NEWHOUSE PHENOMENON FOR AUTOMORPHISMS OF LOW
DEGREE IN C3

SEBASTIEN BIEBLER

ABsTRACT. We show that there exists a polynomial automorphism f of C3 of
degree 2 such that for every automorphism g sufficiently close to f, g admits a
tangency between the stable and unstable laminations of some hyperbolic set.
As a consequence, for each d > 2, there exists an open set of polynomial auto-
morphisms of degree at most d in which the automorphisms having infinitely
many sinks are dense. To prove these results, we give a complex analogous to
the notion of blender introduced by Bonatti and Diaz.

1. INTRODUCTION

1.1. Background. Hyperbolic systems such as the horseshoe introduced by Smale were
originally conjectured to be dense in the set of parameters in the 1960’s. This was quickly
discovered to be false in general for diffeomorphisms of manifolds of dimension greater than
2 (see [1]). The discovery in the seventies of the so-called Newhouse phenomenon, i.e. the
existence of residual sets of C*-diffeomorphisms of compact surfaces with infinitely many
sinks (periodic attractors) in [16] showed it was false in dimension 2 too. The technical
core of the proof is the reduction to a line of tangency between the stable and unstable
foliations where two Cantor sets must have persistent intersections. This gives persistent
homoclinic tangencies between the stable and unstable foliations, ultimately leading to
infinitely many sinks. Indeed, it is a well known fact that a sink is created in the unfolding
of a generic homoclinic tangency.

Palis and Viana showed in [17] an analogous result for real diffeomorphisms in higher
dimensions. We say that a saddle periodic point of multipliers |Ai| < |A2] < 1 < |As] is
sectionally dissipative if the product of any two of its eigenvalues is less than 1 in modulus,
that is, [A1A3] < 1 and |A2A3] < 1 . More precisely, they proved that near any smooth
diffeomorphism of R3 exhibiting a homoclinic tangency associated to a sectionally dissi-
pative saddle periodic point, there is a residual subset of an open set of diffeomorphisms
such that each of its elements displays infinitely many coexisting sinks.

In the complex setting, this reduction is not possible anymore and to get persistent
homoclinic tangencies, we have to intersect two Cantor sets in the plane. Let us denote by
Aut4(CF) the space of polynomial automorphisms of C* of degree d for d, k > 2. Buzzard
proved in [7] that there exists an integer d > 0, an automorphism G € Auty(C?) and
a neighborhood N C Autq(C?) of G such that N has persistent homoclinic tangencies.
Buzzard gives an elegant criterion (see [6]) which generates the intersection of two planar
Cantor sets, hence leading to persistent homoclinic tangencies. In his article, Buzzard
uses a Runge approximation argument to get a polynomial automorphism, which implies
that the degree d remains unknown and is supposedly very high.
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In the article [4], Bonatti and Diaz introduced a type of horseshoe they called blender
horseshoe. The important property of such hyperbolic sets lies in the fractal configuration
of one of their stable/unstable manifold which implies persistent intersections between any
well oriented graph and this foliation. In some sense, the foliation behaves just as it had
greater Hausdorff dimension than every individual manifold of the foliation. They find
how to get robust homoclinic tangencies for some C"-diffeomorphism of R* using blenders
in [5]. In the article [8], one can find real polynomial maps of degree 2 with a blender.
Other important studies of persistent tangencies using blenders include [3] and [2].

1.2. Results and outline. In this article, we generalize Buzzard’s Theorem to dimension
3 and show that the degree can be controlled in this case. Here is our main result:

Main Theorem. There exists a polynomial automorphism f of degree 2 of C3 such that
for every g € Aut(C?) sufficiently close to f, g admits a tangency between the stable and
unstable laminations of some hyperbolic set.

Notice that in the previous result, g is not assumed to be polynomial.

Corollary 1. For each d > 2, there exists an open subset of Autq(C®) in which the
automorphisms having a homoclinic tangency are dense.

Corollary 2. For each d > 2, there exists an open subset Auty(C?) in which the auto-
morphisms having infinitely many sinks are dense.

Let us present the main ideas of the proof of this result. We consider the following
automorphism of C3:

(1) fo i (z1,22,23) = (Pe(21) + bze + 023(21 — @), 21, Az1 + pzs +v)

where p. is a quadratic polynomial and the coefficients b, o, a, A, i1, v are complex numbers.
We prove that fo has a horseshoe My, of index (2,1): the first direction is strongly
expanded, the second one is strongly contracted and the third one is moderately contracted
by fo. Informally speaking, the third projection restricted to Hy, satisfies a special "open
covering property" formalized in the following definition. This is an analogous in the
complex setting of the notion of cs-blender in the sense of Bonatti and Diaz.

Definition (Blender Property). Let f be a polynomial automorphism of C*, D a tridisk
of C* and Hy = N f*(D) a horseshoe of index (2,1). We will suppose that there exist
k > 1 and three cone fields C*,C*°,C°® such that in D:

(1) C* is f-invariant,

(2) C*% is f~-invariant,

(8) every vector in C* is expanded by a factor larger than k under f,
(4) every vector in C** is expanded by a factor larger than k under ™',
(5) every vector in C° is expanded by a factor larger than 1 under f~*.

We say that Hy is a blender if there ezists a non empty open set D' @ D such that every
curve tangent to C°° intersecting D' intersects the unstable set W*(Hy) of Hjy.

Besides, we show that fo has a periodic point which is sectionally dissipative. Once the
blender is constructed, finding persistent tangencies is not trivial. We introduce manifolds
with special geometry called folded manifolds. We prove that any folded manifold which is
in good position has a tangency with the unstable manifold of a point of Hy,. We choose
the parameters ¢, b and o in order to create an initial heteroclinic tangency between the
unstable manifold of a point of Hy, and a folded manifold. This folded manifold is in good
position and included in the stable manifold of another point of Hy,. This enables us to
produce persistent heteroclinic tangencies between stable and unstable manifolds of points
of Hy,. This gives rise to homoclinic tangencies associated to the sectionally dissipative
point. By a classical argument going back to Newhouse, this provides a subset of the set
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of automorphisms of degree 2 in which automorphisms displaying infinitely many sinks
are dense.

An important point to notice is that the map fo defined in Eq. (1) is a perturbation of
a skew product, with on the basis a Hénon mapping (it is a skew product for o = 0). The
structure of Hénon mapping will be important to create a horseshoe in Proposition 3.1.6
and an initial fold in Proposition 5.1.1 (in particular, see Lemma 5.1.3). The affine third
coordinate is chosen so that the horseshoe displays the blender property (see Subsection
3.2). The perturbation term oz3(z1 — «) allows to straighten the fold in a particular
direction by iterating in Subsections 5.2 and 5.3.

The plan of the paper is as follows. In Section 2, we choose a family of quadratic
polynomials and we fix complex coefficients A, i, v. In Section 3, we introduce the map
fo which depends on three parameters ¢, b, 0 and the associated horseshoe and we show
that it has the blender property. Then, in Section 4, we introduce the formalism of folded
manifolds and the mechanism which gives persistent tangencies. In Section 5, we prove
that it is possible to choose fp in order to have a heteroclinic tangency. Finally, we prove
the main Theorem in Section 6. In Appendix A, we explain how to construct a sink from
a sectionally dissipative tangency.

Note: This article is a complete rewriting of a first version released on arXiv in No-
vember 2016. In that version the polynomial automorphism f was of degree 5. To the
best of the author’s knowledge, the notion of blender was used there for the first time in
holomorphic dynamics. Notice that blenders also appeared in complex dynamics in [12]
and [18].

Acknowledgments : The author would like to thank his PhD advisor, Romain Du-
jardin as well as Pierre Berger and the anonymous referee for many invaluable comments.

2. PRELIMINARIES

2.1. Choice of a quadratic polynomial. In the following, we will consider the Eu-
clidean norm on C" for n € {1,2,3}.

Notation 2.1.1. We denote by D C C the open unit disk, and by D(0,r) the open disk
centered at 0 of radius v for any r > 0. In particular, D(0,1) = D.

Notation 2.1.2. We will denote by dist the distance induced by the Fuclidean norm on
C™ forn € {1,2,3}.

Notation 2.1.3. For every z € C* and i € {1,2,3}, we denote by pr,(z) = 2 the i'"-
coordinate of z.

In the following proposition, we carefully choose a family of quadratic polynomials with
special properties.

Proposition 2.1.4. For every integer ¢ > 1, there exists a disk C C C of center ¢y € C,
a holomorphic family (pc)ecec of quadratic polynomials, two integers m and r (with r
independent of q), a constant x > 1 and a disk D' with D C D’ such that:

(1) For every c € C, p,"(D) (resp. p." (D)) admits two disjoint components D1, D
(resp. D}, D5 ) included in D (resp. D) such that p, is univalent on both D1 and Da
(resp. D} and D}). Moreover pi~*(D1), pt~t(D2) € D and p.~ (DY), pi~ 1 (D5) € D.

(2) Denote by ac = (,50(Pe)”"(D1) and ve = (,50(pc)” " (D2) which are two fized
points of pi. Then for every c € C, a. is a repulsive fized point of pc, |p.(ac)| > g
and we have:

A= racy # Yeo + Peo(Yeo) + -+ + Dby (Veo) i= B and |A— B| > 1.
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(3) We have |p.| > x on D’ and |(pL)'| > 2 on a neighborhood of Dy U Ds.

(4) The critical point 0 is preperiodic for ¢ = co : peg(0) = acy # 0 with pe,(0) #
0,--- ,pfg_l(O) # 0 and at c = cp, we have: %(pzn(O) — ac) #0.

(5) There exists R > 0 such that D' C D(0,R) and such that the Julia set of p. is
included in D(0, R) for every c € C.

(6) The polynomial p. has a periodic point §. of multiplier v satisfying 1 < |ve| <
(1 +107"Y" for every c € C.

Proof. We begin by working with the family of quadratic polynomials p.(z) = 2% + ¢,
we will rescale at the end of the proof. We begin by taking the only real quadratic
polynomial p,(z) = 2% + a with one parabolic cycle §, of period 3. In particular, a < —1
and a € D(0,2). For any z € C such that |z| > 10, we have |pa(2)| = |2* + a| >
10|z| — |a| > 10|z| — 2 and then |p;(z)| — +oo. This shows that the Julia set of p, is
strictly included in D(0, 10). Simple calculations show that z? 4 a has two real fixed points
af =114+ VvI—-4a) > 3(1+V5)>1land o, = 3(1—V1—4a) < $(1—-V5) < - 5.
We take two open disks B/, C ID)(0,10) and B”. C D(0, 10) respectively centered around
a7 and a, which are both disjoint from the orbit of the critical point 0 of z? 4 a (this is
possible since the critical orbit tends to the parabolic orbit of 22 + a). Since o} and o
are repulsive fixed points of p,, there exists some x > 1 such that |p.| > x on B/, UB’,
up to reducing B/, and B_ if necessary.

Since o} and «a are repulsive fixed points, still reducing B/, and B’ if necessary, we
have that for every r > 1, there is a connected component of p;"(B’,) (resp. p;"(B.))
which contains a (resp. ;) and whose r first iterates are all included in B/, (resp. B_).
We denote by B, and B_ the respective connected components of pa ' (BY) and p, (BL)
which contain o} and «, and are defined this way. Then we fix open disks B, and B_
of respective centers a and o such that B, € B, & B’ and B_ € B_ € B". Since
both B/, and B’ intersect the Julia set of p, and are disjoint from the critical orbit, we
can find some integer 7 such that pj (B’ ) contains B and pj(B’) contains B’.. Then
we can find some open set By € B, € B, satisfying pa(B:) € B, pt™"(B;) € B_,
p2t"(B4) € B and p2t?"(B1) = B/.. Hence, denoting r = 2 + 27, we have B, € B
and p7, sends B, biholomorphically onto B’,. We denote by ~y, the periodic point of p,
of period 7 which is the unique fixed point of the restriction of pj; to By . We notice that
Yo # . Simil/arly, we can define B_ € B_ such that p], sends B_ biholomorphically
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onto B and pa’“(Va) = pa’ " (Va) # g is the unique fixed point of the restriction of pj

to B_.

Since o} # ay , it is not possible to satisfy simultaneously v, +pa(va)+- - -4+p5 (Va) =
raf and Yo + pa(Va) + - + P (7a) = rag . In the following, we will denote by aq, a
point in {af,az} such that the inequality o + pa(Va) 4+ -+ + pi ' (Va) # raq is sat-
isfied. We also denote by B, B’, B and B the sets corresponding to aa. Up to replac-
ing v, by p2/2('y) if @y = a,, we can suppose that 7, € B. The multiplier of a4, is

of modulus 2| > min(2, ) = &. We take the component B of p,"(B’) containing

a, and where p;, is univalent deﬁrsled at the beginning of the last paragraph. We have
B] € B € B". We also take the component B5 of p;"(B’) containing -y, and where pj, is
univalent equal to B. It holds B, & BeBeb. Replacing r by one of its multiples
if necessary (still denoted by r), B} and B; are disjoint. We also take the respective
components B; and By of p,"(B) included into those of p;”(B'). Since B € B, it holds
ph (By), ph(B), pht(BY), ph t(B5) € B. Still replacing 7 by a multiple if necessary,
we have |raq — (Yo + Pa(Va) + - + P51 (7a))| > 10. Since B} € B and B} € B, by the
Schwarz Lemma, there exists 6 > 1 such that |(p.)’| > 6 on a neighborhood of By U Bs.
Taking a multiple of r if necessary, |(p%)’| > 2 on a neighborhood of B; U Ba.

