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STEKLOV ZETA-INVARIANTS AND A COMPACTNESS THEOREM

FOR ISOSPECTRAL FAMILIES OF PLANAR DOMAINS

ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

Abstract. The inverse problem of recovering a smooth simply connected multisheet
planar domain from its Steklov spectrum is equivalent to the problem of determination,
up to a gauge transform, of a smooth positive function a on the unit circle from the
spectrum of the operator aΛ, where Λ is the Dirichlet-to-Neumann operator of the unit
disk. Zeta-invariants are defined by Zm(a) = Tr[(aΛ)2m − (aD)2m] for every smooth
function a. In the case of a positive a, zeta-invariants are determined by the Steklov
spectrum. We obtain some estimate from below for Zm(a) in the case of a real function
a. On using the estimate, we prove the compactness of a Steklov isospectral family of
planar domains in the C

∞-topology. We also describe all real functions a satisfying
Zm(a) = 0.

1. Introduction

Let Ω be a simply connected (possibly multisheet) planar domain bounded by a C∞-
smooth closed curve ∂Ω. See [4, Section 4] for the discussion of simply connected multi-
sheet planar domains. The Dirichlet-to-Neumann operator of the domain

ΛΩ : C∞(∂Ω) → C∞(∂Ω)

is defined by ΛΩf = ∂u
∂ν
|∂Ω, where ν is the outward unit normal to ∂Ω and u is the solution

to the Dirichlet problem

∆u = 0 in Ω, u|∂Ω = f.

The Dirichlet-to-Neumann operator is a first order pseudodifferential operator. Moreover,
it is a non-negative self-adjoint operator with respect to the L2-product

〈u, v〉 =

∫

∂Ω

uv̄ ds,

where ds is the Euclidean arc length of the curve ∂Ω. In particular, the operator ΛΩ has
a non-negative discrete eigenvalue spectrum

Sp(Ω) = {0 = λ0(Ω) < λ1(Ω) ≤ λ2(Ω) ≤ . . . },

where each eigenvalue is repeated according to its multiplicity. The spectrum is called the
Steklov spectrum of the domain Ω. In particular, for the unit disk D = {(x, y) | x2 + y2 ≤
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1},

Sp(D) = {0 = λ00 < λ01 ≤ λ02 ≤ . . . } = {0, 1, 1, 2, 2, . . .}.

Let S = ∂D = {eiθ} ⊂ C be the unit circle. The Dirichlet-to-Neumann operator of
the unit disk will be denoted by Λ : C∞(S) → C∞(S), i.e., Λ = ΛD (this operator was
denoted by Λe in [4] and [6]). Given a positive function a ∈ C∞(S), the operator aΛ has
the non-negative discrete eigenvalue spectrum

Sp(a) = {0 = λ0(a) < λ1(a) ≤ λ2(a) ≤ . . . }

which is called the Steklov spectrum of the function a (or of the operator aΛ).
Two kinds of the Steklov spectrum are related as follows. Given a smooth simply

connected planar domain Ω, choose a biholomorphism Φ : D → Ω and define the function
0 < a ∈ C∞(S) by a(z) = |Φ′(z)|−1 (z ∈ S). Let φ : S → ∂Ω be the restriction of Φ to S.
Then aΛ = φ∗ΛΩ φ

∗−1 and Sp(a) = Sp(Ω). See [4, Section 3] for details.
The biholomorphism Φ of the previous paragraph is defined up to a conformal transfor-

mation of the disk D, this provides examples of functions with the same Steklov spectrum.
Two functions a, b ∈ C∞(S) are said to be conformally equivalent, if there exists a con-
formal or anticonformal transformation Ψ of the disk D such that

b =

∣∣∣∣
dψ

dθ

∣∣∣∣
−1

a ◦ ψ, (1.1)

where the function ψ(θ) is defined by eiψ(θ) = Ψ(eiθ) (Ψ is anticonformal if Ψ̄ is conformal).
If two positive functions a, b ∈ C∞(S) are conformally equivalent, then Sp(a) = Sp(b).

Let D = −i d
dθ

: C∞(S) → C∞(S) be the differentiation with respect to the angle
variable. Steklov zeta-invariants Zm(a) (m = 1, 2, . . . ) of a function a ∈ C∞(S) are
defined by

Zm(a) = Tr[(aΛ)2m − (aD)2m]. (1.2)

The expression in brackets is a smoothing operator on S, this fact will be proved below.
Remind that every smoothing pseudodifferential operator on a compact manifold has a
finite trace. We emphasize that zeta-invariants are well defined for an arbitrary (complex-
valued) function a ∈ C∞(S) although the spectrum of aΛ can be not discrete in the general
case. Zeta-invariants are real for a real function a, we will mostly study this case. For
a positive function a ∈ C∞(S), zeta-invariants are uniquely determined by the Steklov
spectrum Sp(a). This fact was proved by J. Edward [2] (without using the term “zeta-
invariants”), see also [6].

For a function u on the circle S = {eiθ | θ ∈ R}, we write u(θ) instead of u(eiθ).
Fourier coefficients of u ∈ C∞(S) are denoted by ûn, i.e., u(θ) =

∑
n∈Z ûne

inθ. Edward [2]
obtained the formula

Z1(a) =
2

3

∞∑

n=2

(n3 − n) |ân|
2 (1.3)

for a real function a ∈ C∞(S). E. Malkovich and V. Sharafutdinov [6] generalized the
formula to all zeta-invariants: Zm(a) is expressed by some 2m-form in Fourier coefficients
ân. Unfortunately, the latter formula is too complicated to be useful for deriving the-
oretical results. On the other hand, Malkovich – Sharafutdinov’s formula is very easy
for computerization. Thus, unlike the hard problem of calculating Steklov eigenvalues,
zeta-invariants can be easily computed.

The main result of the present paper is the following
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Theorem 1.1. Given an integer m ≥ 1 and a real function a ∈ C∞(S), set b = am. The
estimate

Zm(a) ≥ cm

∞∑

n=m+1

n2m+1|b̂n|
2 (1.4)

holds with some positive constant cm independent of a. In particular, Zm(a) ≥ 0 for every
integer m ≥ 1 and for every real function a ∈ C∞(S).

For m = 1, estimate (1.4) follows from Edward’s formula (1.3). Theorem 1.1 was first
conjectured as a result of a lot of numerical experiments based on Malkovich – Sharafut-
dinov’s formula, we are grateful to E. Malkovich for his help with computer calculations.
For a positive function a, the statement Zm(a) ≥ 0 follows from a more general inequality
proved by the authors [5].

The question of describing the null space of a zeta-invariant was posed in [6]. The
question is closely related to the above-defined conformal equivalence of functions. The
following theorem gives the full answer to the question for real functions.

Theorem 1.2. For every integerm ≥ 1 and for every real function a ∈ C∞(S), Zm(a) = 0
if and only if the function a is of the form

a(θ) = â0 + 2ℜ(â1e
iθ) with some â0 ∈ R and â1 ∈ C. (1.5)

Observe that (1.5) holds if and only if a is conformally equivalent to a constant function.
The latter fact is not used in our proof. Again, the statement of the theorem follows from
Edward’s formula (1.3) in the case of m = 1. The “if” statement of Theorem 1.2 is proved
in [6, Section 6]. Moreover, the following more general statement is proved there. For
every integer m ≥ 1, Zm(a) = 0 if a ∈ C∞(S) is a (complex-valued) function satisfying
ân = 0 for |n| > 1. Our proof is independent of the latter statement.

