (0), β2 = p 2 c 0 (0), . . . , βm = p m c 0 (0) = αc 0 the points of the orbit of the critical point 0 before landing onto the fixed point αc 0 . Notation 2.4.2. For every µ ∈ Bµ, we define:

w0 = 0 + 1 • (β0 -βm), w1 = p c 0 (β1)w0 + µ(β1 -βm) • • • and wm-1 = p c 0 (βm-1)wm-2 + µ m-1 (βm-1 -βm) where p c 0 (β0) = 0, p c 0 (β1) = 0, • • • , p c 0 (βm-1) = 0.
Definition 2.4.3. Since βm-1 -βm = 0, wm-1 is a polynomial of degree (m -1) in the variable µ so we fix some µ ∈ Bµ such that wm-1 = wm-1(µ) = 0. Notation 2.4.4. We denote for every σ ∈ C, 0 ≤ n ≤ m -1:

M σ n =   p c 0 (βn) 0 σ(βn -βm) 1 0 0 λ 0 µ   . Proposition 2.4.5. We have M σ m-1 • • • M σ 0 •(0, 0, 1) = (ζ1(σ), ζ2(σ), ζ3(σ)), where ζ1, ζ2, ζ3 are holomorphic functions such that ζ1(σ) = wm-1 • σ + O(σ 2 ) and ζ3(σ) = µ m + O(σ). Proof. It is a straightforward consequence of Definition 2.4.3.
Simple calculations yield the following corollary (the important fact here is that p c 0 (β0) = 0 since β0 = 0 is the critical point of pc 0 ). Corollary 2.4.6. Let n 1 , n 2 , n 3 be three holomorphic functions such that n

1 (σ) = O(σ), n 2 (σ) = O(σ 2 ) and n 3 (σ) = O(σ) for 0 ≤ n ≤ m -1. Let us denote for every σ ∈ C, 0 ≤ n ≤ m -1: N σ n =   p c 0 (βn) + n 1 (σ) n 2 (σ) σ(βn + n 3 (σ) -βm) 1 0 0 λ 0 µ   .
For every holomorphic maps ξ1, ξ2 such that ξ1(σ) = O(σ) and ξ2(σ) = O(σ), we get:

N σ m-1 • • • N σ 0 • (ξ1(σ), ξ2(σ), 1) = (ζ1(σ), ζ2(σ), ζ3(σ)) , where ζ1, ζ2, ζ3 are holomorphic functions such that ζ1(σ) = wm-1 • σ + O(σ 2 ) and ζ3(σ) = µ m + O(σ).

Construction of a blender

In this section, we construct a polynomial automorphism f0 of C 3 . We show that f0 has a horseshoe H f 0 and that H f 0 is a complex blender.

3.1. Three complex dimensions: the map f0. We recall that C and pc were defined in Proposition 2.1.4. We consider now the 3 dimensional map f0(z1, z2, z3) = (pc(z1) + bz2 + σz3(z1 -αc 0 ), z1, λz1 + µz3 + ν) introduced in Eq. (1). It is clear that it is a polynomial automorphism for c ∈ C and b = 0. In the following, we will see that the first direction is expanded by f0 and corresponds to the direction of the unstable manifolds of a hyperbolic set we are going to describe. The second and third directions are contracted by f0 and correspond to the directions of the stable manifolds of this hyperbolic set. Notation 3.1.1. We define the following constant cone fields:

C u = {v = (v1, v2, v3) ∈ C 3 : max(|v2|, |v3|) ≤ χ -1 •|v1|}, C ss = {v = (v1, v2, v3) ∈ C 3 : max(|v1|, |v3|) ≤ 10 -6 •|v2|} and C cs = {v = (v1, v2, v3) ∈ C 3 : max(|v1|, |v2|) ≤ 10 -6 • |v3|}
, where the constant χ > 1 was defined in Proposition 2.1.4.

We now give a non general definition of a horseshoe which is specific to our context. (1)

F (D) ∩ D has p components D j,u which do not intersect D1 × ∂(D2 × D3), (2) F -1 (D) ∩ D has p components D j,s which do not intersect ∂D1 × D2 × D3,
(3) on 1≤j≤p D j,s , the cone field C u is F -invariant, and on 1≤j≤p D j,u the cone field C ss is F -1 -invariant. Moreover there exists Ξ > 1 such that the cone field Proof. The set n∈Z F n (D) is compact as an intersection of compact sets and F -invariant by definition. Moreover, one can take the (non necessarily invariant) decomposition

{(v1, v2, v3) : ||(v2, v3)|| > Ξ||v1||} contains C cs and is F -1 -invariant on 1≤j≤p D j,u , (4) 
C 3 R 6 = C C 2 R 2 R 4 and the associated constant cone fields C u R = {(v1, v2, v3) : ||v1|| > χ||(v2, v3)||} and C s R = {(v1, v2, v3) : ||(v2, v3)|| > Ξ||v1||}. The definition above implies that both C u R is F -invariant and C s R is F -1 -invariant.
Moreover, they are expanded by a factor CF larger than 1 respectively under F and F -1 . Besides, the sets D j,u do not intersect D1 × ∂(D2 × D3) and the sets D j,s do not intersect ∂D1 × D2 × D3. Then n∈Z F n (D) is a horseshoe in the sense of Definition 6.5.2 of [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]. According to the discussion following this definition, n∈Z F n (D) is hyperbolic (this is also a straightforward application of the cone field criterion, Corollary 6.4.8 in [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]) and is topologically conjugate to a shift. In particular, it is transitive. This ends the proof of the proposition. Remark 3.1.4. For our definition, a p-branched horseshoe has one unstable direction and two stable directions. It is also straightforward that if F has a p-branched horseshoe, then F 2 has a p 2 -branched horseshoe. Definition 3.1.5. We say that a saddle periodic point of multipliers |λ1| ≤ |λ2| < 1 < |λ3| is sectionally dissipative if the product of any two of its eigenvalues is less than 1 in modulus, that is, |λ1λ3| < 1 and |λ2λ3| < 1.

In the next proposition, we prove that if b and σ are sufficiently small, then some iterate of f0 = f c,b,σ has a 2-branched horseshoe. Moreover, we introduce a neighborhood F of f0 where this property persists. In Section 5, we will make a particular choice of c, b and σ so that the stable manifold of a periodic point of f0 will have special properties, which will persist in a new neighborhood F F of f0 in Aut2(C 3 ).

Proposition 3.1.6. Let q ≥ 100 and C,r given by Proposition 2.1.4. Let f0 = f c,b,σ be the polynomial automorphism of C 3 introduced in Eq. (1). Then, there exists 10 -10 > b0 > 0 and 10 -10 > σ0 > 0 independent of c ∈ C such that if 0 < |b| < b0 and 0 ≤ |σ| < σ0, then

H f 0 = n∈Z (f qr 0 ) n (D 3
) is a 2-branched horseshoe. Moreover, f0 has a periodic point δ f 0 that is sectionally dissipative and belongs to the homoclinic class of the continuation α f 0 of αc. These results remain true for any f in some neighborhood F = F(c, b, σ) of f0 in Aut2(C 3 ).

Proof. When σ = b = 0, fc,0,0 : (z1, z2, z3) → (pc(z1), z1, λz1 + µz3 + ν) satisfies:

f qr c,0,0 (z1, z2, z3) = (p qr c (z1), p qr-1 c (z1), ν + λp qr-1 c (z1) + µ(ν + • • • + µ(ν + λz1)) + µ qr z3). By Proposition 2.1.4 (1), p r-1 c (D 1 ), p r-1 c (D 2 ) D and so p qr-1 c (h q 1 (D )), p qr-1 c (h q 2 (D )) D. Then for any (z1, z2, z3) ∈ h q 1 (D ) ∪ h q 2 (D ) × D 2
, the second coordinate of fc,0,0(z1, z2, z3)

is in D. According to Corollary 2.3.4, it holds ν + λp qr-1 c (z1) + µ(ν + • • • + µ(ν + λz1)) ∈ D(± 9 10 • 10 -4 , 10 -10 ) for every (z1, z2, z3) ∈ h q 1 (D ) ∪ h q 2 (D ) × D 2 . Since |µ| qr < 1 -
10 -4 + 10 -10 (see Remark 2.3.5), the third coordinate of fc,0,0(z1, z2, z3) lies in D too.

Then the intersection f qr c,0,0 By continuity, there exists 10 -10 > σ0 > 0 such that for every 0 ≤ |σ| < σ0, f qr c,0,σ

h q 1 (D ) ∪ h q 2 (D ) × D 2 ∩
h q 1 (D ) ∪ h q 2 (D ) × D 2 ∩ D 3
has still two components which are graphs over z1 ∈ D.

The distance to D×∂(D×D) of each of these two graphs is bounded from below by a strictly positive constant independent of 0 ≤ |σ| < σ0. Thus there exists 10 -10 > b0 > 0 such that for every 0 ≤ |σ| < σ0 and 0 < |b| < b0, the intersection f qr c,b,σ 

h q 1 (D ) ∪ h q 2 (D ) × D 2 ∩ D
f 0 = n∈Z (f qr 0 ) n (D 3
) is a 2-branched horseshoe. The multiplier of the periodic point δc has its modulus between 1 and (1+10 -10 ) 1/qr by Property 6 of Proposition 2.1.4. Then its continuation δ f 0 is a saddle point of expanding eigenvalue between 1 and (1 + 2 • 10 -10 ) 1/qr after reducing b0 and σ0 if necessary. It has two contracting eigenvalues. When b = σ = 0, one is equal to 0 and the other one is a power of µ with |µ| < (1 -10 -4 + 10 -10 ) 1 qr (see Remark 2.3.5). Then, by continuity, reducing b0 and σ0 if necessary, δ f 0 is sectionally dissipative. We denote by

W u loc (α f 0 ) (resp. W s loc (α f 0 )) the connected component of W u (α f 0 ) ∩ D 3 (resp. W s (α f 0 ) ∩ D 3
) which contains α f 0 , and we use the same notation for other periodic points. For small values of b and σ, both W u loc (δ f 0 ) and W u loc (α f 0 ) are graphs over z1 ∈ D and both W s loc (δ f 0 ) and W s loc (α f 0 ) are graphs over (z2, z3) ∈ D 2 . Reducing b0 and σ0 if necessary, W u loc (α f 0 ) and W s loc (δ f 0 ) intersect and W s loc (α f 0 ) and W u loc (δ f 0 ) intersect so δ f 0 is in the homoclinic class of α f 0 .

Finally, since all the conditions of the proposition are open, these results remain true for any f in some neighborhood F = F(c, b, σ) of f0 in Aut(C 3 ). This concludes the proof of the proposition.

Blender property.

In this subsection, we show that the third coordinate of f ∈ F has some kind of open-covering property. Since f qr ∈ F has a 2-branched horseshoe, f 2qr has a 4-branched horseshoe by Remark 3.1.4. We are interested in the geometric properties of the third coordinate of f 2qr . Here, we use it to show that the 4-branched horseshoe associated to f 2qr is a blender. Remind that the maps h1 and h2 were defined in Notation 2.2.1. Definition 3.2.1. For f ∈ F, we denote by f qr [j] the restriction of f qr on h q j (D ) × D 2 for j ∈ {1, 2}. We put

V1 = f qr [1](h q 1 (D ) × D 2 ) ∩ D 3 and V2 = f qr [2](h q 2 (D ) × D 2 ) ∩ D 3 . We define U1 = f qr [1] V1 ∩ (h q 1 (D ) × D 2 ) ∩ D 3 , U2 = f qr [2] V1 ∩ (h q 2 (D ) × D 2 ) ∩ D 3 , U3 = f qr [1] V2 ∩ (h q 1 (D ) × D 2 ) ∩ D 3 and U4 = f qr [2] V2 ∩ (h q 2 (D ) × D 2 ) ∩ D 3 . We define gj = f -2qr |U j for 1 ≤ j ≤ 4. Notation 3.2.2. We will denote c1 = 9 10 • 10 -4 • (1 + i), c2 = 9 10 • 10 -4 • (-1 + i), c3 = 9 10 • 10 -4 • (1 -i) and c4 = 9 10 • 10 -4 • (-1 -i).
Lemma 3.2.3. Reducing b0, σ0 and F if necessary, we have:

(1) ∀z ∈ f -qr (V1), pr 3 (f qr (z)) ∈ D(µ qr z3 + 9 10 • 10 -4 , 10 -9 ),

(2) ∀z ∈ f -qr (V2), pr 3 (f qr (z)) ∈ D(µ qr z3 -9 10 • 10 -4 , 10 -9 ).

Proof. For σ = b = 0, it is a simple consequence of Corollary 2.3.4. Then, by continuity we just have to take sufficiently small values of σ0, b0, F to get the bound 10 -9 .

Since we both have µ qr 0 = (1 -10 -4 ) • e i• π 2 (by Notation 2.2.2) and µ qr ⊂ D(µ qr 0 , 10 -10 ) (by Remark 2.3.5), by iterating two times the previous result, we get the following: Corollary 3.2.4. For every z = (z1, z2, z3) ∈ Uj, pr 3 (gj(z)) ∈ D( 1 µ 2qr (z3 -cj), 10 -6 ).

We now show an open covering property for the four affine maps z → 1 µ 2qr (z -cj).

Proposition 3.2.5. For every z ∈ D(0, 1 10 ), there exists j ∈ {1, 2, 3, 4} such that:

1 µ 2qr (z -cj) ∈ D(0, 1 10 -10 -5 ) .
Proof. We check that the union of the images of D(0, 1 10 -10 -5 ) under the four affine maps z → µ 2qr z + cj contains D(0, 1 10 ). We begin by showing that for every point z of the set {z : |z| = 1 10 and 0 ≤ Arg(z) ≤ π 2 }, the point z -c1 belongs to the disk D 0, |µ| 2qr ( 1 10 -10 -5 ) . Let us point out that

|µ| 2qr > 1 -2 • 10 -4 (see Remark 2.3.5). Denoting z = x + iy with (x, y) ∈ R 2 + , we have |z -c1| 2 = (x -9 10 • 10 -4 ) 2 + (y -9 10 • 10 -4 ) 2 . Since x 2 + y 2 = ( 1 10
) 2 , at least one between x or y is larger than

1 √ 2 • 1 10
. Then |z -c1| 2 is smaller than: ) . We also have 0 -c1 ∈ D 0, |µ| 2qr ( 1 10 -10 -5 ) . Thus by convexity the image of D(0, 1 10 -10 -5 ) by the affine map z → µ 2qr z + c1 contains the first quadrant of D(0, 1 10 ). Then the result follows by symmetry. We are finally in position to prove the main result of this section.

( 1 10 ) 2 -2 1 √ 2 
Definition 3.2.6. A ss-curve Γ is a holomorphic graph over z2 which has all its tangent vectors in C ss (recall that this cone was defined in Notation 3.1.1).

Proposition 3.2.7. Let Γ be any ss-curve intersecting D 2 × D(0, 1 10 ). Then for every f ∈ F , Γ intersects the unstable manifold of a point of the horseshoe H f : in other words, H f is a blender.

Proof. Let Γ = Γ0 be a ss-curve intersecting D 2 ×D(0, 1 10 ) and f ∈ F . We show that there exists j ∈ {1, 2, 3, 4} such that gj(Γ) contains a ss-curve Γ 1 intersecting D 2 × D(0, 1 10 ).

Let Z = (Z1, Z2, Z3) be a point of Γ ∩ (D 2 × D(0, 1 10 
)). By Lemma 3.2.5 there exists j ∈ {1, 2, 3, 4} such that 1 µ 2qr (Z3 -cj) ∈ D(0, 1 10 -10 -5 ). Since D(0, 1 10 ) ⊂ pr 3 (Uj), by continuity, Γ intersects Uj. The cone C ss is gj-invariant since H f is a 2-branched horseshoe, and so Γ 1 = gj(Γ ∩ Uj) is a ss-curve. Then it holds diam(pr 3 (Γ 1 )) ≤ 10 -6 . By Corollary 3.2.4, |pr 3 (gj(Z)) -1 µ 2qr (Z3 -cj)| < 10 -6 . This implies that pr 3 (Γ 1 ) ⊂ D(0, 1 10 -10 -5 + 2 • 10 -6 ) ⊂ D(0, 1 10 ). Then Γ 1 intersects D 2 × D(0, 1 10 ). By iteration, we can construct a sequence of ss-curves Γ n ⊂ (gj n • ... • gj 1 )(Γ), each of them intersecting D 3 . The set n≥1 (f 2qr ) n (Γ n ) ⊂ Γ is non empty since it contains the intersection of a decreasing sequence of non empty compact sets. But any point in this intersection is a point of the unstable manifold of a point of the horseshoe H f . This ends the proof.

Mechanism to get persistent tangencies

In this section, we explain how the blender property obtained in the last section leads to persistent tangencies with certain "folded" surfaces. 

D n = D k × D n-k if W does not intersect D k × ∂D n-k .
We will also say it is horizontal relatively to the projection D n → D k . If dim(W ) = k, then the natural projection on D k is a branched covering of degree d. We will say that W is of degree d. We similarly define vertical submanifolds in D k × D n-k and their degree.

The two following propositions are classical. For a proof, one can refer to [START_REF] Dinh | Geometry of currents, intersection theory and dynamics of horizontal-like maps[END_REF]. One can also refer to [START_REF] Dujardin | Henon-like mappings in C 2[END_REF]. Remark 4.1.4. In particular, in the two previous propositions, if all the intersections are transverse, there are exactly dd distinct points of intersection. If it is not the case, there is at least one point of tangency.

We now introduce several definitions specific to our context. Notation 4.1.5. Let i, j be two distinct integers in {1, 2, 3}. We will denote by πi the projection over the i th coordinate and by (πi, πj) the projection over the i th and the j th coordinates. Definition 4.1.6. Let i, j be two distinct integers in {1, 2, 3}. A (i, j)-surface S is a complex surface horizontal relatively to the projection (πi, πj). Remark 4.1.7. A (i, j)-surface S is a ramified covering of degree d over D 2 . In the rest of this article, we will only consider ramified coverings of degree 1 or 2. Definition 4.1.8. A u-curve Γ is a holomorphic graph over z1 which has all its tangent vectors in C u (recall that this cone was defined in Notation 3.1.1).

Definition 4.1.9. Let k ∈ {2, 3}. A (1, k)-quasi plane V over a bidisk D1 × D k is a graph {z k = v(z1, z k )},
where k is the integer defined by {1, 2, 3} = {1, k, k } and v : D1 × D k → D is holomorphic, such that the C 0 -norm of Dv is bounded by 1 and V is foliated by u-curves Vx.

Remark 4.1.10. In particular, every (1, k)-quasi plane over D 2 is a (1, k)-surface. Definition 4.1.11. Let k ∈ {2, 3}. A k-folded curve is a holomorphic curve horizontal relatively to π k which is a ramified 2-covering over z k with exactly one point of ramification z k,ram . We denote fold(Γ) = z k,ram the fold of Γ. Definition 4.1.12. Let k ∈ {2, 3}. A k-folded (2, 3)-surface W is a complex surface of degree 2 that is horizontal relatively to (π2, π3) and such that for every (1, k)-quasi plane V over D 2 , Γ = V ∩ W is a k-folded curve. We denote:

Fold(W) = {fold(Γ) : Γ is a k-folded curve included in W}
which is a subset of D. We say that W is concentrated if diam(Fold(W)) ≤ 10 -5 .

Preparatory lemmas.

In this Subsection we gather some simple technical results that will be useful in the following Subsections. Here are some consequences of Propositions 4.1.2 and 4.1.3.

Lemma 4.2.2. Let V be a (1, k)-quasi plane over D1 × D k with D(0, 1/2) ⊂ D k ⊂ D. Let Γ be a u-curve and Γ be a graph over z k with |γ 1 | < 10 -3 |γ k |, both included in V. Then Γ ∩ Γ is a singleton. Proposition 4.2.3. Let W be a k-folded (2, 3)-surface with k ∈ {2, 3}. Let Γ be a u-curve.
Then W ∩ Γ has one or two points.

Main result.

Here is the main result of this section: we show that any concentrated 3-folded (2, 3)-surface having its fold in good position has a point of tangency with the unstable manifold of a point of the horseshoe H f . Proposition 4.3.1. Let W be a concentrated 3-folded (2, 3)-surface such that we both have Fold(W) ⊂ D(0, 1 10 ) and diam(pr 1 (W)) ≤ 10 -10 . Then there exists a point κ f of the horseshoe H f such that W has a point of tangency with the unstable manifold of κ f . We begin by a lemma showing that the image of a folded curve contains a folded curve. Remind that the sets Uj and the maps gj were defined in Definition 3.2.1. Lemma 4.3.2. Let Γ be a 3-folded curve included in a (1, 3)-quasi plane Ṽ over D1 × D k with D(0, 1/2) ⊂ D k ⊂ D. We suppose that Γ and Ṽ are included in Uj for some j ∈ {1, 2, 3, 4}. We also suppose diam(pr 1 ( Γ)) ≤ 10 -10 and that gj( Ṽ) is included in a (1, 3)quasi plane V over D 2 . Then Γ = gj( Γ) is a 3-folded curve satisfying:

fold(Γ) ∈ D( 1 µ 2qr fold( Γ) -cj), 3 2
• 10 -6 .

Proof. By Lemma 4.2.1, for every disk DΓ D k of radius 10 -7 distant of at least 10 -7 from ∂D k ∪ {fold( Γ)}, it holds: for every Z with pr k (γ(Z))

∈ DΓ we have |γ 1 (Z)| < 10 -3 |γ k (Z)|. Moreover Γ ∩ (D 2 × DΓ)
is the union of two graphs upon the coordinate z k ∈ DΓ. We take the foliation (Vt) t∈D of V by the u-curves Vt = V ∩ {z3 = t}. For any t ∈ D, Ṽt = f 2qr (Vt ∩ gj(Uj)) is a u-curve by invariance of C u . Suppose that Ṽt intersects Γ at some point γ(Z) such that pr k (γ(Z)) belongs to the disk of same center as DΓ and half radius. Since the tangent spaces of Ṽt are directed by vectors in C u and since diam(pr 1 ( Γ)) ≤ 10 -10 , Ṽt intersects Γ in exactly two points by Lemma 4.2.2 and then it is also the case for Vt and Γ. It is clear there exists infinitely many t ∈ D satisfying this property. This implies that pr 3 : Γ → D is a 2-covering. By the Riemann-Hürwitz formula, it is a 2-covering with only one point of ramification. Moreover this shows that fold(Γ) ∈ pr 3 (gj(D 2 × D(fold( Γ), 2 • 10 -7 )). Then by Corollary 3.2.4, we have fold(Γ ) ∈ D( 1 µ 2qr (fold( Γ) -cj), 3 2 • 10 -6 ).

From now on, we prove lemmas that will show that the image under gj of a 3-folded (2, 3)-surface having its fold in D(0, 1 10 ), is concentrated and that it is possible to choose j ∈ {1, 2, 3, 4} so that the new fold is still in D(0, 1 10 ). The following is an intermediate result to prove Lemma 4.3.5: Lemma 4.3.3. Reducing b0, σ0 and F if necessary, there exists some constant χ > χ > 1 and some compact neighborhood D of D with D D D such that for any f ∈ F, j ∈ {1, 2, 3, 4} and (1, 3)-quasi plane V over D 2 , the set f 2qr (V ) contains a (1, 3)-quasi plane V = {z2 = v(z1, z3)} over D × D(0, 2/3). Moreover V is foliated by u-curves whose tangent vectors are all included in the subcone Cu = {v = (v1, v2, v3

) ∈ C 3 : max(|v2|, |v3|) ≤ χ -1 • |v1|} of C u .
Proof. Let us fix j ∈ {1, 2, 3, 4}. By invariance of C ss , the set f 2qr V ∩ gj(Uj) contains a holomorphic graph V = {z2 = v(z1, z3)} over D × D(0, 2/3) included in Uj. When b = σ = 0, it is obvious that the C 0 -norm of Dv is bounded by 1 so it is still the case for every f ∈ F , reducing b0, σ0 and F if necessary. By property 1 of Proposition 2.1.4, p qr c is univalent on some neighborhood of h q 1 (D) and on some neighborhood of h q 2 (D). Then, reducing b0, σ0 and F if necessary, there exists some compact neighborhood D of D independent of V such that D D D and v can be extended from D × D(0, 2/3) into D. The extended graph is included in f 2qr V ). By property 3 of Proposition 2.1.4 we have |p c | > χ on D . Since p c is continuous, this implies that |p c | ≥ χ for some χ > χ on D (reducing D if necessary). We denote χ = 1 2 (χ + χ ). Then, for a single point z in a compact neighborhood of (h q 1 (D) ∪ h q 2 (D)) × D 2 , reducing b0, σ0 and F if necessary, the differential of f 2qr at z sends the closure of C u into Cu . Since b0, σ0 and F can be taken locally constant in z, by compactness, we can reduce b0, σ0 and F such that this remains true for every z. In particular, V is a (1, 3)-quasi plane over D 2 foliated by u-curves whose tangent vectors are all included in Cu . Finally we take the minimal values of b0, σ0 and F over j ∈ {1, 2, 3, 4}. This concludes the proof. Proof. We notice that for the map (z1, z2, z3) → (pc(z1) + bz2, z1, λz1 + µz3 + ν), the diameter diam pr 2 (Uj ∩ {z1 = z}) tends to 0 uniformly in j ∈ {1, 2, 3, 4} and z ∈ D when b tends to 0 so we can decrease b0 so that the two inequalities are satisfied for every j ∈ {1, 2, 3, 4} and z ∈ D. Since both inequalities are open, reducing σ0 and F if necessary, both remain true for every f ∈ F, j ∈ {1, 2, 3, 4} and z ∈ D.

Lemma 4.3.5. Let V 0 and V 1 be two (1, 3)-quasi planes over D 2 and let

V 0 = f 2qr V 0 ∩ gj(Uj) and V 1 = f 2qr V 1 ∩ gj(Uj) for some j ∈ {1, 2, 3, 4}.
Then there exists a holomorphic family (Vt) t∈D(0,10 6 ) where V 0 ⊂ V0 and V 1 ⊂ V1, and for every t ∈ D(0, 10 6 ), Vt is a (1, 3)-quasi plane over D × D(0, 1/2).

Proof. By the proof of Lemma 4. ) can be extended on D×D(0, 2/3). Reducing b0, σ0 and F, its image is also included in D(0, 10

-1 •C -1 •(χ -χ)).
Then by definition of C, the C 0 -norm of D(v1 -v0) on D × D(0, 1/2) is bounded by

C • 10 -1 • C -1 • (χ -χ) = 10 -1 • (χ -χ)
. Since V 0 is foliated by u-curves whose tangent vectors are all included in Cu , V t is then foliated by curves with tangent vectors in C u , that is u-curves, for every t ∈ D(0, 10 6 ). Thus Vt is a (1, 3)-quasi plane over D × D(0, 1/2) for every t ∈ D(0, 10 6 ). Proof. We consider the function t → fold(V t ∩ W) defined on D(0, 10 6 ). It is holomorphic by the Implicit Function Theorem and its image is included in D(0, 1/10) because Fold(W) ⊂ D(0, 1/10). Then by the Cauchy inequality its derivative is smaller than

1 10 • 2 • 10 -6 on D(0, 2). Then |fold(V1 ∩ W) -fold(V0 ∩ W)| < 1 • 1 10 • 2 • 10 -6 < 10 -6
. The following proposition is important because it says that the image under gj of a 3-folded (2, 3)-surface is a concentrated folded surface. We use it to prove Corollary 4.3.8 and we will also use it in Section 5. Corollary 4.3.8. Let W be a concentrated 3-folded (2, 3)-surface such that it holds both diam(pr 1 (W)) ≤ 10 -10 and Fold(W) ⊂ D(0, 1 10 ). Then there exists j ∈ {1, 2, 3, 4} such that gj(W ∩ Uj) is a concentrated 3-folded (2, 3)-surface satisfying the inequalities diam(pr 1 (gj(W ∩ Uj)) ≤ 10 -10 and Fold(gj(W ∩ Uj)) ⊂ D(0, 1 10 ). Proof. Let Γ be a 3-folded curve included in W. By Proposition 3.2.5, there exists j ∈ {1, 2, 3, 4} such that 1 10 ) for f ∈ F. The inequality diam(pr 1 (gj(W ∩ Uj)) ≤ 10 -10 comes from diam(pr 1 (W)) ≤ 10 -10 and the forward dilatation of C u . The proof is done.

1 µ 2qr (fold(Γ) -cj) ∈ D(0, 1 10 -10 -5 ). By Lemma 4.3.2, gj(Γ) is a 3-folded curve with fold(gj(Γ)) ∈ D( 1 µ 2qr (fold(Γ) -cj), (3/2) • 10 -6 ). By Proposition 4.3.7, gj(W) is concentrated with diam(Fold(gj(W))) ≤ 1 2 • 10 -5 . Then Fold(gj(W ∩ Uj)) is included in D(0, 1 10 -10 -5 + (3/2) • 10 -6 + 1 2 • 10 -5 ) ⊂ D(0,
Proof of Proposition 4.3.1. By iteration of Corollary 4.3.8 there exists a sequence (jn) n≥1 of digits in {1, 2, 3, 4} such that the sequence (Wn) n≥0 defined by W0 = W and Wn+1 = gj n (Wn ∩ Uj n ) is a sequence of concentrated 3-folded (2, 3)-surfaces with Fold(W n ) ⊂ D(0, 1 10 ) ⊂ D and diam(pr 1 (W n )) ≤ 10 -10 for every n ≥ 1. We define for every n ≥ 1 Wn = f n (Wn) ⊂ W0. We have for every n ≥ 1 the inclusions Wn+1 ⊂ Wn ⊂ W0. The set W∞ = n≥1 Wn is non empty since it contains a decreasing sequence of non empty compact sets. Since Wn is a 3-folded (2, 3)-surface for every n ≥ 0, there exists zn ∈ Wn and a non zero vector vn ∈ Tz n Wn such that vn ∈ C u . We denote for every n ≥ 1, zn = f n (zn) ∈ Wn ⊂ W0 and ṽn an unitary vector parallel to Dz n f n (vn). We have ṽn ∈ Tz n Wn. Taking a subsequence if necessary we can suppose zn → z∞ ∈ W∞ and ṽn → ṽ∞ for some point z∞ and some vector ṽ∞. Clearly z∞ ∈ W. By construction the whole forward orbit of W∞ is in D 3 . Then z∞ is included in the unstable manifold

W u (κ f ) of some point κ f of H f . By construction ṽ∞ ∈ Tz ∞ W and ṽ∞ ∈ n≥0 Df n (C u (zn)) = Tz ∞ W u loc (z∞).
Then W has a point of tangency with the unstable manifold of κ f .

Initial heteroclinic tangency

In this section, we show that:

(1) for every sufficiently small values of b and σ, we can find c1 = c1(b, σ) such that f1 = f c 1 ,b,σ has a point of heteroclinic tangency τ between W s (α f 1 ) and W u (φ f 1 ) (where

φ f 1 is a periodic point in H f 1 ), (2) 
we can take iterates of a neighborhood of τ inside W s (α f 1 ) under f -1

1
in order to create a concentrated 3-folded (2, 3)-surface inside W s (α f 1 ).

Initial tangency.

We recall that the disk C and the integer m were defined in Proposition 2.1.4. Proposition 5.1.1. Reducing C if necessary, there exist 0 < b1 < b0, 0 < σ1 < σ0 and an integer s such that for every 0 < |b| < b1 and 0 ≤ |σ| < σ1:

(1) for every u-curve U, f s+m 0 (U) contains a degree 2 curve over z1,

(2) for every holomorphic family of u-curves (Uc)c∈C, there exists c1 = c1(b, σ) displaying a quadratic tangency τ between W s (α f 1 ) and Uc 1 where f1 = f c 1 ,b,σ and τ ∈ Uc 1 . Every iterate of f s+m 1 (τ ) under f1 is in D αc 0 , 10 -10 • |wm-1| • (χ -1) × C 2 (where the constant wm-1 was introduced in Definition 2.4.3) and the mapping (b, σ) → τ is holomorphic.

Proof. In the following, we are going to reduce several times the bounds σ0 and b0 into bounds σ1 and b1 to satisfy the two items. We begin by taking σ1 = σ 0 2 and b1 = b 0 2 . Let us take any u-curve U or any holomorphic family of u-curves (Uc)c∈C. Since D intersects the Julia set of pc for every c ∈ C, reducing C if necessary, it is possible to find an integer s and a holomorphic map β-s : C → D such that for every c ∈ C, we have p s c (β-s(c)) = 0. In particular, we have p s+m c 0 (β-s(c0)) = αc 0 and the image of c → p s+m c (β-s(c)) -αc is an open set which contains 0 in its interior. Then reducing sufficiently the bounds 0 ≤ |σ| < σ1 and 0 < |b| < b1 for σ and b and C, we have that for any c ∈ C, there exists a neighborhood of the point of U of first coordinate

z1 = β-s(c0) inside U whose image under f s 0 is of the form {(z1, u 2 (z1), u 3 (z1)), z1 ∈ D(0, ρ)} for some ρ > 0. Indeed, β-s(c), pc(β-s(c)), • • • , p s-1 c (β-s(c)) are not critical points of pc. The image of the curve {(z1, u 2 (z1), u 3 (z1)), z1 ∈ D(0, ρ)} under f0 is the curve {(pc(z1) + bu 2 (z1) + σu 3 (z1)(z1 -αc 0 ), z1, λz1 + µu 3 (z1) + ν), z1 ∈ D(0, ρ)}.
Then it has a point of quadratic tangency with the foliation z1 = C st if b and σ are sufficiently small. Indeed, reducing b1 and σ1 if necessary, by continuity the derivative of the first coordinate pc(z1) + bu 2 (z1) + σu 3 (z1)(z1 -αc 0 ) vanishes for some value z1 ∈ D(0, ρ). We can iterate this curve (m -1) times under f0. Since pc has no other critical point, this will still be a degree 2 curve upon z1, reducing b1 and σ1 if necessary.

In the case of a holomorphic family of u-curves (Uc)c∈C, there exists a neighborhood of the point of Uc of first coordinate z1 = β-s(c) inside Uc which is sent under f s 0 on a u-curve {(z1, u 2 c (z1), u 3 c (z1)), z1 ∈ D(0, ρ)}, but using the Cauchy inequality and reducing σ1 and b1 if necessary, (u 2 c ) and (u 3 c ) are uniformly (relatively to c) bounded and the conclusion is the same. In particular, this proves the first item of the result.

We call Tan f 0 the first coordinate of the point of vertical tangency. The image of the map defined on C which sends c to p s+m c (β-s(c)) -αc is an open set which contains 0 in its interior. Let us denote by 2l the distance of 0 to the image of ∂C. Reducing b1 and σ1 another time if necessary, by continuity {Tan f 0 -αc, c ∈ ∂C} is a curve in the plane, with 0 is in a bounded connected component of its complement and at distance at least l from {Tan f 0 -αc, c ∈ ∂C}.

Notation 5.1.2. Let κ f ∈ H f for f ∈ F . We denote by W s loc (κ f ) the connected component of W s (κ f )∩D 3 which contains κ f and by W u loc (κ f ) the connected component of W u (κ f )∩D 3 which contains κ f . Lemma 5.1.3. Reducing C, b1 and σ1 if necessary, W s loc (α f 0 ) is a graph over (z2, z3) ∈ D 2 both included in D αc, l/2 × D 2 and in D αc 0 , 10 -10 • |wm-1| • (χ -1) × D 2 .
Proof. For σ = 0, W s (α f 0 ) is the product of W s (αH ) by the z3 axis where H is the Hénon map H : (z1, z2) → (pc(z1) + bz2, z1). Moreover, for every > 0, we can reduce b1 such that if |b| < b1, then the cone C ss, centered at e2 of opening /2 is H -1 -invariant in some neighborhood of {αc} × D. Then W s loc (αH ) is a ss-curve included in D(αc, ) × D since all its tangent vectors lie in C ss, . Then for σ = 0, the skew-product structure implies that

W s loc (α f 0 ) is a (2, 3)-surface included in D(αc, ) × D 2
which is the product of W s loc (αH ) by the z3 axis. Then, by continuity, it is possible to reduce σ1 such that for every f0 with 0 < |b| < b1 and 0

≤ |σ| < σ1, W s loc (α f 0 ) is a graph over (z2, z3) ∈ D 2 included in D(αc, ) × D 2 .
We take = l/2 to prove the first inclusion. We get the second one by reducing both C and .

We recall that 0 is in a bounded connected component of the complement of {Tan f 0αc, c ∈ ∂C} and at distance at least l from {Tan f 0 -αc, c ∈ ∂C}. In particular, there is a parameter c ∈ C such that Tan f 0 belongs to D(αc, l/2). Up to replacing s + m by s + m + 1, we can suppose that the point of vertical tangency is in D 3 . For the parameter c, f s+m 0 (Uc) ∩ (D(αc, l/2) × D 2 ) is not the union of two graphs upon z1 ∈ D(αc, l/2) and for c ∈ ∂C, f s+m 0 (Uc) is the union of two graphs over z1 ∈ D(αc, l/2). According to Lemma 5.1.3, W s loc (α f 0 ) is a graph over (z2, z3) ∈ D 2 included in D(αc, l/2) × D 2 . The following lemma is the analogous in dimension 3 of Proposition 8.1 of [START_REF] Dujardin | Stability and bifurcations for dissipative polynomial automorphisms of C 2[END_REF]. The proof is essentially the same and relies on the continuity of the intersection index of properly intersecting analytic sets of complementary dimensions. Lemma 5.1.4. Let (Γc)c∈C be a holomorphic family of curves of degree 2 over the first coordinate. We assume that:

(1) there exists a compact subset C ⊂ C such that if c ∈ C\C , Γc is the union of 2 graphs over z1 ∈ D(αc, l/2),

(2) there exists c ∈ C such that Γc is not the union of 2 graphs over z1 ∈ D(αc, l/2).

Then, if (Vc)c∈C is any holomorphic family of graphs over (z2, z3) ∈ D 2 contained in D(αc, l/2) × D 2 , there exists c1 ∈ C such that Γc 1 and Vc 1 admit a point of tangency.

We apply the previous lemma, taking the family (Γc)c∈C = (f s+m 0 (Uc) ∩ D 3 )c∈C as curves and the family of stable manifolds W s loc (α f 0 ) as graphs over (z2, z3) ∈ D 2 . We can conclude that there is a parameter c1 such that there exists a quadratic tangency f s+m In the next proposition, we show that the tangencies created in the previous result are generically unfolded. Beware that in the next result, the map f1 is associated to a family of u-curves (Uc)c∈C which can be distinct from the family (U f ) f ∈F . Definition 5.1.5. Let (U f ) f ∈F be a holomorphic family of u-curves and (S f ) f ∈F be a holomorphic family of s-surfaces. We suppose that for f ∈ F , there is a point of quadratic tangency between U f and S f . We say that this tangency is generically unfolded if there exists a one-dimensional holomorphic family (f t ) t∈D of polynomial automorphisms and a holomorphic family of local biholomorphisms (Ψt) t∈D with:

(1) f 0 = f and f t ∈ F for every t ∈ D, (2) Ψt(S f t ) is a vertical plane {z1 = C st } where C st does not depend on t ∈ D,

(3) if we denote by tant the first coordinate of the point of tangency of Ψt(U f t ) with {z1 = C st } (there exists exactly one such point because the tangency is quadratic), then | dtan t dt | is uniformly bounded from below by a strictly positive constant for t ∈ D. Proposition 5.1.6. Reducing C, b1 and σ1 if necessary, for every 0 < |b| < b1 and 0 ≤ |σ| < σ1, for every holomorphic family of u-curves (Uc)c∈C, there exists a neighborhood F F of the map f1 = f c 1 (b,σ),b,σ defined in item 2 of Proposition 5.1.1 such that: for every holomorphic family of u-curves (U f ) f ∈F , if f ∈ F has a point of tangency τ between W s (α f ) and U f such that f s+m (τ ) ∈ W s loc (α f ), then the tangency τ is generically unfolded. In particular, the tangency τ obtained in item 2 of Proposition 5.1.1 is generically unfolded.

Proof. For every f ∈ F , after a holomorphic change of coordinates Ψ f , W s loc (α f ) is the plane {z1 = αc 0 }. We first show the result for the map f1. We work in the one-dimensional family (f0)c∈C = (f c,b,σ )c∈C where b and σ are fixed and we take a holomorphic family of u-curves (U f ) f ∈F . It is a consequence of the proof of Lemma 5.1.3 that Ψ f 0 tends to Id when b and σ tend to 0. When b and σ tend to 0, the curve Since the estimates on the derivatives of the u-curves (U f ) f ∈F are uniform, we can reduce uniformly b1 and σ1 so that this inequality is true no matter the choice of (U f ) f ∈F . Then, by continuity, there exists some new neighborhood F F of f1 such that every f ∈ F belongs to a one-dimensional family (f t ) t∈D such that: f 0 = f , f t ∈ F and dtanc dt = 0 (t ∈ D). This implies in particular that if f ∈ F has a point of tangency τ between W s (α f ) and U f such that f s+m (τ ) ∈ W s loc (α f ), then the tangency f s+m (τ ) is generically unfolded and then also τ . The proof is over.

Ψ f 0 • f s+m 0 (U f 0 )

A transversality result.

From now on, we construct from this initial heteroclinic tangency a 3-folded (2, 3)-surface inside a stable manifold with its fold inside D(0, 1 10 ). In this Subsection, we prove that W s (α f 1 ) has some special geometry. We start by choosing a periodic point φ f 1 ∈ H f 1 . The main point is that its third coordinate is in D(0, 1 10 -10 -4 ), which will be used later in the proof of Proposition 5.3.9. Lemma 5.2.1. For every c ∈ C, 0 < |b| < b1, 0 ≤ |σ| < σ1, there exists a periodic point φ f 0 inside H f 0 such that pr 3 (φ f 0 ) ∈ D(0, 1 10 -10 -4 ). Proof. Let us take ω ∈ h q 1 (D ). According to Proposition 3.2.7, the ss-curve {ω} × D × {0} intersects the unstable set of a point φ f 0 of the horseshoe H f 0 . Moving slightly {ω} × D × {0} by translation in the third direction (let us say by no more than 1 20 ), we can suppose that φ f 0 belongs to the preimage g1(U1). By density of periodic points in H f 0 we can moreover suppose that φ f 0 is periodic. We notice that ω ∈ h q 1 (D ) and pr 1 (g1(U1)) ⊂ h q 1 (D ). Moreover we have diam(h q 1 (D)) < 10 -11 by property 2 of Property 2.2.3. Since W u loc (φ f 0 ) is a u-curve, this implies that pr 3 (φ f 0 ) belongs to D(0, 1 20 + 10 -11 • χ -1 ) ⊂ D(0, 1 10 -10 -4 ).

Lemma 5.3.5. There exists t0 > 0 such that for every t < t0, there exists an integer j = j(t) such that:

(1) f -j 1 τ + D(0, tρ1)e u (τ ) + ∂D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) ∩ D 3 = ∅,

(2) f -j 1 τ + D(0, tρ1)e u (τ ) + D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) ∩ ∂D 3 D × ∂D × D.

Moreover, j(t) tends to +∞ when t tends to 0. Reducing F , by continuity this remains true for any f ∈ F for a given t < t0.

Proof. We foliate Dt,ρ 1 ,ρ 2 ,ρ 3 = τ + D(0, tρ1)e u (τ ) + D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) by disks Lz 1 ,z 3 parallel to the z2 axis. To simplify, we can suppose that φ f 1 is a fixed point of f1, up to replacing f1 by one of its iterates. By invariance of C ss under f -1 1 , for every n ≥ 0, the image of this tridisk under f -n 1 is foliated by the ss-curves f -n 1 (Lz 1 ,z 3 )∩D 3 . We call the length of a ss-curve the radius of the maximal (for the inclusion) disk included in it. For every n ≥ 0, let ln be the minimum of the lengths over all the s-curves f -n 1 (Lz 1 ,z 3 ). For every n ≥ 0, we denote by dn the maximum of the diameters of the sets V ∩f -n 1 (Dt,ρ 1 ,ρ 2 ,ρ 3 ) where V varies in the set of (1, 3)-quasi planes over D 2 . Every vector in C ss is dilated under

f -1 1 by a factor close to ∆ = |p c 1 (pr 1 (φ f 1 ))|/|b|. For every (1, 3)-quasi plane V over D 2 , f1(V)∩D 3 contains a (1, 3)-quasi plane. Every tangent vector u to f1(V)∩D 3 is of the form u = u 1 • (1, 0, 0) + u 2 • (0, 1, 0) + u 3 • (0, 0, 1) with |u 2 | ≤ max(|u 1 |, |u 3 |). Then the vector u is dilated under f -1 1 by less than 2 3 •∆. Then dn+1 ≤ 2 3 •∆•dn.
This implies that if t is smaller than some value t0, there exists j = j(t) such that (ljρ3)

• (djρ2) -1 ≥ (3/2) j • ρ3 • ρ -1 2 ≥ 10, lj ≥ 10 and dj ≤ 10 -10 • |b| • min 1, dist(pr 1 (φ f 1 ), D), dist(pr 3 (φ f 1 ), D)
. Increasing a last time j in order to make f -j 1 (τ ) closer to φ f 1 , this implies both items (1) and ( 2). When t tends to 0, the lengths of the disks Lz 1 ,z 3 tend to 0 and then j = j(t) tends to +∞. Reducing F , by continuity this remains true for f ∈ F for a given t. The proof is done.

Here is a technical lemma which ensures the existence of a foliation with particular properties. In the following, we will say that a graph Vx,y of class C 2 over z1 ∈ D is of slope bounded by S < +∞ if every tangent vector to Vx,y is of the form a multiple of (1, ε2, ε3) with |ε2| ≤ S and |ε3| ≤ S. For convenience, it will be useful to work with graphs of class C 2 which are not necessarily holomorphic. This will not be a problem since we will apply later only the Inclination Lemma on them and this does not need the holomorphic assumption. Lemma 5.3.6. Let V be a (1, 3)-quasi plane foliated by u-curves (V x ) x∈D . Let ϑ = (ϑ1, ϑ2, ϑ3) ∈ D 3 be a point such that ϑ / ∈ V. Let us take a vector u ∈ C u . Then there exists a foliation of class C 2 of a neighborhood of ϑ by graphs Vx,y of class C 2 over z1 ∈ D of slope bounded by S, where 0 < S < +∞ is independent of V and ϑ. Moreover we have:

(1) for every x ∈ D, V x = Vx,0,

(2) the leaf going through ϑ has C • u as tangent space.

Proof. Up to multiplying u by a non zero complex number, we can suppose that the first coordinate of u is equal to 1. We first perform a change of coordinates by a biholomorphism ϕ, and then construct the graphs Vx,y. We construct ϕ such that ϕ sends V to the plane {z2 = 0} and each curve V x to the line {z2 = 0, z3 = x}. For a given z ∈ D 3 , we denote by pr(z) the projection (parallel to (0, 1, 0)) of z on V. We denote by ϕ2(z) the complex number such that z -pr(z) = ϕ2(z) • (0, 1, 0). Since V is a (1, 3)-quasi plane, we have Dϕ2 ≤ 1. We denote by by ϕ3(z) the complex number x such that pr(z) ∈ V x . Up to rescaling x → V x , we can suppose that V x depends on the third coordinate x of the intersection point of V x with {z1 = 0}. Then we also have Dϕ3 ≤ 1. We then define the map ϕ by ϕ(z) = (z1, ϕ2(z), ϕ3(z)). In the coordinates given by ϕ, we have V = {z2 = 0} and V x = {z2 = 0, z3 = x}. We denote ϕ(ϑ) = ( θ1, θ2, θ3) (with ϑ1 = θ1 and | θ2| > 0) and D ϑ ϕ(u) = (1, 2, 3). Since u ∈ C u , the estimates Dϕ2 ≤ 1 and Dϕ3 ≤ 1 imply | 2| ≤ 5 and | 3| ≤ 5.

We now take a graph W = w(D 2 ) of class C 2 over (z1, z3) ∈ D 2 ⊂ R 4 such that θ ∈ W with W ∩ {z2 = 0} = ∅ and having C • D ϑ ϕ(u) as tangent space at θ. Since D ϑ ϕ(u) = (1, 2, 3) with | 2| ≤ 5 and | 3| ≤ 5, we can take w such that Dw ≤ 10. Then for every y ∈ D(0, 10| θ2|), we define the C 2 graph Wy = wy(D 2 ) over (z1, z3) ∈ D 2 ⊂ R 4 by wy(z1, z3) = y • w(z1, z3). We notice that W0 = {z2 = 0} and W1 = W . Then for every (x, y) ∈ D×D(0, 10| θ2|), the set Vx,y equal to the image of z1 ∈ D → (z1, wy(z1, x), x) ∈ R 6 is a graph of class C 2 over z1 ∈ D. Since Dw ≤ 10, its slope is bounded by 10 × 10 = 100 in the coordinates given by ϕ. Since V is a (1, 3)-quasi plane in the initial coordinates, Dϕ -1 is C 0 -bounded and then the slope of any Vx,y in the initial coordinates is bounded by S, where 0 < S < +∞ is independent of V and ϑ. Since W ∩ {z2 = 0} = ∅, we have w(z1, z2) = 0 for every (z1, z3) ∈ D 2 and then the graphs Vx,y form a foliation of class C 2 of a neighborhood of ϑ satisfying the conditions (1) and (2).

We can reduce σ1, b1 and F so that for every f ∈ F , W s loc (φ f ) has a point of intersection with every graph L ⊂ D 3 of class C 2 of slope bounded by S over z1 ∈ D, and this intersection is transverse (uniformly in L). The following is an easy consequence of the Inclination Lemma (one can refer to Prop. 6.2.23 page 257 of [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]). Lemma 5.3.7. There exists an integer k such that for every f ∈ F , for every graph L ⊂ D 3 of class C 2 of slope bounded by S over z1 ∈ D, f k (L) has a component which is a graph over z1 ∈ D which is η-close to W u loc (φ f ). Notation 5.3.8. We fix the integer k given by Lemma 5.3.7. Up to increasing k if necessary, we can fix 0 < t < t0 such that j(t) = k (see Lemma 5.3.5). We reduce F so that for every f ∈ F : there is a point ϑ ∈ W s (α f ) such that f k (ϑ) ∈ (τ + (D(0, tρ)) 3 ) and W s (α f ) has a tangent vector u ∈ C u at ϑ (it is possible by continuity since it is the case for f1 with the point f -k 1 (τ )).

Figure 2: straightening of the initial fold by iterating backwards. The blue and green sets are the connected components W f and W f of W s (α f ) ∩ D 3 . In particular, the green set W f is a concentrated 3-folded (2, 3)-surface.

Proposition 5.3.9. For every f ∈ F , W s (α f ) contains a concentrated 3-folded (2, 3)surface W f such that Fold(W f ) ⊂ D(0, 1 10 ) and diam(pr 1 (W f )) < 10 -10 .

Proof. Let f ∈ F . Let V be a (1, 3)-quasi plane foliated by the u-curves V x = V∩{z3 = x}. By Notation 5.3.8, we can take ϑ ∈ W s (α f ) such that f k (ϑ) ∈ (τ + (D(0, tρ)) 3 ), W s (α f ) has a tangent vector in C u at ϑ and ϑ does not belong to V. According to Lemma 5.3.6 it is possible to find a foliation of class C 2 of a neighborhood of ϑ by graphs Vx,y of class C 2 over z1 ∈ D of slope bounded by S such that V x = Vx,0 and the leaf going through ϑ has C • u as tangent space. In particular, the leaf going through ϑ is tangent to W s (α f ).

We apply f k to all these curves Vx,y. According to Lemma 5.3.7, the sets f k (Vx,y) have components which foliate a neighborhood of τ by graphs over z1 ∈ D which are η-close to W u loc (φ f ). If necessary, we can extend this foliation into a foliation of τ + D(0, tρ1)e u (τ ) + D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) by graphs over z1 ∈ D η-close to W u loc (φ f ). Then according to Lemma 5.3.2, the set Tan of points of f k (Vx,y) where f k (Vx,y) is tangent to W s (α f ) is a regular two-dimensional real manifold which has its direction -close to C•vtan at each point and goes through the point f k (ϑ) ∈ τ + (D(0, tρ)) 3 . According to Lemma 5.3.3, the set Tan can intersect τ +D(0, tρ1)e u (τ )+D(0, tρ2)(0, 1, 0)+D(0, tρ3)(0, 0, 1) only in τ + D(0, tρ1)e u (τ ) + ∂D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1). By Lemma 5.3.5, it holds: f -k τ + D(0, tρ1)e u (τ ) + ∂D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) ⊂ C 3 \D 3 , f -k τ + D(0, tρ1)e u (τ ) + D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1) ∩ ∂D 3 D × ∂D × D .

Then f -k (Tan) intersects V. Since both V and W s (α f ) are complex manifolds, f -k (Tan) intersects V in exactly one point. We denote by W f the continuation of the connected component of W s (α f 1 ) ∩ D 3 containing f -k 1 (τ ) for f ∈ F . Then W f is tangent to exactly one V x = V ∩ {z3 = x}. This implies that pr 3 restricted on W f ∩ V is a twocovering with exactly one point of ramification. Since this is true for any (1, 3)-quasi plane V, by definition, W f is a 3-folded (2, 3)-surface for every f ∈ F . We notice that pr 3 (φ f ) ∈ D(0, 1 10 -10 -4 ). Increasing k if necessary, we have pr 3 (f -k (τ )) ∈ D(0, 1 10 -10 -4 ). Moreover ϑ can be taken as close to f -k (τ ) as wanted and by the proof of Lemma 5.3.5 the diameter of pr 3 f -k (Tan) is smaller than 10 -10 . Then we have Fold(W f ) ⊂ D(0, 1 10 ). Since the first direction is dilated under f , iterating by f -1 if necessary, we can have the additional property that diam(pr 1 (W f )) < 10 -10 . Then according to Proposition 4.3.7, we can iterate a last time f -1 if necessary to get a component W f of W s (α f ) which is a concentrated 3-folded (2, 3)-surface such that Fold(W f ) ⊂ D(0, 1 10 ) and diam(pr 1 (W f )) < 10 -10 .

Proof of the main results

Proof of the main Theorem and Corollaries 1 and 2. By Proposition 5.3.9, for every f ∈ F , W s (α f ) contains some concentrated 3-folded (2, 3)-surface W 0 with Fold(W 0 ) ⊂ D(0, 1 10 ) and diam(pr 1 (W 0 )) < 10 -10 . This implies persistent heteroclinic tangencies. Indeed, by Proposition 4.3.1 there exists a point κ f of the horseshoe H f and a point of quadratic tangency τ between W u (κ f ) and W 0 ⊂ W s (α f ). The proof of the main Theorem is complete.

We now prove Corollary 1. We call U f the component of W u (κ f ) ∩ D 3 containing the point of tangency τ and we consider the family (U f ) f ∈F of holomorphic u-curves given by the continuation of U f . According to Proposition 5.1.6, the tangency τ is generically unfolded. We apply a standard argument to obtain homoclinic tangencies. Let us take any neighborhood F of f . Since the tangency τ is generically unfolded, we can rely on the following well-know lemma: Lemma 6.0.1. There exists > 0 such that for every holomorphic family (U f ) f ∈F of u-curves -close to (U f ) f ∈F and every holomorphic family (W f ) f ∈F of complex surfaces -close to (W 0 ) f ∈F , there exists a point of quadratic tangency between U f and W f where f ∈ F .

We claim that there exists a holomorphic family of u-curves (U f ) f ∈F -close to (U f ) f ∈F such that for every f ∈ F , U f is a component of W u (δ f ) ∩ D 3 and a holomorphic family of complex surfaces (W f ) f ∈F -close to ((W 0 ) f ) f ∈F such that for every f ∈ F , W f is a component of W s (δ f ) (we recall that the point δ f was defined in Proposition 3.1.6). We prove this fact for the case of u-curves, the proof is the same for complex surfaces. According to Proposition 3.1.6, α f , and then κ f , is in the homoclinic class of δ f . This implies that there exists a transversal intersection between W s loc (κ f ) and W u loc (δ f ) for every f ∈ F . For a given f ∈ F , by the inclination lemma, there exists an integer n f such that for every n ≥ n f , (f ) n f (W u loc (δ f )) contains a u-curve -close to U f . By continuity, n f can be taken locally constant. Up to reducing F , we can take F compact (with non empty interior). By compactness, it is then possible to take the maximal value n of n f on a finite open covering of F . Then for every f ∈ F , there is a u-curve U f -close to U f which is a connected component of W u (δ f ) ∩ D 3 . The proof of Corollary 1 is complete.

We now prove Corollary 2. The preceding proof shows that there exists f ∈ F with a point of homoclinic tangency between W s (δ f ) and W u (δ f ). In particular maps with homoclinic tangencies associated to δ f are dense in F . The point δ f has the property of being sectionally dissipative for every f ∈ F . Then, by Proposition A.1 which gives the creation of sinks from homoclinic tangencies (the proof is given in Appendix for the convenience of the reader) a classical Baire category argument already used in [START_REF] Gregery | Infinitely many periodic attractors for holomorphic maps of 2 variables[END_REF] allows us to conclude the existence of a residual set of Aut2(C 3 ) of automorphisms displaying infinitely many sinks. The proof is complete.

Γ n the complex curve in P 2 (C) given by the tangent directions to the curve Ψτ (F n τ (∆ )) at the periodic point Ψτ (R τ ) when τ varies. By the Inclination Lemma, we can increase the bound N5 ≥ N4 on n such that if n ≥ N5, pr 3 (Ψτ (R τ )) can be made as close to iτ as wanted and Ψτ (F n τ (∆ )) can be taken as close to {z1 = z 2 3 + t, z2 = 0} in the C 1 topology. In particular, this shows that the graph Γ n can be taken as close to the graph Γ as wanted (in the C 1 -topology) by increasing the bound N5. In particular, we can pick N5 such that there is a transverse intersection between Γ n and Π if n ≥ N5. There is a last step to get AΛ1 = 0. We denote by Π the projection of the plane Vect(DΨτ (R τ )•e 2 , DΨτ (R τ )•e 3 ) in P 2 (C), Π is a complex curve. Since e 2 and e 3 are the two stable eigenvectors of DF n 1 τ (R τ ), it is an easy consequence of the Inclination Lemma that if n and then n1 tend to infinity, then Π tends to Π (locally as graphs in the C 1 -topology). In particular, it is possible to pick a last bound N6 ≥ N5 on n such that if n ≥ N6, then Γ n and Π have a transverse intersection. Then there exists τ with t = τ 2 ∈ T such that DF n τ (R τ ) • e 1 ∈ Vect(e 2 , e 3 ) which is equivalent to AΛ1 = 0. For this parameter τ , we already saw that R τ is a sink. This is true for every neighborhood T of 0 and it is clear that R τ tends to Q when reducing T . The result is proven: for every neighborhood Q of Q and every neighborhood T of 0, we can create a sink in Q for Ft with t ∈ T .

Corollary 1 .

 1 For each d ≥ 2, there exists an open subset of Aut d (C 3 ) in which the automorphisms having a homoclinic tangency are dense. Corollary 2. For each d ≥ 2, there exists an open subset Aut d (C 3 ) in which the automorphisms having infinitely many sinks are dense.

Notation 2 . 1 . 1 .

 211 We denote by D ⊂ C the open unit disk, and by D(0, r) the open disk centered at 0 of radius r for any r > 0. In particular, D(0, 1) = D. Notation 2.1.2. We will denote by dist the distance induced by the Euclidean norm on C n for n ∈ {1, 2, 3}.

( 1 ) 1 ( 3 )

 113 For every c ∈ C, p -r c (D) (resp. p -r c (D )) admits two disjoint components D1, D2 (resp. D 1 , D 2 ) included in D (resp. D) such that p r c is univalent on both D1 and D2 (resp. D 1 and D 2 ). Moreover p r-We have |p c | > χ on D and |(p r c ) | > 2 on a neighborhood of D1 ∪ D2. (4) The critical point 0 is preperiodic for c = c0 : p m c 0 (0) = αc 0 = 0 with pc 0 (0) = 0, • • • , p m-1 c 0 (0) = 0 and at c = c0, we have: d dc p m c (0) -αc = 0. (5) There exists R > 0 such that D ⊂ D(0, R) and such that the Julia set of pc is included in D(0, R) for every c ∈ C. (6) The polynomial pc has a periodic point δc of multiplier νc satisfying 1 < |νc| < (1 + 10 -10 ) 1/qr for every c ∈ C.

2 a 6 5 ) = 6 5 . 1 c(( 2 )( 4 )

 265124 We also denote by B, B , B and B the sets corresponding to αa. Up to replacing γa by p r/(γ) if αa = α - a , we can suppose that γa ∈ B. The multiplier of αa is of modulus |2αa| > min(2, We take the component B 1 of p -r a (B ) containing αa and where p r a is univalent defined at the beginning of the last paragraph. We have B 1 B B . We also take the component B 2 of p -r a (B ) containing γa and where p r a is univalent equal to B. It holds B 2 B B B . Replacing r by one of its multiples if necessary (still denoted by r), B 1 and B 2 are disjoint. We also take the respective components B1 and B2 of p -r a (B) included into those of p -r a (B ). Since B B, it holds p rStill replacing r by a multiple if necessary, we have |rαa -(γa + pa(γa) + • • • + p r-1 a (γa))| > 10. Since B 1 B and B 2 B, by the Schwarz Lemma, there exists θ > 1 such that |(p r c ) | > θ on a neighborhood of B1 ∪ B2. Taking a multiple of r if necessary, |(p r c ) | > 2 on a neighborhood of B1 ∪ B2. Let us fix q > 1. By continuity, for c in some neighborhood Ca of a in C, it holds: (1) p -r c (B) (resp. p -r c (B )) admits two components B1, B2 (resp. B 1 , B 2 ) included in B (resp. B) containing the continuations αc and γc and such that p r c is univalent on both B1 and B2 (resp. B 1 and B 2 ). Moreover p r-the continuation αc of αa is a repulsive fixed point of pc such that |p c (αc)| > 6 5 , (3) rαc = γc + pc(γc) + • • • + p r-1 c (γc) and |rαc -(γc + pc(γc) + • • • + p r-1 c (γc))| > 10, |p c | > χ on B and |(p r c ) | > 2 on a neighborhood of B1 ∪ B2, (5) the Julia set of pc is included in D(0, 10), (6) the continuation δc of δa is of multiplier νc such that (1 -10 -10 ) 1/qr < |νc| < (1 + 10 -10 ) 1/qr .

2 . 2 .

 22 Since rαc = γc +pc(γc)+• • •+p r-1 c (γc) and |rαc -(γc + pc(γc) + • • • + p r-1 c (γc))| > 10 before rescaling, we have A = B and |A -B| > 1 after and then Property 3 is true. Then Properties 1, 2, 3, 4, 5 and 6 are satisfied for every c ∈ C. In the following, after rescaling, we will denote B, B , B1, B2, B 1 , B 2 by D, D , D1, D2, D 1 , D 2 . For simplicity, we will still denote by pc the polynomial after rescaling. Choice of an IFS. Notation 2.2.1. For every c ∈ C, we denote by h1 and h2 the two inverse branches of p r c on D given by Proposition 2.1.4 such that αc = n≥0 h n 1 (D) and γc = n≥0 h n 2 (D).

  10 -10 |A-B|) and B ∈ D(B, 10 -10 |A-B|). According to item 2 of Proposition 2.1.4, this implies that:

Definition 3 . 1 . 2 .

 312 Given an automorphism F : C 3 → C 3 , a tridisk D = D1×D2×D3 ⊂ D 3 and an integer p ≥ 1, we say that HF = n∈Z F n (D) is a p-branched horseshoe for F if:

  D 3 has two components which are two graphs over the coordinate z1 ∈ D and which do not intersect D × ∂(D × D).

3

  has two connected components D 1,u and D 2,u . These are two tridisks which do not intersect D × ∂(D × D) and are also connected components of f qr c,b,σ (D 3 ) ∩ D 3 . This proves item 1 of Definition 3.1.2. We denote now f c,b,σ = f0. The proof of item 2 is similar and gives two connected components D 1,s and D 2,s in f -qr0 (D 3 ) ∩ D 3 . Reducing σ0 and b0 if necessary, the cone field C u is f qr 0 -invariant on D 1,s ∪ D 2,s by Property (3) of Proposition 2.1.4 and dilated under f qr 0 by a factor larger than 10 10 because |h j | < 10 -10 on D (see Property 1 of Proposition 2.2.3). The modulus of the derivative of pc is bounded from below by a strictly positive constant on D ∪pc(D )∪• • •∪p qr-1 c (D ). Thus, still reducing σ0 and b0 if necessary, the cone field C ss is f -qr 0 -invariant on D 1,u ∪ D 2,u and dilated under f -qr 0 by a factor at least 10 10 . For σ → 0 and b → 0, the directions of the two expanding eigenvectors of Dzf -qr 0 respectively tend to the second and third directions (uniformly in z) while the contracting eigenvector of Dzf -qr 0 stays in C u . Since the associated rates of dilatation/contraction remain uniformly distant to 1 when σ, b → 0, this implies that some cone of the form {(v1, v2, v3) : ||(v2, v3)|| > Ξ||v1||} (for some Ξ > 1) is f -qr 0 -invariant on D 1,u ∪ D 2,u and dilated by a factor larger than 1. This finishes to prove both items 3 and 4 of Definition 3.1.2. Then H

2

 2 Then for every point z of the set {z : |z| =1 10 and 0 ≤ Arg(z) ≤ π 2 }, we have that z -c1 ∈ D 0, |µ| 2qr ( 1 10 -10 -5

Figure 1 :

 1 Figure 1: complex blender. The top figure shows the sets V1 and V2 in a real analogy (that is in R 3 ). The two bottom figures represent the respective images by the third projection map π3 : C 3 → C of V1,V2 (on the left) and U1,U2,U3,U4 (on the right).

4. 1 .

 1 Some definitions. Definition 4.1.1. A submanifold (or an analytic set) W ⊂ D n is horizontal relatively to a decomposition

Proposition 4 . 1 . 2 .

 412 Let W be a horizontal curve of degree d and W be a vertical curve of degree d in D 2 = D × D. Then W and W intersect in dd points with multiplicity.

Proposition 4 . 1 . 3 .

 413 Let W be a horizontal curve (resp. surface) of degree d and W be a vertical surface (resp.curve) of degreed in D 3 = D 1 × D 2 (resp. D 3 = D 2 × D 1). Then W and W intersect in dd points with multiplicity.

Lemma 4 . 2 . 1 .

 421 Let Γ = γ(D) be a k-folded curve (with k ∈ {2, 3}) included inside some (1, k)-quasi plane over D × D k with D(0, 1/2) ⊂ D k ⊂ D and diam pr 1 (Γ) ≤ 10 -10 . Then for every disk DΓ D k of radius 10 -7 distant of at least 10 -7 from ∂D k ∪ {fold(Γ)}, it holds: for every Z with pr k (γ(Z)) ∈ DΓ we have |γ 1 (Z)| < 10 -3 |γ k (Z)|. In particular, Γ ∩ (D 2 × DΓ) is the union of two graphs upon z k ∈ DΓ. Proof. Let DΓ D k be a disk of radius 10 -7 distant of at least 10 -7 from ∂D k ∪ {fold(Γ)}. We notice that Γ is the union of two graphs over z k varying in the 10 -7 -neighborhood of DΓ. Let us denote z1 = ξ(z k ) one of them. Every point of DΓ is the center of a ball of radius 10 -7 where |ξ(z k )| < 10 -10 . Hence, by the Cauchy inequality, we have |ξ (z k )| < 10 7 • 10 -10 = 10 -3 . Thus |γ 1 (Z)| < 10 -3 |γ k (Z)| at every Z such that pr k (γ(Z)) ∈ DΓ and the result follows.

  Since D × D(0, 1/2) D × D(0, 2/3), by the Cauchy inequality, there exists C > 0 such that for any holomorphic map w from D × D(0, 2/3) into D, the C 0 -norm of Dw on D × D(0, 1/2) is bounded by C. Lemma 4.3.4. Reducing b0, σ0 and F if necessary, for every f ∈ F, j ∈ {1, 2, 3, 4} and z ∈ D, we both have diam pr 2 (Uj ∩ {z1 = z}) < 10 -7 • dist(Uj, D × ∂D × D) and diam pr 2 (Uj ∩ {z1 = z}) < 10 -1 • C -1 • (χ -χ).

3 . 3 ,

 33 both V 0 and V 1 contain (1, 3)-quasi planes V0 and V1 over D × D(0, 1/2) included in Uj. The (1, 3)-quasi plane V0 can be written as a graph (z1, z3) → v0(z1, z3) over D × D(0, 1/2) and the (1, 3)-quasi plane V1 can be written as a graph (z1, z3) → v1(z1, z3) over D × D(0, 1/2). For every t ∈ D(0, 10 6 ), we denote vt(z1, z3) = v0(z1, z3) + t • (v1(z1, z3) -v0(z1, z3)), which defines a graph Vt over (z1, z3) ∈ D × D(0, 1/2). By the first inequality of Lemma 4.3.4, for every t ∈ D(0, 10 6 ), Vt does not intersect D × ∂D × D. By Lemma 4.3.3, V0 is foliated by u-curves whose tangent vectors are all included in Cu . We notice that |v1(z1, z3) -v0(z1, z3)| is bounded by sup z∈D diam pr 2 (Uj ∩ {z1 = z}) < 10 -1 • C -1 • (χ -χ) by the second inequality of Lemma 4.3.4. Still using Lemma 4.3.3, (z1, z3) → v1(z1, z3)-v0(z1, z3

Lemma 4 . 3 . 6 .

 436 Let V0 and V1 be two (1, 3)-quasi planes over D × D(0, 1/2) and a holomorphic family (Vt) t∈D(0,10 6 ) containing V0 and V1 and such that Vt is a (1, 3)-quasi plane over D × D(0, 1/2) for t ∈ D(0, 10 6 ). Let W be a 3-folded (2, 3)-surface such that Fold(W) ⊂ D(0, 1/10). Then |fold(V1 ∩ W) -fold(V0 ∩ W)| < 10 -6 .

Proposition 4 . 3 . 7 .

 437 Let 1 ≤ j ≤ 4. Let W be a 3-folded (2, 3)-surface such that we both have diam(pr 1 (W)) ≤ 10 -10 and Fold(W) ⊂ D(0, 1/10). Then gj(W∩Uj) is a concentrated 3-folded (2, 3)-surface satisfying diam(Fold(gj(W))) ≤ 1 2 • 10 -5 for any f ∈ F.Proof. Let V and V be two (1, 3)-quasi planes over D 2 . Then f 2qr (V ∩ gj(D 3 )) and f 2qr (V ∩ gj(D 3 )) contain (1, 3)-quasi planes over D × D(0, 1/2) included in Uj by Lemma 4.3.3. The sets Γ = f 2qr (V ∩ gj(D 3 )) ∩ W and Γ = f 2qr (V ∩ gj(D 3 )) ∩ W are 3-folded curves. By Lemmas 4.3.5 and 4.3.6, |fold(Γ ) -fold(Γ)| < 10 -6 . Lemma 4.3.2 implies that gj(Γ) is a 3-folded curve with fold gj(Γ) ∈ D( 1 µ 2qr (fold(Γ) -cj), (3/2) • 10 -6 ) and the analogous for Γ . Then diam(Fold(gj(W))) ≤ |µ 2qr | -1 • 10 -6 + 2 • (3/2) • 10 -6 < (1/2) • 10 -5 and then gj(W) is a concentrated 3-folded (2, 3)-surface.

1 (τ ) between W s loc (α f 1 ) and f s+m 1 (Uc 1 )

 1111 where τ ∈ Uc 1 for f1 = f c 1 ,b,σ . Then τ is a point of tangency between W s (α f 1 ) and Uc 1 . Since W s loc (αf 1 ) is included in D αc 0 , 10 -10 • |wm-1| • (χ-1) ×D 2 , all the iterates of f s+m 1 (τ ) under f1 are in D αc 0 , 10 -10 •|wm-1|•(χ-1) ×D 2 .The map (b, σ) → c1 is holomorphic by the Implicit Function Theorem and then (b, σ) → τ is holomorphic too. This shows item 2 and ends the proof of Proposition 5.1.1.

  tends also to a curve of degree 2 over z1 of the form {(p s+m c (z1), p s+m-1 c (z1), v(z1)) : z1 ∈ D(0, ρ)} where v is holomorphic. We call tanc the first coordinate of the point of vertical tangency of Ψ f 0 • f s+m 0 (U f 0 ). We have p m c 0 (0) = αc 0 , (p m c 0 ) (0) = 0, (p m c 0 ) (0) = 0 and at c = c0, we have d dc p m c (0) -αc = 0 (see Proposition 2.1.4). Moreover, c1 tends to c0 when b and σ tend to 0. Then for sufficiently small b and σ, we have dtanc dc = 0 for every c ∈ C (reducing C if necessary).

  

This research was partially supported by the ANR project LAMBDA, ANR-13-BS01-0002. c (D1), p r-1 c (D2) D and p r-1 c (D 1 ), p r-1 c

Notation 5.2.2. For every 0 < |b| < b1, 0 ≤ |σ| < σ1, we fix such a periodic point φ f 1 for the map f1 such that pr 3 (φ f 1 ) ∈ D(0, 1 10 -10 -4 ). Reducing F if necessary, we have pr 3 (φ f ) ∈ D(0, 1 10 -10 -4 ) for f ∈ F . We now choose the parameter b in function of the parameter σ: Notation 5.2.3. In the following, we will take b = b(σ) = σ 2 . For technical reasons, we reduce σ1 such that σ1 < √ b1.

In particular, we can use Proposition 5.1.1 for 0 ≤ |σ| < σ1: there exists a map σ → c1(σ) such that there is a heteroclinic tangency τ between the local unstable manifold U f 1 of φ f 1 and the stable manifold W s (α f 1 ) of α f 1 . Moreover, σ → τ is holomorphic. We have D(f s 1 )τ • (0, 0, 1) = µ s (ξ1(σ), ξ2(σ), 1) with ξ1(σ) = O(σ) and ξ2(σ) = O(σ). The maps σ → pr 1 (f s 1 (τ )) -β0, • • • , σ → pr 1 (f s+m-1 1 (τ )) -βm-1 are holomorphic (remind that the constants βi were defined in 2.4.1). Since they vanish when σ = 0, they are also O(σ). The map σ → b(σ) is O(σ 2 ) because b(σ) = σ 2 . Then the differentials at

(τ ) verify the conditions of Corollary 2.4.6 so from Corollary 2.4.6 we immediately get the following (remind that wm-1 was defined in Definition 2.4.3): Lemma 5.2.4. We have D(f s+m 1 )τ • (0, 0, 1) = (ζ1(σ), ζ2(σ), ζ3(σ)) where ζ1, ζ2, ζ3 are holomorphic functions, ζ1(σ) = wm-1 •σ+O(σ 2 ), ζ2(0) = 0+O(σ) and ζ3(σ) = µ m +O(σ). Notation 5.2.5. We reduce σ1 so that for 0 ≤ |σ| < σ1 it holds |ζ1(σ) -wm-1σ| < Lemma 5.2.6. For every vector v 0 such that |v 0

Proof. Let ψ 0 be a point of W s loc (α f 1 ) and let us consider the sequence of points defined by ψ n = f n 1 (ψ 0 ). According to Lemma 5.1.3, for every n ≥ 0, ψ n is in D(αc 0 , 10 -10 |wm-1|(χ-1)) × C 2 . Then for every n ≥ 1, the differential at ψ n of f1 is of the form:

where b(σ) = σ 2 and |mn| ≥ χ > 1 for every n ≥ 1. Since σ1 < 10 -10 |wm-1|(χ -1) we have |b| < 10 -10 |wm-1||σ|(χ -1). We denote v n = (In • ... • I1)(v 0 ) for every n ≥ 1. Let us show that there exists an integer i such that

Let us suppose this is false and we show by induction the following properties for n ≥ 0:

Then item 1 is true and the induction step is true for n = 0. Then for every n ≥ 0, we have |v n+1

Suppose the induction step true for some

. This implies a contradiction: there must exist some integer i such that |v i 1 | ≥ |v i 3 |. Since we also have

and then v 0 itself is transverse to W s loc (α f 1 ). Proposition 5.2.7. The vector (0, 0, 1) is transverse to W s (α f 1 ) at τ . Proof. From Lemmas 5.2.4 and 5.2.6, we know that the image under f s+m

, this immediately implies the result. 5.3. Orientation of the fold of W s (α f ). In this subsection, we take iterates of the initial tangency τ under f -1 1 in order to create a concentrated 3-folded (2, 3)-surface inside a stable manifold. We have that W u loc (φ f 1 ) is a graph {(z1, u 2 (z1), u 3 (z1) : z1 ∈ D} over z1 ∈ D (the periodic point φ f 1 was defined in Lemma 5.2.1). We consider the biholomorphism Ψ defined by Ψ(z1, z2, z3) = (z1, z2 -u 2 (z1), z3 -u 3 (z1)) which sends W u loc (φ f 1 ) onto the z1 axis. We denote W f the connected component of W s (α f ) ∩ D 3 which contains τ for f ∈ F . We denote by Tan the subset of Ψ(W f ) where Ψ(W f ) is tangent to some line {z2 = C st , z3 = C st } and by Tan = Ψ -1 (Tan ). When f = f1, we denote them by Tan 0 and (Tan ) 0 . Let e u (τ ) be a tangent vector of W u loc (φ f 1 ) at τ . Lemma 5.3.1. The curve Tan 0 is a complex curve regular at τ of tangent vector vtan at τ such that vtan / ∈ C • (0, 0, 1) and vtan / ∈ C • e u (τ ).

Proof. We are working in the projectivized tangent bundle

The lift of every complex curve Cx,y = Ψ -1 (D × {(x, y)}) to PT C 3 is a complex curve Ĉx,y. Then (x,y)∈D 2 Ĉx,y is a complex submanifold of dimension 3. Moreover, according to Proposition 5.1.1, W f 1 has a point of quadratic tangency with C0,0 and then Ŵf 1 is transverse to (x,y)∈D 2 Ĉx,y. Then Tan 0 = Ŵf 1 ∩ (x,y)∈D 2 Ĉx,y is a regular complex curve. Then its projection Tan 0 is a regular complex curve of tangent vector vtan at τ . By Proposition 5.2.7, vtan / ∈ C • (0, 0, 1). By construction, e u (τ ) is a tangent vector of W u loc (φ f 1 ) at τ so vtan / ∈ C • e u (τ ). The proof is done.

Since the intersection between Ŵf 1 and (x,y)∈D 2 Ĉx,y was transverse in the latter proof, by perturbation of the previous result, we get: Corollary 5.3.2. For every > 0, reducing F if necessary, there exists η > 0 such that: for every f ∈ F , for every C 2 -foliation (Vx,y) (x,y) of some neighborhood of τ by two-dimensional real manifolds Vx,y such that every Vx,y is η-close to W u loc (φ f ), the set Tan of points of W f where W f is tangent to some Vx,y is a regular two-dimensional real manifold which has its direction -close to C • vtan at each point if it is non empty.

The following result is a technical geometric lemma.

Lemma 5.3.3. There exist , ρ, ρ1, ρ2, ρ3 > 0 such that for every t > 0, we have the following property: for every regular two-dimensional real manifold Γ going through τ + (D(0, tρ)) 3 , if Γ has its direction -close to C • vtan at each point, then Γ is horizontal relatively to π2 in τ + D(0, tρ1)e u (τ ) + D(0, tρ2)(0, 1, 0) + D(0, tρ3)(0, 0, 1).

Proof. According to Lemma 5.3.1, vtan / ∈ C • (0, 0, 1) and vtan / ∈ C • e u (τ ), which easily implies the result. Notation 5.3.4. We fix the value of given by Lemma 5.3.3 and the associated value of η given by Corollary 5.3.2. We also fix ρ, ρ1, ρ2, ρ3 given by Lemma 5.3.3.

Appendix A. From homoclinic tangencies to sinks

To show the main Theorem, we need the following result. It is known since the work of Newhouse how to get a sink from a homoclinic tangency. The adaptation to the case of C 2 was obtained by Gavosto in [START_REF] Ana | Attracting basins in P 2[END_REF]. Here we adapt her proof to the case of C 3 . Remind that a generically unfolded tangency is a tangency which is unfolded with a positive speed.

Proposition A.1. Let (Ft) t∈D be a family of polynomial automorphisms of C 3 . We suppose that for the parameter t = 0, there is a sectionally dissipative periodic point P0 and a generically unfolded homoclinic quadratic tangency Q ∈ W s (P0) ∩ W u (P0) between W s (P0) and W u (P0). We also suppose that the three eigenvalues λ ss 0 , λ cs 0 and

Then for every neighborhood Q of Q and every neighborhood T of 0, there exists t ∈ T such that Ft admits an attracting periodic point in Q.

Proof. Step 1 : Construction of cone fields

In the following, iterating if necessary, we will suppose that P0 is a fixed point of F0. We fix a constant η > 0 such that we have

We can fix a neighborhood P of P0, a neighborhood T0 of 0, cones C u , C ss and C cs centered at the three eigenvectors of DF0(P0) and an integer N0 with the following properties: for every n ≥ N0, t ∈ T0, for every matrix M = Mn • . . . • M1 where Mi is the differential of Ft at a point in P, we have:

(1) C u is invariant under M and there is exactly one eigenvector (up to multiplication) of M in C u of eigenvalue

(2) C ss is invariant under M -1 and there is exactly one eigenvector (up to multiplication) of M in C ss of eigenvalue

Reducing η and increasing N0 if necessary, we have for n ≥ N0:

This implies that M is diagonalizable. Indeed, if it was not the case, M would be triangularizable with a double eigenvalue and we would have:

But by item 4 above, there would be a contradiction with the previous inequalities. Moreover the third eigenvector has to be in C cs according to item 3 above.

Step 2 : Local coordinates Iterating if necessary, we can suppose that Q ∈ P. We are going to make several local changes of coordinates so that the stable and unstable manifolds of Pt a simple form near the tangency. We will use this local change of coordinates in Steps 2 and 3. In Step 4, we will mainly use the coordinates in the canonical basis but we will need the local change of coordinates a last time at some point so we will denote it by Ψτ in Step 4 to make the distinction between the two systems of coordinates. In the following, to construct the local coordinates, we will keep the notation z1, z2, z3 by simplification.

We first pick local coordinates such that Q = 0 and in the neighborhood of Q, the stable manifold is {z1 = 0}. Up to a linear invertible second change of coordinates, we can assure that the tangent vector of W u (P0) at Q is (0, 0, 1). Then we have that locally near 0 the unstable manifold is given by a graph over z3 of the form {(w1(z3, t), w2(z3, t), z3) : z3}. Since the tangency is quadratic, for each t in a neighborhood of 0, there exists exactly one z3,t such that ∂w 1 ∂z 3 (z3,t, t) = 0. We pick new coordinates a third time by changing the coordinate z3 into z3 -z3,t. The unstable manifold is:

The stable manifold is still locally equal to {z1 = 0}. Since there is a quadratic tangency for t = 0 which is generically unfolded, we have w1(0, 0) = 0 and ∂w 1 ∂t (0, 0) = 0. Then we change coordinates a fourth time: z1 becomes t w 1 (0,t) z1 and z2 and z3 are unchanged. In these new coordinates, the unstable manifold is given by: w1(z3) = t + z 2 3 h(z3, t), where h(z3, t) = 0 in a neighborhood of 0. The stable manifold is still locally equal to {z1 = 0}. The fifth change of coordinates is given by z3 becoming z3( h(z3, t)) 1/2 , where ( h(z3, t)) 1/2 is a complex square root of h(z3, t) (which is well defined since h(z3, t) = 0 in a neighborhood of 0). We finally get that the unstable manifold is given by z1 = z 2 3 + t and z2 = w2(z3, t). The stable manifold is still locally equal to {z1 = 0} and the tangent vector of W u (P0) at Q is still (0, 0, 1). The last change of coordinates is given by z2 -w2(z3, t). The unstable manifold is given by z1 = z 2 3 + t and z2 = 0 and the stable manifold by z1 = 0. The tangent vector of W u (P0) at Q is still (0, 0, 1).

Step 3 : Construction of a periodic point We take a tridisk B around Q in the coordinates that we just defined : B = {(z1, z2, z3) : |z1| < δ, |z2| < δ, |z3| < δ} where 0 < δ < 1. Since the tangent vector of W u (P0) at Q is (0, 0, 1), reducing δ if necessary, there exists a neighborhood T1 ⊂ T0 such that the component of W u (Pt) ∩ B containing Q (for t = 0) or its continuation (for t = 0) is horizontal in B relatively to the third projection and is included in {(z1, z2, z3) ∈ B : |z2| < 1 10 δ}. Using the Inclination Lemma, there exists N1 ≥ N0 such that for t ∈ T1 and n ≥ N1 , F n t (B) will intersect B and Ft(B) ∩ B is horizontal relatively to the third projection.

In the following, we show that for every sufficiently high n, a periodic point for Ft (where t ∈ T1) is created. Let us now denote ∆z 2 ,z 3 = {(z1, z2, z3) : |z1| < δ} which is a disk, for |z2| < δ, |z3| < δ. It is possible to increase N2 ≥ N1 such that for any |z2| < δ, |z3| < δ, for every n ≥ N2, F n t (∆z 2 ,z 3 ) ∩ B is horizontal relatively to the third projection (of degree 1) and included in {(z1, z2, z3) ∈ B : |z2| < 1 2 δ}. Since F n t (∆z 2 ,z 3 ) ∩ B is horizontal relatively to the third projection and of degree 1, it intersects exactly one disk ∆ z 2 ,z 3 where z 2 = z 2 (z2) with z 2 ∈ D(0, δ/2). This defines for each fixed t ∈ T1 a holomorphic map z2 → z 2 . Then the map z2 → z2 -z 2 defined on D(0, δ) is holomorphic and the image of ∂D(0, δ) contains a loop around D(0, δ/2). Then by the Argument principle there exists z2(z3) such that ∆ z 2 (z 3 ),z 3 intersects F n t (∆ z 2 (z 3 ),z 3 ). We are going to choose z3 in order to create a periodic point in ∆ z 2 (z 3 ),z 3 . There is a point Rz 3 = (ft(z3), z2(z3), z3) ∈ ∆ z 2 (z 3 ),z 3 which is sent on Sz 3 ∈ ∆ z 2 (z 3 ),z 3 where Sz 3 = (gt(z3), z2(z3), z3). We are going to choose z3 (in function of t) such that Rz 3 = Sz 3 . When N goes to infinity, ft(z3) tends to 0 and gt(z3) tends to z 2 3 + t. Then gt(z3) -ft(z3) tends to z 2 3 + t. In particular, if N is sufficiently high, for every t ∈ D, the graph of z3 → gt(z3) -ft(z3) is a curve of degree 2 over z3 which has exactly one point of tangency with the horizontal foliation. We take a new bound N3 on n such that this is the case, we increase N3 in the rest of Step 3 in order to satisfy more assumptions. The second coordinate of this point of tangency is a holomorphic function of t which tends to t when increasing N3. In particular, this implies that there exists exactly one value t0 of t for which the equation gt 0 (z3) -ft 0 (z3) = 0 has one double solution, and for every other value of t ∈ D, there are two distinct solutions. Then, for Ft, we have two periodic points which are equal when t = t0. We do a reparametrization of the family of maps (Ft) t∈D by taking t = τ 2 . From now on, we are working with the family of maps Fτ = F τ 2 . By simplicity, we will simply denote it by Fτ . For Fτ , we have two periodic points which are equal when τ = τ0 where τ 2 0 = t0. We can increase N3 if necessary so that for each τ ∈ D\D(0, 1 2 ), the two solutions of g τ 2 (z3)-f τ 2 (z3) = 0 are respectively 1 100 -close to ±iτ . For τ ∈ D\D(0, 1 2 ), we denote by R τ the periodic point corresponding to the solution 1 100 -close to iτ . It is clear that the map τ → R τ restricted on D\D(0, 1 2 ) is continuous. For τ = τ0, we denote by R τ 0 the unique periodic point corresponding to the double solution of g τ 2 0 (z3) -f τ 2 0 (z3) = 0. Finally, for τ ∈ D(0, 1 2 ) not equal to τ0, there are two distinct periodic points in ∆ z 2 (z 3 ),z 3 . We pick any path in C from τ to a point τ1 in D\D(0, 1 2 ) which does not contain τ0. For τ1, the periodic point R τ 1 is defined. Since the path does not contain τ0, there is exactly one of the two distinct periodic points in ∆ z 2 (z 3 ),z 3 for τ which is the continuation of R τ 1 . We denote it by R τ . Since the map τ → R τ restricted on D\D(0, 1 2 ) is continuous, this choice is independent of a particular choice of τ1 in D\D(0, 1 2 ). Then we have defined a map τ → R τ on D. It is clear that near any point of D\{τ0}, R τ is locally the continuation of the same periodic point of Fτ , then it is holomorphic. The map τ → R τ is holomorphic on D\{τ0}. It is trivial that it is continuous at τ0. Then it is holomorphic on D. As we already said, from now on, we go back to the coordinates in the canonical basis and we call Ψτ the local coordinates we just used near the tangency point Q. We will use Ψτ a last time at the end of Step 4.

Step 4 : R τ is a sink We now show it is possible to pick τ such that R τ is a sink. From now on, we fix a neighborhood T ⊂ T1 of 0. Recall that Q belongs to the small neighborhood P of P0 defined in Step 1. We denote by n = n1 + n2 such that for k = 1, ..., n1, F k τ (R τ ) is in P and F n 1 +1 τ (R τ ) / ∈ P. We express all matrices in the τ -dependent basis given by the 3 eigenvectors e 1 ,e 2 , e 3 of D(F n 1 τ )(R τ ) (the matrix DF n 1 τ (R τ ) is diagonalizable according to Step 1). We have that e 1 ∈ C u , e 2 ∈ C ss and e 3 ∈ C cs . Then, in this basis, the matrix

We have that

Since e 1 ∈ C u , e 2 ∈ C ss and e 3 ∈ C cs and these cones are disjoint with n2 bounded, the coefficients A,B,C,D,E,F ,G,H,I are bounded in modulus by some constant K which is independant of τ , n and n1. Then we have:

Let us suppose that AΛ1 = 0. There exists > 0 such that if the characteristic polynomial of

(R τ are of modulus lower than 1 and then R τ is a sink. We are going to show that it is possible to get a lower bound on n1 so that it is always the case. The coefficients of the characteristic polynomial of DF n 1 +n 2 τ (R τ ) are :

which tends to 0 when n1 → +∞ because (|λ cs 0 | + η)(|λ u 0 | + η) < 1 (remind that P0 is a sectionally dissipative periodic point). We increase n1 such that |a0| < . We have that:

which tends to 0 when n1 → +∞ because (|λ cs 0 | + η)(|λ u 0 | + η) < 1. We increase n1 further such that |a1| < . Finally, in the term a2, both EΛ2 and IΛ3 tend to 0 when n1 → +∞. The term AΛ1 is equal to 0 by hypothesis. We increase n1 a last time such that |a2| < . Finally, we pick N4 ≥ N3 such that n1 is sufficiently high in order to satisfy the previous inequalities. Finally, the three eigenvalues of DF n 1 +n 2 τ (R τ ) are of modulus lower than 1 and R τ is a sink. It remains us to show that for a given neighborhood t ∈ T of 0 and the corresponding neighborhood of 0 for τ (remind that t = τ 2 ), it is possible to pick a new bound N6 on n, such that for n ≥ N6, there is a parameter τ = τ (n) such that the differential DF n τ (R τ ) satisfies AΛ1 = 0. To show this, we work again in the coordinates Ψτ for the map Fτ . We denote by Π the projection of the plane Ψτ (W s (P τ 2 )) = {z1 = 0} into P 2 (C). The projection Π is a holomorphic curve. We denote by Γ the holomorphic curve in P 2 (C) given by the tangent directions to the curve Ψτ (W u (P0)) = {z1 = z 2 3 , z2 = 0}. Since there is a generically unfolded quadratic tangency at τ = 0 between W s (P0) and W u (P0), there is a transverse intersection between Π and Γ. Moreover, P 2 (C) is of dimension 2. We take a small disk ∆ going through Ψτ (R τ ) of direction DΨτ (R τ )•e 1 . For a given n ≥ N4, we call