Let us fix ¢ > 1. By continuity, for ¢ in some neighborhood C, of a in C, it holds:
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(1) p."(B) (resp. p."(B')) admits two components By, B2 (resp. B7,B5) included in
B (resp. B) containing the continuations «. and 7. and such that p is univalent
on both B; and B2 (resp. B} and B}). Moreover pi~'(B1), pi~'(Be), pi~ ' (BY),
P (By) €B,

the continuation a. of a, is a repulsive fixed point of p. such that |p.(ac)| > &,

(2)
(3) rae # Yo+ pe(ve) + - +pe 7 (7e) and [rae = (Y + pe(ve) + -+ +pe (7)) > 10,
(4) |pt] > x on B and |(p})’| > 2 on a neighborhood of By U Bs,

(5) the Julia set of p. is included in D(0, 10),

(6)

the continuation d. of d, is of multiplier v, such that (1 — 10710)1/‘" < Jre| <
(1 + 10710)1/qr.

The parameter a belongs to the Mandelbrot set. Misiurewicz parameters are dense
inside the Mandelbrot set so it is possible to find a parameter ¢ inside the interior of C,
such that the critical point 0 is preperiodic for pz. The critical point 0 is sent after a
finite number of iterations of pz on a periodic orbit. This periodic orbit is accumulated by
preimages of az by iterates of pz. Then by the Argument Principle it is possible to take a
new Misiurewicz parameter co in the interior of C, such that 0 is still preperiodic but with
associated orbit the fixed point a.,. There exists an integer m such that pg; (0) = aq,
with pe,(0) # 0,---,pZ~'(0) # 0. The inequality - (p*(0) — ac) # 0 at ¢ = co is a
direct consequence of Lemma 1, Chapter 5 of [10]. For the parameter co, 0, is repulsive
of multiplier v, such that 1 < |ve,| < (14 107%)Y/9". We pick some ball C C Cq of center
co where this is still true.

For each ¢ € C, we do a rescaling by an affine map so that after rescaling B C (0, 10)
is sent on D = (0, 1). Properties 1, 2, 4 and 6 are still true. Property 5 is still true with a
disk D(0, R) with a fixed R > 0 instead of D(0, 10). Since rae # Ye+pe(Ye)+- - -+pi (ve)
and |rac — (Ye + pe(ye) + -+ 4+ pL 1 (7e))| > 10 before rescaling, we have A # B and
|A — B| > 1 after and then Property 3 is true. Then Properties 1, 2, 3, 4, 5 and 6 are
satisfied for every ¢ € C. In the following, after rescaling, we will denote B, B’, B1, B2, B}, B
by D, D', Dy, D2, D}, D5. For simplicity, we will still denote by p. the polynomial after
rescaling. O

2.2. Choice of an IFS.

Notation 2.2.1. For every c € C, we denote by h1 and ha the two inverse branches of p.
on D' given by Proposition 2.1.4 such that ae =[,50 hT (D) and ve = (,,5 b5 (D).
Notation 2.2.2. We denote pg = (1 — 1074)4% -e" % which depends on the integer q.
In particular, we have the following equality: pd™ = (1 — 1074 - ez,

In the following result, we iterate g times the maps h; and hs with a specific choice for
the integer ¢q. Remind that A, B and R were defined in Proposition 2.1.4.

Proposition 2.2.3. There exists an integer ¢ > 100 such that, after reducing C if neces-
sary, the following holds for every c € C:

(1) |(h)'| <1071 for j € {1,2} on a neighborhood D" of D with D C D" C I,

(2) diam(hI(D")) < 107" - dist(h?(D'), dD) for j € {1,2},

(3) for every z € h{(D') and 0 <n < gr(1 —10""*r "' R™" min(1,|A — B|)):
pope T =) g i (2) € D(A,1071° - [A - B),

(4) for every z € h3(D') and 0 < n < gr(1 —10""%'R™" min(1, |4 — B|)):

pope T TNz 4 g e (2) € D(B,107 - |A - BY).
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Proof. We first show the result for ¢ = ¢g. According to property (3) of Proposition 2.1.4,
[(p%)’| > 2 on a neighborhood of D; UDy. Then, taking ¢ > 100 such that 27 > 10, we
have |(h?)’| < 107'° on some disk D” with D C D" C . Since h; is a contraction such that
N,so AT (D) = {ac} and N),5, b5 (D) = {7}, increasing the value of ¢ if necessary, we
have that diam ((h?(D')) < 107'"-dist(h?(D’), dD). When g — 400, we both have y§ — 1
and pl*(2) — a, uniformly in 0 < k <7, 0 <n < gr(1 —10""°r "R~  min(1, |A — B|))
and z € h{(D'). Then, increasing the value of ¢ if necessary, we have that ugpi™ ' (2) +
coo ug TPl (2) € D(A,107'°|A — B|). The proof of the last item is similar. Since all
these conditions are open, reducing the ball C of center ¢y if necessary, they remain true
for every c € C. |

Notation 2.2.4. Since r is independent of q (see Proposition 2.1.4), we can increase q
s0 that r < 107'%gR™  min(1,|A — B|). From now on, we fix such a value of ¢ and the
associated value pi.

2.3. Choice of the parameters A and v. In this Subsection, we introduce two new co-
efficients A and v. These constants will apppear on the third coordinate of the polynomial
automorphisms of C3 we are going to work with. This will be used to create a horse-
shoe in Proposition 3.1.6 and to show that this horseshoe displays the blender property
in Subsection 3.2.

Notation 2.3.1. We denote by A" = (uf " aey + -+ + p0pey (aey)) and B = (uy ™ veo +
0Pk (Ve ))-

By Proposition 2.2.3, A’ € D(A,107°|A—B|) and B’ € D(B, 10" '°|A—B|). According
to item 2 of Proposition 2.1.4, this implies that:

1 1
2 A'—B|>Z|A-B|> .
2) A"~ B|> A~ B>
Proposition 2.3.2. There exist two constants \,v such that |A\| < 1 and satisfying:
s T—1r r— 9 —
M (L4 pg+ -4+ pd )+ v+ po + -+ + pf 1):1—040 4
T T—T T— 9 -
AB'(Ut i+ 4§ 7) v (U po o+ ) = =45+ 1077

Proof. We have: 1+ pup+---4+pd"™" = (1 - pd")/(1 — pp). By Notation 2.2.2, we have
pl" = (1 —107%) -e"% # 1 and then 1 4 u§ + --- 4+ pd"™" # 0. Similarly we have
1+ po+--+ ,ug’ul =1 —pd")/( — po) #0. Since A" # B, it is possible to pick two
coefficients A and v so that the images of these two complex numbers by the affine map
2 AL+ pp 4+ pd )z + v+ po + -4 pd" ) are respectively equal to 5 - 107*
and —-% - 10~*. It remains to show that [A| < 1. To this end, we will need the following
technical lemma:

Lemma 2.3.3. The complex number uo satisfies the following inequality:

gS1+|u6|+\uo|2r+-~~+\uo\q’”g10.|1+Mg+ugr+...+ugrfr"

Proof. We have 3 <1, 2 < |uf|, --+, 3 < |ud"™"| so the first inequality is trivial. Since
every term pg” (0 < n < ¢) has a positive real part and since this real part is larger than
Lfor0<n<1i(g—1), wehave 2(¢—1)- 1 <Re(1+pus+ 5"+ -+ pd ") and then
L+ |l + ol + -+ ol ™" < g <10 5(q—1) - 5 <10 L+ pg 4 pd" + -+ pd .
The proof is complete. O

We are now in position to end the proof of Lemma 2.3.2. By definition of A and v, we
have |A[|A" = B'[[1+ug+- -+ pd" 7| =2 % -107*. We already proved that |A’— B'| > 1
in Eq. (2) and by Lemma 2.3.3 we also have |1+ ug + -+ + pd"~ "] > ¢/20 > 100/20 > 1.
This implies that |A| < 1 and so the result is proven. (]
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Corollary 2.3.4. Reducing C if necessary, there exists a neighborhood B, of po such that
for every ¢ € C and p € B, it holds:

(1) for every z € h{(D'), we have:
v AT T ) F v+ 4 p(v + A2)) € D(% 2107410719,
(2) for every z € hi(D'), we have:

v+ M)l +A2)) € D=5 - 107,107

Proof. We first prove the result for ¢ = ¢p and g = po. According to Proposition 2.3.2,

we have: 0
v+ ApH T (2) + po(v 4 po(v 4+ A2)) — oo

L1007 =
10

qr—1

)‘Z qr - n — Q) Ho +)‘Z pg; - n —Oéco)ﬂg,

where [ is the smallest integer such that { > 10 10qR min(1,|A — BJ) and which is a
multiple of r. By Notation 2.2.4, we have I < 2-107'°¢R™" min(1, |A — B|). In particular,
qr — | is a multiple of r. Using the third item of Proposition 2.2.3, it holds:
qr—1
A D 05T () = ac)us] < AL 107A = BI - (1 [pol” + Juol*” + - + ol ).
n=l
We already proved that |A” — B'| > 1|A — B| in Eq. (2). In particular, this implies that
AN |JA=B|-[14+pub+po" +- -+ pd" " < |A[-2]4" = B'|- |1+u0+ pd T| Then, by
Proposition 2.3.2, this yields [A| - |A— B|- |1+ pub +pd" +---+pd 7" <2-2-2-10"% By
Lemma 2.3.3, it also holds: 14 |ug|+|uo|>" +- - 4[] 9" ™" < 10- |1+ pf 4 pd" —|— A pd"T.
All this together implies the following:

qr—1
r—1—-n n — 9 — —
(3) A (0% (2) — )| < 10 10’10'(2'2'T0'10 Yy <107t
n=l

Since both D’ and the Julia set of p, are included in D(0, R) (see item 5 of Proposition
2.1.4) we also have:

\AZ (P4 TM(2) — )| < A 2R (14 |po] + ol + - + ol 1) <A 2R L.

Since I < 2-107'°%R™  min(1, |A — B|) and then using the inequality |A — B| < 2|4’ — B'|
from Eq. (2), the latter is smaller than:

A[-2R-2-107°L  min(1,)A-B)) <1075 |- L. 14— B| <107 ]\ L4 - B,
R 2 2 2

Using successively the inequality 4 < 10|14 ug + 3" + -+ pd" | from Lemma 2.3.3

and then Proposition 2.3.2, the latter is finally smaller than 1075 - |\| - |4’ — B[ - 10- |1 +

po 4 pg - pd T|<107 2-2.107" and so:

(4) |)\Z (s 7" (2) —ae)pp] <2107

Then we just have to sum the two inequalities of Eq. (3) and Eq. (4) to prove the
result for ¢ = ¢p and p = po. By continuity and since the inequality is open, it remains
true for every p in some ball B, of center po and ¢ € C after reducing C if necessary. Then
item 1 is true and the proof of item 2 is similar. The result is proven. O
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Remark 2.3.5. We reduce B,, so that we both have |u| < (1 —10"* 410~ 10) L w27 >
1-2-107* and p® C D(ud",1071°) for every u € By,.

2.4. Adjusting the parameter p. In this subsection, we slightly perturb the coefficient
o into a new value p in order to satisfy some equality for a product of matrices. Notice
that this choice has nothing to do with the next section and the blender property, it will
be useful in Section 5.

Notation 2.4.1. We denote Bo = 0,1 = pe,(0), B2 = pco( ) Bm = Do (0) = oy the
points of the orbit of the critical point 0 before landing onto the fized point ac, .

Notation 2.4.2. For every p € By, we define: wo =0+1- (8o — Bm), w1 = pe, (B1)wo +
pw(Br = Bm) + and wm—1 = Py (Bm—1)Wm—2 + p™ " (Bm-1 — Bm) where pl.,(Bo) = 0,
p’co(ﬂl) # 07 e 717::0(57”*1) # 0.

Definition 2.4.3. Since Bm—1 — Bm # 0, Wm—1 is a polynomial of degree (m — 1) in the
variable p so we fix some p € B, such that wWm—1 = Wm—1(u) # 0.

Notation 2.4.4. We denote for everyoc € C, 0 <n <m —1:

Peo(Bn) 0 o(Bn = Bm)
MS = 1 0 0
A 0 I
Proposition 2.4.5. We have M, --- Mg -(0,0,1) = (¢1(0), (2(0),3(0)), where (1,2, (3
are holomorphic functions such that ¢1(0) = wm—1 - + O(c?) and (z3(0) = p™ + O(o).

Proof. 1t is a straightforward consequence of Definition 2.4.3. (]

Simple calculations yield the following corollary (the important fact here is that pg, (80) =
0 since o = 0 is the critical point of pc,).

Corollary 2.4.6. Let €7, €5,¢€5 be three holomorphic functions such that €7 (o) = O(o),
e3(0) = O(c?) and €5(0) = O(c) for 0 < n < m — 1. Let us denote for every o € C,
0<n<m-—1:

p/co (/Bn) + €7 (U) €2 (U) (/Bn + €3 (J) - ﬁm)

N7 = 1 0 0
A 0 m
For every holomorphic maps &1,&2 such that &1(0) = O(o) and &2(0) = O(o), we get:

m—1-- NG - (§1(0),€2(0),1) = (€1(0), ¢2(), (3(9))

where 1, Ca, (3 are holomorphic functions such that (1(0) = Wm—1-0+0(c?) and (3(0) =
u™ + O(o).

3. CONSTRUCTION OF A BLENDER

In this section, we construct a polynomial automorphism fo of C®. We show that fo
has a horseshoe Hy, and that Hy, is a complex blender.