The inverse problem of recovering a function 0 < a ∈ C∞(S) from the Steklov spectrum
Sp(a) seems to be very difficult. It makes sense to start with easier questions of the
following kind. Given 0 < a ∈ C∞(S), set

A = {0 < ã ∈ C∞(S) | ã is conformally equivalent to a}.

How far offA can be a function 0 < b ∈ C∞(S) satisfying Sp(b) = Sp(a)? In this direction,
we prove the following compactness theorem.

Theorem 1.3. Let an ∈ C∞(S) (n = 1, 2, . . . ) be a sequence of positive functions
such that the Steklov spectrum Sp(an) is independent of n. There exists a subsequence
ank

(k = 1, 2, . . . ) such that every ank
is conformally equivalent to some bk ∈ C∞(S)

and the sequence bk (k = 1, 2, . . . ) converges to a positive function b ∈ C∞(S) in the
C∞-topology, i.e., Dℓbk → Dℓb as k → ∞ uniformly on S for every ℓ ∈ N.

The theorem gives the positive answer to Edward’s question [3] who has proved the
corresponding pre-compactness theorem in the Sobolev Hs-topology for s < 5/2. In his
proof, Edward uses first two zeta-invariants and the values ζa(−1), ζa(−3) of the zeta
function. Our proof follows the same line with using estimate (1.4) for all zeta-invariants.

The paper is organized as follows.
Let Ψ(S) be the algebra of all pseudodifferential operators on S considered as an algebra

over C. In Section 2, we consider the subalgebra C[L,H ] of Ψ(S) generated by the Hilbert
transform H and a general self-adjoint operator L ∈ Ψ(S) that commutes with H up to
a smoothing operator. We prove a number of statements on traces of some smoothing
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operators belonging to C[L,H ]. Theorems 1.1 and 1.2 are the most important examples
of such statements. Indeed, definition (1.2) can be written in terms of the operator

L = Λ1/2aΛ1/2 (1.6)

(we denote the operator of multiplication by a function a by the same letter a) as

Zm(a) = Tr[L2m − (LH)2m]. (1.7)

The commutator [L,H ] is a smoothing operator as is shown below. Proofs of Theorems
1.1 and 1.2 are presented in Sections 3 and 4 respectively. Section 5 contains the proof of
Theorem 1.3 and an interpretation of the theorem in terms of a Steklov isospectral family
of planar domains.

The proof of Theorem 1.3 is independent of Theorem 1.2. If a reader is not interested
in Theorem 1.2, he/she does not need to read Theorem 2.5 and the rest of Section 2 as
well as Section 4. The proof of Lemma 2.2 is presented in Appendix. If a reader either
knows a better proof of the equality Tr[AB − C] = Tr[BA− C] in the setting of Lemma
2.2 or believes that the equality is always true, he/she can do not look into Appendix.

2. Algebra C[L,H ]

Let S = {eiθ | θ ∈ R} be the unit circle. For a function u ∈ C(S), we write u(θ) instead
of u(eiθ). The L2-product is denoted by

〈u, v〉 =
1

2π

2π∫

0

u(θ)v̄(θ) dθ

and the corresponding norm is ‖ · ‖. The factor (2π)−1 is included to make {einθ}n∈Z the
orthonormal basis of L2(S).

We define the Hilbert transform H : C∞(S) → C∞(S) by

Heinθ =

{
einθ if n ≥ 0,
−einθ if n < 0.

(2.1)

Our definition is slightly different of the standard one: Heinθ = 0 for n = 0 according
to the standard definition. Observe that H is a zero order pseudodifferential operator.
Additionally, it is a unitary operator on L2(S) satisfying H2 = I.

Let Ψ(S) be the algebra of all pseudodifferential operators on S considered as an algebra
over C. We fix an operator L ∈ Ψ(S) and consider the subalgebra C[L,H ] of Ψ(S) gener-
ated by L and H . From the algebraic viewpoint, C[L,H ] is the algebra of polynomials in
two variables (L,H). Every monomial of the algebra C[L,H ] can be written in the form
λA (λ ∈ C), where

A = Lj1H . . . LjsH (0 ≤ jα ∈ N for α = 1, . . . , s). (2.2)

The sum j1 + · · · + js is called the degree of the monomial in L while s is the degree of
the monomial in H .

Assume now that the commutator [L,H ] is a smoothing operator. Then we can com-
mute, up to a smoothing operator, factors of product (2.2). In this way (2.2) can be
reduced, up to a smoothing operator, either to Lj1+···+js (if the degree of A in H is even)
or to Lj1+···+jsH (if the degree of A in H is odd). In particular, the following statement
is valid.
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Lemma 2.1. If two products A1 and A2 of form (2.2) are of the same degree in L and
their degrees in H are of the same evenness, then the difference A1 − A2 is a smoothing
and hence finite trace operator.

An integer m ≥ 1 will be fixed till the end of the current section. The dependence
of different quantities on m will not be designated explicitly. The proof of the following
lemma is presented in Appendix.

Lemma 2.2. Let L be a self-adjoint pseudodifferential operator on S such that the com-
mutator [L,H ] is a smoothing operator. Let A1 and A2 be two products of form (2.2)
whose degrees in H are of the same evenness. Assume that m1 +m2 = 2m, where mi is
the degree of Ai in L (i = 1, 2). Then

Tr [A1A2 − (LH)2m] = Tr [A2A1 − (HL)2m]. (2.3)

Let us mention two partial cases of (2.3). For A1 = H and A2 = L2mH , (2.3) gives

Tr [HL2mH − (LH)2m] = Tr [L2m − (LH)2m]. (2.4)

For A1 = H and A2 = H
∏2s

ℓ=1(L
jℓH) with j1 + · · ·+ j2s = 2m, (2.3) gives

Tr
[ 2s∏

ℓ=1

(LjℓH)− (LH)2m
]
= Tr

[ 2s∏

ℓ=1

(HLjℓ)− (LH)2m
]
.

For every ℓ ∈ N satisfying 1 ≤ ℓ ≤ m, let ∆ℓ be the set of sequences δ = (δ1, . . . , δℓ) of
integers satisfying 1 ≤ δi ≤ m (1 ≤ i ≤ ℓ) and δ1 + · · ·+ δℓ = m.

Let L be a self-adjoint pseudodifferential operator on S such that the commutator [L,H ]
is a smoothing operator. For δ = (δ1, . . . , δℓ) ∈ ∆ℓ, we set

Gδ = (Lδ1H)(Lδ2H) . . . (LδℓH). (2.5)

The trace Tr [G∗
δGδ − (LH)2m] is real. Indeed, on using the trigonometric basis, we have

Tr [G∗
δGδ − (LH)2m] =

∑

n∈Z

(
〈G∗

δGδe
inθ, einθ〉 − 〈(LH)2meinθ, einθ〉

)
.

All summands of the series are real. Indeed, since Heinθ = ±einθ,

〈G∗
δGδe

inθ, einθ〉 − 〈(LH)2meinθ, einθ〉 = ‖Gδe
inθ‖2 − 〈(LH)2m−1LHeinθ, einθ〉

= ‖Gδe
inθ‖2 ∓ 〈(LH)2m−1Leinθ, einθ〉.

The right-hand side is real because (LH)2m−1L is a self-adjoint operator. Observe also
that

Tr [G∗
δGδ − (LH)2m] = Tr [GδG

∗
δ − (LH)2m]

by Lemma 2.2.
Define the function ϕ : {1, . . . , m} → R by

ϕ(ℓ) = max
δ∈∆ℓ

Tr [G∗
δGδ − (LH)2m] (1 ≤ ℓ ≤ m). (2.6)

Theorem 2.3. Let L be a self-adjoint pseudodifferential operator on S such that the
commutator [L,H ] is a smoothing operator and let the function ϕ be defined by (2.6).
Then ϕ is a non-increasing and non-negative function. In particular,

Tr [L2m−(LH)2m] = ϕ(1) ≥ ϕ(m) = Tr
[
H(LH)m−1L2H(LH)m−1−(LH)2m

]
≥ 0. (2.7)

To prove the theorem, we need the following
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Lemma 2.4. Let A, B, and C be pseudodifferential operators on S such that C is self-
adjoint and AA∗ − CH, B∗B − CH, and AB − CH are finite trace operators. Then

ℜ
(
Tr [AB − CH ]

)
≤

1

2
Tr [AA∗ − CH ] +

1

2
Tr [B∗B − CH ]. (2.8)

The equality on (2.8) holds if and only if A∗ = B.

Proof. For n ∈ Z,

〈(AB − CH)einθ, einθ〉 = 〈Beinθ, A∗einθ〉 − 〈CHeinθ, einθ〉.

By the Schwartz inequality,

ℜ
(
〈Beinθ, A∗einθ〉

)
≤ ‖Beinθ‖ ‖A∗einθ‖ ≤

1

2
‖A∗einθ‖2 +

1

2
‖Beinθ‖2. (2.9)

Taking into account that 〈CHeinθ, einθ〉 = ±〈Ceinθ, einθ〉 is real, we derive from two last
formulas

ℜ
(
〈(AB − CH)einθ,einθ〉

)

≤
1

2

(
‖A∗einθ‖2 − 〈CHeinθ, einθ〉

)
+

1

2

(
‖Beinθ‖2 − 〈CHeinθ, einθ〉

)

=
1

2

〈
(AA∗ − CH)einθ, einθ

〉
+

1

2

〈
(B∗B − CH)einθ, einθ

〉
.

Summing these inequalities over n ∈ Z, we arrive to (2.8).
Equality in (2.8) holds if and only if both inequalities on (2.9) become equalities for

every n ∈ Z, i.e., if and only if A∗einθ = Beinθ for any n ∈ Z. Hence equality in (2.8)
holds if and only if A∗ = B. �

Proof of Theorem 2.3. Define ωℓ ∈ ∆ℓ (1 ≤ ℓ ≤ m) by

ωℓ = (m− ℓ+ 1, 1, . . . , 1︸ ︷︷ ︸
ℓ−1

). (2.10)

In particular, ω1 = (m) and ωm = (1, . . . , 1︸ ︷︷ ︸
m

).

Obviously, Gω1
= LmH and

ϕ(1) = Tr [G∗
ω1
Gω1

− (LH)2m] = Tr [HL2mH − (LH)2m].

With the help of (2.4), this gives ϕ(1) = Tr [L2m − (LH)2m]. We have thus proved the
first equality on (2.7).

Obviously,
Gωm = (LH)m (2.11)

and

ϕ(m) = Tr
[
G∗
ωm
Gωm − (LH)2m

]
= Tr

[
(HL)m(LH)m − (LH)2m

]

= Tr
[
H(LH)m−1L2H(LH)m−1 − (LH)2m

]
.

(2.12)

This proves the last equality on (2.7).
Next, we prove that ϕ(m) ≥ 0. By (2.12),

ϕ(m) = Tr
[
G∗
ωm
Gωm − (LH)2m

]
=
∑

n∈Z

(
‖Gωme

inθ‖2 − 〈(LH)2meinθ, einθ〉
)
. (2.13)

For every n ∈ Z, we obtain with the help of (2.11)

〈(LH)2meinθ, einθ〉 = 〈G2
ωm
einθ, einθ〉 = 〈Gωme

inθ, G∗
ωm
einθ〉.
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As is seen from (2.11), G∗
ωm

= HGωmH and the previous formula takes the form

〈(LH)2meinθ, einθ〉 = 〈Gωme
inθ, HGωmHe

inθ〉.

This implies with the help of the Schwartz inequality

〈(LH)2meinθ, einθ〉 = 〈HGωme
inθ, GωmHe

inθ〉 ≤ ‖HGωme
inθ‖ ‖GωmHe

inθ‖. (2.14)

Since Heinθ = ±einθ and H is a unitary operator, (2.14) is equivalent to

〈(LH)2meinθ, einθ〉 ≤ ‖Gωme
inθ‖2.

Combining this with (2.13), we obtain ϕ(m) ≥ 0.
Finally, we prove that ϕ(ℓ) ≤ ϕ(ℓ− 1) for 2 ≤ ℓ ≤ m. Let δ = (δ1, . . . , δℓ) ∈ ∆ℓ be such

that

ϕ(ℓ) = Tr [G∗
δGδ − (LH)2m].

This can be rewritten as

ϕ(ℓ) = Tr
[
(HLδℓ) . . . (HLδ2)(HL2δ1)H(Lδ2H) . . . (LδℓH)− (LH)2m

]
.

By Lemma 2.2, the last factor LδℓH of the first product can be moved to the first position.
Applying also H2 = I, we obtain

ϕ(ℓ) = Tr
[
L2δℓH

ℓ−1∏

i=2

(Lδℓ−i+1H)L2δ1H

ℓ−1∏

i=2

(LδiH)− (LH)2m
]
. (2.15)

Again by Lemma 2.2, this can be equivalently written as

ϕ(ℓ) = Tr
[
L2δ1H

ℓ−1∏

i=2

(LδiH)L2δℓ

ℓ−1∏

i=2

(Lδl−i+1H)− (LH)2m
]
.

Therefore we can assume without loss of generality that δ1 ≥ δℓ in (2.15) (the product
Πℓ−1
i=2 does not appear in (2.15) when ℓ = 2).
We write (2.15) in the form

ϕ(ℓ) = Tr [AB − CH ], (2.16)

where

A = L2δℓH
ℓ−1∏

i=2

(Lδℓ−i+1H)Lδ1−δℓ , B = Lδ1+δℓH
ℓ−1∏

i=2

(LδiH), C = (LH)2m−1L. (2.17)

The operators A,B,C satisfy hypotheses of Lemma 2.4 and inequality (2.8) holds. From
(2.16) and (2.8),

ϕ(ℓ) ≤
1

2
Tr [AA∗ − CH ] +

1

2
Tr [B∗B − CH ].

With the help of Lemma 2.2, this can be written in the form

ϕ(ℓ) ≤
1

2
Tr [HAA∗H − CH ] +

1

2
Tr [B∗B − CH ]

=
1

2
Tr [(A∗H)∗(A∗H)− CH ] +

1

2
Tr [B∗B − CH ].

(2.18)

Assume first that δ1 > δℓ. Comparing (2.5) and (2.17), we see that

A∗H = G(δ1−δℓ,δ2,...,δℓ−1,2δℓ), B = G(δ1+δℓ,δ2,...,δℓ−1), CH = (LH)2m. (2.19)
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Now, (2.18) takes the form

ϕ(ℓ) ≤
1

2
Tr
[
G∗

(δ1−δℓ,δ2,...,δℓ−1,2δℓ)
G(δ1−δℓ,δ2,...,δℓ−1,2δℓ) − (LH)2m

]

+
1

2
Tr
[
G∗

(δ1+δℓ,δ2,...,δℓ−1)
G(δ1+δℓ,δ2,...,δℓ−1) − (LH)2m

]
.

(2.20)

Here, G(δ1−δℓ,δ2,...,δℓ−1,2δℓ) and G(δ1+δℓ,δ2,...,δℓ−1) should be replaced by G(δ1−δ2,2δ2) and G(δ1+δ2)

respectively in the case of l = 2. By the definition of the function ϕ,

Tr
[
G∗

(δ1−δℓ,δ2,...,δℓ−1,2δℓ)
G(δ1−δℓ,δ2,...,δℓ−1,2δℓ) − (LH)2m

]
≤ ϕ(ℓ),

Tr
[
G∗

(δ1+δℓ,δ2,...,δℓ−1)
G(δ1+δℓ,δ2,...,δℓ−1) − (LH)2m

]
≤ ϕ(ℓ− 1).

Therefore (2.20) implies the desired inequality ϕ(ℓ) ≤ ϕ(ℓ− 1).
Finally, we consider the case of δ1 = δℓ. In this case, we have instead of (2.19)

A∗H = HG(δ2,...,δℓ−1,2δℓ), B = G(δ1+δℓ,δ2,...,δℓ−1), CH = (LH)2m

and (2.18) takes the form

ϕ(ℓ) ≤
1

2
Tr
[
G∗

(δ2,...,δℓ−1,2δℓ)
G(δ2,...,δℓ−1,2δℓ) − (LH)2m

]

+
1

2
Tr
[
G∗

(δ1+δℓ,δ2,...,δℓ−1)
G(δ1+δℓ,δ2,...,δℓ−1) − (LH)2m

]
.

(2.21)

Here G(δ2,...,δℓ−1,2δℓ) and G(δ1+δℓ,δ2,...,δℓ−1) should be replaced by G(2δℓ) and G(δ1+δℓ) respec-
tively in the case of l = 2. By the definition of the function ϕ,

Tr
[
G∗

(δ2,...,δℓ−1,2δℓ)
G(δ2,...,δℓ−1,2δℓ) − (LH)2m

]
≤ ϕ(ℓ− 1),

Tr
[
G∗

(δ1+δℓ,δ2,...,δℓ−1)
G(δ1+δℓ,δ2,...,δℓ−1) − (LH)2m

]
≤ ϕ(ℓ− 1).

Therefore (2.21) again implies the desired inequality ϕ(ℓ) ≤ ϕ(ℓ− 1). �

We have the following characterization of the equality in Theorem 2.3.

Theorem 2.5. Let L be a self-adjoint pseudodifferential operator on S such that [L,H ]
is a smoothing operator. The equality

Tr[L2m − (LH)2m] = 0 (2.22)

holds if and only if

(LH)m = (HL)m and L2H = HL2. (2.23)

The proof of the theorem is based on the following

Lemma 2.6. Let L be a self-adjoint pseudodifferential operator on S such that the com-
mutator [L,H ] is smoothing. Equality (2.22) holds if and only if

(LH)m = (HL)m (2.24)

and

Lℓ+1H(LH)m−ℓ−1 = Lℓ−1H(LH)m−ℓ−1L2 for 1 ≤ ℓ ≤ m− 1. (2.25)

Condition (2.25) is absent in the case of m = 1.
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Proof. By Theorem 2.3, (2.22) holds if and only if

ϕ(ℓ) = 0 for 1 ≤ ℓ ≤ m. (2.26)

As is seen from (2.13) and (2.14), the equality ϕ(m) = 0 is equivalent to the following
statement: the equality

〈HGωme
inθ, GωmHe

inθ〉 = ‖HGωme
inθ‖ ‖GωmHe

inθ‖

holds for every n ∈ Z. Besides this, the norms ‖HGωme
inθ‖ and ‖GωmHe

inθ‖ coincide
because Heinθ = ±einθ and H is a unitary operator. Therefore ϕ(m) = 0 if and only if
HGωme

inθ = GωmHe
inθ (n ∈ Z), i.e., if and only if

HGωm = GωmH.

On using (2.11) and H2 = I, we see that the latter equality is equivalent to (2.24). In
particular, we have proved the theorem in the case of m = 1.

Assume m ≥ 2 for the rest of the proof. Replacing ℓ with m − ℓ, we rewrite (2.25) in
the equivalent form

Lm−ℓ+1H(LH)ℓ−1 = Lm−ℓ−1H(LH)ℓ−1L2 for 1 ≤ ℓ ≤ m− 1. (2.27)

We first prove the “only if” statement. Assume (2.24) to be valid. Let ωℓ ∈ ∆ℓ be
defined by (2.10). By induction in m − ℓ, we will prove the validity of (2.27) and of the
equality

0 = ϕ(ℓ) = Tr[G∗
ωℓ
Gωℓ

− (LH)2m] for 1 ≤ l ≤ m. (2.28)

For ℓ = m, (2.28) holds by (2.13) and (2.26).
Now, we prove (2.27) and (2.28) for l = m− 1. By (2.7),

ϕ(m) = Tr
[
H(LH)m−1L2H(LH)m−1 − (LH)2m

]
.

By Lemma 2.2, we can transpose the factors H(LH)m−1 and L2H(LH)m−1 on the right-
hand side

ϕ(m) = Tr
[
L2H(LH)m−1H(LH)m−1 − (LH)2m

]

= Tr
[
L2H(LH)m−2L2H(LH)m−2 − (LH)2m

]
.

This can be written in the form

ϕ(m) = Tr [A2 − (LH)2m],

where
A = L2H(LH)m−2 = Gωm−1

. (2.29)

The latter equality follows from (2.5) and (2.10). Operators A = B and C = (LH)2m−1L
satisfy hypotheses of Lemma 2.4. This is checked quite similarly to the corresponding
check after formula (2.17). Applying Lemma 2.4, we obtain

0 = ϕ(m) ≤
1

2
Tr
[
G∗
ωm−1

Gωm−1
− (LH)2m

]
+

1

2
Tr
[
Gωm−1

G∗
ωm−1

− (LH)2m
]

= Tr
[
G∗
ωm−1

Gωm−1
− (LH)2m

]
≤ ϕ(m− 1) = 0.

(2.30)

Thus, we have the equality in Lemma 2.4 which provides the following equality

L2H(LH)m−2 = A = A∗ = H(LH)m−2L2.

Hence (2.27)–(2.28) holds for ℓ = m− 1.
Now, we are doing the induction step. Assume (2.27)–(2.28) to be valid for ℓ = s with

some s satisfying 2 ≤ s ≤ m − 1. We are going to prove (2.27)–(2.28) for ℓ = s − 1. To
this end we set

A = L2H(LH)s−2Lm−s, B = Lm−s+2H(LH)s−2, C = (LH)2m−1L (2.31)
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and apply Lemma 2.4

Tr [AB − (LH)2m] ≤
1

2
Tr [AA∗ − (LH)2m] +

1

2
Tr [B∗B − (LH)2m]. (2.32)

On using definitions (2.5), (2.10) and Lemma 2.2, we easily derive from (2.31)

Tr [AB − (LH)2m] = Tr
[
G∗
ωs
Gωs − (LH)2m

]
,

Tr [AA∗ − (LH)2m] = Tr
[
G∗

(m−s,1,...,1︸︷︷︸
s−2

,2)G(m−s,1,...,1︸︷︷︸
s−2

,2) − (LH)2m
]
,

Tr [B∗B − (LH)2m] = Tr
[
G∗
ωs−1

Gωs−1
− (LH)2m

]
.

(2.33)

By the induction hypothesis,

Tr [AB − (LH)2m] = Tr
[
G∗
ωs
Gωs − (LH)2m

]
= 0

and, by the definition of ϕ,

Tr [AA∗ − (LH)2m] + Tr [B∗B − (LH)2m]

= Tr
[
G∗

(m−s,1,...,1︸︷︷︸
s−2

,2)G(m−s,1,...,1︸︷︷︸
s−2

,2) − (LH)2m
]
+ Tr

[
G∗
ωs−1

Gωs−1
− (LH)2m

]

≤ ϕ(s) + ϕ(s− 1) = 0.

Thus, we have actually the equality in (2.32). By Lemma 2.4, this means that

Lm−sH(LH)s−2L2 = A∗ = B = Lm−s+2H(LH)s−2.

This proves (2.27) for ℓ = s − 1. Two traces on the right-hand side of (2.32) coincide
because A∗ = B. In other words, two traces on the left-hand side of the equality

Tr
[
G∗

(m−s,1,...,1︸︷︷︸
s−2

,2)G(m−s,1,...,1︸︷︷︸
s−2

,2) − (LH)2m
]
+ Tr

[
G∗
ωs−1

Gωs−1
− (LH)2m

]
= 0

coincide. Hence,
Tr
[
G∗
ωs−1

Gωs−1
− (LH)2m

]
= 0.

This proves (2.28) for ℓ = s− 1. The induction step is completed.

Now, we prove the “if” statement. Assume (2.24)–(2.25) to be valid. We are going to
prove by induction in m− ℓ that

Tr[G∗
ωℓ
Gωℓ

− (LH)2m] = 0 for 1 ≤ l ≤ m. (2.34)

For ℓ = 1, this gives (2.22) in virtue of (2.4) and of Gω1
= LmH .

As we have shown at the beginning of the proof, (2.24) holds if and only if ϕ(m) = 0.
This implies the validity of (2.34) for ℓ = m (see (2.12)).

Let the operator A be defined by (2.29). Setting ℓ = 1 in (2.25), we see that A = A∗.
With the help of Lemma 2.4, this implies that the first inequality on (2.30) is actually
the equality, i.e.,

Tr
[
G∗
ωm−1

Gωm−1
− (LH)2m

]
= ϕ(m) = 0.

This proves (2.34) for ℓ = m− 1.
Now, we are doing the induction step. Assume (2.34) to be valid for ℓ = s with some s

satisfying 2 ≤ s ≤ m− 1. Define operators A and B by (2.31). Setting ℓ = m− s+ 1 in
(2.25), we see that A∗ = B. Therefore the equality holds in (2.32) and two traces on the
right-hand side coincide, i.e.,

Tr [AB − (LH)2m] = Tr [B∗B − (LH)2m].
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This gives with the help of (2.33)

Tr
[
G∗
ωs
Gωs − (LH)2m

]
= Tr

[
G∗
ωs−1

Gωs−1
− (LH)2m

]
.

By the induction hypothesis, the left-hand side is equal to zero. This finishes the induction
step. �

Proof of Theorem 2.5. By Lemma 2.6, it suffices to prove that conditions (2.23) are equiv-
alent to (2.24)–(2.25).

Assume first (2.23) to be valid. The second of conditions (2.23) means that the operator
L2 commutes with H . Hence L2 commutes with every operator that can be written as a
polynomial in L and H . Therefore

Lℓ+1H(LH)m−ℓ−1 = L2(Lℓ−1H(LH)m−ℓ−1) = Lℓ−1H(LH)m−ℓ−1L2

and (2.25) holds.
Now, assume (2.24)–(2.25) to be valid. The first of conditions (2.23) holds and it

remains to prove that L2 commutes with H . We can also assume m ≥ 2. Setting
ℓ = m− 1 in (2.25), we have

LmH = Lm−2HL2 (2.35)

and the proof is finished by applying the following statement. �

Lemma 2.7. Let L be a self-adjoint pseudodifferential operator on S. For an integer
m ≥ 2, (2.35) is equivalent to L2H = HL2.

To prove Lemma 2.7, we need the following known statement. Unfortunately, we do
not know any reference where the statement is presented explicitly. Therefore we present
the proof too. The statement is formulated for operators on the circle although it is valid
for operators on a compact manifold.

Lemma 2.8. Let A and B be two pseudodifferential operators on S. Assume A to be a
self-adjoint operator. If AkB = 0 for some integer k ≥ 1, then AB = 0.

Proof. By induction in k, we prove the more general statement:

if AkBu = 0 for u ∈ C∞(S), then ABu = 0. (2.36)

The statement is trivially valid in the case of k = 1. Assume the statement to be valid
for some k ≥ 1 and for every function u ∈ C∞(S). In particular, (2.36) holds for B = I,
i.e.,

if Akv = 0 for v ∈ C∞(S), then Av = 0. (2.37)

Let now Ak+1Bu = 0 for some u ∈ C∞(S). We write this in the form Ak(ABu) = 0 and
apply (2.37) to the function v = ABu ∈ C∞(S) to obtain A2Bu = 0. Then ‖ABu‖2 =
〈A2Bu,Bu〉 = 0 by the self-adjointness of A which yields ABu = 0. �

Proof of Lemma 2.7. There is nothing to prove in the case of m = 2. We assume m ≥ 3.
Rewrite (2.35) as

Lm−2(L2H −HL2) = 0.

By Lemma 2.8,
L(L2H −HL2) = 0 (2.38)

and hence
(L2H −HL2)L = −(L(L2H −HL2))∗ = 0. (2.39)

Given a function u ∈ C∞(S), we consider the decomposition u = u1 + u2, where

u1 ∈ Ran(L) and u2 ∈ Ran(L)
⊥
= Ker(L) (by the self-adjointness of L) when we look at
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L as an unbounded operator on L2(S). Then we have (L2H −HL2)u1 = 0 by (2.39) and
(L2H −HL2)u = L2Hu2. Therefore

‖(L2H −HL2)u‖2 = 〈L2Hu2, (L
2H −HL2)u〉 = 〈LHu2, L(L

2H −HL2)u〉 = 0

by (2.38). Hence (L2H −HL2)u = 0. �

As the first consequence of Theorem 2.5, we have the following

Corollary 2.9. Let L be a self-adjoint pseudodifferential operator on S such that the
commutator [L,H ] is smoothing. If Tr[L2m− (LH)2m] = 0, then Tr

[
L2pm− (LH)2pm

]
= 0

for every integer p ≥ 1.

Proof. We argue by induction in p. Assume Tr[L2pm − (LH)2pm] = 0 for some p ≥ 1. By
Theorem 2.5 applied to both m and pm, we have

L2H = HL2, (LH)m = (HL)m, (LH)pm = (HL)pm.

From this

(LH)(p+1)m = (LH)pm(LH)m = (HL)pm(HL)m = (HL)(p+1)m.

Applying Theorem 2.5 again, we derive from the latter formula

Tr[L2(p+1)m − (LH)2(p+1)m] = 0.

�

We give results on optimality of Corollary 2.9. For λ ∈ (0,+∞), let Lλ be the self-
adjoint finite rank operator defined by

Lλe
iθ = eiθ + λe−iθ, Lλe

−iθ = −e−iθ + λeiθ, Lλe
inθ = 0 for n /∈ {−1, 1}. (2.40)

Lemma 2.10. The equality
L2
λH = HL2

λ (2.41)

holds for every 0 < λ ∈ R. For an integer j ≥ 2, the equality

(LλH)j = (HLλ)
j , (2.42)

holds if and only if
ℑ((1 + iλ)j) = 0.

Proof. Definition (2.40) implies that

L2
λe

±iθ = (1 + λ2)e±iθ, L2
λe
inθ = 0 for n /∈ {−1, 1}.

Hence L2
λ commutes with H , i.e., (2.41) holds.

From (2.40) it follows that

LλHe
iθ = eiθ + λe−iθ, LλHe

−iθ = e−iθ − λeiθ, Lλe
inθ = 0 for n /∈ {−1, 1}.

The plane P spanned by {e±iθ} is an invariant subspace of the operator LλH and the
restriction of LλH to P⊥ is zero. The restriction Mλ of LλH to P is expressed by the
matrix

Mλ = I + λJ, where J =

(
0 1
−1 0

)

and I is the unit 2× 2-matrix. Since J2 = −I,

M j
λ =

j∑

ℓ=0

(
j

ℓ

)
λℓJ ℓ =

⌊j/2⌋∑

ℓ=0

(−1)ℓ

( (
j
2ℓ

) (
j

2ℓ+1

)
λ

−
(

j
2ℓ+1

)
λ

(
j
2l

)
)
λ2ℓ, (2.43)
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where ⌊x⌋ is the integer part of x ≥ 0 and the following agreement is used:
(

j
2ℓ+1

)
= 0 if

j < 2ℓ+ 1. Equality (2.42) is equivalent to

M j
λ =

(
1 0
0 −1

)
M j

λ

(
1 0
0 −1

)
.

On using (2.43), we see that (2.42) is equivalent to

⌊j/2⌋∑

ℓ=0

(−1)ℓ
(

j

2ℓ+ 1

)
λ2ℓ+1 = 0.

Finally, we observe that the left-hand side of the last equality is ℑ((1 + iλ)j). �

The following statement demonstrates the optimality of Corollary 2.9.

Proposition 2.11. Given an integer m ≥ 2, set λ = tan( π
m
). For an integer j ≥ 1, the

equality
Tr[L2j

λ − (LλH)2j] = 0

holds if and only if j is an integer multiple of m.

Proof. As is seen from

ℑ((1 + iλ)j) =
(
cos

π

m

)−j
ℑ
(
ei

jπ
m

)
,

(2.42) holds if and only if j is an integer multiple of m. Applying Lemma 2.10, we obtain
the statement: (LλH)j = (HLλ)

j if and only if j is an integer multiple of m. By Theorem
2.5 and (2.41), the latter statement is equivalent to the proposition. �

The following result sharpens Corollary 2.9.

Theorem 2.12. Let L be a self-adjoint pseudodifferential operator on S such that the
commutator [L,H ] is smoothing. Let m be the greatest common factor of integers m1 > 1
and m2 > 1. If

Tr[L2m1 − (LH)2m1 ] = Tr[L2m2 − (LH)2m2 ] = 0,

then (LH)m = (HL)m and Tr[L2pm − (LH)2pm] = 0 for any integer p ≥ 1.

Together with inequality (2.7), this implies

Corollary 2.13. Let L be a self-adjoint pseudodifferential operator on S such that the
commutator [L,H ] is smoothing. Either Tr[L2p − (LH)2p] > 0 for every p ∈ N or there
exists an integer m ≥ 1 such that, for every k ∈ N, Tr[L2k − (LH)2k] = 0 if and only if k
is an integer multiple of m.

Proof of Theorem 2.12. If m2 is an integer multiple of m1 or m1 is an integer multiple of
m2, the statement follows from Corollary 2.9. For the rest of the proof we assume that
m < min(m1, m2). Choose integers a and b such that am1 + bm2 = m. We can assume
without loss of generality that a > 0 and b < 0 (otherwise invert roles of m1 and m2).

By (2.23), L2 commutes with H and the following equalities hold:

(LH)m1 = (HL)m1 , (LH)m2 = (HL)m2 .

On using these equalities and am1 = −bm2 +m, we derive

(LH)am1 = (LH)−bm2+m = (LH)−bm2(LH)m,

(LH)am1 = (HL)am1 = (HL)−bm2+m = (HL)−bm2(HL)m = (LH)−bm2(HL)m.

This implies
(LH)−bm2

(
(LH)m − (HL)m

)
= 0.
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On using Lemma 2.14 that is presented below, we obtain (LH)m = (HL)m. Then the
statement of the theorem follows from Corollary 2.9. �

Lemma 2.14. Let L be a self-adjoint pseudodifferential operator on S such that L2 com-
mutes with H. If (LH)k

(
(LH)m − (HL)m

)
= 0 for some positive integers k and m, then

(LH)m = (HL)m.

Proof. We first prove by induction in ℓ the following statement: for every u ∈ C∞(S),

if (LH)ℓLu = 0 for some ℓ ∈ N, then Lu = 0. (2.44)

There is nothing to prove when l = 0. Assume (2.44) to be valid for some l ≥ 0 and assume
that (LH)ℓ+1Lv = (LH)ℓ(LHLv) = 0 for some v ∈ C∞(S). Applying the induction
hypothesis to the function u = HLv, we obtain

LHLv = 0.

On using the self-adjointness of L and permutability of L2 and H , we derive from the last
formula

0 = ‖LHLv‖2 = 〈LHLv, LHLv〉 = 〈L2HLv,HLv〉

= 〈HL3v,HLv〉 = 〈L3v, Lv〉 = ‖L2v‖2.

We have also used that H is a unitary operator. Hence Lv = 0. We have thus proved
(2.44).

Now, the equalities

0 = (LH)k((LH)m − (HL)m) = (LH)k−1LH((LH)m − (HL)m)

= (LH)k−1L((HL)m − (LH)m)H

imply with the help of (2.44) that

L((LH)m − (HL)m) = 0. (2.45)

Given u ∈ C∞(S), we have by (2.45)

‖((LH)m − (HL)m)u‖2

= 〈L((LH)m − (HL)m)u, (HL)m−1Hu〉 − 〈((LH)m − (HL)m)u, (HL)mu〉

= −〈((LH)m − (HL)m)u, (HL)mu〉.

(2.46)

Represent u as the sum u = u1 + u2, where u1 ∈ Ran(L) and u2 ∈ Ran(L)
⊥
= Ker(L)

when we look at L as an unbounded operator in L2(S). Then (HL)mu = (HL)mu1 and
(2.46) gives

‖((LH)m − (HL)m)u‖2 = −〈(LH)m((LH)m − (HL)m)u, u1〉.

Choose a sequence u1,n ∈ C∞(S) (n = 1, 2, . . . ) such that Lu1,n converges to u1 in L2(S)
as n→ +∞. Then

‖((LH)m − (HL)m)u‖2 = − lim
n→∞

〈(LH)m((LH)m − (HL)m)u, Lu1,n〉

= − lim
n→∞

〈L(LH)m((LH)m − (HL)m)u, u1,n〉

= − lim
n→∞

〈L2(HL)m−1H((LH)m − (HL)m)u, u1,n〉.

On using the permutability of L2 and H , we obtain

‖((LH)m − (HL)m)u‖2 = − lim
n→∞

〈(HL)m−1HL2((LH)m − (HL)m)u, u1,n〉.
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By (2.45), the right-hand side of the latter formula equals zero and we obtain

((LH)m − (HL)m)u = 0.

�

3. Proof of Theorem 1.1

Let Λ1/2 : C∞(S) → C∞(S) be the nonnegative self-adjoint operator satisfying (Λ1/2)2 =
Λ. In other words, Λ1/2 is defined by

Λ1/2einθ =
√
|n|einθ (n ∈ Z). (3.1)

The operator D can be expressed through Λ1/2 and H :

D = Λ1/2HΛ1/2. (3.2)

Obviously, operators Λ1/2 and H commute.
Given a real function a ∈ C∞(S), define the operator L : C∞(S) → C∞(S) by formula

(1.6), where a stands for the operator of multiplication by the function a. We do not
designate the dependence of L on a explicitly in order to use formulas of the previous
section without changing notations. Nevertheless, the reader should remember that L
depends on a.

Observe that L is a self-adjoint first order pseudodifferential operator and satisfies

[L,H ] = Λ1/2[a,H ]Λ1/2. (3.3)

The commutator [a,H ] is a smoothing operator for every function a ∈ C∞(S) [4, Section
5.4]. We see from (3.3) that [L,H ] is also a smoothing operator. By Theorem 2.3,

Tr[L2m − (LH)2m] ≥ 0. (3.4)

As follows from (1.6) and (3.2),

L2m = Λ1/2(aΛ)2m−1aΛ1/2, (LH)2m = Λ1/2(aD)2m−1aΛ1/2H. (3.5)

Substitute these values into (3.4) to obtain

Tr
[
Λ1/2(aΛ)2m−1aΛ1/2 − Λ1/2(aD)2m−1aΛ1/2H

]
≥ 0.

With the help of the trigonometric basis, this can be written as
∑

n∈Z

(〈
(aΛ)2m−1aΛ1/2einθ,Λ1/2einθ

〉
−
〈
(aD)2m−1aΛ1/2Heinθ,Λ1/2einθ

〉)
≥ 0.

As is seen from (2.1) and (3.1),
〈
(aΛ)2m−1aΛ1/2einθ,Λ1/2einθ

〉
= |n|

〈
(aΛ)2m−1aeinθ, einθ

〉
=
〈
(aΛ)2meinθ, einθ

〉
,

〈
(aD)2m−1aΛ1/2Heinθ,Λ1/2einθ

〉
= n

〈
(aD)2m−1aeinθ, einθ

〉
=
〈
(aD)2meinθ, einθ

〉
.

Therefore

Tr[L2m − (LH)2m]

=
∑

n∈Z

(〈
(aΛ)2m−1aΛ1/2einθ,Λ1/2einθ

〉
−
〈
(aD)2m−1aΛ1/2Heinθ,Λ1/2einθ

〉)

=
∑

n∈Z

(〈
(aΛ)2meinθ, einθ

〉
−
〈
(aD)2meinθ, einθ

〉)
= Tr[(aΛ)2m − (aD)2m] = Zm(a).

In particular, we have proved (1.7). Together with (1.7), inequality (3.4) proves the second
statement of Theorem 1.1: Zm(a) ≥ 0.
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Lemma 3.1. Given a real function a ∈ C∞(S) and integer m ≥ 1, define functions
gn ∈ C∞(S) (n ∈ Z) by

gn(θ) = (aD)m−1aeinθ. (3.6)

Then

Zm(a) ≥ 4
∑

n>0,k>0

nk|(ĝn)−k|
2. (3.7)

Proof. By Theorem 2.3,

Tr [L2m − (LH)2m] ≥ Tr
[
H(LH)m−1L2H(LH)m−1 − (LH)2m

]
.

By (1.7), the left-hand side coincides with Zm(a), i.e., the inequality can be written as

Zm(a) ≥ Tr
[
H(LH)m−1L2H(LH)m−1 − (LH)2m

]
. (3.8)

As follows from (3.2) and (1.6),

H(LH)m−1L2H(LH)m−1 = HΛ1/2(aD)m−1aΛ(aD)m−1aΛ1/2H.

Substitute this value and (3.5) into (3.8)

Zm(a) ≥ Tr
[
HΛ1/2(aD)m−1aΛ(aD)m−1aΛ1/2H − Λ1/2(aD)2m−1aΛ1/2H

]
.

On using the trigonometric basis, we write this in the form

Zm(a) ≥
∑

n∈Z

(〈
HΛ1/2(aD)m−1aΛ(aD)m−1aΛ1/2Heinθ, einθ

〉

−
〈
Λ1/2(aD)2m−1aΛ1/2Heinθ, einθ

〉)
.

(3.9)

On using the equalities Heinθ = sgn(n)einθ and Λ1/2einθ = |n|1/2einθ, we transform the
first summand on the right-hand side of (3.9) as follows:

〈
HΛ1/2(aD)m−1aΛ(aD)m−1aΛ1/2Heinθ, einθ

〉

=
〈
(aD)m−1aΛ(aD)m−1aΛ1/2Heinθ,Λ1/2Heinθ

〉

= |n|
〈
(aD)m−1aΛ(aD)m−1aeinθ, einθ

〉

= |n|
〈(
(aD)m−1a

)∗
Λ(aD)m−1aeinθ, einθ

〉

= |n|
〈
Λ(aD)m−1aeinθ, (aD)m−1aeinθ

〉
= |n|〈Λgn, gn〉.

We have used (3.6) for the last equality of the chain. The second summand on the
right-hand side of (3.9) is transformed similarly:
〈
Λ1/2(aD)2m−1aΛ1/2Heinθ, einθ

〉
=
〈
(aD)2m−1aΛ1/2Heinθ,Λ1/2einθ

〉

= n
〈
(aD)2m−1aeinθ, einθ

〉
= n

〈(
(aD)m−1a

)∗
D(aD)m−1aeinθ, einθ

〉

= n
〈
D(aD)m−1aeinθ, (aD)m−1aeinθ

〉
= n〈Dgn, gn〉.

Now, (3.9) takes the form

Zm(a) ≥
∑

n∈Z

(
|n|〈Λgn, gn〉 − n〈Dgn, gn〉

)
. (3.10)
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We transform the sum on the right-hand side of (3.10) as follows:
∑

n∈Z

(
|n|〈Λgn, gn〉 − n〈Dgn, gn〉

)
=

=
∑

n>0

n
(
〈Λgn, gn〉 − 〈Dgn, gn〉

)
+
∑

n<0

(−n)
(
〈Λgn, gn〉+ 〈Dgn, gn〉

)

=
∑

n>0

n〈(Λ−D)gn, gn〉+
∑

n>0

n〈(Λ +D)g−n, g−n〉.

(3.11)

The operator D satisfies Dg = −Dḡ. Therefore

gn = (aD)2m−1aeinθ = −(aD)2m−1ae−inθ = −g−n.

Formula (3.11) is now written as
∑

n∈Z

(
|n|〈Λgn, gn〉 − n〈Dgn, gn〉

)
=
∑

n>0

n〈(Λ−D)gn, gn〉+
∑

n>0

n〈(Λ +D)gn, gn〉. (3.12)

For any function g,

〈(Λ−D)g, g〉 = 2
∑

k>0

k|ĝ−k|
2, 〈(Λ +D)g, g〉 = 2

∑

k>0

k|ĝk|
2.

Therefore (3.12) takes the form
∑

n∈Z

(
|n|〈Λgn, gn〉 − n〈Dgn, gn〉

)
= 2

∑

n>0,k>0

nk|(gn)
∧
−k|

2 + 2
∑

n>0,k>0

nk|(gn)
∧
k |

2.

Since (ḡ)∧k = ĝ−k for every function g, the latter formula can be written as
∑

n∈Z

(
|n|〈Λgn, gn〉 − n〈Dgn, gn〉

)
= 4

∑

n>0,k>0

nk|(ĝn)−k|
2.

Replacing the right-hand side of (3.10) with the latter expression, we arrive to (3.7). �

Proof of Theorem 1.1. For m = 1, estimate (1.4) follows from Edward’s formula (1.3).
Therefore we assume m ≥ 2. Such m is fixed till the end of the proof as well as a real
function a ∈ C∞(S). The dependence of different quantities on m and a is not designated
explicitly.

Obviously, for 1 ≤ n ∈ N,

(aD)m−1aeinθ =
( m∑

s=1

ns−1fs

)
einθ, (3.13)

where

fm = am = b (3.14)

and

fs = Ps(a,Da, . . . , D
m−sa) for s = 1, . . . , m− 1

with some universal polynomials Ps(X1, . . . , Xm−s) in m− s variables.
Define functions gn ∈ C∞(S) (n ∈ Z) by (3.6). With the help of (3.13), we see that

(ĝn)−k =
m∑

s=1

ns−1(f̂s)−(n+k) (k = 1, 2, . . . ).
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Substituting this value into (3.7), we obtain

Zm(a) ≥ 4
∞∑

n,k=1

nk
∣∣∣
m∑

s=1

ns−1(f̂s)−(n+k)

∣∣∣
2

= 4
∞∑

j=2

j−1∑

n=1

n(j − n)
∣∣∣
m∑

s=1

ns−1(f̂s)−j

∣∣∣
2

. (3.15)

For every integer j ≥ 2, introduce the sesquilinear form Fj : C
m × Cm → C by

Fj(x, y) =
1

j

j−1∑

n=1

n

j
(1− n/j)

m∑

s=1

(n/j)s−1xs

m∑

t=1

(n/j)t−1yt.

Observe that the corresponding Hermitian form is non-negative:

Fj(x, x) =
1

j

j−1∑

n=1

n

j
(1− n/j)

∣∣∣
m∑

s=1

(n/j)s−1xs

∣∣∣
2

≥ 0. (3.16)

For j ≥ 2, define the vector f̃j ∈ Cm by

(f̃j)s = js−1(f̂s)−j (1 ≤ s ≤ m). (3.17)

Then
j−1∑

n=1

n(j − n)
∣∣∣
m∑

s=1

ns−1(f̂s)−j

∣∣∣
2

= j3Fj(f̃j, f̃j)

and inequality (3.15) can be written in the form

Zm(a) ≥ 4
∞∑

j=2

j3Fj(f̃j , f̃j).

Since all summands on the right-hand side are non-negative, this implies

Zm(a) ≥ 4

∞∑

j=m+1

j3Fj(f̃j , f̃j). (3.18)

Lemma 3.2. There exists a positive constant cm depending only on m such that

Fj(x, x) ≥ cm‖x‖
2

for every j ≥ m + 1 and for every x ∈ Cm, where ‖x‖ =
(∑m

s=1 |xs|
2
)1/2

is the standard
norm on Cm.

The proof of the lemma is presented at the end of the section, and now we finish the
proof of Theorem 1.1.

With the help of Lemma 3.2, we derive from (3.18)

Zm(a) ≥ 4cm

∞∑

j=m+1

j3‖f̃j‖
2 ≥ 4cm

∞∑

j=m+1

j3
∣∣(f̃j)m

∣∣2.

By (3.14) and (3.17), (f̃j)m = jm−1b̂−j . Substituting this value into the last inequality,
we obtain

Zm(a) ≥ 4cm

∞∑

j=m+1

j2m+1|b̂−j|
2.

This coincides with desired inequality (1.4) because |b̂−j | = |b̂j|. �
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Proof of Lemma 3.2. Introduce the sesquilinear form F∞ : Cm × Cm → C by

F∞(x, y) =

∫ 1

0

t(1− t)

m−1∑

s=0

ts−1xs

m−1∑

s′=0

ts
′−1ys′ dt.

The right-hand side of (3.16) is the Riemann integral sum for the integral

F∞(x, x) =

∫ 1

0

t(1− t)
∣∣∣
m∑

s=1

ts−1xs

∣∣∣
2

dt. (3.19)

Therefore F∞ = limj→∞ Fj . Since the Hermitian forms Fj(x, x) and F∞(x, x) are non-
negative, it suffices to prove that, for j ≥ m+ 1,

F∞(x, x) 6= 0 and Fj(x, x) 6= 0 for 0 6= x ∈ Cm.

In view of (3.19), the equality F∞(x, x) = 0 means that
m∑

s=1

ts−1xs = 0 for t ∈ (0, 1).

Choosing a sequence 0 < t1 < · · · < tm < 1, we obtain the linear system
m∑

s=1

ts−1
k xs = 0 (1 ≤ k ≤ m)

with the non-degenerate matrix (ts−1
k )1≤k,s≤m. Therefore x = 0.

Let j ≥ m+ 1. In view of (3.16), the equality Fj(x, x) = 0 implies
m∑

s=1

(n/j)s−1xs = 0 (1 ≤ n ≤ m).

This is again a linear system with non-degenerate matrix which implies x = 0. �

4. The null space of zeta-invariants

In the case of a general operator L, Corollary 2.9 cannot be improved. However,
Corollary 2.9 is greatly improved by Theorem 1.3 when L = Λ1/2aΛ1/2 for a real function
a ∈ C∞(S).

Proof of Theorem 1.3. The case ofm = 1 follows from Edward’s formula (1.3). We assume
m ≥ 2 for the rest of the proof.

We first prove the “if” statement. Assume (1.5) to be valid. Then

aΛ = aDH = HaD, (4.1)

i.e., the operators aD and H commute. Indeed, for n ∈ Z,

HaDeinθ = nHaeinθ = nâ0H(einθ) + nâ1H(ei(n+1)θ) + nâ−1H(ei(n−1)θ)

= |n|â0e
inθ + |n|â1e

i(n+1)θ + |n|â−1e
i(n−1)θ = aΛeinθ.

As is seen from (4.1) and the identity H2 = I, (aΛ)2m = (aD)2m and hence Zm(a) = 0.

Let
◦

D = {z ∈ C | |z| < 1} be the interior of the unit disk D. We say that a function ϕ ∈
C(S) admits a holomorphic extension to D if there exists Φ ∈ C(D) which is holomorphic

in
◦

D and such that Φ|S = ϕ.
Now, we prove the “only if” part. Assume that Zm(a) = 0. By (1.7),

Tr[Lm − (LH)m] = Zm(a) = 0
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for the operator L = Λ1/2aΛ1/2. Apply Theorem 2.5 to obtain L2H = HL2, i.e.,

Λ1/2aΛaΛ1/2H = HΛ1/2aΛaΛ1/2.

This implies
Λ1/2aΛaΛ1/2Heiθ = HΛ1/2aΛaