Persistent homoclinic tangencies and

infinitely many sinks for residual sets of

automorphisms of low degree of C?

Abstract

We show that there exists a polynomial automorphism f of C? of de-
gree 2 such that for every automorphism g sufficiently close to f, g admits
a tangency between the stable and unstable laminations of some hyper-
bolic set. As a consequence, for each d > 2, there exists an open set of
polynomial automorphisms of degree at most d in which the automor-
phisms having infinitely many sinks are dense. To prove these results, we
give a complex analogous to the notion of blender introduced by Bonatti

and Diaz.
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1 Introduction

1.1 Background

Hyperbolic systems such as the horseshoe introduced by Smale were originally con-
jectured to be dense in the set of parameters in the 1960’s. This was quickly discovered
to be false in general for diffeomorphisms of manifolds of dimension greater than 2 (see
[1]). The discovery in the seventies of the so-called Newhouse phenomenon, i.e. the ex-
istence of residual sets of C?-diffemorphisms of compact surfaces with infinitely many
sinks (periodic attractors) in [16] showed it was false in dimension 2 too. The technical
core of the proof is the reduction to a line of tangency between the stable and unstable
foliations where two Cantor sets must have persistent intersections. This gives per-
sistent homoclinic tangencies between the stable and unstable foliations, ultimately
leading to infinitely many sinks. Indeed, it is a well known fact that a sink is created
in the unfolding of a generic homoclinic tangency.

Palis and Viana showed in [17] an analogous result for real diffeomorphisms in
higher dimensions. We say that a saddle periodic point of multipliers |Ai| < |[A2] <
1 < |As| is sectionally dissipative if the product of any two of its eigenvalues is less
than 1 in modulus, that is, [A1A3] < 1 and |A2A3] < 1 . More precisely, they proved
that near any smooth diffeomorphism of R?® exhibiting a homoclinic tangency asso-
ciated to a sectionally dissipative saddle, there is a residual subset of an open set
of diffeomorphisms such that each of its elements displays infinitely many coexisting
sinks.

In the complex setting, this reduction is not possible anymore and to get persistent
homoclinic tangencies, we have to intersect two Cantor sets in the plane. Let us denote
by Auty(C*) the space of polynomial automorphisms of C* of degree d for d, k > 2.
Buzzard proved in [7] that there exists d > 0 such that there exists an automorphism
G € Autq(C?) and a neighborhood N C Autq(C?) of G such that N has persistent
homoclinic tangencies. Buzzard gives an elegant criterion (see [6]) which generates
the intersection of two planar Cantor sets, hence leading to persistent homoclinic
tangencies. In his article, Buzzard uses a Runge approximation argument to get a
polynomial automorphism, which implies that the degree d remains unknown and is
supposedly very high.

In the article [4], Bonatti and Diaz introduce a type of horseshoe they called blender
horseshoe. The important property of such hyperbolic sets lies in the fractal configu-
ration of one of their stable/unstable manifold which implies persistent intersections
between any well oriented graph and this foliation. In some sense, the foliation behaves
just as it had greater Hausdorff dimension than every individual manifold of the folia-
tion. They find how to get robust homoclinic tangencies for some C"-diffeomorphism
of R® using blenders in [5]. In the article [8], one can find real polynomial maps of
degree 2 with a blender. Other studies of persistent tangencies using blenders include
[3] and [2].

1.2 Results and outline

In this article, we generalize Buzzard’s Theorem to dimension 3 and show that the
degree can be controlled in this case. Here is our main result :

Main Theorem. There exists a polynomial automorphism f of degree 2 of C* such
that for every g € Aut(C?) sufficiently close to f, g admits a tangency between the
stable and unstable laminations of some hyperbolic set.

Notice that in the previous result, g is not assumed to be polynomial.



Corollary 1. For each d > 2, there exists an open subset of Auty(C?) in which the
automorphisms having a homoclinic tangency are dense.

Corollary 2. For each d > 2, there exists an open subset Autq(C®) in which the
automorphisms having infinitely many sinks are dense.

Let us present the main ideas of the proof of this result. We consider the following
automorphism of C3 :

fo: (z1,22,23) — (pc(Zl) + bzo + 023(21 — a),z1,)\zl + pzs +v) (1)

where p. is a quadratic polynomial and the coefficients b, A\, u, v, a are complex num-
bers. We prove that fo has a horseshoe Hy, of index (2,1) : the first direction is
strongly expanded, the second one is strongly contracted and the third one is mod-
erately contracted by fo. Informally speaking, the third projection restricted to g,
satisfies a special "open covering property" formalized in the following definition. This
is an analogous in the complex setting of the notion of cs-blender in the sense of Bonatti
and Diaz.

Definition (Blender Property). Let f be a polynomial automorphism of C*, D a
tridisk of C* and Hy = T f"(D) a horseshoe of index (2,1). We will suppose that
there exist k > 1 and three cone fields C*,C**,C°® such that in D :

1. C* is f-invariant

2. C*% is f~ -invariant

3. every vector in C" is expanded by a factor larger than k under f

4. every vector in C** is expanded by a factor larger than k under f~!
5. every vector in C°* is expanded by a factor larger than 1 under f~*

We will say that Hy is a blender if there exists a non empty open set D' @ D such that
every curve tangent to C** which intersects D' intersects the unstable set W"(Hy) of

My

Besides, we show that fo has a periodic point which is sectionally dissipative. Once
the blender is constructed, finding persistent tangencies is not trivial. We introduce
manifolds with special geometry called folded manifolds. We prove that any folded
manifold which is in good position has a tangency with the unstable manifold of a
point of Hs,. We choose the parameters ¢, b and o in order to create an initial hetero-
clinic tangency between the unstable manifold of a point of Hy, and a folded manifold.
This folded manifold is in good position and included in the stable manifold of another
point of Hs,. This enables us to produce persistent heteroclinic tangencies between
stable and unstable manifolds of points of Hy,. This gives rise to homoclinic tangen-
cies associated to the sectionally dissipative point. By a classical argument going back
to Newhouse, this provides a subset of the set of automorphisms of degree 2 in which
automorphisms with infinitely many sinks are dense.

The plan of the paper is as follows. In section 2, we choose a family of quadratic
polynomials and we fix complex coefficients A, u,v. In section 3, we introduce the
map fo which depends on three parameters c,b, 0 and the associated horseshoe and
we show show that it has the blender property. Then, in section 4, we introduce
the formalism of folded manifolds and we give the mechanism which gives persistent
tangencies. In section 5, we prove that it is possible to choose fy in order to have a
heteroclinic tangency. Finally, we prove the main Theorem in section 6. In Appendix
A, we explain how to construct a sink from a sectionally dissipative tangency.

Note: This article is a complete rewriting of a first version released on arXiv in



November 2016. In that version the polynomial automorphism f was of degree 5. To
the best of the author’s knowledge, the notion of blender was used there for the first
time in holomorphic dynamics.

Acknowledgments : The author would like to thank his PhD advisor, Romain
Dujardin as well as Pierre Berger for useful comments. This research was partially
supported by the ANR project LAMBDA, ANR-13-BS01-0002.

2 Preliminaries

2.1 Choice of a quadratic polynomial

In the following, we will consider the euclidean norm on C" for n € {1, 2, 3}.

Notation 2.1.1. We denote by D C C the unit disk, and by D(0,r) the disk centered
at 0 of radius r for any r > 0. In particular, D(0,1) = D.

Notation 2.1.2. We will denote by dist the distance induced by the euclidean norm
on C" forn € {1,2,3}.

Notation 2.1.3. For every z € C* and i € {1,2,3}, we denote by pr,(z) the i*"-
coordinate of z.

In the following proposition, we carefully choose a family of quadratic polynomials
with special properties.

Proposition 2.1.4. For every integer q > 1, there exists a disk C C C of center
co € C, a holomorphic family (pc)cec of quadratic polynomials, two integers m and r,
a disk D' with D C D' such that we have :

1. for every c € C, p;"(D) (resp. p;" (D)) admits two components D1,Da (resp.

1,5 ) included in D (resp. D') such that p, is univalent on both D1 and Do

(resp. D} andD3). Denote by oe = (,,500e) " (D1) andve = (,,50Pe) " (D2)
which are two fixed points of pe. B B

2. for every c € C, a. is a repulsive fized point of pe, |p.(ac)| > 2 and we have :
A= racy # Yeo + Peo(Yeo) + o+ iy | (vey) 1= B and |[A— B| > 1

3. the critical point 0 is preperiodic for ¢ = co : pey(0) = ac, and at ¢ = co, we
have : %(pf:”(O)) #0

4. there exists R > 0 such that D' C D(0, R) and such that the Julia set of p. is
included in D(0, R) for every c € C

5. for every ¢ € C, p. has a periodic point d. of multiplier of modulus between 1
and (1 + 1071014,

Proof. We begin by working with the family of quadratic polynomials p.(z) = 2% + ¢,
we will rescale at the end of the proof. Let us fix an integer ¢ > 1. We begin by
taking the only real quadratic polynomial p,(z) = z? + a with one parabolic cycle
da of period 3. In particular, a < —1. Simple calculation show that z? + a has the
fixed point ag = 2(1++/1—4a) > 1. For any z € C such that |z| > 10, we have
|pa(2)] = |22 4+ a|] > 10 - |z| — |a|] and then |pZ(2)| — +oo. This shows that the Julia
set of p, is included in D(0,10). We take a ball B’ C D(0,10) around a, which is
disjoint of the orbit of the critical point 0 of 2% + a (this is possible since the critical
orbit tends to the parabolic orbit of 22 +a). We denote by B the ball of center a, and

radius rad(B) = 1555rad(B’).



We now choose a repulsive periodic point 7, of period ro inside B’ non equal to
o, with special properties. Let us first point out that since B intersects the Julia
set of pg, there exists an integer ro such that p;°(B) contains the whole Julia set of
Ppa- In particular, all the periodic orbits of period ro have a point in B. It is pos-
sible to choose such a periodic point 7, of period 7o inside B non equal to a, such
that va + pa(Va) + -+ 4+ P27 (Va) # To0a. Indeed, every periodic point of period
ro is a solution of pi°(z) = z whose coefficient of degree 2™ — 1 is equal both to 0
and to the sum z' + --- + 2% of all the solutions of pi°(z) = z (with multiplicity).
If we had 2° + ---p°(2%) = roaq for every z° # au, then we would find o, = 0,
which is impossible. Then it is possible to find some periodic 7, of period r¢ inside
B non equal to a, satisfying this inequality. We fix this point v,. There exists a ball
B, € B (with aq € I@l) and an integer r1 such that p,' (]ﬁ%l) contains B’. Since B’ is
disjoint of the orbit of the critical point 0 of p,, it is possible to find a component of
p. ' (B') € B € B’ where pJ! is univalent. Similarly, we can find an integer 72 and a
component of p,"2(B') € B € B’ where pj,2 is univalent. Taking a multiple 7 of ¢, 71
and r2 if necessary, we can suppose that we have two components B} and B5 of p; " (B')
where p., is univalent, such that a, € Bf, v, € B5 and both o, and v, are fixed points
of pj;. There are components B; € B} and B; € B of p, " (B) where p}, is univalent and
with aq € B and v, € Bs. Since Yo +pa(vVa)+-- ~+p£°71('ya) # roaq and r is a multiple
of ro, we have raq # Yo + pa(ya) &+ -+ pi (7). Then, taking a multiple of r if nec-
essary (we will still denote it by ), we have : |[raq — (Ya+pa(Ya)+- - -+05 *(7a))| > 10.

Then it is possible to fix some neighborhood C, of a in C such that for every ¢ € C, :
1. the continuation a. of a, is a repulsive fixed point in B’ such that |p}(a.)| > 1
2. the Julia set of p. is included in D(0, 10)

3. the continuation . of d, is of multiplier of modulus between between (1 —
10710)Yam and (14 107 10)Y/am

4. roe # Vet pe(ve) +- - +pe (e) and [rae — (e +pe(ve) + - +pE T (ve))| > 10

5. pz"(B) (resp. p;"(B')) admits two components By, Bo (resp. B}, B5) included
in B (resp. B') such that p. is univalent on both By and B> (resp. B} and B5)

The parameter a belongs to the Mandelbrot set. Misiurewicz parameters are dense
inside the Mandelbrot set so it is possible to find a parameter ¢ inside C, such that
the critical point 0 is preperiodic for pz. The critical point 0 is sent after a finite
number of iterations of pz on a periodic orbit. This periodic orbit is accumulated by
preimages of az by iterates of ps. Then by the Argument Principle it is possible to
take a new Misiurewicz parameter co € C, such that 0 is still preperiodic but with
associated orbit the fixed point a.,. There exists an integer m such that p; (0) = ac,.
The inequality %(péﬂ (0)) # 0 at ¢ = ¢o is a direct consequence of Lemma 1, Chapter
5 of [10]. For the parameter cg, d¢, is of multiplier of modulus between between 1 and
1+ 10710)1/‘”. We pick some ball C C C, of center ¢p where this is still true.

For each ¢ € C, we do a rescaling by an affine map so that after rescaling B is sent
on D. Properties 1, 3 and 5 are still true. Property 4 is still true with a disk D(0, R)
with a fixed R > 0 instead of D(0,10). Since rac # Ye + pe(ve) + -+ + 05 (7e)
and |rac — (Ve + pe(ve) + --- + pi ()| > 10 before rescaling, we have A # B
and |A — B| > 1 after and then Property 2 is true. Then Properties 1, 2, 3, 4
and 5 are satisfied for every ¢ € C. In the following, after rescaling, we will denote
B,B’,B",B1,B2,B},B5 by D,D',D"”, D1, D2, D, D5. For simplicity, we will still denote
by pc the polynomial after rescaling. O



2.2 Choice of an IFS

Notation 2.2.1. For every c € C, we denote by h1 and ha the two inverse branches of
pi on D’ given by Proposition 2.1.4 such that e = (1,50 M1 (D) and e =(),,50 75 (D).

Notation 2.2.2. We denote po = (1 — 1074)$ -e" 2 which depends on the integer
q. In particular, we have the following equality : pl™ = (1 —107%) - ez,

In the following result, we iterate g times the maps h1 and he with a specific choice
of the integer q. Remind that A,B and R were defined in Proposition 2.1.4.

Proposition 2.2.3. Reducing C if necessary, there exists an integer q such that for
every c € C :

1. < |(R])] < 2 with C > 10" on a neighborhood D" of D with D C D" C D'
2. diam((h(D")) < 10" - dist(hd(D"), OD)
3. for every z € h{(D') and 0 < n < gr(1 — 107 % 'R~ min(1,|A — B))) :

n+r—1

pope T T 2) + -+ b PR (2) € D(A, 10710 - |A - BY)

4. for every z € h4(D') and 0 < n < gr(1 — 107 'R~  min(1,|A — BJ)) :

pope TN z) - pp e (2) € D(B,107 - |A = BY)

Proof. We first show the result for ¢ = ¢p. According to the Schwarz Lemma, it is
possible to find some ball D” with D € D” € D’ such that |k} < e < 1 on D".

We reduce the radius of B” so that rad(B”) < 1i;rad(B’). Then, taking ¢ such that
e? < 107", we have |(h)'| < 107! on D". Since the radius of D is smaller than 100

1 1-0.01 140.01

times the radius of D’ and since 2 < Groo? < {iz0.01)3

< 2, it is a consequence of

the Koebe Theorem that there exists C' such that & < [(h)'| < & with C' > 10
on D". Since h; is a contraction such that (1,5, A1 (D) = {ac} and ,5, k3 (D) =
{7e}, increasing the value of ¢ if necessary, we have that diam((h{(D’)) < 107

dist(h?(ID'), D). When g — oo, we have that pu§ — 1 and p™"(z) = e, for 0 < k <
r,0<n<gr(l—10""% "R min(1,|A — B|)) and z € h{(D’). Then, increasing the
value of ¢ if necessary, we have that ,ugpg;”ﬂ(z) 4+ pg_lpgg (z) € D(A,1071°|A -
B|). The proof of the last item is similar. Since all these conditions are open, reducing
the ball C of center ¢y if necessary, they stay true for every c € C.

O

Notation 2.2.4. From now on, we fiz such a value of q and the associated value po.

2.3 Choice of the parameters \ and v

Notation 2.3.1. We denote by A" = (u{ "acy + -+ + popey (aey)) and B’ =
(o™ Yeo + -+ 1OPL " (Yeo))-
According to Proposition 2.2.3, we have A’ € D(A4,107'°|A — B|) and B’ €

D(B,107°|A — B]|). According to item 2 of Proposition 2.1.4, this implies that
|A"—=B'| > 3|A-B| > 1.

Proposition 2.3.2. There exist two constants A\, v such that |A\| < 1 and:

/ T r—r r— 9 -
At i+ )+ vt o+l ) = 5107

r r—r r— 9 —
AB'(Lt g+ ") 4wl pio + oo+ ) = =5 - 107



Proof. We have : 1+ uj + - —|— " = (1= pd")/( — pp) # 0. We also have
T4 o+ +pd =0 —pd")/a1 - ug) # 0. Since A" # B’, it is possible to
take two coefficients A and v so that the images of these two complex numbers by
2 N+ pb+ 4+ pd )z + (14 po + -4 pd"') are respectively 2 .107* and
—%-107"

Lemma 2.3.3. We have :

TS T bl o™ -+ ol ™ S0 (1 gy g

Proof. We have : 1 < 1,% < |,u6\,...,2 < |pd

5 | so the first inequality is trivial.
Since every term p"" (0 < n < g — 1) has a positive real part and this real part is
larger than § for 0 <n < *1, we have Re(1 + uf + pd" 4 -4+ pd" ") > q—*l -1 and
then1+\uo|+|uo|2r+ A+ |po| T < g <10- 454§ < 10- |1+uo+uo +- +u‘" .

The proof is complete. O

qr—r

We have : |A[|A" = B'|[1+pg+ -+ pd" " =25 -10"* with |4’ — B'| > } and

|1+ pup+ -+ pd" "] > 1 according to the previous lemma. This implies that |A| < 1.

O

Corollary 2.3.4. Reducing C if necessary, there exists a neighborhood B, of po such
that for every c € C and p € B, we have :

1. for every z € hi(D'), we have :
gr—1 9 —4 —10
v A (=) v e (v 22)) € D( - 107 1071)

2. for every z € hi(D'), we have :

y £ AL @)l v+ X2) € D(= 1107 1071)

Proof. We first prove the result for ¢ = ¢o and p = po. According to Proposition 2.3.2,
we have :

, 9 _
Vo Ny ) + a4 A2)) — 1107 =

qr—1

AZ qT - n ) — Q) 1o +AZ pg; - n _aeo)ﬂg

where [ is the largest integer such that [ < 10_10% min(1,|A — BJ|) and which is
a multiple of r. In particular, gr — [ is a multiple of r. Using the third item of
Proposition 2.2.3 :

qr—1

IAZ T2 — ey )] < A 1070 A = Bl - (14 [aol” + Jpol® + -+ + o] )

Since |A|-|A— B[ 14+ 3" +- 48| < \- 204" = B'|[ 1+ a4+ -+ "] =
2-2- 9 -107* and since 14| u§| 4 o[> 4 -4 o] "7 < 10+ |14 ph 4+ pd" +- -+ ud" 7|
accordlng to Lemma 2.3.3, we have :

qr—1

A - Z I 2) — )| <10710-3.1071 10 < 107



Then, because D' and the Julia set of p, is included inside D(0, R) (see item 4 of
Proposition 2.1.4), we have :

-1
IADE () = ac)us | S A2 R (L |po] + [pol” + -+ 4 |uol'™1) < A - 2R -1
n=0

q |[A-B|

<IA-2R-107°% min(1,)A—B)) <1079 )| £ <102 \- 2.4 - B
< [A[-2R-1077 - min(1, | ) <1077 A S - =5 <107 5| |

g10*9.\A|-\A’—B’\~10~|1+u0+u8+~~+ug”|310*8.2~%-10*4g3.10*“

since £ < 10|14 puf + po” + -+ + pd"~"| according to Lemma 2.3.3. Then we just
have to sum the two inequalities to get the result for ¢ = ¢p and u = po. Then by
continuity, since the inequality is open, it stays true for every p in some ball B, of
center po and ¢ € C after reducing C if necessary. Then item 1 is true and the proof
of item 2 is similar. The result is proven.

O

Remark 2.3.5. Since |uo| = (1 — 1074)#, we reduce B, if necessary so that |u| <

(1—-10"*+ 10—10)$ for every p € B,. If necessary, we reduce it another time so that
for every p € By, we have [u?7" >1—2-107%.

2.4 Choice of the parameter p

In this subsection, we slightly perturb the coefficient p into a new value p in order
to satisfy some equality for a product of matrices. Notice that this choice has nothing
to do with the next section and the blender property, it will be useful in Section 5.

Notation 2.4.1. We denote Bo =0,...,Bm = Q-

Notation 2.4.2. For every u € B, we define : wo = 0+ 1 (Bo — Bm), w1 =
Peo (Br)wo + p(Br = Bm) -+ and wm—1 = Py (Bm—-1)wm—2 + p™ (Bm-1 — Bm) where
p::() (/80) = 0’ p/co (/81)7 U 7p/co (/Bm—l) 7é 0.

Definition 2.4.3. Since Bym—1 — Bm # 0, wm—1 is a polynomial of degree m in the
variable u so we fix some p € By, such that wm—1 = Wm-1(p) # 0.

Notation 2.4.4. We denote for everyoc € C, 0 <n <m —1:

Peg(Bn) 0 0(Bn — Bm)
M = 1 0 0
A 0 "

Proposition 2.4.5. We have : MJ,_,---M§ - (0,0,1) = (¢1(0),¢2(0),¢3(0)) where
C1,Ca, s are holomorphic such that (1(0) = wm—1 -0+ O0(0?) and (3(0) = p™ + O(0).

Proof. Tt is a straightforward consequence of Definition 2.4.3. ]

Simple calculations yield the following corollary (the important fact is that p, (8o) =
0). The proof is left to the reader.

Corollary 2.4.6. Let €7, €5, €5 be three holomorphic functions such that €7 (o) =
O(0), €5(0) = O(0?) and €3(0) = O(c) for 0 < n < m — 1. Let us denote for every
ceC,0<n<m-—1:

Peo(Bn) + €1 (o) €3(0) o(Bn+e5(0) = Bm)
Ny = 1 0 0
A 0 m



For every holomorphic maps &1,&2 such that &1 (o) = O(o) and &2(0) = O(o), we get :

m—1Ng - (€1(0),&2(0),1) = (C1(0),C2(0),C3(0))

where (1,(2,(s are holomorphic such that (1(0) = wm—1 - o + O(c?) and (3(0) =
u™ +O(0).

3 Construction of a blender

In this section, we construct a polynomial automorphism fo of C*. We show that
fo has a horseshoe Hy, and that Hy, is a blender.

3.1 Three complex dimensions : the map f

We consider now the 3 dimensional map fo introduced in (1) given by fo(z1, 22, 23) =
(pe(2) + bza + 023(21 — @y ), 21, A21 + pzs + v). It is clear it is a polynomial auto-
morphism for ¢ € C and b # 0. In the following, we will see that the first direction is
expanded by fo and corresponds to the direction of the unstable manifolds of a hyper-
bolic set we are going to describe. The second and third directions are contracted by
fo and correspond to the directions of the stable manifolds of this hyperbolic set.

Notation 3.1.1. C* = {v = (v1,v2,v3) € C* : max(|vz|,|vs]) < 107° - oy |} C*° =
{v = (v1,v2,v3) € C*: max(|v1], |vs|) < 107° - |Jva|} and C°° = {v = (vi,ve,v3) € C*:
max(|vi, [va]) <107 - Jus[}

We now give a non general definition of a horseshoe which is specific to our context.

Definition 3.1.2. Given an automorphism F : C® — (CB, a tridisk D = D1 X Do X

D3 C D? and an integer p > 1, we say that Hrp =, ., F™(D) is a p-branch horseshoe
for F if :

1. F(D)N D has p components D¥"" which do not intersect D1 x d(Da x D3)

2. Ffl(D) N D has p components D¥* which do not intersect 0Dy x Dy x Ds

3. the cone field C* is F-invariant on U1§jgp D?% and the cone field C*° is F~'-
invariant on J, ;o D"

nez

4. there exists Cr > 2 such that at every point of Ulgjgp D?* | for every v € C,
we have : [|[DF(v)|| > Cr|[v|| and at every point of U,<;<, D", for every
v € C*%, we have : ||D(F™Y)(v)|| > Cr||v|| and for every v € C**, we have :
2|[vll > [IDE=H @) > [[v]]-

Proposition 3.1.3. If Hr =),z F"(D) is a p-branch horseshoe, then it is a horse-
shoe in the classical meaning of this term, that is a compact, invariant, transitive,
hyperbolic set .

Proof. The set (), ., F™(D) is compact as an intersection of compact sets and F-
invariant by definition. Moreover, one can take the (non necessarily) decomposi-
tion C* ~ R® = CPC? ~ R*PR* and the associated constant cone fields C¥ =
{(v,v2,v3) « [Jva][ > [[(v2,v3)|]} and Cg = {(v1,v2,v3) : [[(v2,v3)[] > [|va][}. The def-
inition above implies that both Cf is F-invariant and C§ is F~'-invariant. Moreover,
they are expanded by a factor larger than 1 respectively under F' and F~'. Besides,
the sets D" do not intersect Dy X 9(D2 x D3) and the sets D?® do not intersect

0Dy x Dy x D3. Then ﬂnEZ F"(D) is a horseshoe in the sense of Definition 6.5.2 of
[15]. According to the discussion following this definition, ., F™(D) is hyperbolic
(this is also a straightforward application of the cone field criterion, Corollary 6.4.8 in
[15]) and is topologically conjugate to a shift. In particular, it is transitive. This ends
the proof of the proposition. O



Remark 3.1.4. For our definition, a p-branch horseshoe has one unstable direction
and two stable directions. It is also straightforward that if F" has a p-branch horseshoe,
then F? has a p®-branch horseshoe.

Definition 3.1.5. We say that a saddle periodic point of multipliers |A1] < |A2] < 1 <
[As| is sectionally dissipative if the product of any two of its eigenvalues is less than 1
in modulus, that is, |A1As| < 1 and |[A2As| <1 .

In the next proposition, we prove that if b and o are sufficiently small, then some
iterate of fo = fc,b,0 has a 2-branch horseshoe. Moreover, we introduce a neighborhood
F of fo where this property persists. In section 5, we will make a particular choice
of ¢, b and o so that the stable manifold of a periodic point of fy will have special
properties, which will persist in a new neighborhood F’' € F of fo in Auts(C?).

Proposition 3.1.6. Let fo = fc b0 be the polynomial automorphism of C? introduced
in (1) with ¢ € C. Then, there exists 107 > by > 0 and 107'° > o¢ > 0 independent
of ¢ € C such that if 0 < |b| < by and 0 < |o| < o0, then Hp, = N,z (f&)"(D3) is a
2-branch horseshoe. Moreover, fo has a fived point §y, that is sectionally dissipative
and belongs to the homoclinic class of the continuation ay, of cv. These results remain

true for any f in some neighborhood F = F(c,b, ) of fo in Auta(C?).

Proof. The limit set of the IFS defined by the two local inverse h{ and h of p" is a
basic repeller in C. The map feco0,0 : (21,22,23) — (pe(21), 21, Az1 + pz3 + v) is such
that f27 ,(D3) has 2 components which are 2 graphs over the coordinate z1, which are
included in D® and which do not intersect D x O(D x D). For these two graphs, the
coordinate 22 lies respectively in D1 and Da. The third coordinate of fZ5 ; is equal
to v+ Apd (1) + p(v + -+ p(v + Az1)) + p?723. According to Corollary 2.3.4,
v+ A () + p(v A+ -+ p(v + Az)) € D(x25 - 107%,107"°) and we have that
|7 <1 —10"* 4107 (see Remark 2.3.5), so the coordinate z3 lies in I for these
two graphs. Then, by continuity there exists 107'° > ¢y > 0 such that for every
0 < |o| < oo, fI5,(D3) has 2 components which are graphs over the coordinate 21
which are included in D3. For these two graphs, the coordinate zo lies respectively
in DY and D5 and the coordinate z3 in . The distance to D x O(D x D) of each of
these two graphs is strictly positive and bounded independently of 0 < |o| < g. Then
this implies that there exists 107 > by > 0 such that for every 0 < |b] < bo and
0 < |o| < g0, f¥, (D3) has two connected components D" and D** which are two
tridisks which do not intersect ID x O(D x D). This proves item 1 of Definition 3.1.2.
The proof of item 2 is similar and gives two components D** and D?* in ;f:’ (D3).
The cone field C* is f{"-invariant on D'* U D** and dilated under fJ" by a factor

at least 107 because |h| < 107" on h(D") (see item 1 of Proposition 2.2.3). For the
same reason, the cone field C*° is f; /" -invariant on DY* U D?* and dilated under
fo %" by a factor at least 10°. This shows both items 3 and 4 of Definition 3.1.2. Then

Hio = Npez(fo7)"(D3) is a 2-branch horseshoe.

The periodic point . is of multiplier of modulus between 1 and (1 + 1071)/ar,
Then by continuity the periodic point §f, continuation of the periodic point d. of p. is
a saddle point of expanding eigenvalue between 1 and (1+2- 10710)1/‘” after reducing
bo and o9 if necessary. It has two contracting eigenvalues. When b = o = 0, one is
equal to 0 and the other one is a power of y with |p| < (1—-107*+ 1010)# (see Remark
2.3.5). Then, by continuity, reducing by and oo if necessary, the saddle point dy, is
sectionally dissipative. We denote by Wi, (as,) the component of W*(acs, ) NID® which
contains ay,, and we use the same notation for stable manifolds and other periodic
points. For sufficiently values of b and o, both WiZ.(ds,) and Wit (ay,) are graphs
over z1 € D and both Wi (65,) and Wi (ay,) are graphs over (22,23) € D?. Then
reducing bp and og if necessary, Wit.(ay,) and Wi (04, ) intersect and Wy (ay,) and

10



Wis.(dy,) intersect.

Finally, since all the conditions of the proposition are open, these results stay true
for any f in some neighborhood F = F(c,b,0) of fo in Aut(C*). This concludes the
proof of the proposition.

O

3.2 Blender property

In this subsection, we show that the third coordinate of f € F has some kind of
open-covering property. As we already said, since f?" € F has a 2-branch horseshoe,
then 27" has a 4-branch horseshoe. We are interested in the geometric properties
of the third coordinate of f29". Here, we use it to show that the 4-branch horseshoe
associated to f29" is a blender. Remind that the maps hi1 and ho were defined in
Notation 2.2.2.

Definition 3.2.1. For f € F, we denote f7"[j] the restriction of f" on h{(D")xD'xD.
Then, we define Vi = I [1](R1(D") x D" x D")ND? and Vo = f[2](h4(D") x D" x
D) ND?. We define Uy = f7[1](Vi) N V4, U2 F2](Vi) NVa, Us = fI7[1](Va) N V4
and Uy = f77[2](Va2) N Va. We define g; = f‘Uj for1 < j<4.

Lemma 3.2.2. Reducing by and oo if necessary, for any f € F and j € {1,2,3,4},
we have : diam(pr,(U;)) < 1071 - dist(U;, D x 9D x D).

Proof. Reducing by and o if necessary, we have pry(V1) C h¥(D"”) and pry(V2) C
hi(D"). But we have diam((h(D")) < 107'" - dist(h?(D"), OD) according to Propo-
sition 2.2.3. Then we have : dlam(prz(U ) < max(dlam(pr2(V1) diam(pr,(12))) <
1071 - dist(U;, D x D x D).

Lemma 3.2.3. Reducing by, oo and F if necessary, we have :
1. Vz € f7(V1), pra(f97(2)) € D(u" 23 + 1% 1074,1077)
2. Yz € f~7(Va), prs(f97(2)) € D(u" 23 — 55 - 107*,107?)

Proof. For o = b = 0, it is a simple consequence of Corollary 2.3.4. Then, by continuity
we just have to take sufficiently small values of oo, by, F to get the bound 107°. O

Notation 3.2.4. We denote c; = 2 - 107" (1 +1i),c2 = - 107"+ (=1 +1i),c3 =

2107t (1—i),ca= 51071 (=1 —14)
A double iteration of the previous proposition implies the following result :
Corollary 3.2.5. For every z € Uj, we have pry(g;(2)) € D(—5= BT 28— Cj 107%).
We show an open covering property for the affine maps z — 2q, z —cj.
Proposition 3.2.6. For every z € D(0, 1), there exists j € {1,2,3,4} with :
1

——2z—¢; €D, — — 10"

P 015 )
Proof. We check that the union of the images of D(0, 1—0 —10™*) under the four affine
maps z — p24"z —|— ¢;j contains D(0, 15). It is enough to show that for every point z of
the set {2z : |2| = 15 and 0 < Arg(z) < I}, z — c1 belongs to the disk D(0, |u[*?" - &
(1- 1074)) Let us pomt out that |u\2‘" >1-2-10""* (see Remark 2.3.5). We have
z—c]* = (z— —? 1074 + (y — 3% - 107%)°. Since z° +y* = (15)°, at least z or y is
larger than % - 7. Then :

s 1 1 19 9 . 4o
— —)2_9.— . —.ZL .10 2.(=.10
|z =l < () V2 1010 +2-(35 )



1.2 —4 1.2 —4y2 2gr 1 —4\32
—)?(1-10-1 —)2(1-4-1 S (1-1
< () =10-1074) < (1021~ 4107 < (™" - - (1 107)
So for every point z of the set {z : |z| = {5 and 0 < Arg(z) < 3}, we have that

z—c1 € D0, " - 15 - (1—107")). We also have 0 —c; € D(0, |p[>*" - & - (1-107%)).
Then by convexity, we have that the image of D(0, % - 1074) by the affine maps
z+ 1?2 + ¢; contains the first quadrant of D(0, 15). Then, this shows the result by
symmetry.

O

We are finally in position to prove the main result of this section.

Proposition 3.2.7. Let ' be any ss-curve intersecting D? x D(0, %0) Then for every
f € F, I intersects the unstable manifold of a point of the horseshoe Hy : in other
words, Hy is a blender.

Proof. Let I' be any ss-curve intersecting D? x (0, %) and f € F. We show that
there exists j € {1,2,3,4} such that g;(T") contains a ss-curve I'* intersecting D®. Let
Z = (Z1,Z2,Zs) a point of 'N(D* x D(0, 15)). According to the previous result, there
exists j € {1,2,3,4} such that ﬁngCj € D(0, 5 —10"*). Since D(0, 15) C prs(U;),
by continuity, I' intersects U;. The cone C*° is g;-invariant, then T'! = g;(T' N U;) is
a ss-curve. Since I'' = g;(I' N U;) is a ss-curve, we have that diam(pry(I'")) < 1075.
Since |prs((g;)(2)) — #2%23 + ¢;| < 107°%, we have that pry(I'") C D(0, 15). Finally,
I'! intersects D? x D(0, %) By iteration of this result, we can construct a sequence of
ss-curve I'™ C (gj,, o ... 0 gj, )(I') intersecting D*. The set (), -, f™**"(I'"™) C T' is non
empty as the intersection of a decreasing sequence of compact sets. But any point in
N,>1 f9(I'™) is a point of the unstable manifold of the horseshoe H;. This ends
the proof. O

4 Mechanism to get persistent tangencies

In this section, we explain how the blender property obtained in the last section
leads to persistent tangencies with certain "folded" surfaces.

4.1 Some definitions

Definition 4.1.1. A submanifold (or an analytic set) W C D™ is horizontal relatively
to a decomposition D™ = DF x D" % if W does not intersect D¥ x OD"~*. We will
also say it is horizontal relatively to the projection D™ — D*. If dim(W) = k, then the
natural projection on D* is a branched covering of degree d. We will say that W is of
degree d. We similarly define vertical submanifolds in DF x D™ and their degree.

The two following propositions are classical. For a proof, one can refer to [9]. One
can also refer to [11].

Proposition 4.1.2. Let W be a horizontal curve of degree d and W' be a vertical curve
of degree d’ inD* =D xD. Then W and W' intersect in dd’ points with multiplicity.

Proposition 4.1.3. Let W be a horizontal curve (resp. surface) of degree d and W'
be a vertical surface (resp.curve) of degree d’ in D* = D' x D? (resp. D* =D? x D').
Then W and W' intersect in dd' points with multiplicity.

Remark 4.1.4. In particular, in the two previous propositions, if all the intersections
are transverse, there are exactly dd’ distinct points of intersection. If it is not the case,
there is at least one point of tangency.

We now introduce several definitions specific to our context.
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Notation 4.1.5. Let i,j be two distinct integers in {1,2,3}. We will denote by 7; the
projection over the it" coordinate and by (i, 7j) the projection over the it and the
3" coordinates.

Definition 4.1.6. Let i,j be two distinct integers in {1,2,3}. A (i, j)-surface S is a
complex surface horizontal relatively to the projection (wi,m;). A (2,3)-surface will be
called a s-surface.

Remark 4.1.7. A (i,j)-surface S is a ramified covering of degree d over D?. In the
rest of this article, we will only consider ramified coverings of degree 1 or 2.

In the next definition, it is convenient to fix once forall a numerical constant 10~%.

Definition 4.1.8. Let i, j, k three integers such that {i,7,k} = {1,2,3}. A (3, 7)-quasi
plane V is a holomorphic graph {z; = v(zi, 2;)} over D* such that there exists v° with

V(zi,25) € D?, |U0 —v(z,25)| < 1074

Definition 4.1.9. Let k € {2,3}. A k-folded curve is a holomorphic curve horizontal
relatively to m, which is a ramified 2-covering over zi € D with exactly one point of
ramification zi ram. We denote fold(T') = zj ram the fold of T.

Definition 4.1.10. Let k € {2,3}. A k-folded (2, 3)-surface W is a complex surface
of degree 2 that is horizontal relatively to (mw2,m3) and such that for every (1, k)-quasi
plane V, T =V NW is a k-folded curve. We denote :

Fold(W) = {fold(T") : " is a k-folded curve included in W}
which is a subset of D. W is said to be concentrated if diam(Fold(W)) < 107°.

Definition 4.1.11. A wu-curve (resp. ss-curve, cs-curve) I' is a holomorphic graph
over zy (resp. zz, z3) which has all its tangent vectors in C* (resp. C°°, C°°) (recall
that these cones were defined in Notation 3.1.1).

4.2 Preparatory lemmas

In this subsection we gather some simple technical results that will be useful in
the following subsections.

Lemma 4.2.1. Let T' = v(D) be a k-folded curve (with k € {2,3}) included inside
(1, k)-quasi plane. Then there exists a disk Dr € D such that : for every Z € Dr such
that pr(v(Z)) € Dr we have |y1(Z)| < 10|v,(Z)|. In particular, T is the union of
two graphs upon the coordinate zi, € Dr. Moreover, if diam(pr, (T)) < 1072, for every
Z €D such that |pry, (y(Z)) — fold(T')| > 107° we have : |v1(Z)| < |74(Z)]-
Proof. Let Dr € D be a ball of radius 15 such that fold(I') ¢ Dr. We have that T' is
the union of two graphs over z; € Dr. Let us denote z1 = £(zx) one of them. On Dr,
by the Cauchy inequality, we have |¢'(2x)| < 10-1 = 10. This implies that |yi| < 10|7]
at Z and the result follows. The proof of the second inequality is the same, with this
time |¢'(2x)] < 2-10°-1078 < 1.

O

Let us point out for convenience the following obvious consequences of Propositions
4.1.2 and 4.1.3.

Lemma 4.2.2. Let T be a graph over the k' -coordinate (with k € {2,3}) included in
some (1, k)-quasi-plane, such that |y1| < 10|vy|. Let us denote k' = {2,3} — k. Let V
be a (1,k')-quasi plane. Then T NV is a singleton.
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Lemma 4.2.3. Let V be a (1, k)-quasi plane. Let T' be a u-curve and [ bea graph
over zj, with |1] < 10|73, both included in V. Then T NT is a singleton.

Lemma 4.2.4. Let V be a (1,k)-quasi plane foliated by u-curves V. Let T be a k-
folded curve included in V. Then the map T : D — D defined by v(z) € Vr(.) is a
2-covering with exactly one point of ramification.

Proof. The map T is holomorphic by the Implicit Function Theorem. Then it is a
2-covering with exactly one point of ramification by Proposition 4.1.2.

O

Proposition 4.2.5. Let W be a k-folded surface with k € {2,3}. Let I be a u-curve.
Then W NT' has one or two points.

4.3 Main result

Here is the main result of this section : we show that any concentrated 3-folded
(2, 3)-surface with its fold in good position has a point of tangency with the unstable
manifold of a point of the horseshoe H .

Proposition 4.3.1. Let W be a concentrated 3-folded (2, 3)-surface such that Fold(W) C
D(0, &) and diam(pr;(W)) < 107°. Then there exists a point ks of the horseshoe H
such that W has a point of tangency with the unstable manifold of Kky.

We begin by a lemma showing that the image of a folded curve contains a folded
curve. Remind that the sets U; were defined in Definition 3.2.1.

Lemma 4.3.2. Let I be a 3-folded curve included in a (1,3)-quasi plane V and in-
cluded in U; for j € {1,2,3,4}. We suppose diam(pr,(I")) < 107% and that V' =
g;(V)ND? is a (1,3)-quasi plane. Then TV = g;(T') ND? is a 3-folded curve and :

1

/
fold(I") € D(Mw

fold(I") — ¢;,2-107°)

Proof. According to Lemma 4.2.1, for every Z € D such that |prs(y(Z)) — fold(I")| >
1075 we have that |y{(Z)| < |74(Z)| and T is locally the union of two graphs. We
can foliate V' by u-curves (V;)iep where Vi = V' N {235 = t}. For any t € D, V; =
F27(V) ND? is a u-curve. For every ¢t € D such that V; = f?7"(V]) N D? does
not intersect (D? x D(fold(T'), 107°), V; intersects T in exactly two points by Lemma
4.2.3. It is clear there exists infinitely many ¢ € D satisfying this property. This
implies that pry(I') is a 2-covering. By the Riemann-Hiirwitz formula, pry(I”) is a
2-covering with only one point of ramification. Moreover this shows that fold(T”) €
prs(g; (D? x D(fold(T),107%)). According to Corollary 3.2.5, we have that fold(T”) €
D(—5zfold(T") — ¢;,2 - 107°).

u2qr

O

From now on, we prove lemmas that will show that the image under g; of a 3-folded
(2, 3)-surface with its fold in D(0, 15) is concentrated and that it is possible to choose
j € {1,2,3,4} so that the new fold is still in D(0, ).
Lemma 4.3.3. Let V° and V' be two (1,3)-quasi planes included in U; for some j €
{1,2,3,4}. Then there exists some holomorphic family (Vt)iep(o,106) where VO =),

and V' = V1, and for every t € D(0,10°%), V; is a (1,3)-quasi plane.

Proof. V° is the graph of (z1,23) — wo(z1,23) and V' is the graph of (z1,z3) —
v1(z1, z3). Then let us denote for each t € D(0,10%) : vi(21,23) = (1 —t) - vo(z1, 23) +
t-v1(z1,23). Let us call V; the graph of v¢. Then it is clear that VO =V and V! = V.
According to Lemma 3.2.2, we have diam(pr,(U;)) < 107! - dist(U;,D x 0D x D)
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and then V; C D? for every t € D(0,10°). Besides, for each t € D(0,10°), for each
(z1,23) € D?, for each (z1, z5) € D?, we have :

|Ut(Zl»Z3) - Ut(Z17Z;/>,)| < |1 - ﬂ : |U0(Z17Z3) - U0(217Z:/>,)| + \t| . \vl(zl,zs) - Ul(zivzé)‘

Then |vg(21,23) — vi(21,25)] <2-10°-107* < 107* and V; is a (1, 3)-quasi plane.
O

Lemma 4.3.4. Let V° and V' be two (1,3)-quasi planes and a holomorphic family
(Vt)tem(0,106) such that VO = Vo, V! = Vi and V; is a (1,3)-quasi plane for t €
D(0,105). Let W be a 3-folded (2, 3)-surface. Then |fold(V' N W) — fold(V° N W)| <
107°.

Proof. This is a consequence of the Cauchy inequality applied to the function ¢ +—
fold(V*NW) defined on (0, 10°). Tt is holomorphic by the Implicit Function Theorem
and its image has its diameter bounded by 1 because Fold(WW) C D. Then by the
Cauchy inequality its derivative is smaller than 107°. Then we have that |fold(V* N
W) — fold VPN W)| < 1-107% =107° O

The following proposition is important because it says that the image under g; of a
3-folded (2, 3)-surface is a concentrated folded surface. We use it to prove Proposition
4.3.6 and we will also use it in Section 5.

Proposition 4.3.5. Let 1 < j < 4. Let W be a 3-folded (2,3) surface such that
diam(pr, (W)) < 1078, Then g;(W NU;) is a concentrated 3-folded (2,3) surface for
any f € F.

Proof. Let V and V' be two (1, 3)-quasi planes. Then the sets f29"(V N g;(D®)) and
27 (V'Ng; (D?)) are (1, 3)-quasi planes included in U;. The sets T' = £24"(VNg;(D?))N
W and IV = f27°(V' N g;(D*)) N W are 3-folded curves. According to Lemmas 4.3.3
and 4.3.4, |fold(T”) — fold(T")| < 107%. The result of Lemma 4.3.2 implies that we have
fold(VNg;(W)) € D(ﬁfold(F) —¢;,2-107%) and the analogous for V’. This implies
that diam(Fold(g;(W))) <2-2-107+2-107% < 107°. Then g;(W) is a concentrated
3-folded (2, 3)-surface. O

Corollary 4.3.6. Let W be a concentrated 3-folded (2, 3)-surface such that such that
diam(pr; (W)) < 107° and Fold(W) C D(0, 15). Then there exists j € {1,2,3,4} such
that g;(W N Uj) is a concentrated 3-folded (2, 3)-surface (such that diam(pr, (g; (VN
U;)) <107%) and Fold(g;(W NU;)) C D(0, ).

Proof. Let I' be a 3-folded curve included in W. According to Proposition 3.2.6, there
exists j € {1,2, 3,4} such that HQ—{ZTfold(F)fcj € D(0, &5 —10""). According to Lemma
4.3.2 we have fold(g;(I")) € ]D)(ﬁfold(F) —¢j,2-107%). According to Lemma 4.3.5,

g; (W) is concentrated. Then Fold(g; (W N Uj,)) is included in D(ﬁfold(F) —¢j,2-
107% 4 107%) ¢ D(0, 1) for f € F. The proof is done.

» 10

O
Proof of Proposition 4.3.1. By iteration of Corollary 4.3.6 there exists a sequence
(Jn)n>1 of digits in {1,2,3,4} such that the sequence (W )rn>0 defined by Wy = W
and Wn41 = g5, Wn NUj,) is a sequence of concentrated 3-folded (2, 3)-surfaces with
Fold(W"™) C D(0, %) C D and diam(pr,(W™)) < 1078 for every n > 1. We define
for every n > 1 Wn = f"(Wn) C Wo. We have for every n > 1 the inclusions
Wis1 € Wa C Woy. The sequence (Wy)n>1 is a decreasing sequence of compact
sets. Weo = N>t W, is a connected compact set. Since W, is a 3-folded (2,3)-
surface for every n > 0, there exists z, € W, and a non zero vector v, € 1., W,
such that v, € C*. We denote for every n > 1, Z, = f™(z,) € W, C W° and o,
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an unitary vector parallel to D, f™"(v,). We have 0, € Tgan. Taking a subse-
quence if necessary we can suppose Z, — Zoo € Woo and ¥, — U for some point
Zo and some vector ¥... Clearly Zooc € W. By construction the whole forward or-
bit of Wee is in DP. Then, necessarily, Z is included in some unstable manifold
W*(ky) for some point kf of the horseshoe Hy . By construction 9 € T3, W and
Voo € Nyoo DM (C*(2n)) = Tz, Wite(200). This proves that W has a point of tan-
gency with the unstable manifold of xy.

O

5 Initial heteroclinic tangency

In this section, we show that :

1. for every sufficiently small values of b and o, we can find ¢; = c1(b, o) such
that f1 = fe, b0 has a point of heteroclinic tangency 7 between W?*(ay, ) and
W*(¢y,) (where ¢y, is a periodic point in Hy,)

2. we can take iterates of a neighborhood of 7 inside W*(ay, ) under f; ' in order
to create a concentrated 3-folded (2, 3)-surface inside W*(ay, )

5.1 [Initial tangency

Remind we defined the parameter disk C and the integer m in Proposition 2.1.4.

Proposition 5.1.1. Reducing C if necessary, there exist 0 < by < by, 0 < 01 < 09
and an integer s such that for every 0 < [b] < b1 and 0 < |o| < o1 :

1. for every u-curve U, f3T™(U) is a degree 2 curve over the first coordinate

2. for every holomorphic family of u-curves (Uc)cec, there exists c1 = ci1(b,0)
such that there exists a quadratic tangency T between W*(ay,) and U, where
fi = ferbo and T € Ue,. Moreover every iterate of fiT™ (1) under f1 is in
D(aey, 107w —1|) x C* (where the constant wm—1 was introduced in Defini-

tion 2.4.3) and the mapping (b,o) — T is holomorphic.

Proof. In the following, we are going to reduce several times the bounds oo and bg

into bounds o1 and b1 to satisfy the two items. We begin by taking o1 = % and

b1 = %0. Let us take any u-curve U or any holomorphic family of u-curves (Ue)cec-
Since D’ intersects the Julia set of p. for every ¢ € C, it is possible to find an inte-
ger s and a holomorphic map f_s defined on C such that for every ¢ € C, we have
pi(B-s(c)) = 0. In particular, for the parameter co, we have pf ™ (8—s(co)) = e, and
the map defined on C which sends ¢ to p$™™(8_s(c)) — . is an open set which contains
0 in its interior. Then reducing sufficiently the bounds 0 < || < 01 and 0 < |b] < b1
for o and b, we have that for any ¢ € C, there exists a neighborhood of the point
of U of first coordinate z1 = S_s(co) inside U whose image under f§ is of the form
{(z1,u2(21), 48 (1)), 21 € D(0,p)}. Tndeed, Bos(e),pe(Bs(c)), - (B-s(c)) are
not critical points of p.. The image of the curve {(z1,u*(z1),u%(21)), 21 € D(0,p)} un-
der fo is the curve {(pe(21)4+bu?(21) +ou’(21)(u (21) — ey ), 21, A21 +pu (21) +v), 21 €
D(0, p)}. Then it has a point of quadratic tangency with the foliation z; = C** if b
and o are sufficiently small. Indeed, reducing b; and o1 if necessary, by continuity the
derivative of the first coordinate pe(z1) + bu?(21) 4+ ou®(21)(u' (21) — ¢, ) vanishes for
some value z7 € D(0, p). We can iterate this curve (m — 1) times under fo. Since p.
has no other critical point, this will still be a degree 2 curve upon the first coordinate,
reducing b, and o if necessary.

In the case of a holomorphic family of u-curves (Uc)cec, there exists a neighborhood
of the point of U, of first coordinate z1 = B_s(c) inside U, which is sent under f§
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on a u-curve {(z1,u2(z1),us(21)),21 € D(0,p)} but by the Cauchy inequality (u2)’
and (u2)’ are uniformly (relatively to c) bounded and the conclusion is the same. In
particular, this proves the first item of the result.

We call Tany, the first coordinate of the point of vertical tangency. The map de-
fined on C which sends ¢ to p™™(B-s(c)) — . is an open set which contains 0 in its
interior. Let us denote by 2[ the distance of 0 to the image of JC. Reducing b; and
o1 another time if necessary, by continuity this implies that {Tangs, — a.,c € 9C} is
a curve in the plane. We have that 0 is in a bounded connected component of its
complement and at distance at least [ from {Tans, — ac,c € 0C}.

Notation 5.1.2. Let ky € Hy for f € F. We denote by Wi, .(ks) the component of
W* (k) ND? which contains ks and by Wi.(rf) the component of W*(r5) NID* which
contains Ky.

Lemma 5.1.3. Reducing by and o1 if necessary, Wi, .(as,) is a graph over (z2,23) €
D? included in D(ce, min(107 - |wim—1], 1071 - 1)) x D2

Proof. For o = 0, W*(ay,) is the product of W*(am) by the z3 axis where H is the
Hénon map H : (z1,22) — (pc(2z1) + bz2,21). Moreover, for every e > 0, we can
reduce b1 such that if || < b1, then the cone C**¢ centered at ez of opening § is H'-
invariant in D?. This implies that W5 (am) is a ss-curve included in D(a., €) x D since
all its tangent vectors lie in C*%¢. Then for ¢ = 0, the skew-product structure implies
that Wil .(ay,) is a (2, 3)-surface included in D(c, €) x D x D which is the product of
Wiic(am) by the z3 axis. Then, by continuity, it is possible to reduce o1 such that for
every fo with 0 < |b| < b1 and 0 < |o| < o1, Wi (ay,) is a graph over (z2,23) € D?
included in D(a, €) x D x C. We take € = min(10™ - w1, 107 - 7). O

The set {Tany,,c € OC} is such that a. is in a bounded connected component of
its complement. In particular, there is a parameter ¢ € C such that Tany, belongs to
D(az, £) (for this parameter ¢, f3 " (Uz)N(D(az, L) xD?) is not the union of two graphs
upon z1 € D(ag, %) and for ¢ € 9C, f37™(U.) is the union of two graphs over z1 €
D(a, £). According to Lemma 5.1.3, Wi,.(ay,) is a graph over (22, z3) € D? included
in D(a, £) x D*. The following lemma is the analogous in dimension 3 of Proposition
8.1 of [12]. The proof is essentially the same and relies on the continuity of the
intersection index of properly intersecting analytic sets of complementary dimensions.

Lemma 5.1.4. Let (I'c)cec be a holomorphic family of curves of degree 2 over the
first coordinate. We assume that:

(i) there exists a compact subset C' C C such that if c € C — C’', T'c is the union of 2
graphs over z1 € D(ac, %)
(i) there exists ¢ € C such that I'z is not the union of 2 graphs over z1 € D(a, &)
Then, if (Ve)eec is any holomorphic family of graphs over (22, z3) € D? contained in
D(ae, %) X ]D>2, there exists c1 € C such that I'c; and V., admit a point of tangency.

We apply the previous lemma, taking the family (T¢)ecec = (f57™(U:) ND?)cec as
curves and the family of stable manifolds W (ay,) as graphs over (22, 23) € D*. We
can conclude that there is a parameter c¢; such that there is a quadratic tangency

STm(r) between Wi (ay,) and fi7™ (U, ) where 7 € Ue, for fi = feoy p.0. Then
T is a point of tangency between W?(ay,) and U.,. Since Wi3 (ay,) is included in
D(ae, , min(10™w,,—1|)) x D x C, we have that all the iterates of ff¥™(7) under
f1 are in D(ae,, 107" - jwi,—1]|) x C2. Reducing C if necessary, we have that a., €
D(tey, 107 jwim—1]) for every ¢ € C and then all the iterates of fi¥™(7) under fi are
in D(cey, 107 wpm—1]) x C2. The map (b,0) + c1 is holomorphic according to the
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Implicit Function Theorem and then (b, o) — 7 is holomorphic too. This shows item
2 and ends the proof of the proposition. O

In the next proposition, we show that the tangencies we created in the previous
result are generically unfolded. Beware that in the next result, the map f; is associated
to a family of u-curves (Uc)cec which can be distinct from the other family (U}) e 7.

Definition 5.1.5. Let (Uy)fer be a holomorphic family of u-curves and (Sf)ser
be a holomorphic family of s-surfaces. We suppose that for f € F, there is a point
of quadratic tangency between Uy and Sy. We say that this tangency is generically
unfolded if there exists a one-dimensional holomorphic family (f')iep of polynomial
automorphisms and a holomorphic family of local biholomorphisms (Vi)ien with :

1. f°=f and f' € F for everyt €D
2. Wy(Sye) is a vertical plane {z1 = C*'} where C*" does not depend ont € D

3. if we denote by tan: the first coordinate of the point of tangency of Wi(Uyt)
with {z1 = C®'} (there exists exactly one such point because the tangency is
quadratic), then |%| s uniformly bounded from below by a strictly positive
constant for t € D

Proposition 5.1.6. Reducing C, by and o1 if necessary, for every 0 < |b| < b1 and 0 <
lo| < o1, for every holomorphic family of u-curves (Uc)cec, there exists a neighborhood
F' € F of the map fi = fey(b,0),b,0 defined in item 2 of Proposition 5.1.1 associated
to (Uc)eee such that : for every holomorphic family of u-curves (Uy)rerr, if f € F'
has a point of tangency T’ between W*°(ay) and Uy such that f*7™(7') € Wi (ay),
then the tangency T’ is generically unfolded. In particular, the tangency T obtained in
item 2 of Proposition 5.1.1 is generically unfolded.

Proof. For every f € F, after a holomorphic change of coordinates ¥, we have that
Wiie(ay) is the plane {z1 = ac,}. We first show the result for the map f;. We work in
the one-dimensional family (fo)cec = (fe,b,0)cec Where b and o are fixed and we take a
holomorphic family of u-curves (U})ser . It is a consequence of Lemma 5.1.3 that U g,
tends to Id when b and o tend to 0. When b and o tend to 0, the curve Wy, o f5+™ (U}, )
tends to a curve of degree 2 over z; of the form {(pS*™(21), z1,v(21)) : z1 € D(0,p)}
where v is holomorphic. We call tan. the first coordinate of the point of vertical
tangency of Wy, o fo+™(Uf,). We have pllt (0) = aey, (pi)'(0) =0, (p)”(0) # 0 and
at ¢ = co, we have : <L (p(0)) # 0 (see Proposition 2.1.4). Moreover, ¢1 tends to co
when b and o tend to 0. This implies that for sufficiently small fixed values of b and o,
the map ¢ — tan. is such that % # 0 for every ¢ € C (reducing C if necessary). Since
the estimates on the derivatives of the u-curves (U})ser are uniform, we can reduce
uniformly b, and o1 so that this inequality is true no matter the choice of (U})ser.
Then, by continuity, there exists some new neighborhood 7' € F of fi such that every
f € F' belongs to a one-dimensional family (f%):ep such that : f° = f, f* € 7' and
dtane o£ ( (t € D). This implies in particular that if f € ' has a point of tangency 7/
between W* () and U} such that f57™(7') € WS (), then the tangency f*7™(7')
is generically unfolded and then also 7’. The proof is over.

O

5.2 A transversality result

From now on, we are going to construct from this initial heteroclinic tangency a
3-folded (2, 3)-surface inside a stable manifold with its fold inside D(0, 15). In this
subsection, we begin by proving that W?*(ay, ) has some special geometry. We start
by choosing a periodic point ¢, € Hy, . The main point is that its third coordinate

is in D(0, 1—10 —10™*), which will be used later in the proof of Proposition 5.3.10.
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Lemma 5.2.1. For every c € C, 0 < |b| < b1, 0 < |o| < 01, there exists a periodic

point ¢, inside Hy, such that prs(¢ys,) € D(0, 15 — 107 *).

Proof. According to Proposition 3.2.7, the ss-curve {0} xDx {0} intersects the unstable
set of the horseshoe Hy,. Then, there exists a u-curve £ which is a component of an
unstable manifold of a point of H s, which has a point of third coordinate 0. Since Lis a
u-curve, it is included in D? x D(0, 5 —10™%). It intersects Wy, (arg, ) in a point of Hy,
of third coordinate in (0, 1—10 —107%). Since Hy, is a horseshoe, its periodic points are
dense and so there is a periodic point ¢y, € Hy, with pry(¢s,) € D(0, 5 —107*). O

Notation 5.2.2. We fiz a periodic point of the horseshoe ¢ g, with pry(¢ys,) € D(0, %f
10~*). Reducing F if necessary, we have pry(¢s) € D(0, 15 — 107*) for f € F.
We now choose the parameter b in function of the parameter o :

Notation 5.2.3. In the following, we will take b = b(c) = 0. For technical reasons,
we reduce o1 such that o1 < \/E

In particular, we can use Proposition 5.1.1 : there exists a map o — c¢i1(o) such
that there is a heteroclinic tangency 7 between the local unstable manifold Uy, of
¢y, and the stable manifold W?(ay, ) of ay,. Moreover, o — 7 is holomorphic. We
have D(fi)- - (0,0,1) = p*(&1(0),&2(0),1) with &1(0) = O(o) and &2(0) = O(o). The
maps o — pry (fi (7)) = Bo, -+, 0 = pry (fF7™ (7)) = Bm—1 are holomorphic (remind
that the constants 8; were defined in 2.4.1). Since they vanish when o = 0, they are
also O(c). The map o +— b(0) is O(c?) because b(c) = 0. Then the differentials at
(), -+, fT™7(7) verify the conditions of Corollary 2.4.6 so from Corollary 2.4.6
we immediately get the following (remind that w,m,,—1 was defined in Definition 2.4.3) :

Lemma 5.2.4. We have : D(f;7™),-(0,0,1) = (¢i(0), (2(0), (3(0)) where 1, (2, C3
are holomorphic, (1(¢) = Wm—1-0+0(c?), (2(0) = 0+0(0) and (3(0) = p™ + O(0).

Notation 5.2.5. We reduce o1 so that |(2(0)] < 1, |Gs(0) — p™| < 5|u™| and
01 < 1o | Wm—1]. From now on, we fix 0 = %, b = b(o) = %, ¢ = ci(o), the
associated map f1 = fe,(0),b(0),0-

Lemma 5.2.6. For every vector v° such that [v) — wm_10| < &|wm-1]|o], [v3] < 1
and [v§ — | < & |ul™, at any point of Wi (o, ) ND?, 0 is transverse to Wi, (ay,).

Proof. Let ¥° be a point of Wi (o, ) and let us consider the sequence of points
defined by ¥" = fi'(¥°). According to Lemma 5.1.3, for every n > 0, ™ is in
D(cey, 107 wsm—1]|) x C2. Then for every n > 1, the differential at )™ of f1 is of the

form :
mn blo) o(z1— aey)

I, = 1 0 0

A 0 m
where b(c) = 0 and |m,| > 2 for every n > 1. Since o1 < 1o | Wm—1] we have
|b] < 1070 wpm—1]|o|. We denote v™ = (I, - ... - I1)(v°) for every n > 1. Let us show

that there exists an integer i such that |vi| > |v|. Let us suppose this is false and we
show by induction the following properties for n > 0 :

L1 [op ™ > o] > rgglwm-llol]

2 og] <1

3. it < oy <1
For n = 0, item 2 is satisfied, [v§| < 1 and [v?| > 1i5|wm-1||o|. Since vi = mio? +
bvg + o (€1 — aey), [bvd] < [b] < 107 |wm1llo] and |o (1 — ae,)| < 107 wm]lo],
we have |vi| > 2[v?|. Moreover [v}'| < [v§| < 1 by hypothesis. Them item 1 is true.
We have : [v3] < |A|[v?] + |ul[v] < [A|[v8] + |wl[v§] < [v§]. Then item 3 is true and the
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induction procedure is true for n = 1.

Let us suppose it is true for some n. Then |[viT!| = |[vF| < 1. Moreover |v§™!| <
IMWE [+ [l o3| < |X[[03]+ |pl[v5] < [v3]. We have o7 ™! = mav} +bvs + 0 (YT — o).
Since |mn| > 2, [v7] < |b] < 107'°|wp_1||o| and \U(¢1 aeo)| < 107 wy—1]|0],

we have [vi | > 2|vf'|. We stlll have [v7™!| < |v3™| < 1 by hypothesis. Then for
n+1

every n, we have }vnﬂ: > %

Vs

Iv This implies a contradiction : there must exist some

|
integer ¢ such that |vi| > |v4]. Then v" is transverse to Wi (ay, ) since Wit (ay, ) is a

(2,3)-surface and this implies that v° itself is transverse to Wi, (ay, ). O

w33

We can now state the main result of this subsection :

Proposition 5.2.7. The vector (0,0,1) is transverse to W?°(ay,) at 7.

Proof. From Lemmas 5.2.4 and 5.2.6, we know that the image under fi*™ of a neigh-

borhood of 7 in W*(ay,) is transverse to D(fi*t™), - (0,0,1). Applying f; °~™, this
immediately implies the result.

O

5.3 Orientation of the fold of W*(ay)

In this subsection, we take iterates of the initial tangency 7 under f; ' in order to
create a concentrated 3-folded (2, 3)-surface inside a stable manifold.

We have that Wik (éy,) is a graph {(z1,u*(21),u®(21) : 21 € D} over z; € D. We
consider the biholomorphism ¥ defined by WU(z1, 22, 23) = (21, 22 — u?(21), 23 — u>(21))
which sends Wi (¢, ) into the z; axis. We denote Wy the component of W?(ay)
which contains 7 for f € F'. We denote by Tan’ the subset of ¥(W;) where ¥(Wy) is
tangent to some line {22 = C*', 23 = C*'} and by Tan = ¥~ (Tan’). When f = f1, we
denote them by Tan® and (Tan’)°. We denote by e*(7) a tangent vector of Wi, (¢, )
at 7.

Lemma 5.3.1. Tan® is a complex curve regular at T of tangent vector vian at T such
that vian & C-(0,0,1) and vian & C-e*(7).

Proof. We are working in the projectivized tangent bundle PTC? ~ C? x P?(C) of C?
which is of dimension 5. The lift Wy, of Wy, to PTC? is a complex submanifold of
dimension 3. The lift of every complex curve Cpy = ¥~ D x {(z,9)}) to PTC? is

a complex curve C, y- Then U<z y)eD? C. 2,y 18 a complex submanifold of dimension 3.
Moreover, according to Proposition 5.1.1, Wy, has a point of quadratic tangency with
Co,0 and then Wy, is transverse to U z,p)en2 Cy.y. Then Tan® = Wy, N( Uz, en2 é'zy)
is a regular complex curve. Then its projection Tan® is a regular complex curve of tan-
gent vector vgan at 7. According to Lemma 5.2.7, vgan ¢ C- (0,0, 1). By construction,

e"(7) is a tangent vector of Wit (¢, ) at T 80 vtan ¢ C - e“(7). The proof is done.
O

Notation 5.3.2. For every € > 0, we denote C¥t*¢ = {u € C® : |(u, vian)| < €||u||}.

Corollary 5.3.3. For every ¢ > 0, reducing the neighborhood F' of f1 if necessary,
there exists a real number n > 0 such that : for every f € F', for every holomorphic
foliation (Vzy)(a,y) of a neighborhood of T such that every Vs, is n-close to Wii.(¢y),
the set Tan of points of Wy where Wy is tangent to some V. is a complex curve
reqular at T which has its tangent vectors in Cte™€.

Proof. The intersection Tan® = Wfl n (U(x y)en? C'zy) persists as a regular complex
curve since the intersection is transverse. Then it is still true for its projection Tan. [
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The following result is a geometric technical lemma.

Lemma 5.3.4. There exists constants €, p, p1, p2,p3 > 0 such that for every t > 0,
we have the following property : for every regular complex curve I' going through
T+ (D(0,tp))3, if T has all its tangent vectors in C*t™< then T' is horizontal relatively
to mo in 7+ D(0,tp1)e*(7) + D(0,tp2)(0,1,0) + D(0, tp3)(0,0,1).

Proof. According to Lemma 5.3.1, vean ¢ C- (0,0,1) and vian ¢ C- ¥ (7). O

Notation 5.3.5. We fix the value of € give by Lemma 5.3.4 and the associated value
of n given by Lemma 5.3.5.

Lemma 5.3.6. There exists to > 0 such that for every t < to, there exists an integer
Jj = j(t) such that :

1. f77 (74 D0, tp1)e (7) + OD(0, £92)(0, 1,0) + D(0, £95)(0,0,1) ) N D* = @

2. f7 (T—|—D(O,tp1)e“(7')—|—]D(0,tpg)(O, 1,0)+D(0, ps)(0, 0, 1))03@3 € DxODxD

Moreover, j(t) tends to oo when t tends to 0. Reducing F', by continuity this remains
true for any f € F' for a given t < to.

In other words, f™7 realizes a crossed mapping between 7 + D(0,tp1)e" (1) +
aD(0,tp2)(0,1,0) +D(0,tp3)(0,0,1) and D?® (see [14] for this notion).

Proof. We foliate Dy, py,p5 = 7+ D(0, tp1)e" (1) +D(0, tp2)(0,1,0) +D(0, tp3)(0,0,1)
by disks £, ., parallel to the zo axis. Since C** is f; '-invariant in D?, for every n > 0,
the image of this tridisk under f; ™ is foliated by the ss-curves f; ™ (L., .5) ND3. We
call the length of a ss-curve the radius of the maximal (for the inclusion) disk included
in this ss-curve. For every n > 0, we denote by [,, the minimum of the lengths of all the
s-curves f; "(L:,,z4). For every n > 0, we denote by d,, the maximum of the diameters
of the sets VN fi7 " (D¢, p;,p0,05) Where V varies in the set of (2, 3)-quasi planes. Since
every vector in C*° is dilated by a factor larger than C/(2|0|?) (see Proposition 2.2.3
for the definition of the constant C) under f1_1 with C' > 10'°, we have that l,,41 >
C/(2|o|?)-1n. Since C** is f; '-invariant, for every (2,3)-quasi plane V, fi(V)ND? is a
(1, 3)-quasi plane. Every tangent vector u to the (2, 3)-surface f1(V)ND? is of the form
w=u'-(1,0,0)+u?-(0,1,0) +u*-(0,0,1) with |u?| < 107* max(|u'[,|u?®|). Then the
vector u is dilated under f;* by no more than max(1,107*C/(|o|?),2) < 107*C/(|o|?).
Then dnt1 < 107*C/(|o|?) - dn. This implies that if ¢ is smaller than some value to,
there exists an integer j = j(¢) such that %-ﬁ—z > (%)j.% >10,1; > 10and d; < 5.
Let us consider any (2, 3)-quasi plane V going through f; (7). Then V' = ff (V)nD?
is a (2, 3)-quasi plane going through 7 which then intersects every disk L., .,. Then
V intersects all the ss-curves fl_j (L2 ,2) ND3. Since I; > 10, this implies that for
every (z1,z3), we have 8(f; 7 (L., ,2;)) C C> — D3, Since d; < 15, this implies that
i (Dt,pl,pz,%) NoD* € D x D x D. When ¢ tends to 0, the lengths of the disks
L., .25 tends to 0 and then j = j(¢) tends to co. Reducing F', by continuity this stays
true for f € F' for a given t. The proof is done. O

Lemma 5.3.7. Let V be a (1, 3)-quasi plane foliated by u-curves (V*)gzen. Let ¥ be a
point such that 9 ¢ V and let us take a vector u € C*. Then there exists a holomorphic
foliation of a neighborhood of ¥ by graphs V, over (z1,23) € D? such that each V, is
Joliated by graphs (Va,y)(z,y)ep2 over z1 € D of slope bounded by 107" with :

1. for everyx € D, V* =V,
2. the leaf going through ¥ has u as tangent vector
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Proof. We consider two consecutive biholomorphisms. The first one @1 sends the (1, 3)-
quasi plane V to the plane {z2 = 0} and each curve V* to the line {z2 = 0,25 = z}.
For a given z € D?, we denote by pr(z) the projection (parallel to (0, 1,0)) of z on V.
We denote by (¢1)2(z) the complex number such that z — pr(z) = (¢1)2(2) - (0, 1,0).
We denote by by (¢1)s3(z) the complex number z such that pr(z) € V*. We denote
©01(2) = (21, (p1)2(2), (p1)3(2)). The restriction of (1)2 to a line {z2 = C**, 25 = C**}
is a holomorphic map defined on D of image in a disk of radius 10™* since V is a (1, 3)-
quasi plane. By the Cauchy inequality, this implies that H%H < 1074, The
restriction of (¢1)3 to a line {z2 = C*t 25 = C’St} is a holomorphic map defined on D
of image in a disk of radius 10™* since every V° is a u-curve. Then : ||%;1)3H <107
Finally, o1 is a holomorphic map from D? to D3. Then : ||D¢:]| < 1.

We denote ¢1(9) = (91,92,93) (with 92 # 0) and Dy, u = (1,€a,€3). The previous
estimates imply that |ez| < 107* and |e3] < 10™*. We take a second biholomorphism :
P2 : (z1,22,Z3) —> (2‘1,22 — 62(21 — 61)272723 - 63(«31 - 151)2)

2 2

It is easy to show it is a biholomorphism on I x (0, 1092) x D since |ez| < 10™* and
les] < 107%. We have : Da(De1(u)) = (1,0,0). We denote Vs, = (w2001) ({23 =
z,22 = y}). Then (Vy,y)a,y is a holomorphic foliation of a neighborhood of ¢ such
that for every x € D, V* = V, ¢ and the leaf going through 1 has u as tangent vector.
We have ||8(5”7;’1)2H < 10es and ||%H < 10e3 on z1 € D, 22 € D(0,1092), 23 € D,

then we have that ||Dgs - (1,0,0) — (1,0,0)|] < 2-1073. We have ||a<a"’7;1>2|| < 1074,
1752221 < 107" and || D1 || < 10. Then ||D(2 0 o1) - (1,0,0) — (1,0,0)]| < 10~" on
D x (0, 1092) x D. This implies that every (Vi,y)(s,y) Where z € D,y € D(0, 109) is

a graph over z; € D of slope bounded by 10~!. Every V, = Usep Ve.y is a graph over
(z1,23) € D?. The proof is done. O

The following is a simple consequence of the inclination Lemma.

Lemma 5.3.8. There exists an integer k such that for every graph L of slope bounded
by 107! over z1 € D, for every f € F', f*(£)ND? has a component which is a graph
over z1 € D which is n-close to Wi.(d5).

Notation 5.3.9. We fiz this integer k and we fix some t > 0 such that j(t) = k (see
Lemma 5.3.6). We reduce F' so that for every f € F' : there is a point 9 € W*(ay)
such that f5(9) € (1 + (D(0,tp))*) and W*(as) has a tangent vector u € C* at 9 (it
1s possible by continuity since it is the case for fi).

Proposition 5.3.10. For every f € F', W*(ay) contains a concentrated 3-folded
(2,3)-surface W{ such that Fold(W}) C D(0, 15) and diam(pr, (W})) < 107°.

Proof. Let f € F'. Let V be a (1, 3)-quasi plane foliated by the u-curves V¥ = VN{z3 =
x}. We take ¥ € W*(ay) such that f*(9) € (7 + (D(0,tp))*®) such that W*(ay) has a
tangent vector u € C* at 9. To find such a point, we just have to remark that W*(ay)
is not included in V. In particular, if 7 ¢ V), we choose ¥ = 7.

According to Lemma 5.3.7 it is possible to find some holomorphic foliation of a neigh-
borhood of ¥ by graphs V, over (z1, z3) foliated by graphs V. , over z; of slope bounded
by 107! such that V* = V, o and the leaf going through ¥ is tangent to « and then
to W*(ay). Since ¥ = 7 if 7 ¢ V, it is also a holomorphic foliation of a neighborhood
of 7 in both cases. We apply f* to all these curves V.. According to Lemma 5.3.8,
the sets f¥(V,,,) have components which are graphs over z; € I n-close to Wik.(¢y).
Then according to Lemma 5.3.3, the set Tan of points of f*(V,,) where f*(V,,) is
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tangent to W°(ay) is a regular complex curve which has all its tangent vectors in
C¥¢ and goes through the point f¥(9) € 7 + (D(0,tp))®. According to Lemma
5.3.4, Tan can intersect 7 +D(0, tp1)e* (1) +D(0, tp2)(0, 1,0) +D(0, tp3)(0,0,1) only in
74+ D(0,tp1)e* (1) + 0D(0, tp2)(0,1,0) + D(0,tp3)(0,0,1). According to Lemma 5.3.6,
we have both f_k(T—HD)(O,tpl)e“(T)—Fa]D)(O,tpz)(O, 1,0)4+D(0, £p3)(0, 0, 1)) c C?-D?

and f~* (T+1D>(o, tpr)e™ () +D(0, tp2) (0, 1,0) +D(0, tp3) (0, 0, 1)) NoD? € D x oD x D.

Then f~%(Tan) intersects every surface V, but in exactly one point which is not in
Yy N ((OD x D x D)U (D x D x dD)). We denote by W} the continuation of the compo-
nent of W*(ay) containing f; *(7) for f € F’'. Then W} is tangent to at least one but
not infinitely many u-curves V*. By the Riemann-Hiirwitz formula, W} is tangent to
exactly one V* =V N {z3 = «}. This implies that pr; restricted on W; NV is a two-
covering with exactly one point of ramification. Since this is true for any (1, 3)-quasi
plane V, by definition, W} is a 3-folded (2, 3)-surface for every f € F'. Then accord-
ing to Proposition 4.3.5, we can iterate under f~! to get a component Wy of W*(ay)
which is a concentrated 3-folded (2, 3)-surface. Since prs(¢s) € D(0, 15 —10"*) we have
that Fold(Wf) C D(0, 15). Since the first direction is contracted under f, iterating,
we can have the additional property that diam(pr, (W})) < 107%.

O

6 Proof of the main results

Proof of the main Theorem and Corollaries 1 and 2. According to Proposition 5.3.10,
for every f € F', W*(cs) contains some concentrated 3-folded (2, 3)-surface W° with
Fold(W") C (0, &) and moreover diam(pr,(W°)) < 107®. This implies persistent
heteroclinic tangencies. Indeed, by Proposition 4.3.1 there exists a point ky of the
horseshoe H s such that there is a point of quadratic tangency 7’ between W* (k) and
W C W*(ay). The proof of the main Theorem is complete.

We now prove Corollary 1. We call U} the component of W*(ks) N D3 containing
the point of tangency 7' and we consider the family (Z/l}/) #rex of holomorphic u-
curves given by the continuation of Z/l}, According to Proposition 5.1.6, the tangency
7' is generically unfolded. We apply a standard argument to obtain homoclinic tan-
gencies. Let us take any neighborhood F” of f. Since the tangency 7’ is generically
unfolded, we can rely on the following well-know lemma :

Lemma 6.0.11. There exists €’ > 0 such that for every holomorphic family (Z/{}'/)fle}-/
of u-curves €”-close to (U1 )y and every holomorphic family (WY,) pcx of complex
surfaces €’ -close to W) prc 7, there exists a point of quadratic tangency between Uy,
and WY, where f" € F".

We claim that there exists a holomorphic family of u-curves (U}))scx €’-close
to (Up)prer such that for every f' € F', Uy, is a component of W*(§;) ND? and
a holomorphic family of complex surfaces (W},) e rs €”-close to (W°) /) e xs such
that for every f' € F', W}, is a component of W*(d;/). We prove this fact for the
case of u-curves, the proof is the same for complex surfaces. According to Proposition
3.1.6, ay/, and then Ky, is in the homoclinic class of d4. This implies that there
exists a transversal intersection between W*(ky ) and W*(&4/) for every f' € F'. For
a given f' € F', by the inclination lemma, there exists an integer n; such that for
every n > nyg, (f')"f'(W"(64)) contains a u-curve €’-close to Uy,. By continuity,
nyg can be taken locally constant. By compactness, it is possible to take the maximal
value n of ny on a finite open covering of 7/ € F. Then we have that for every
f" € F', there is a u-curve Uy, €”-close to Uy, which is a component of W*(d/) (inside
(f)"(W*(64/)) ). The proof of Corollary 1 is complete.
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We now prove Corollary 2. This shows that there exists f” € F” such that f”
has a point of homoclinic tangency between W?*(ds») and W™ (d;~). In particular
maps with homoclinic tangencies are dense in F’. The point §; has the property of
being sectionally dissipative. Then, the Proposition in the Appendix which gives the
creation of sinks from homoclinic tangencies (the proof is given in Appendix for the
convenience of the reader) with a classical Baire category argument already used in 7]
allows us to conclude to the existence of a residual set of Aut2(C?) of automorphisms
displaying infinitely many sinks. The proof is complete. (I

A From homoclinic tangencies to sinks

To show the main Theorem, we need the following result. It is known since the
work of Newhouse how to get a sink from a homoclinic tangency. The adaptation to
the case of C? was obtained by Gavosto in [13]. Here we adapt her proof to the case
of C*. Remind that a generically unfolded tangency is a tangency which is unfolded
with a positive speed.

Proposition A.1. Let (Fi)iep be a family of polynomial automorphisms of C*. We
suppose that for the parameter t = 0, there is a sectionally dissipative periodic point
Py and a generically unfolded homoclinic quadratic tangency Q € W*(Py) N W*(Pp)
between W*(Py) and W*(Po). We also suppose that the three eigenvalues A°, A\§° and
A6 at Py satisfy |A\§°] < |A§°] < 1 < |AG| (and |XG°| - |A6| < 1 by sectional dissipativity).
Then for every neighborhood Q of Q and every neighborhood T of 0, there existst € T
such that Fy admits an attracting periodic point in Q.

Proof. Step 1 : Construction of cone fields

In the following, iterating if necessary, we will suppose that Py is a fixed point of
Fy. We fix a constant > 0 such that we have (|[A§°| +n)(|A¢| +n) < 1 (the periodic
point P is sectionally dissipative) and |A§°| +n < |A§°| —n < [A§°|+71 < 1. We can fix
a neighborhood P of Py, a neighborhood 7y of 0, cones C*, C** and C“® centered at
the three eigenvectors of DFy(Py) and an integer No with the following properties : for
every n > No, t € 7o, for every matrix M = M, - ... - My where M, is the differential
of F; at a point in P, we have :

1. C" is invariant under M and there is exactly one eigenvector (up to multipli-
cation) of M in C* of eigenvalue (|A\g| — 7)™ < |A1| < (|A| +n)"

2. C** is invariant under M ™! and there is exactly one eigenvector (up to multi-
plication) of M in C*® of eigenvalue (|A\§°| — 7)™ < |A2| < (|A&°| +n)"

3. for every vector v which is not in C* U C®*°* U C°*, we have : M -v € C* or
M. vecCs

4 (I [=m)" (A [=m)" (IA5° | =m)"™ < [det(M)[ < (IAG|+m)" (IAG°[+m)" (IA6°[+m)"
Reducing n and increasing Ny if necessary, we have for n > N :
(A1 + ™ (AT +m)™ < (As] = )" (IA&°] =)™ (126" = )"

(G| +m)™ (NG +m)" (A +m)™ < (A6 =m)*" (A" = )"
This implies that M is diagonalizable. Indeed, if it was not the case, M would be
triangularizable with a double eigenvalue and we would have :

(A6 +m)™ (1A +n)*" > [ det(M)] or |det(M)| > (A5 —n)*" (IA°| —m)"
But we have :

(Aol =m)" (A" =m)" (1A”[ = m)"™ < [ det(M)| < (Aol +m)" (A" +m)" (A" +m)"

24



Then, there would be a contradiction with the previous inequalities. Moreover the
third eigenvector has to be C“® according to item 3 above.

Step 2 : Local coordinates

Iterating if necessary, we can suppose that Q € P. We are going to make several
local changes of coordinates so that the stable and unstable manifolds of P; have a
simple form near the tangency. We will use this local change of coordinates in Steps
2 and 3. In Step 4, we will mainly use the coordinates in the canonical basis but we
will need the local change of coordinates a last time at some point so we will denote
it by ¥, in Step 4 to make the distinction between the two systems of coordinates. In
the following, to construct the local coordinates, we will keep the notation zi, 22, 23
by simplification.

We first pick local coordinates such that @ = 0 and in the neighborhood of Q,
the stable manifold is {z1 = 0}. Up to a linear invertible second change of coordi-
nates, we can assure that the tangent vector of W*(Fy) at @ is (0,0,1). Then we
have that locally near 0 the unstable manifold is given by a graph over z3 of the form
{(w1(z3),w2(23),23) : z3}. Since the tangency is quadratic, for each ¢ in a neigh-
borhood of 0, there exists exactly one z3; such that %%(zm,t) = 0. We pick new
coordinates a third time by changing the coordinate z3 into z3 — z3:. The unstable
manifold is :

8211)1

2
073

wi(z3) = wi(z3,t) = wi(0,t) + (0,1)23 + h(zs,t) with h(z3,t) = o(z3)

The stable manifold is still locally equal to {z1 = 0}. Since there is a quadratic
tangency for ¢ = 0 which is generically unfolded, we have w1 (0,0) = 0 and %(0, 0) #
0. Then we change coordinates a fourth time : z; becomes ﬁ(),t)zl and z2 and z3 are
unchanged. In these new coordinates, the unstable manifold is given by :

wi(z3) =t + 23~ (23, 1)

where ﬁ(zg,t) # 0 in a neighborhood of 0. The stable manifold is still locally equal
to {z1 = 0}. The fifth change of coordinates is given by z3 becoming z3(h(zs,t))"/?,
where (h(z3,t))'/? is a complex square root of h(zz,t)) (which is well defined since
ﬁ(z3, t) # 0 in a neighborhood of 0). We finally get that the unstable manifold is given
by z1 = 25+t and 22 = wa (z3,t). The stable manifold is still locally equal to {z1 = 0}
and the tangent vector of W*(Py) at @ is still (0,0,1). The last change of coordinates
is given by z2 — wa(z3,t). The unstable manifold is given by z1 = 22+tand zo =0

and the stable manifold by z; = 0. The tangent vector of W*(P) at @ is still (0,0, 1).

Step 3 : Construction of a periodic point

We take a tridisk B around @ in the coordinates that we just defined : B =
{(z1, 22, 23) : |z1] < 6, 22| < 9, |23] < 6} where 0 < § < 1. Since the tangent vector of
W*(Po) at Q is (0,0, 1), reducing ¢ if necessary, there exists a neighborhood 71 C To
such that the component of W"(P;) N B containing @ (for ¢ = 0) or its continuation
(for t # 0) is horizontal in B relatively to the third projection and is included in
{(z1,22,23) € B : |22] < %05}. Using the Inclination Lemma, there exists N1 > No
such that for t € 71 and n > Ny , F{*(B) will intersect B and F;(B) N B is horizontal
relatively to the third projection.

In the following, we show that for every sufficiently high n, a periodic point for
F; (where t € T7) is created. Let us now denote A., .. = {(z1,22,23) : |z1] < §}
which is a disk, for |z2| < §,|z3] < 4. It is possible to increase N2 > N; such that
for any |z2| < 6, |z3| < 6, for every n > Na, F'(A.,..,) N B is horizontal relatively
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to the third projection (of degree 1) and included in {(z1,22,23) € B : |22 < 16}
Since F{*(A.,,.;) N B is horizontal relatively to the third projection and of degree
1, it intersects exactly one disk A, .. where 25 = z5(22) with 25 € D(0,9/2). This
defines for each fixed ¢ € 71 a holomorphic map 22 ++ z5. Then the map zo ++ 22 — 25
defined on (0, §) is holomorphic and the image of dD(0,d) contains a loop around
D(0,6/2). Then by the Argument principle there exists z2(z3) such that A, (.. .
intersects Fi" (A, (z4),25)-

3

We are going to choose z3 in order to create a periodic point in A, (.,) .,. There
is a point R., = (fi(2z3),22(23),23) € A.,(z4),25 Which is sent on S.; € A, (24) 24
where S., = (g¢(23), 22(23), z3). We are going to choose z3 (in function of ¢) such that
R., = S.,. When N goes to infinity, f;(23) tends to 0 and g¢(23) tends to 23 4+¢. Then
9t(23) — fe(23) tends to 23 +t. In particular, if N is sufficiently high, for every ¢t € D, the
graph of z3 — g¢(23) — fi(23) is a curve of degree 2 over z3 which has exactly one point
of tangency with the horizontal foliation. We take a new bound N3 on n such that this
is the case, we increase N3 in the rest of Step 3 in order to satisfy more assumptions.
The second coordinate of this point of tangency is a holomorphic function of ¢ which
tends to ¢t when increasing N3. In particular, this implies that there exists exactly one
value to of ¢ for which the equation gi,(z3) — f,(23) = 0 has one double solution, and
for every other value of ¢ € D, there are two distinct solutions. Then, for F;, we have
two periodic points which are equal when t = t;. We do a reparametrization of the
family of maps (F}):ep by taking t = 72. From now on, we are working with the family
of maps I, = F,». By simplicity, we will simply denote it by F. For F;, we have two
periodic points which are equal when 7 = 79 where 78 = to. We can increase Nj if
necessary so that for each 7 € D — ID(0, 1), the two solutions of g,2(23) — f,2(z3) =0
are respectively 1i5-close to +iT. For 7 € D — D(0, 1), we denote by R” the periodic
point corresponding to the solution ﬁ—close to ir. It is clear that the map 7 — R"
restricted on D — D(0, %) is continuous. For 7 = 79, we denote by R™ the unique
periodic point corresponding to the double solution of ng(zg) = fr2 (23) = 0. Finally,
for 7 € D(0, %) not equal to 7o, there are two distinct periodic points in A, (., z5-
We pick any path in C from 7 to a point 71 in D — (0, %) which does not contain
79. For 71, the periodic point R™ is defined. Since the path does not contain 7o,
there is exactly one of the two distinct periodic points in A, (.,) ., for 7 which is
the continuation of R™. We denote it by R". Since the map 7 — R restricted on
D — D(0, %) is continuous, this choice is independent of a particular choice of 7y in
D—D(0, 1). Then we have defined a map 7 — R” on . It is clear that near any point
of D — {70}, R" is locally the continuation of the same periodic point of F-, then it
is holomorphic. The map 7 +— R" is holomorphic on D — {79}. It is trivial that it is
continuous at 79. Then it is holomorphic on D. As we already said, from now on, we
go back to the coordinates in the canonical basis and we call W, the local coordinates
we just used near the tangency point Q. We will use ¥, a last time at the end of Step 4.

Step 4 : R” is a sink

We now show it is possible to pick 7 such that R” is a sink. From now on, we fix
a neighborhood 7 C 7; of 0. Recall that @ belongs to the small neighborhood P of
Py defined in Step 1. We denote by n = n; + ns such that for k = 1,...,n1, FF(R")
is in P and F™MT'(R™) ¢ P. We express all matrices in the 7-dependent basis given
by the 3 eigenvectors e],e5, e5 of D(Fy'')(R"™) (the matrix DF;' (R") is diagonalizable
according to Step 1). We have that ¢j € C%, e4 € C*° and e5 € C°. Then, in
this basis, the matrix DF(R7) is of the form DF't"2(R") = DFI2(F(RT)) -
DF (R7). The matrix DF' (R") is of the form :

Ar 0O O
0 A2 O
0 0 As
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We have that (|AG] —n)"" < [Ax] < (|AG]+ )", (A — )" < |As| < (JAG°[ + )™
and (|AG°] =)™ < |Asz] < (JAS°| +n)™'. The matrix DF/?(FI' (R™)) is of the form :

A B C
D FE F
G H 1

Since e] € C*, e5 € C*® and e5 € C°° and these cones are disjoint, the coefficients
A,B,C,D,E . F,G,H,I are bounded in modulus by some constant K which is indepen-
dant of 7, n and ni. Then :

AAr BAs CAj
DFEMT™2(R™) = [ DAi  EA>  FA3
GA1 HAx IAs3

Let us suppose that AA; = 0. There exists ¢ > 0 such that if the characteristic
polynomial of DE™M¥™2(R7) is X® + a2 X2 4+ a1 X + ao with |ao| < €, |a1| < €, |az| < ¢,
then the 3 eigenvalues of DF/1*"2(R") are of modulus lower than 1 and then R” is
a sink. We are going to show that it is possible to get a lower bound on n: so that it
is always the case. The coefficients of the characteristic polynomial of DF1+"2(R")
are :

a2 = —(AAl + EA2 =+ IA3)

a; = (E]AQAg — FHA2A3 + AIA1A3 — CGA1A3 + AEAlAQ — BDAlAQ)

ap = —det(DF[?(FI(RT))
We have : |ao| = |det(DF}?(F' (RT)))| < K*|A1AaAs| < K ((IAG*|+n)(IA§|+n))™
which tends to 0 when n1 — 400 because (|[A§°| +7)(JAG] + 1) < 1 (remind that Py

is a sectionally dissipative periodic point). We increase ni such that |ao| < €/2. We
have that :

jar] < 6K max(|A1Aa|, |A1 As], [A2As]) < 6K ((ING| + ) (1A6| +n))™

which tends to 0 when n; — +oo because (|]AG°| + n)(|A¢| + 1) < 1. We increase n;
further such that |a1| < €/2. Finally, in the term az, both EAs and IAs tend to 0
when nq1 — +o0o. The term AA; is equal to 0 by hypothesis. We increase n; a last
time such that |az| < €¢/2. Finally, we pick Ny > N3 such that n, is sufficiently high in
order to satisfy the previous inequalities. Finally, the 3 eigenvalues of DF 1 +"2(R")
are of modulus lower than 1 and R” is a sink.

It remains us to show that for a given neighborhood ¢ € T of 0 and the cor-
responding neighborhood of 0 for 7 (remind that ¢ = 72), it is possible to pick a
new bound Ng on n, such that for n > Ng, there is a parameter 7 = 7(n) such
that the differential DF(R") satisfies AA; = 0. To show this, we work again in
the coordinates U, for the map F.. We denote by II the projection of the plane
U, (W*(P,2)) = {z1 = 0} into P?>(C). The projection IT is a holomorphic curve. We
denote by T' the holomorphic curve in P?(C) given by the tangent directions to the
curve U, (W"(Py)) = {z1 = 23, 22 = 0}. Since there is a generically unfolded quadratic
tangency at 7 = 0 between W?*(Py) and W*(Fy), there is a transverse intersection be-
tween II and I'. Moreover, P?(C) is of dimension 2. We take a small disk A’ going
through ¥, (R") of direction DU, (R") - €}. For a given n > N4, we call I';, the com-
plex curve in P?(C) given by the tangent directions to the curve ¥, (F™(A’)) at the
periodic point W, (R") when 7 varies. By the Inclination Lemma, we can increase
the bound N5 > N4 on n such that if n > Ns, pry(¥,-(R7)) can be made as close
to it as wanted and W, (F"(A’)) can be taken as close to {z1 = 23 +t,22 = 0} in
the C* topology. In particular, this shows that the graph I'), can be taken as close
to the graph I' as wanted (in the C'-topology) by increasing the bound Ns. In par-
ticular, we can pick N5 such that there is a transverse intersection between I',, and II
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if n > N5. There is a last step to get AA; = 0. We denote by II' the projection of
the plane Vect(DW,(R") - eh, DU, (R") - e3) in P*(C), I’ is a complex curve. Since e}
and e5 are the two stable eigenvectors of DF**(R"), it is an easy consequence of the
Inclination Lemma that if » and then n; tend to infinity, then R” tends to W*(P,z2)
and T’ tends to IT (locally as graphs in the C'-topology). In particular, it is possible
to pick a last bound Ng > N5 on n such that if n > Ng, then I}, and II' have a
transverse intersection. This implies that there exists 7 with ¢ = 72 € T such that
DF?(R™) - e} € Vect(eh, e5) which is equivalent to AA; = 0. For this parameter 7, we
saw that R” is a sink.

This is true for every neighborhood 7 of 0 and it is clear that R” tends to Q when
reducing 7. The result is proven : for every neighborhood Q of @} and every neigh-
borhood T of 0, we can create a sink in Q for F; with ¢t € T. O
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