3.1. Three complex dimensions: the map fo. We recall that C and p. were defined in
Proposition 2.1.4. We consider now the 3 dimensional map fo(z1, 22, 23) = (pe(21) +bz2 +
0z3(z1 — Qg )s 21, Az1 + pzs + v) introduced in Eq. (1). It is clear that it is a polynomial
automorphism for ¢ € C and b # 0. In the following, we will see that the first direction is
expanded by fo and corresponds to the direction of the unstable manifolds of a hyperbolic
set we are going to describe. The second and third directions are contracted by fo and
correspond to the directions of the stable manifolds of this hyperbolic set.
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Notation 3.1.1. We define the following constant cone fields: C* = {v = (v1,v2,v3) €
C? : max(|va|, |vs]) < x 7 |vi1]}, C°F = {v = (v1,v2,v3) € C*: max(|v1], [vs|) < 1076 |z}
and C° = {v = (v1,v2,v3) € C* : max(|v1], [va]) < 107° - |vs|}, where the constant x > 1
was defined in Proposition 2.1.4.

We now give a non general definition of a horseshoe which is specific to our context.

Definition 3.1.2. Given an automorphism F : c? - (C3, a tridisk D = D1 x Dayx Ds C D3
and an integer p > 1, we say that Hr = (), o, F" (D) is a p-branched horseshoe for F' if:

(1) F(D)N D has p components D¥* which do not intersect D1 x d(D2 x D3),
(2) Ffl(D) N D has p components D¥* which do not intersect 8D1 x Dy x Ds,
(8) on Ui<j<, D?* the cone field C* is F-invariant, and on Uicj<p D’ the cone

field C** is F~'-invariant. Moreover there exists = > 1 such that the cone field
{(v1,v2,v3) : ||(v2,v3)|| > El|v1]|} contains C and is F~"-invariant on Uicj<p, D7,

(4) there exists Cr > 1 such that at every point of U, <<, D?* | for every non zero v €
C*, we have |[DF(v)|| > Cr|[v||, and at every point of U, <, D7, for every non
ser0 0 € O%* U {(u1,v2,5) : (02, 00)]| > Ellenll}, we have [[D(F)(w)]| > Crlloll

Proposition 3.1.3. If Hr = (),,c, F"(D) is a p-branched horseshoe, then it is a horse-
shoe in the classical meaning of this term, that is a compact, invariant, transitive, hyper-
bolic set.

Proof. The set (1, o, F™ (D) is compact as an intersection of compact sets and F-invariant
by definition. Moreover, one can take the (non necessarily invariant) decomposition
C* ~ R =CEPC? ~R*PR* and the associated constant cone fields C¥ = {(v1,va,v3) :
[loi]| > x||(v2,v3)||} and Cg = {(v1,v2,v3) : ||(v2,v3)|| > E|[vi]|}. The definition above
implies that both C¥ is F-invariant and C§ is F~-invariant. Moreover, they are expanded
by a factor Cr larger than 1 respectively under F and F~'. Besides, the sets D¥* do
not intersect Dy x 8(D2 x D3) and the sets D?* do not intersect &D; X Do X Ds. Then

MN,ez F" (D) is a horseshoe in the sense of Definition 6.5.2 of [15]. According to the dis-
cussion following this definition, (), o, F" (D) is hyperbolic (this is also a straightforward
application of the cone field criterion, Corollary 6.4.8 in [15]) and is topologically conjugate
to a shift. In particular, it is transitive. This ends the proof of the proposition. O

Remark 3.1.4. For our definition, a p-branched horseshoe has one unstable direction and
two stable directions. It is also straightforward that if F' has a p-branched horseshoe, then
F? has a p?-branched horseshoe.

Definition 3.1.5. We say that a saddle periodic point of multipliers | 1] < [A2] <1 < |As|
is sectionally dissipative if the product of any two of its eigenvalues is less than 1 in
modulus, that is, [AMAs] <1 and |A2A3| < 1.

In the next proposition, we prove that if b and o are sufficiently small, then some iterate
of fo = feu,0 has a 2-branched horseshoe. Moreover, we introduce a neighborhood F of
fo where this property persists. In Section 5, we will make a particular choice of ¢, b and
o so that the stable manifold of a periodic point of fo will have special properties, which
will persist in a new neighborhood F’ € F of fo in Auta(C?).

Proposition 3.1.6. Let g > 100 and C,r given by Proposition 2.1.4. Let fo = fcp,0 be the
polynomial automorphism of C* introduced in Eq. (1). Then, there exists 1071 > by > 0
and 1071 > ¢ > 0 independent of ¢ € C such that if 0 < |b| < by and 0 < |o| < o0, then
Mo = Nnez(f§7)"(D3) is a 2-branched horseshoe. Moreover, fo has a periodic point oy,
that is sectionally dissipative and belongs to the homoclinic class of the continuation ay,

of ae. These results remain true for any f in some neighborhood F = F(c,b,0) of fo in

Auto ((Cg)
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Proof. When 0 =b =0, feo,0: (21,22, 23) = (pc(21), 21, A\z1 + pzs + v) satisfies:

qr—1 qr—1

200(z1,22,23) = (P27 (21), P8 (1), v + Apd ™ (z1) + (v + - + p(v + Az1)) + p?z3).

By Proposition 2.1.4 (1), pi~H(D}), pt~*(D4) € D and so p?™~ (A4 (D)), pd" 1 (R4 (D)) € D.
Then for any (21, 22, 23) € (h{(D")URL(D")) x ﬁ2, the second coordinate of fe 0,0(21, 22, 23)
is in D. According to Corollary 2.3.4, it holds v 4+ ApZ"~!(z1) + p(v + - - - + p(v + Az1)) €
D(+2 -107*,107') for every (z1,22,23) € (R1(D') U hL(D)) x D°. Since lp|?" < 1 -
107* 4 1071° (see Remark 2.3.5), the third coordinate of f.o,0(21, 22, 23) lies in D too.
Then the intersection fZ7 o((h{(D") U RE(D")) x EQ) N D3 has two components which are

two graphs over the coordinate z; € D and which do not intersect D x 9(D x D).

By continuity, there exists 107'° > ¢y > 0 such that for every 0 < lo| < oo,
0o ((RE(D)YURL(D')) x 52) ND?3 has still two components which are graphs over z; € D.

c,0,0

The distance to Dx d(Dx D) of each of these two graphs is bounded from below by a strictly
positive constant independent of 0 < |o| < go. Thus there exists 107'° > by > 0 such that

for every 0 < |o| < 00 and 0 < [b| < bo, the intersection f7; ((h{(D')URL(D")) xﬁ2) nD’

c,b,o

has two connected components D" and D*“. These are two tridisks which do not in-
tersect D x A(D x D) and are also connected components of f%; (D3) ND3. This proves
item 1 of Definition 3.1.2. We denote now f., o = fo. The pro})’f of item 2 is similar and
gives two connected components D* and D** in f; 9" (D3) N D3. Reducing oo and by if
necessary, the cone field C* is fJ"-invariant on D* U D** by Property (3) of Proposition
2.1.4 and dilated under fJ" by a factor larger than 10'° because |h}| < 107'° on D" (see
Property 1 of Proposition 2.2.3). The modulus of the derivative of p. is bounded from
below by a strictly positive constant on D' Up.(D')U- - -Up?™~ (D). Thus, still reducing oo
and by if necessary, the cone field C** is f, "-invariant on D** U D** and dilated under
fo %" by a factor at least 10'°. For 0 — 0 and b — 0, the directions of the two expanding
eigenvectors of D, f; 9" respectively tend to the second and third directions (uniformly in
z) while the contracting eigenvector of D. fi 7" stays in C*. Since the associated rates of
dilatation/contraction remain uniformly distant to 1 when o, b — 0, this implies that some
cone of the form {(v1,v2,v3) : ||(v2,v3)|| > E||v1]|} (for some E > 1) is f, *"-invariant on
D'* U D*" and dilated by a factor larger than 1. This finishes to prove both items 3 and
4 of Definition 3.1.2. Then H s, =, c,(f&")"(D3) is a 2-branched horseshoe.

The multiplier of the periodic point d. has its modulus between 1 and (1—|—10_10)1/qr by
Property 6 of Proposition 2.1.4. Then its continuation dy, is a saddle point of expanding
eigenvalue between 1 and (1 + 2 - 10710)1/ 9" after reducing by and o9 if necessary. It has
two contracting eigenvalues. When b = o = 0, one is equal to 0 and the other one is a
power of p with |u| < (1 —107* + 10710)71* (see Remark 2.3.5). Then, by continuity,
reducing by and og if necessary, s, is sectionally dissipative. We denote by Wit (ay,)
(resp. Wiic(ay,)) the connected component of W*(as,) NID® (resp. W*(ays,) ND?) which
contains ay,, and we use the same notation for other periodic points. For small values of
b and o, both Wi (d5,) and Wia.(ay,) are graphs over z; € D and both Wy (dy,) and
Wi (ay,) are graphs over (z2,23) € D?. Reducing by and og if necessary, Wi, (a,) and
Wise(d4,) intersect and Wil . (as,) and Wik (dy,) intersect so dy, is in the homoclinic class
of Qfy .

Finally, since all the conditions of the proposition are open, these results remain true
for any f in some neighborhood F = F(c,b, o) of fo in Aut(C?). This concludes the proof
of the proposition. O

3.2. Blender property. In this subsection, we show that the third coordinate of f € F
has some kind of open-covering property. Since f?" € F has a 2-branched horseshoe,
f29" has a 4-branched horseshoe by Remark 3.1.4. We are interested in the geometric
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properties of the third coordinate of f2¢". Here, we use it to show that the 4-branched
horseshoe associated to f2qr is a blender. Remind that the maps h1 and he were defined
in Notation 2.2.1.

Definition 3.2.1. For f € F, we denote by f%"[j] the restriction of f¥" on hi(D') x D?
for j € {1,2}. We put Vi = f7[1](R4(D') x D?) ND? and Vo = f7"[2](h1(D’) x D?) N D3.
We define Uy = f2[1](Vi N (h{(D') x D*)) ND?, Uz = f7[2](Vi N (hY(D') x D?)) N D?,
Us = f7[1](Van (h{(D') x D*)) ND* and Us = f7[2](Va N (h4(D') x D?)) ND*. We define
9i=fo," for1<j <4

Notation 3.2.2. We will denote ¢1 =
s =110 (1—i) andca = 35 -107*

S107Y (1 44), o = 221071 (=1 4 4),
— ).

9
10
(

Lemma 3.2.3. Reducing by, oo and F if necessary, we have:
(1) Yz € f79"(Va), prs(f97(2)) € D(u?" 23 + & - 107*,1077),
(2) Yz € f77"(Va), pry(f1"(2)) € D(u? 23 — 55 - 107%,107°).

Proof. For 0 = b = 0, it is a simple consequence of Corollary 2.3.4. Then, by continuity
we just have to take sufficiently small values of oo, b, F to get the bound 107°. (]

Since we both have pud” = (1—107%)-¢"% (by Notation 2.2.2) and p?" C D(ud",1071°)
(by Remark 2.3.5), by iterating two times the previous result, we get the followmg.

Corollary 3.2.4. For every z = (z1, 22, 23) € Uj, pr3(g;(z)) € D( 2q,ﬂ( 23 — ¢;),1079).
We now show an open covering property for the four affine maps z zqr (z —¢j).
Proposition 3.2.5. For every z € D(0, 1), there exists j € {1,2,3,4} such that:

1

e ¢;) € D(0, = —1077).

10

Proof. We check that the union of the images of D(0, 10 —1075) under the four affine
maps z — p°%"z + ¢; contains D(0, 15). We begin by showing that for every point z
of the set {z |z| = {5 and 0 < Arg(z) < 5}, the point z — ¢1 belongs to the disk

D(0, |u|**" (& — 107°)). Let us point out that |p[*" > 1 — 2 10™* (see Remark 2.3.5).
Denotlng z = z+iy with (z,y) € R}, we have [z —c1|* = (z— 5 -107%)? +(y— 21072
Since 2 + y* = (15)°, at least one between x or y is larger than % . Then |z — ¢;1)?

10
is smaller than:

1.2 119 9 —4\2 4y, 1 -5 2qr, 1 —5y)2
— )" —2———10""+2(-—=10 < ((1-2-10 ——10 a —10
(5 ~2 5 15 25107425107 < (( )55 —1072)" < (WP (5-10)
Then for every point z of the set {z : [2| = ;5 and 0 < Arg(z) < 3}, we have that
z—c1 € D(0, |u[* ({5 — 10~ )) We also have 0 — ¢1 € D(0, |u[**" (4 — 107°)). Thus by
convexity the image of D(0, ﬁ —1077) by the affine map z +— %"z —|— c1 contains the first
quadrant of D(0, 10) Then the result follows by symmetry. O
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Z3 P y Z;

L Z2 ," iteration of f9', real analogy
/ > 21 L
0 i
y \ / N \
/ N
a”r ) / )\
.'I. \ \‘u
I | | |
|
| | l.,l !
._\\ ;.-" \\\ //
- // “%_____/
iteration of f9%, coordinate z3 iteration of f29%, coordinate z3

Figure 1: complex blender. The top figure shows the sets V4 and V% in a real analogy
(that is in R®). The two bottom figures represent the respective images by the third
projection map w3 : C* — C of Vi,Va (on the left) and Uy,Uz,Us,Us (on the right).

We are finally in position to prove the main result of this section.

Definition 3.2.6. A ss-curve T' is a holomorphic graph over zo which has all its tangent
vectors in C°° (recall that this cone was defined in Notation 3.1.1).

Proposition 3.2.7. Let T' be any ss-curve intersecting D* x D(0, 1—10) Then for every

f € F, T intersects the unstable manifold of a point of the horseshoe Hy: in other words,
Hy is a blender.

Proof. Let T' =Ty be a ss-curve intersecting D? x (0, 1—10) and f € F. We show that there
exists j € {1,2,3,4} such that g;(I') contains a ss-curve I'" intersecting D* x D(0, 15).
Let Z = (Z1,Z2,Z3) be a point of I'N (D* x D(0, )). By Lemma 3.2.5 there exists
j € {1,2,3,4} such that #Q—ZT(Zg —¢;) € D(0, & —107°). Since D(0, &) C prs(U;),
by continuity, I' intersects U;. The cone C*®° is gj-invariant since H; is a 2-branched
horseshoe, and so T'' = g;(T' N U;) is a ss-curve. Then it holds diam(prs(T'')) < 1075.
By Corollary 3.2.4, |prs(g;(Z)) — ﬁ(Zg —¢;)| < 107%. This implies that pry(T'') C
D(0, &5 —107°+2-107°%) C D(0, 15). Then I'" intersects D* x D(0, ). By iteration, we
can construct a sequence of ss-curves I'™ C (gj,, © ... © g;; )(I'), each of them intersecting
D?. The set (,~,(f**)"(I'™) C T is non empty since it contains the intersection of a
decreasing sequence of non empty compact sets. But any point in this intersection is a

point of the unstable manifold of a point of the horseshoe H . This ends the proof. [



NEWHOUSE PHENOMENON FOR AUTOMORPHISMS OF LOW DEGREE IN C? 13

4. MECHANISM TO GET PERSISTENT TANGENCIES

In this section, we explain how the blender property obtained in the last section leads
to persistent tangencies with certain "folded" surfaces.

4.1. Some definitions.

Definition 4.1.1. A submanifold (or an analytic set) W C D™ is horizontal relatively to
a decomposition D™ = D* x D% if W does not intersect D¥ x D" ™%, We will also say
it is horizontal relatively to the projection D™ — DF. If dim(W) = k, then the natural
projection on D* is a branched covering of degree d. We will say that W is of degree d.
We similarly define vertical submanifolds in D¥ x D*™* and their degree.

The two following propositions are classical. For a proof, one can refer to [9]. One can
also refer to [11].

Proposition 4.1.2. Let W be a horizontal curve of degree d and W' be a vertical curve
of degree d inD? =D xD. Then W and W' intersect in dd' points with multiplicity.

Proposition 4.1.3. Let W be a horizontal curve (resp. surface) of degree d and W' be a
vertical surface (resp.curve) of degree d' in D* = D' x D? (resp. D* =D? x D'). Then W
and W' intersect in dd’ points with multiplicity.

Remark 4.1.4. In particular, in the two previous propositions, if all the intersections are
transverse, there are exactly dd' distinct points of intersection. If it is not the case, there
1s at least one point of tangency.

We now introduce several definitions specific to our context.

Notation 4.1.5. Let i,j be two distinct integers in {1,2,3}. We will denote by m; the
projection over the it" coordinate and by (w3, ;) the projection over the it" and the j*
coordinates.

Definition 4.1.6. Let i,j be two distinct integers in {1,2,3}. A (i,j)-surface S is a
complex surface horizontal relatively to the projection (m;, ;).

Remark 4.1.7. A (i,7)-surface S is a ramified covering of degree d over D*. In the rest
of this article, we will only consider ramified coverings of degree 1 or 2.

Definition 4.1.8. A u-curve I' is a holomorphic graph over z1 which has all its tangent
vectors in C* (recall that this cone was defined in Notation 3.1.1).

Definition 4.1.9. Let k € {2,3}. A (1,k)-quasi plane V over a bidisk D1 X Dy, is a
graph {zp = v(z1,21)}, where k' is the integer defined by {1,2,3} = {1,k,k’'} and v :
Dy x Dy — D is holomorphic, such that the C°-norm of Dv is bounded by 1 and V is
foliated by u-curves V.

Remark 4.1.10. In particular, every (1, k)-quasi plane over D? is a (1, k)-surface.

Definition 4.1.11. Let k € {2,3}. A k-folded curve is a holomorphic curve horizontal
relatively to w, which is a ramified 2-covering over zx with exactly one point of ramification
Zk,ram- We denote f0ld(T") = zk,ram the fold of T.

Definition 4.1.12. Let k € {2,3}. A k-folded (2,3)-surface W is a complex surface of
degree 2 that is horizontal relatively to (w2, m3) and such that for every (1,k)-quasi plane
YV over D?, T'=VNW is a k-folded curve. We denote:

Fold(W) = {fold(T") : T is a k-folded curve included in W}
which is a subset of D. We say that W is concentrated if diam(Fold(W)) < 107°.
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4.2. Preparatory lemmas. In this Subsection we gather some simple technical results
that will be useful in the following Subsections.

Lemma 4.2.1. Let I' = v(D) be a k-folded curve (with k € {2,3}) included inside some
(1, k)-quasi plane over D x Dy, with D(0,1/2) C Dy C D and diam(prl(f‘)) <1071°. Then
for every disk Dr € Dy, of radius 10™7 distant of at least 10~7 from 0Dy U {fold(I")}, it
holds: for every Z with pr),(v(Z)) € Dr we have |v{(Z)| < 1073|y,(Z)|. In particular,
I'N(D? x Dr) is the union of two graphs upon z € Dr.

Proof. Let Dr € Dy, be a disk of radius 1077 distant of at least 10™7 from 9D U{fold(T")}.
We notice that I' is the union of two graphs over z; varying in the 10~ -neighborhood of
Dr. Let us denote z1 = &(z) one of them. Every point of Dr is the center of a ball of
radius 10™7 where |[£(z1)| < 107'°. Hence, by the Cauchy inequality, we have |¢'(z)| <
107-1071° = 1073, Thus |y{(Z)| < 1073|4},(Z)| at every Z such that pr,(y(Z)) € Dr and
the result follows. 0

Here are some consequences of Propositions 4.1.2 and 4.1.3.

Lemma 4.2.2. Let V be a (1, k)-quasi plane over Dy x Dy with D(0,1/2) C D C D. Let
T be a u-curve and T' be a graph over zi, with |¥| < 1073|34|, both included in V. Then
I'NT is a singleton.

Proposition 4.2.3. Let W be a k-folded (2, 3)-surface with k € {2,3}. Let T be a u-curve.
Then W NT has one or two points.

4.3. Main result. Here is the main result of this section: we show that any concentrated
3-folded (2, 3)-surface having its fold in good position has a point of tangency with the
unstable manifold of a point of the horseshoe H .

Proposition 4.3.1. Let W be a concentrated 3-folded (2,3)-surface such that we both
have Fold(W) C D(0, &) and diam(pr,(W)) < 107'°. Then there exists a point kg of the
horseshoe Hy such that W has a point of tangency with the unstable manifold of k.

We begin by a lemma showing that the image of a folded curve contains a folded curve.
Remind that the sets U; and the maps g; were defined in Definition 3.2.1.

Lemma 4.3.2. Let ' be a 3-folded curve included in a (1, 3)-quasi plane Y over Dy x Dy,
with D(0,1/2) C D € D. We suppose that T and V are included in U; for some j €
{1,2,3,4}. We also suppose diam(pr, (1)) <1070 and that g;(V) is included in a (1,3)-
quasi plane V over D?. Then T = g; (F) is a 3-folded curve satisfying:

fold(I) € D, (fold (D) - ),g 11079

Proof. By Lemma 4.2.1, for every disk D € Dy of radius 1077 distant of at least 1077
from Dy, U {fold(T")}, it holds: for every Z with pr,(3(Z)) € Dz we have |3{(Z)| <
107334 (Z)|. Moreover I' N (D? x D;) is the union of two graphs upon the coordinate
zr € Dp. We take the foliation (V;)iep of V by the u-curves V; = VN {z3 = t}. For
any t € D, V, = 27 (Ve N g;(U;)) is a u-curve by invariance of C*. Suppose that Vi
intersects T’ at some point 5(Z) such that pr,(3(Z)) belongs to the disk of same center
as Dy and half radius. Since the tangent spaces of V; are directed by vectors in C*
and since diam(pr,(T')) < 107'°, V; intersects T in exactly two points by Lemma 4.2.2
and then it is also the case for Vt and I". It is clear there exists infinitely many ¢ € D
satisfying this property. This implies that pry : I' = D is a 2-covering. By the Riemann-
Hiirwitz formula, it is a 2-covering with only one point of ramification. Moreover this
shows that fold( ) € pry(g;(D? x D(fold(T),2 - 1077)). Then by Corollary 3.2.4, we have
fold(I") € D( g (fold(T) — ¢;), § - 107°). O
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From now on, we prove lemmas that will show that the image under g; of a 3-folded
(2, 3)-surface having its fold in D(0, 11—0), is concentrated and that it is possible to choose
Jj € {1,2,3,4} so that the new fold is still in D(0, {5). The following is an intermediate
result to prove Lemma 4.3.5:

Lemma 4.3.3. Reducing bo, oo and F if necessary, there exists some constant x' > x > 1
and some compact neighborhood D of D with D € D €D such that forany f e F, je
{1,2,3,4} and (1, 3)-quasi plane V' over D?, the set f297 (V') contains a (1,3)-quasi plane
V = {22 = v(z1, 23)} over DxD(0,2/3). Moreover V is foliated by u-curves whose tangent
vectors are all included in the subcone C* = {v = (vi,v2,v3) € C* : max(|val,|vs|) <
X7 Jul} of C.

Proof. Let us fix j € {1,2,3,4}. By invariance of C**, the set f>" (V' N g;(U;)) contains
a holomorphic graph V = {22 = v(z1,23)} over D x D(0,2/3) included in U;. When
b= o = 0, it is obvious that the C%-norm of Dv is bounded by 1 so it is still the case
for every f € F, reducing by, oo and F if necessary. By property 1 of Proposition 2.1.4,
pd" is univalent on some neighborhood of h(D) and on some neighborhood of hi(D).
Then, reducing by, o9 and F if necessary, there exists some compact neighborhood D of
D independent of V' such that D € D € D’ and v can be extended from D x D(0,2/3) into
D. The extended graph is included in f24" (V’). By property 3 of Proposition 2.1.4 we
have |pl.| > x on I’. Since p, is continuous, this implies that |p.| > x" for some x> x
on D (reducing D if necessary). We denote x' = %(x + x’). Then, for a single point z in
a compact neighborhood of (h{(D) U hd(D)) x D?, reducing by, oo and F if necessary, the
differential of quT' at z sends the closure of C* into C*. Since bo, oo and F can be taken
locally constant in z, by compactness, we can reduce by, oo and F such that this remains
true for every z. In particular, V is a (1, 3)-quasi plane over D? foliated by u-curves whose
tangent vectors are all included in cv. Finally we take the minimal values of by, oo and
F over j € {1,2,3,4}. This concludes the proof. O

Since D x D(0,1/2) € D x D(0,2/3), by the Cauchy inequality, there exists C > 0
such that for any holomorphic map w from D x (0, 2/3) into D, the C°-norm of Dw on
D x D(0,1/2) is bounded by C.

Lemma 4.3.4. Reducing bo, oo and F if necessary, for every f € F, j € {1,2,3,4}
and z € D, we both have diam(pry(U; N {z1 = 2})) < 1077 - dist(U;, D x 0D x D) and
diam (pry(U; N {z1 = 2})) <107"-C7" - (X' — x)-

Proof. We notice that for the map (z1,22,23) — (pe(21) + bz2, 21, A\z1 + pzs + v), the
diameter diam (pry(U; N {z1 = z})) tends to 0 uniformly in j € {1,2,3,4} and z € D
when b tends to 0 so we can decrease by so that the two inequalities are satisfied for every
j€{1,2,3,4} and z € D. Since both inequalities are open, reducing oo and F if necessary,
both remain true for every f € F, j € {1,2,3,4} and z € D. O

Lemma 4.3.5. Let V'° and V' be two (1, 3)-quasi planes over D* and let V° = f27" (V'O N
9;(U;)) and V' = 27" (V"' N g;(U;)) for some j € {1,2,3,4}. Then there exists a holo-
morphic family (Vi)iepo,106) where VO € Vo and V' C Vi, and for every t € D(0,10%), V;
is a (1, 3)-quasi plane over D x D(0,1/2).

Proof. By the proof of Lemma 4.3.3, both V° and V' contain (1, 3)-quasi planes Vo and
V1 over D x D(0,1/2) included in U;. The (1, 3)-quasi plane Vo can be written as a graph
(21, 23) — wvo(z1,23) over D x D(0,1/2) and the (1,3)-quasi plane Vi can be written as
a graph (z1,23) ~ v1(z1,23) over D x D(0,1/2). For every t € D(0,10°), we denote
ve(21, 23) = vo(z1, 23) +t- (v1(z1, 23) — vo(21, 23)), which defines a graph V; over (z1, 23) €
D x D(0,1/2). By the first inequality of Lemma 4.3.4, for every ¢t € ID(0,10°%), V; does
not intersect D x dD x D. By Lemma 4.3.3, Vy is foliated by u-curves whose tangent
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vectors are all included in C*. We notice that |vi(z1,23) — vo(21,23)| is bounded by
sup,cp diam (pry(U; N {z1 = 2})) < 107" - C™" - (X' — x) by the second inequality of
Lemma 4.3.4. Still using Lemma 4.3.3, (21, z3) — v1(21, 23) —vo(21, 23) can be extended on
DxD(0,2/3). Reducing by, oo and F, its image is also included in D(0,107"-C™- (x' —x))-
Then by definition of C, the C%-norm of D(v1 — vo) on D x ID(0,1/2) is bounded by
C-107' ¢t (' —=x) =107 - (X' — x). Since V° is foliated by u-curves whose tangent
vectors are all included in C*, V' is then foliated by curves with tangent vectors in C*,
that is u-curves, for every ¢t € D(0,10%). Thus V; is a (1, 3)-quasi plane over I x D(0, 1/2)
for every t € (0, 10°). O

Lemma 4.3.6. Let Vo and Vi be two (1,3)-quasi planes over D x D(0,1/2) and a holo-
morphic family (Vi)iepo,106) containing Vo and Vi and such that Vi is a (1,3)-quasi
plane over D x D(0,1/2) for t € D(0,10°%). Let W be a 3-folded (2,3)-surface such that
Fold(W) € D(0,1/10). Then |fold(V1 N W) — fold(Vo N W)| < 107°.

Proof. We consider the function ¢ + fold(V* N W) defined on D(0,10%). Tt is holomor-
phic by the Implicit Function Theorem and its image is included in D(0,1/10) because
Fold(W) C ID(0,1/10). Then by the Cauchy inequality its derivative is smaller than
15 -2-107° on D(0,2). Then [fold(V1 N W) — fold(Vo NW)| < 1-15-2-107° <107°. O

The following proposition is important because it says that the image under g; of a
3-folded (2, 3)-surface is a concentrated folded surface. We use it to prove Corollary 4.3.8
and we will also use it in Section 5.

Proposition 4.3.7. Let 1 < j < 4. Let W be a 3-folded (2,3)-surface such that we both
have diam(pr; (W)) < 107% and Fold(W) € D(0,1/10). Then g;(WNU;) is a concentrated
3-folded (2, 3)-surface satisfying diam(Fold(g;(W))) < 3 -107° for any f € F.

Proof. Let V and V' be two (1,3)-quasi planes over D?. Then f27"(V N g;(D?)) and
277 (V' N g;(D?)) contain (1, 3)-quasi planes over D x D(0,1/2) included in U; by Lemma
4.3.3. The sets I' = f27"(V N g;(D*) N W and I = f27" (V' N g;(D?)) N W are 3-folded
curves. By Lemmas 4.3.5 and 4.3.6, |fold(T") — fold(T")| < 1075, Lemma 4.3.2 implies that
g;(") is a 3-folded curve with fold(g;(I')) € D(—5 (fold(I') — ¢;), (3/2) - 107°) and the

2ar
analogous for T". Then diam(Fold(g;(W))) < |#?9"|7'-107%+2-(3/2)-107¢ < (1/2)-107°
and then g; (W) is a concentrated 3-folded (2, 3)-surface. O

Corollary 4.3.8. Let W be a concentrated 3-folded (2, 3)-surface such that it holds both
diam(pr, (W)) < 107'° and Fold(W) C D(0,5). Then there exists j € {1,2,3,4}
such that g;(W NUj) is a concentrated 3-folded (2,3)-surface satisfying the inequalities
diam(pr, (g;(W N U;)) <107 and Fold(g;(W N U;)) € D(0, ).

Proof. Let T" be a 3-folded curve included in W. By Proposition 3.2.5, there exists j €
{1,2,3,4} such that ﬁ(fold(l“) —¢;) € D(0,75 —107°). By Lemma 4.3.2, g;(I) is
a 3-folded curve with fold(g;(T")) € ]D)(ﬁ(fold(f‘) —¢;),(3/2) - 107%). By Proposition
4.3.7, g;(W) is concentrated with diam(Fold(g;(W))) < 5 -107°. Then Fold(g; (W NU;))
is included in D(0, 15 — 107° 4+ (3/2) - 107° + 1 - 107°) C D(0, i5) for f € F. The
inequality diam(pr,(g;(W NU;)) < 107 comes from diam(pr;(W)) < 107° and the
forward dilatation of C*. The proof is done. O

Proof of Proposition 4.3.1. By iteration of Corollary 4.3.8 there exists a sequence (jn)n>1
of digits in {1,2, 3,4} such that the sequence (W, )n>0 defined by Wy = W and Wy, 11 =
9inWn NUj,) is a sequence of concentrated 3-folded (2, 3)-surfaces with Fold(W™) C
D(0, 5) C D and diam(pr, (W")) < 107" for every n > 1. We define for every n > 1
W, = " (Wh) C Wo. We have for every n > 1 the inclusions WnH C W, C Wy. The
set Weo = N1 W, is non empty since it contains a decreasing sequence of non empty
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compact sets. Since W, is a 3-folded (2, 3)-surface for every n > 0, there exists z, € W,
and a non zero vector v, € T, W, such that v, € C*. We denote for every n > 1,
Zn = fM(zn) € Wy C W° and o, an unitary vector parallel to D., f™(v.). We have
U € T3, Wn. Taking a subsequence if necessary we can suppose Z, — Zo € Woo and
Un, — Do for some point Zo, and some vector ¥. Clearly Zoo € W. By construction the
whole forward orbit of W is in D®. Then 7o is included in the unstable manifold W¥(ky)
of some point ky of Hy . By construction 90 € Tz, W and 9oe € ()5 Df"(C*(2n)) =
T: Wi (Zs0). Then W has a point of tangency with the unstable manifold of & . |

5. INITIAL HETEROCLINIC TANGENCY
In this section, we show that:

(1) for every sufficiently small values of b and o, we can find ¢1 = ¢1(b, o) such that
f1 = fe1,b,0 has a point of heteroclinic tangency 7 between W?(ay, ) and W*(y,)
(where ¢y, is a periodic point in Hy, ),

(2) we can take iterates of a neighborhood of 7 inside W*(ay,) under f; ' in order to
create a concentrated 3-folded (2, 3)-surface inside W*(ay, ).

5.1. Initial tangency. We recall that the disk C and the integer m were defined in
Proposition 2.1.4.

Proposition 5.1.1. Reducing C if necessary, there exist 0 < by < by, 0 < 01 < 0¢ and
an integer s such that for every 0 < |b| < b1 and 0 < |o| < 01

(1) for every u-curve U, f5™(U) contains a degree 2 curve over z1,

(2) for every holomorphic family of u-curves (Uc)cec, there exists c1 = c1(b, o) display-
ing a quadratic tangency T between W°(ay, ) andUe, where fi = fe, b0 and T € Ue, .
Every iterate of f{ 77 (7) under fi is in D(ccy, 107 Jwm_1]- (x — 1)) x C* (where
the constant wm—1 was introduced in Definition 2.4.3) and the mapping (b,o) — T
is holomorphic.

Proof. In the following, we are going to reduce several times the bounds o¢ and by into
bounds o1 and b1 to satisfy the two items. We begin by taking o1 = % and b1 = %0.
Let us take any u-curve U or any holomorphic family of u-curves (Ue.)cec. Since D’
intersects the Julia set of p. for every ¢ € C, reducing C if necessary, it is possible to
find an integer s and a holomorphic map f_s : C — D such that for every ¢ € C, we
have p$(B-s(c)) = 0. In particular, we have pSI™(B_s(co)) = ae, and the image of
¢ — pEt™(B_s(c)) — ae is an open set which contains 0 in its interior. Then reducing
sufficiently the bounds 0 < |o| < o1 and 0 < [b| < b; for o and b and C, we have
that for any ¢ € C, there exists a neighborhood of the point of U of first coordinate
z1 = B-s(co) inside U whose image under f; is of the form {(z1,u?(21),u%(21)),21 €
D(0,p)} for some p > 0. Indeed, B_s(c),pe(B-s(c)), -+ ,pS  (B-s(c)) are not critical
points of p.. The image of the curve {(z1,u*(21),u%(21)), 21 € D(0,p)} under fo is the
curve {(pe(z1) + bu?(21) + ou(21)(21 — @), 21, A21 + pud(21) + v), 21 € D(0, p)}. Then
it has a point of quadratic tangency with the foliation z; = C*! if b and o are sufficiently
small. Indeed, reducing b; and o if necessary, by continuity the derivative of the first
coordinate pe(z1) 4 bu?(21) + ou®(21)(21 — ac,) vanishes for some value z1 € D(0, p). We
can iterate this curve (m — 1) times under fo. Since p. has no other critical point, this
will still be a degree 2 curve upon zi1, reducing b; and o3 if necessary.

In the case of a holomorphic family of u-curves (Uc)cec, there exists a neighborhood

of the point of U, of first coordinate z1 = S_s(c) inside U, which is sent under f; on a

u-curve {(z1,u2(z1),u3(21)), 21 € D(0, p)}, but using the Cauchy inequality and reducing

o1 and by if necessary, (u2)’ and (ul) are uniformly (relatively to c) bounded and the

conclusion is the same. In particular, this proves the first item of the result.



18 SEBASTIEN BIEBLER

We call Tany, the first coordinate of the point of vertical tangency. The image of the
map defined on C which sends ¢ to pSt™(B_s(c)) — a. is an open set which contains 0 in
its interior. Let us denote by 2l the distance of 0 to the image of C. Reducing b1 and o1
another time if necessary, by continuity {Tany, — ae,c € 9C} is a curve in the plane, with
0 is in a bounded connected component of its complement and at distance at least [ from

{Tanys, — ac,c € dC}.

Notation 5.1.2. Let ks € Hy for f € F. We denote by Wi (k) the connected component
of W*(k)ND? which contains ks and by Wit (ky) the connected component of W™ (k)ND?
which contains Ky.

Lemma 5.1.3. Reducing C, b1 and o1 if necessary, Wi .(ay,) is a graph over (z2, z3) € D?
both included in D(ac,1/2) x D* and in D(cey, 107+ jwm—1| - (x — 1)) x D.

Proof. For o =0, W?(ay,) is the product of W?(ay) by the z3 axis where H is the Hénon
map H : (z1,22) — (pe(21) + bz2, z1). Moreover, for every € > 0, we can reduce b; such
that if |b| < b1, then the cone C*¢ centered at ez of opening ¢/2 is H ™ '-invariant in some
neighborhood of {a.} x D. Then Wi (ax) is a ss-curve included in D(a., €) X D since all
its tangent vectors lie in C°**¢. Then for o = 0, the skew-product structure implies that
Wit(ay,) is a (2,3)-surface included in D(ae,€) x D? which is the product of Wi (arr)
by the z3 axis. Then, by continuity, it is possible to reduce o1 such that for every fo
with 0 < |b] < b1 and 0 < |o| < o1, Wiio(ay,) is a graph over (22, 23) € D? included in
D(ae, €) x D?. We take ¢ = /2 to prove the first inclusion. We get the second one by
reducing both C and e. O

We recall that 0 is in a bounded connected component of the complement of {Tany, —
ac,¢ € OC} and at distance at least [ from {Tanj, — ac,c € OC}. In particular, there
is a parameter ¢ € C such that Tang, belongs to D(ae,1/2). Up to replacing s +m by
s+m+ 1, we can suppose that the point of vertical tangency is in D3. For the parameter
T, fo1™(Uz) N (D(ave, 1/2) x D?) is not the union of two graphs upon 21 € D(aw,1/2) and for
c € 9C, f57™(U,) is the union of two graphs over z1 € D(ae,1/2). According to Lemma
5.1.3, Wi (ay,) is a graph over (z2,23) € D? included in D(a.,1/2) x D?. The following
lemma is the analogous in dimension 3 of Proposition 8.1 of [13]. The proof is essentially
the same and relies on the continuity of the intersection index of properly intersecting
analytic sets of complementary dimensions.

Lemma 5.1.4. Let (T'c)cec be a holomorphic family of curves of degree 2 over the first
coordinate. We assume that:

(1) there exists a compact subset C' C C such that if ¢ € C\C', T'c is the union of 2
graphs over z1 € D(ac,1/2),

(2) there exists ¢ € C such that I'z is not the union of 2 graphs over z1 € D(ag,1/2).

Then, if (Ve)eec is any holomorphic family of graphs over (z2,z3) € D? contained in
D(ae,1/2) x D?, there exists c1 € C such that e, and Ve, admit a point of tangency.

We apply the previous lemma, taking the family (Tc)ecc = (f5™™(U:) N D?)eec as
curves and the family of stable manifolds Wi (ay,) as graphs over (z2,23) € D*. We can
conclude that there is a parameter ¢; such that there exists a quadratic tangency fit™(r)
between Wi (ays,) and fiT"(Ue.,) where 7 € Ue, for fi = feb,0. Then 7 is a point of
tangency between W*(ay,) and U, . Since Wy (o, ) is included in D(aey, 1070 [wpm—1]-
(x—1)) xD?, all the iterates of f{*™ (7) under f1 are in D(cey, 107" Jwm—1]- (x—1)) xD*.
The map (b, o) — c¢1 is holomorphic by the Implicit Function Theorem and then (b, ) — T
is holomorphic too. This shows item 2 and ends the proof of Proposition 5.1.1. O

In the next proposition, we show that the tangencies created in the previous result are
generically unfolded. Beware that in the next result, the map fi is associated to a family
of u-curves (U.)ccc which can be distinct from the family (Uf)rer.
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Definition 5.1.5. Let (Uy)ser be a holomorphic family of u-curves and (S¢)rer be a
holomorphic family of s-surfaces. We suppose that for f € F, there is a point of quadratic
tangency between Uy and Sy. We say that this tangency is generically unfolded if there
erists a one-dimensional holomorphic family (f*)ten of polynomial automorphisms and a
holomorphic family of local biholomorphisms (V¢)ien with:

(1) f°=f and f* € F for everyt €D,
(2) Wi(Syt) is a vertical plane {z1 = C*'} where C*" does not depend on t € D,

(3) if we denote by tan; the first coordinate of the point of tangency of Vi(Uyt) with
{z1 = C®'} (there emists exactly one such point because the tangency is quadratic),
then |%| s uniformly bounded from below by a strictly positive constant fort € D.

Proposition 5.1.6. Reducing C, b1 and o1 if necessary, for every 0 < |b| < b1 and
0 < |o| < o1, for every holomorphic family of u-curves (Uec)cec, there exists a neighbor-
hood F' € F of the map f1 = fe;(b,0)6,0 defined in item 2 of Proposition 5.1.1 such that:
for every holomorphic family of u-curves (L{})feg:/, if f € F has a point of tangency T’
between W* () and Uj such that f*t™(r') € Wi (ay), then the tangency 7' is gener-
ically unfolded. In particular, the tangency T obtained in item 2 of Proposition 5.1.1 is
generically unfolded.

Proof. For every f € F, after a holomorphic change of coordinates Wy, Wil .(ay) is the
plane {z1 = ac,}. We first show the result for the map f1. We work in the one-dimensional
family (fo)eec = (fe,p,0)cec Where b and o are fixed and we take a holomorphic family of
u-curves (Uy)sers. It is a consequence of the proof of Lemma 5.1.3 that Uy, tends to Id
when b and o tend to 0. When b and o tend to 0, the curve Wy, o f5*™(U5,) tends also
to a curve of degree 2 over z; of the form {(pSt™(z1),ps™ ™ 1(21),v(21)) : 21 € D(0,p)}
where v is holomorphic. We call tan. the first coordinate of the point of vertical tangency
of Wy, 0 fot™(Uf,). We have pi(0) = ac,, (pi)'(0) =0, (pl)"(0) # 0 and at ¢ = co, we
have - (p(0) — aw) # 0 (see Proposition 2.1.4). Moreover, ¢ tends to co when b and o
tend to 0. Then for sufficiently small b and o, we have # 0 for every ¢ € C (reducing
C if necessary). Since the estimates on the derivatives of the u-curves (U}) ser are uniform,
we can reduce uniformly b1 and o1 so that this inequality is true no matter the choice of
(Ut)ser- Then, by continuity, there exists some new neighborhood F' € F of fi such
that every f € F’ belongs to a one-dimensional family (f*);ep such that: f° = f, f* € F'
and dtgt““ # 0 (t € D). This implies in particular that if f € 7' has a point of tangency
7' between W*(ary) and U} such that f57™ (') € Wil (ary), then the tangency f*7™(7')

is generically unfolded and then also 7/. The proof is over. O

dtan.
de

5.2. A transversality result. From now on, we construct from this initial heteroclinic
tangency a 3-folded (2, 3)-surface inside a stable manifold with its fold inside D(0, 15). In
this Subsection, we prove that W?*(ay, ) has some special geometry. We start by choosing a
periodic point ¢y, € Hy,. The main point is that its third coordinate is in D(0, & —107%),

’ 10
which will be used later in the proof of Proposition 5.3.9.

Lemma 5.2.1. For every c € C, 0 < |b| < b1, 0 < |o| < 01, there exists a periodic point

b, inside Hy, such that pry(ds,) € D(0, 15 — 107).

Proof. Let us take w € h¥(D'). According to Proposition 3.2.7, the ss-curve {w} x D x
{0} intersects the unstable set of a point ¢s, of the horseshoe Hys,. Moving slightly
{w} x D x {0} by translation in the third direction (let us say by no more than ),
we can suppose that ¢, belongs to the preimage g1(U1). By density of periodic points
in Hy, we can moreover suppose that ¢y, is periodic. We notice that w € h{(D') and
pr, (91(U1)) C h4(D'). Moreover we have diam(h?(D)) < 10™** by property 2 of Property
2.2.3. Since Wi.(¢s,) is a u-curve, this implies that prs(¢y,) belongs to D(0, 55 + 107" -
X1 cD(, L —107). O

710
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Notation 5.2.2. For every 0 < |b| < b1, 0 < |o| < 01, we fix such a periodic point ¢y,
for the map f1 such that pry(¢s) € D(0, = — 107%). Reducing F' if necessary, we have

) 10
prs(oy) € D(O, 11—0 —107%) for f € F .
We now choose the parameter b in function of the parameter o:

Notation 5.2.3. In the following, we will take b = b(c) = 0. For technical reasons, we
reduce o1 such that o1 < \/E

In particular, we can use Proposition 5.1.1 for 0 < |o| < o1: there exists a map
o +— ci1(o) such that there is a heteroclinic tangency 7 between the local unstable manifold
Uy, of ¢y, and the stable manifold W?(ay, ) of ap,. Moreover, o — 7 is holomorphic. We
have D(f7)- - (0,0,1) = p°(&1(0),&2(0),1) with & (o) = O(o) and &(0) = O(o). The
maps o — pr,(fi (7)) — Bo, -+, 0 — pr,(FT" 7 (1)) = Bm_1 are holomorphic (remind
that the constants 3; were defined in 2.4.1). Since they vanish when o = 0, they are
also O(0). The map o + b(c) is O(0?) because b(c) = o®. Then the differentials at
i), -+, fTm7(7) verify the conditions of Corollary 2.4.6 so from Corollary 2.4.6 we
immediately get the following (remind that wn,—1 was defined in Definition 2.4.3):

Lemma 5.2.4. We have D(fiT™), - (0,0,1) = (¢1(0),¢2(0), (3(0)) where (1, 2, (3 are
holomorphic functions, (1(0) = wm—1-0+0(0?), (2(0) = 0+0(0) and (3(0) = p™+0(0).

Notation 5.2.5. We reduce o1 so that for 0 < |o| < o1 it holds |(1(0) — wm—10] <
islwm-1llo], [¢2(0)] < 1 and [¢s(0) — p™| < 55(1 — |u™|). Still reducing o1, we have
01 <107 Jwm_1| - (x — 1). From now on, we fit 0 = -, b=b(0) = 0°, c=c1(0) and

the associated map f1 = fei(o),b(c),0-

Lemma 5.2.6. For every vector v° such that [v) — wm-10| < 55 |wm—1|o], [v5] <1 and
lvg — u™ < (1 — |u|™), at any point of Wii.(ay,), v° is transverse to Wii.(ay,) for
small o.

Proof. Let 4° be a point of Wi (a, ) and let us consider the sequence of points defined by
Y™ = fI(4°). According to Lemma 5.1.3, for every n > 0, 9™ is in D(cvey, 107 |wm—1](x—
1)) x C2. Then for every n > 1, the differential at 4™ of f1 is of the form:
my b(o) o(z1— aey)
L=(1 o0 0 ,
A 0 I
where b(c) = ¢® and |m,| > x > 1 for every n > 1. Since 01 < 107*°|wy—1|(x — 1) we
have |b] < 107 wym—1]|o|(x —1). We denote v" = (In- ... I1)(v%) for every n > 1. Let us
show that there exists an integer i such that |vi| > |vs|. Let us suppose this is false and
we show by induction the following properties for n > 0:
(1) 12 ] > 27| >
@) gl <1,
(3) o™ < [og| < 1.
For n = 0, item 2 is satisfied since |[v3] < 1. Moreover [v?| < |v3| by hypothesis. We
have |v3| < [M|[vf] + |ul[vd] < |A|[03] + |pl|vs] < |[v9] < 1. Then item 3 is true. We
have v{ = mqv} + bvg + o (¥ — o )v3. We notice that [vf| > is|wm-—1|lo], m1 > x,
|bvs| < [b] < 107w —1]|of(x — 1) and |o(4} — aeq)v5] < 107 wm-1||o|(x —1). Then
we have [vi| > X 09| > 5 |wm—_1]|o|. We also have |vi| < |v3] < 1 by hypothesis. Then
item 1 is true and the induction step is true for n = 0.

2

o6l wm-llol

Suppose the induction step true for some n > 0. Then |vg''| = |[v7] < 1 and item
2 is true. Moreover [u2+2] < \[[ur | + [ [0 +1] < (2| + [ullen ] < 3] < 1,
which shows item 3. We have v]"? = mp 107 4+ ol ™ + o (P! — aey)vg ™. Since

we have [maa| > X, o7 7] > slwmoallol, b3t < (b < 107w a]o](x — 1)
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and also [o(Y7 1" — ey vy Tt < 107 wm_1||o|(x — 1), we have |[vPT?| > XEH|pPHh| >
155 lwm—1]|o|. We have [v7"?| < [v§7?| < 1 by hypothesis and then item 1 is true.

Then for every n > 0, we have [v7 |- o ™™t > (x +1)/2- |v}| - [vF|~". This implies
a contradiction: there must exist some integer i such that |vi| > |vi|. Since we also have
[v3| = [vi™!| < |vi|, this implies that v is transverse to WS (ays, ) and then v° itself is
transverse to W2 (ay, ). O

Proposition 5.2.7. The vector (0,0, 1) is transverse to W*(ay,) at 7.

Proof. From Lemmas 5.2.4 and 5.2.6, we know that the image under f#*™ of a neigh-
borhood of 7 in W*(ay,) is transverse to D(fi™™), - (0,0,1). Applying f;°~™, this
immediately implies the result. ]

5.3. Orientation of the fold of W?(ay). In this subsection, we take iterates of the
initial tangency 7 under f; ! in order to create a concentrated 3-folded (2, 3)-surface
inside a stable manifold. We have that Wi (éy,) is a graph {(z1,u?(21),u*(z1) : 21 € D}
over z1 € D (the periodic point ¢y, was defined in Lemma 5.2.1). We consider the
biholomorphism ¥ defined by ¥(z1, 22, 23) = (21,22 — u2(2’1),23 — u3(z1)) which sends
Wit (éy,) onto the z1 axis. We denote Wy the connected component of W*(ay) N D?
which contains 7 for f € F'. We denote by Tan’ the subset of W(W;) where U(Wy) is
tangent to some line {z2 = C*%, 23 = C*'} and by Tan = U~!(Tan’). When f = fi, we
denote them by Tan® and (Tan’)°. Let ¢“(7) be a tangent vector of W% (¢, ) at 7.

Lemma 5.3.1. The curve Tan® is a complez curve regular at T of tangent vector vian at
7 such that vian ¢ C-(0,0,1) and vian ¢ C-e*(7).

Proof. We are working in the projectivized tangent bundle PTC? ~ C* xP?(C) of C* which
is of dimension 5. The lift Wy, of Wy, to PTC? is a complex submanifold of dimension
3. The lift of every complex curve C;, = U™1(D x {(z,%)}) to PTC? is a complex curve
Cay- Then U, ,)cp2 Co.y is a complex submanifold of dimension 3. Moreover, according
to Proposition 5.1.1, Wy, has a point of quadratic tangency with Co,o and then Wfl is
transverse to U, ,)ep2 Cyr.y. Then Tan® = Wy, N (U(z,y)eDZ C‘Iy) is a regular complex
curve. Then its projection Tan® is a regular complex curve of tangent vector vean at 7.

By Proposition 5.2.7, vgan ¢ C - (0,0,1). By construction, €¢“(7) is a tangent vector of
Wiec(¢g,) at T 80 vtan € C-e“(7). The proof is done. O

Since the intersection between Wfl and U(z y)ED? ézy was transverse in the latter
proof, by perturbation of the previous result, we get:

Corollary 5.3.2. For every € > 0, reducing F' if necessary, there exists n > 0 such
that: for every f € F', for every C*-foliation (Vey)(z,y) of some neighborhood of T by
two-dimensional real manifolds Vs, such that every Vu . is n-close to Wit (¢y), the set
Tan of points of Wy where Wy is tangent to some Vg y 45 a regular two-dimensional real
manifold which has its direction e-close to C - vian at each point if it is non empty.

The following result is a technical geometric lemma.

Lemma 5.3.3. There exist €, p, p1,p2,p3 > 0 such that for every t > 0, we have the
following property: for every regular two-dimensional real manifold I' going through T +
(D(0,tp))%, if T' has its direction e-close to C - vian at each point, then T is horizontal
relatively to ma in T+ D(0,tp1)e” (1) + D(0, tp2)(0,1,0) + D(0, tps3)(0,0,1).

Proof. According to Lemma 5.3.1, v¢an ¢ C - (0,0,1) and vtan ¢ C - e*(7), which easily
implies the result. O

Notation 5.3.4. We fix the value of € given by Lemma 5.3.3 and the associated value of
n gwen by Corollary 5.8.2. We also fix p, p1, p2, ps given by Lemma 5.5.3.
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Lemma 5.3.5. There exists to > 0 such that for every t < to, there exists an integer
j =7(t) such that:

(1) £7 (7 +D(0,tpr)e" (7) + ID(0, £2)(0, 1,0) + D(0, £93)(0,0,1)) ND* =0,
@) f (T +D(0, tp1 )e (1) + D(0, £p2)(0, 1,0) + D(0, £ps)(0, 0, 1)) NoD* € D x O x D.

Moreover, j(t) tends to +oco when t tends to 0. Reducing F', by continuity this remains
true for any f € F' for a given t < to.

Proof. We foliate D¢ p, 90,05 = 7+ D(0, tp1)e* (1) +D(0, tp2)(0,1,0) + D(0, tps)(0,0, 1) by
disks L., ., parallel to the z2 axis. To simplify, we can suppose that ¢y, is a fixed point
of f1, up to replacing fi by one of its iterates. By invariance of C** under f;!, for every
n > 0, the image of this tridisk under f; " is foliated by the ss-curves f; ™ (L., .,)ND>. We
call the length of a ss-curve the radius of the maximal (for the inclusion) disk included in it.
For every n > 0, let [,, be the minimum of the lengths over all the s-curves f; " (L., z,). For
every n > 0, we denote by d,, the maximum of the diameters of the sets VN f7 " (D¢, p; ,ps,p3)
where V varies in the set of (1, 3)-quasi planes over D2, Every vector in C*° is dilated under
fi! by a factor close to A = [pL, (pr,(¢s,))|/|b|. For every (1,3)-quasi plane V over D?,
f1(V)ND? contains a (1, 3)-quasi plane. Every tangent vector u to fi(V)ND? is of the form
w=u'-(1,0,0)+u*-(0,1,0)+u>- (0,0, 1) with |u?| < max(|u'], |u®]). Then the vector u is
dilated under f;! by less than %A. Then dp+1 < %A-dn. This implies that if ¢ is smaller
than some value to, there exists j = j(¢) such that (I;p3) - (d;p2)™* > (3/2)7 - p3-p5* > 10,
l; > 10 and d; < 107'° - |b| - min(1, dist(pr, (¢y, ), D), dist(prs (¢, ), D)). Increasing a last
time j in order to make f; 7 (7) closer to ¢y, , this implies both items (1) and (2). When
t tends to 0, the lengths of the disks L., ., tend to 0 and then j = j(¢) tends to +oc.
Reducing F’, by continuity this remains true for f € F' for a given t. The proof is
done. O

Here is a technical lemma which ensures the existence of a foliation with particular
properties. In the following, we will say that a graph V., of class C? over z; € D is of
slope bounded by S < 400 if every tangent vector to V., is of the form a multiple of
(1,e2,e3) with |e2] < S and |es] < S. For convenience, it will be useful to work with
graphs of class C? which are not necessarily holomorphic. This will not be a problem
since we will apply later only the Inclination Lemma on them and this does not need the
holomorphic assumption.

Lemma 5.3.6. Let V be a (1,3)-quast plane foliated by u-curves (V*)zep. Let ¥ =
(91,92,93) € D? be a point such that 9 ¢ V. Let us take a vector u € C*. Then there
exists a foliation of class C? of a neighborhood of 9 by graphs Vs, of class C* over z1 € D
of slope bounded by S, where 0 < § < 400 is independent of V and 9. Moreover we have:

(1) for every x € D, V¥ = V0,
(2) the leaf going through ¥ has C - u as tangent space.

Proof. Up to multiplying u by a non zero complex number, we can suppose that the first
coordinate of u is equal to 1. We first perform a change of coordinates by a biholomorphism
¢, and then construct the graphs V. ,. We construct ¢ such that ¢ sends V to the plane
{z2 = 0} and each curve V to the line {z2 = 0,23 = 2}. For a given z € D*, we denote
by pr(z) the projection (parallel to (0,1,0)) of z on V. We denote by ¢2(z) the complex
number such that z — pr(z) = ¢2(2) - (0,1,0). Since V is a (1, 3)-quasi plane, we have
[Dy2]] < 1. We denote by by ¢3(z) the complex number x such that pr(z) € V*. Up
to rescaling = — V*, we can suppose that V* depends on the third coordinate = of the
intersection point of V* with {z; = 0}. Then we also have || Deps|| < 1. We then define the
map ¢ by ©(z) = (21, p2(2), ¢3(z)). In the coordinates given by ¢, we have V = {22 = 0}
and V® = {25 = 0,23 = x}. We denote p(9) = (J1,02,93) (with 91 = 91 and |Ja| > 0)
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and Dyop(u) = (1,€2,€3). Since u € C¥, the estimates ||Dyz|| < 1 and ||Degs|| < 1 imply
|62| S 5 and |63| S 5.

We now take a graph W = w(D?) of class C? over (z1,z3) € D* C R* such that
9 € W with W N {z2 = 0} = 0 and having C - Dyyp(u) as tangent space at 9. Since
Dyp(u) = (1, €2, €3) with |e2] < 5 and |es| < 5, we can take w such that || Dw|| < 10. Then
for every y € D(0,10[92|), we define the C? graph W, = w,(D?) over (z1,z3) € D* C R*
by wy(z1, 23) = y-w(z1,23). We notice that Wy = {22 = 0} and W7, = W. Then for every
(z,y) € DxD(0,10[92]), the set Vs, equal to the image of z1 € D+ (21, wy(21,z),z) € R
is a graph of class CZ over 21 € D. Since || Dw]|| < 10, its slope is bounded by 10 x 10 = 100
in the coordinates given by . Since V is a (1, 3)-quasi plane in the initial coordinates,
Dy™! is C°-bounded and then the slope of any V., in the initial coordinates is bounded
by S, where 0 < & < 400 is independent of V and . Since W N {z2 = 0} = ), we have
w(z1,22) # 0 for every (21, 23) € D? and then the graphs V, , form a foliation of class C?
of a neighborhood of 9 satisfying the conditions (1) and (2). O

We can reduce o1, by and F’ so that for every f € F', W2 (¢y) has a point of inter-
section with every graph £ C D® of class C? of slope bounded by S over z; € D, and this
intersection is transverse (uniformly in £). The following is an easy consequence of the
Inclination Lemma (one can refer to Prop. 6.2.23 page 257 of [15]).

Lemma 5.3.7. There exists an integer k such that for every f € F', for every graph
£ C D? of class C? of slope bounded by S over z; € D, f* (L) has a component which is a
graph over z1 € D which is n-close to Wig.(dy).

Notation 5.3.8. We fix the integer k given by Lemma 5.3.7. Up to increasing k if
necessary, we can fix 0 < t < to such that j(t) = k (see Lemma 5.5.5). We reduce F' so
that for every f € F': there is a point 9 € W*(ay) such that f*(9) € (r + (D(0,tp))*)
and W?(ay) has a tangent vector u € C* at ¥ (it is possible by continuity since it is the
case for fi with the point f7*(7)).

f,*

W (o)) —_ /\

b,

W(a) W)
° Qsy

Figure 2: straightening of the initial fold by iterating backwards. The blue and green
sets are the connected components Wy and WY of W*(ay) ND?. In particular, the green
set WY is a concentrated 3-folded (2, 3)-surface.
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Proposition 5.8.9. For every f € F', W*(ay) contains a concentrated 3-folded (2, 3)-
surface WY such that FoldOW7) C D(0, 15) and diam(pr,(WY)) < 107'°.

Proof. Let f € F'. Let V be a (1, 3)-quasi plane foliated by the u-curves V* = VN{z3 = z}.
By Notation 5.3.8, we can take ¥ € W*(ay) such that f*(9) € (7 + (D(0,tp))*), W*(as)
has a tangent vector in C* at ¥ and ¥ does not belong to V. According to Lemma 5.3.6
it is possible to find a foliation of class C* of a neighborhood of ¥ by graphs V., of class
C? over z; € D of slope bounded by S such that V* = V, o and the leaf going through ¥
has C - u as tangent space. In particular, the leaf going through ¢ is tangent to W?*(ay).
We apply f* to all these curves V. According to Lemma 5.3.7, the sets f*(V, ) have
components which foliate a neighborhood of 7 by graphs over z; € D which are 7n-close to
Wiec(df). If necessary, we can extend this foliation into a foliation of 7+ D(0, tp1)e*(T) +
D(0,tp2)(0,1,0) + D(0,tp3)(0,0,1) by graphs over z; € D 7n-close to Wit.(¢5). Then
according to Lemma 5.3.2, the set Tan of points of f*(V, ) where f¥(V, ) is tangent to
W?(ay) is a regular two-dimensional real manifold which has its direction e-close to C-vtan
at each point and goes through the point f*(9) € 7+ (D(0,tp))®. According to Lemma
5.3.3, the set Tan can intersect 7+D(0,tp1)e™ (7)+D(0, tp2)(0,1,0)+D(0, tp3)(0,0, 1) only
in 74+ D(0,tp1)e*(7) + D(0,tp2)(0,1,0) + D(0,tp3)(0,0,1). By Lemma 5.3.5, it holds:

F* (7' £ D(0, tp1)e" () + OD(0, £p2)(0, 1,0) + D(0, £p3) (0, 0, 1)) C C3\D?,

f_k(r +D(0, tp1)e™ () + D(0, £p2) (0, 1, 0) + D(0, £ps)(0, 0, 1)) NOD* €D x 8D x D.

Then f~*(Tan) intersects V. Since both V and W*(ay) are complex manifolds, f~*(Tan)
intersects V in exactly one point. We denote by W} the continuation of the connected
component of W*(ay,) N D® containing f; *(7) for f € F. Then W} is tangent to
exactly one V* = V N {z3 = z}. This implies that pr, restricted on W} NV is a two-
covering with exactly one point of ramification. Since this is true for any (1, 3)-quasi
plane V, by definition, W} is a 3-folded (2, 3)-surface for every f € F'. We notice that
pry(¢y) € D(0, 5 —10""). Increasing k if necessary, we have pry(f~*(7)) € D(0, &= —10"").
Moreover ¥ can be taken as close to f~*(7) as wanted and by the proof of Lemma 5.3.5
the diameter of pry (ffk(Tan)) is smaller than 10™"°. Then we have Fold(W}) C D(0, 5).
Since the first direction is dilated under f, iterating by f~! if necessary, we can have the
additional property that diam(pr;(Wf)) < 107'°. Then according to Proposition 4.3.7,
we can iterate a last time f~' if necessary to get a component W}/ of W*(ay) which is a
concentrated 3-folded (2, 3)-surface such that Fold(W}) C D(0, 15) and diam(pr, (W})) <
10710 ]

6. PROOF OF THE MAIN RESULTS

Proof of the main Theorem and Corollaries 1 and 2. By Proposition 5.3.9, for every f €
F', W=(ay) contains some concentrated 3-folded (2,3)-surface W° with Fold(W°) C
D(0, 5) and diam(pr;(WW°)) < 107'°. This implies persistent heteroclinic tangencies.
Indeed, by Proposition 4.3.1 there exists a point x; of the horseshoe H; and a point
of quadratic tangency 7’ between W"(xs) and W° C W*(as). The proof of the main

Theorem is complete.

We now prove Corollary 1. We call U} the component of W*(xy) N D? containing the
point of tangency 7’ and we consider the family (L{},) #rerr of holomorphic u-curves given
by the continuation of L{}. According to Proposition 5.1.6, the tangency 7’ is generically
unfolded. We apply a standard argument to obtain homoclinic tangencies. Let us take
any neighborhood F” of f. Since the tangency 7’ is generically unfolded, we can rely on
the following well-know lemmas:
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Lemma 6.0.1. There exists €' > 0 such that for every holomorphic family (Uf)) s e
of u-curves €’-close to (Us)prer and every holomorphic family (W7)) e of complex
surfaces €’ -close to (W°) prcr, there exists a point of quadratic tangency between Uy, and
WY where f" € F".

We claim that there exists a holomorphic family of u-curves (Uf))ser €’~close to
(U1) pre7 such that for every f' € F', Uy, is a component of W*(6;/) ND? and a holo-
morphic family of complex surfaces (W},) ez €’-close to (W°)4:) ez such that for
every f' € F/, W}’, is a component of W*(d/) (we recall that the point § was defined in
Proposition 3.1.6). We prove this fact for the case of u-curves, the proof is the same for
complex surfaces. According to Proposition 3.1.6, a/, and then xy/, is in the homoclinic
class of §;,. This implies that there exists a transversal intersection between Wy (k)
and Wi (8;/) for every f' € F'. For a given f' € F', by the inclination lemma, there
exists an integer ny such that for every n > nyr, (f')"#' (Wiee(ds/)) contains a u-curve
¢’-close to U},. By continuity, ny can be taken locally constant. Up to reducing F', we
can take F' compact (with non empty interior). By compactness, it is then possible to
take the maximal value n of ny on a finite open covering of F'. Then for every f' € F',
there is a u-curve Uy, ¢"-close to U}, which is a connected component of W*(5;/) N D>,
The proof of Corollary 1 is complete.

We now prove Corollary 2. The preceding proof shows that there exists f”/ € F” with
a point of homoclinic tangency between W*(d;/) and W (d¢~). In particular maps with
homoclinic tangencies associated to & are dense in F'. The point §; has the property
of being sectionally dissipative for every f € F'. Then, by Proposition A.1 which gives
the creation of sinks from homoclinic tangencies (the proof is given in Appendix for the
convenience of the reader) a classical Baire category argument already used in [7] allows
us to conclude the existence of a residual set of Auts(C?) of automorphisms displaying
infinitely many sinks. The proof is complete. O

APPENDIX A. FROM HOMOCLINIC TANGENCIES TO SINKS

To show the main Theorem, we need the following result. It is known since the work of
Newhouse how to get a sink from a homoclinic tangency. The adaptation to the case of C?
was obtained by Gavosto in [14]. Here we adapt her proof to the case of C*. Remind that
a generically unfolded tangency is a tangency which is unfolded with a positive speed.

Proposition A.1. Let (Fy)iep be a family of polynomial automorphisms of C3. We
suppose that for the parameter t = 0, there is a sectionally dissipative periodic point Py
and a generically unfolded homoclinic quadratic tangency Q € W*°(Po) N W*(Po) between
W?(Py) and W"(Py). We also suppose that the three eigenvalues \§®, A\§® and \§ at Py
satisfy |A°] < A&7 < 1 < |AG| (and |A§’| - |A\¢| < 1 by sectional dissipativity). Then for
every neighborhood Q of Q and every neighborhood T of 0, there exists t € T such that Fy
admits an attracting periodic point in Q.

Proof. Step 1 : Construction of cone fields

In the following, iterating if necessary, we will suppose that Py is a fixed point of Fp.
We fix a constant n > 0 such that we have (]A\5°| + n)(|]A¢| + 1) < 1 (the periodic point
Py is sectionally dissipative) and |Ag°| + 1 < |A§°| —n < |A§°| + 71 < 1. We can fix a
neighborhood P of Py, a neighborhood 7o of 0, cones C*, C*° and C° centered at the
three eigenvectors of DFy(Fp) and an integer No with the following properties: for every
n > No, t € To, for every matrix M = M, -...- M; where M; is the differential of F} at a
point in P, we have:

(1) C* is invariant under M and there is exactly one eigenvector (up to multiplication)
of M in C* of eigenvalue (JA\g| — )" < [A1] < (]Ag] + 7)™,
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(2) C** is invariant under M ™' and there is exactly one eigenvector (up to multiplica-
tion) of M in C*° of eigenvalue (|[A3°| —n)™ < |A2| < (|A&°| +n)7,
(3) for every vector v which is not in C*UC**UC**, we have M-v € C* or M~ 1w € C*%,
(4) (A1 =m)" (1A =m)"(IAG°| =m)™ < [det(M)| < (IAs[+m)" (A" +m)" (IA°] +m)"
Reducing 1 and increasing Ny if necessary, we have for n > Np:

(A1 +m)" (A" + )" < (A6 =)™ (1A = m)" (IAG°] = )",

(A +m)™ (A +m)"™ (A + )" < (A1 = m)*" (1] =)™
This implies that M is diagonalizable. Indeed, if it was not the case, M would be trian-
gularizable with a double eigenvalue and we would have:

(NG +m)" (XS] +m)*" > [ det(M)] or [det(M)] > (1] —m)* (IAG" — )"

But by item 4 above, there would be a contradiction with the previous inequalities. More-
over the third eigenvector has to be in C* according to item 3 above.

Step 2 : Local coordinates

Iterating if necessary, we can suppose that Q € P. We are going to make several local
changes of coordinates so that the stable and unstable manifolds of P; have a simple form
near the tangency. We will use this local change of coordinates in Steps 2 and 3. In Step 4,
we will mainly use the coordinates in the canonical basis but we will need the local change
of coordinates a last time at some point so we will denote it by ¥, in Step 4 to make
the distinction between the two systems of coordinates. In the following, to construct the
local coordinates, we will keep the notation z1, z2, z3 by simplification.

We first pick local coordinates such that () = 0 and in the neighborhood of @, the stable
manifold is {z1 = 0}. Up to a linear invertible second change of coordinates, we can assure
that the tangent vector of W (Fy) at @ is (0,0,1). Then we have that locally near 0 the
unstable manifold is given by a graph over z3 of the form {(wi(z3,t),w2(zs,t),23) : 23}.
Since the tangency is quadratic, for each ¢ in a neighborhood of 0, there exists exactly
one z3¢ such that %—Z’;(zg,t, t) = 0. We pick new coordinates a third time by changing the
coordinate z3 into z3 — z3+. The unstable manifold is:

& un 2 . 2
w1 (z3) = w1 (z3,t) = w1(0,¢) + W(O’ t)z3 + h(z3,t) with h(z3,t) = o(23).
3
The stable manifold is still locally equal to {z1 = 0}. Since there is a quadratic tangency

for ¢t = 0 which is generically unfolded, we have w1(0,0) = 0 and %(0, 0) # 0. Then we
t

w1 (0,t)

these new coordinates, the unstable manifold is given by:

wi(z3) =t + 23h(zs, ),

where B(23,t) # 0 in a neighborhood of 0. The stable manifold is still locally equal to
{z1 = 0}. The fifth change of coordinates is given by z3 becoming z3(h(z3,t))*/?, where
(h(zs,t))"/? is a complex square root of h(zs,t) (which is well defined since h(zs,t) # 0 in
a neighborhood of 0). We finally get that the unstable manifold is given by z; = 2% +t and
z2 = wa(zs,t). The stable manifold is still locally equal to {z1 = 0} and the tangent vector
of W*(Py) at @ is still (0,0,1). The last change of coordinates is given by z2 — w2 (z3,t).
The unstable manifold is given by z1 = 25 +t and z2 = 0 and the stable manifold by
z1 = 0. The tangent vector of W"(P) at @ is still (0,0, 1).

change coordinates a fourth time: z; becomes z1 and z2 and z3 are unchanged. In

Step 3 : Construction of a periodic point

We take a tridisk B around @ in the coordinates that we just defined : B = {(z1, 22, 23) :
|z1] < 0, 22| < 8|23 < 6} where 0 < § < 1. Since the tangent vector of W*(FPy) at Q
is (0,0,1), reducing ¢ if necessary, there exists a neighborhood 71 C 7o such that the
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component of W*(P;) N B containing @ (for ¢ = 0) or its continuation (for ¢ # 0) is
horizontal in B relatively to the third projection and is included in {(z1, 22,23) € B :
|z2] < 150}. Using the Inclination Lemma, there exists N1 > No such that for ¢t € 71
and n > N, , F{*(B) will intersect B and F;(B) N B is horizontal relatively to the third
projection.

In the following, we show that for every sufficiently high n, a periodic point for F; (where
t € T1) is created. Let us now denote A., ., = {(21, 22,23) : |21] < §} which is a disk, for
|22| < 6, |23| < 8. It is possible to increase N2 > N; such that for any |22| < 4, |23] < 4, for
every n > Na, F{*(A.,, ;) N B is horizontal relatively to the third projection (of degree
1) and included in {(z1,22,23) € B : |22| < 36}. Since F{"(A.,.;) N B is horizontal
relatively to the third projection and of degree 1, it intersects exactly one disk Azé,zg
where 25 = 25(22) with 25 € D(0,6/2). This defines for each fixed ¢ € 71 a holomorphic
map z2 — z5. Then the map z2 — 22 — 23 defined on (0, §) is holomorphic and the image
of dD(0, d) contains a loop around D(0,/2). Then by the Argument principle there exists
z2(z3) such that A, (.,),., intersects Fi" (A, (z4),25)-

We are going to choose z3 in order to create a periodic point in A, (.. .,. There
is a point R.; = (fi(23),22(23),23) € A.,(zy),25 Which is sent on S., € A, (.,),., Where
Szs = (g¢(23), 22(23), 23). We are going to choose z3 (in function of ¢) such that R., = S.,.
When N goes to infinity, fi(z3) tends to 0 and g¢(23) tends to 23 +t. Then g:(23) — f+(23)
tends to 2% + ¢. In particular, if N is sufficiently high, for every ¢ € D, the graph of
z3 — g¢(23) — ft(23) is a curve of degree 2 over z3 which has exactly one point of tangency
with the horizontal foliation. We take a new bound N3 on n such that this is the case,
we increase N3 in the rest of Step 3 in order to satisfy more assumptions. The second
coordinate of this point of tangency is a holomorphic function of ¢t which tends to ¢ when
increasing N3. In particular, this implies that there exists exactly one value to of ¢ for
which the equation g, (z3) — fi,(23) = 0 has one double solution, and for every other value
of t € D, there are two distinct solutions. Then, for F}, we have two periodic points which
are equal when ¢t = tg. We do a reparametrization of the family of maps (F;)tep by taking
t = 72. From now on, we are working with the family of maps F, = F,». By simplicity,
we will simply denote it by F. For F, we have two periodic points which are equal when
T = 7o where 7¢ = to. We can increase N3 if necessary so that for each 7 € D\D(0, %), the
two solutions of g,2(z3) — f,2(z3) = 0 are respectively i5-close to +i7. For 7 € D\D(0, 3),
we denote by R" the periodic point corresponding to the solution ﬁ—close to i7. It is clear
that the map 7 — R restricted on D\ID(0, 3) is continuous. For 7 = 79, we denote by R™
the unique periodic point corresponding to the double solution of -2 (23) — f_rg (z3) = 0.
Finally, for 7 € D(0, %) not equal to 7o, there are two distinct periodic points in A, (.,), 2, -
We pick any path in C from 7 to a point 71 in D\D(0, %) which does not contain 7. For
71, the periodic point R™ is defined. Since the path does not contain 79, there is exactly
one of the two distinct periodic points in A, (.,) ., for 7 which is the continuation of R™.
We denote it by R”. Since the map 7 — R7 restricted on D\ID(0, 1) is continuous, this
choice is independent of a particular choice of 71 in D\ID(0, 2). Then we have defined a
map 7 — RT on D. It is clear that near any point of D\{70}, R" is locally the continuation
of the same periodic point of F, then it is holomorphic. The map 7 — R” is holomorphic
on D\{7o}. It is trivial that it is continuous at 79. Then it is holomorphic on D. As we
already said, from now on, we go back to the coordinates in the canonical basis and we
call ¥, the local coordinates we just used near the tangency point Q. We will use ¥, a
last time at the end of Step 4.

Step 4 : R" is a sink

We now show it is possible to pick 7 such that R” is a sink. From now on, we fix
a neighborhood 7 C 71 of 0. Recall that @ belongs to the small neighborhood P of
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Py defined in Step 1. We denote by n = n; + ng such that for k = 1,...,n1, FF¥(R")
is in P and FMT(R7) ¢ P. We express all matrices in the 7-dependent basis given
by the 3 eigenvectors e,es,e5 of D(Fy)(R™) (the matrix DF''(R") is diagonalizable
according to Step 1). We have that e; € C¥, e5 € C*° and e5 € C°°. Then, in this basis,
the matrix DF(R") is of the form DF!"'*"2(R") = DF}?(FI(R")) - DF*(R"). The
matrix DF' (R") is of the form:

A O 0
0 A2 O
0 0 As

We have that (|Ag] —n)" <[A1] < (As]+m)"", (A" = n)™ < [As| < (]A5°] +n)"* and
(IA6°] =)™ < |Az] < (JA§°| +m)™. The matrix DF?(F7'(R7)) is of the form:

A B C
D E F
G H 1T

Since €} € C*, e, € C*°° and e € C°® and these cones are disjoint with n2 bounded, the
coefficients A,B,C,D,FE,F,G,H,I are bounded in modulus by some constant K which is
independant of 7, n and ni. Then we have:

AAi BAs CAj
DEM*™™2(R™) = [ DAy  EA> FAs
GAr HA; IAz

Let us suppose that AA; = 0. There exists € > 0 such that if the characteristic polynomial
of DFM'™2(R™) is X3 + a2 X? 4+ a1 X + ao with |ao| < ¢, ]a1| < ¢, |az| < ¢, then the 3
eigenvalues of DEI* ™2 (R") are of modulus lower than 1 and then R” is a sink. We are
going to show that it is possible to get a lower bound on n; so that it is always the case.
The coefficients of the characteristic polynomial of DF***"2(R") are :

az = —(AA, + EAs + IA3),
a1 = (EIA2As — FHA2A3 + ATA1As — CGA1As + AEA1 A2 — BDA1As),
ap = — det(DF[?(FI (R7)).
We have: |ao| = |det(DF/?(F/"* (R")))| < 6K*|A1A2As| < 6K°((IA6°| +n)(IAG] +m)™

which tends to 0 when n; — +oo because (JA§°| +1)(JA\g| +7) < 1 (remind that Py is a
sectionally dissipative periodic point). We increase n; such that |ag| < e. We have that:

lax| < 657 max(|A1Az|, [A1As], [A2As]) < 6K ((IAG] +m)(1AG] +m)™",

which tends to 0 when n; — 400 because (|[A5°| +n)(|A6|+7n) < 1. We increase n; further
such that |a1]| < e. Finally, in the term a2, both EAs and I'As tend to 0 when ny — 4o0.
The term AA; is equal to 0 by hypothesis. We increase ni a last time such that |az| < e.
Finally, we pick N4 > N3 such that n; is sufficiently high in order to satisfy the previous
inequalities. Finally, the three eigenvalues of DF™ ™ "2(R") are of modulus lower than 1
and R" is a sink.

It remains us to show that for a given neighborhood ¢ € 7 of 0 and the corresponding
neighborhood of 0 for 7 (remind that ¢ = 72), it is possible to pick a new bound N on n,
such that for n > Ng, there is a parameter 7 = 7(n) such that the differential DF (RT)
satisfies AA; = 0. To show this, we work again in the coordinates ¥, for the map F.
We denote by II the projection of the plane ¥, (W*(P,2)) = {21 = 0} into P*(C). The
projection II is a holomorphic curve. We denote by T' the holomorphic curve in P?(C) given
by the tangent directions to the curve W, (W¥(Pp)) = {z1 = 23,22 = 0}. Since there is a
generically unfolded quadratic tangency at 7 = 0 between W*(Fy) and W*(FP,), there is
a transverse intersection between IT and T'. Moreover, P?(C) is of dimension 2. We take a
small disk A’ going through W, (R") of direction DV, (R")-e}. For a given n > Ny, we call
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T}, the complex curve in P?(C) given by the tangent directions to the curve ¥, (Fr(A"))
at the periodic point ¥-(R") when 7 varies. By the Inclination Lemma, we can increase
the bound N5 > N4 on n such that if n > Ns, pry(¥,(R")) can be made as close to it as
wanted and W, (F*(A’)) can be taken as close to {z1 = 23 4, z2 = 0} in the C" topology.
In particular, this shows that the graph I'), can be taken as close to the graph I" as wanted
(in the C*-topology) by increasing the bound Ns. In particular, we can pick N5 such that
there is a transverse intersection between I'j, and II if n > Ns. There is a last step to get
AA; = 0. We denote by I’ the projection of the plane Vect(DVU.(R")-e5, DU, (R7)-e3) in
]P’2((C), IT' is a complex curve. Since e and ej are the two stable eigenvectors of DF'' (R7),
it is an easy consequence of the Inclination Lemma that if n and then n; tend to infinity,
then II' tends to II (locally as graphs in the Cl—topology). In particular, it is possible to
pick a last bound Ng > N5 on n such that if n > Ng, then I'), and II’ have a transverse
intersection. Then there exists 7 with ¢ = 72 € 7 such that DF"(R") - e} € Vect(e, e})
which is equivalent to AA; = 0. For this parameter 7, we already saw that R" is a sink.

This is true for every neighborhood 7 of 0 and it is clear that R™ tends to Q when
reducing 7. The result is proven: for every neighborhood Q of @ and every neighborhood

T of 0, we can create a sink in Q for F; with ¢t € T. O
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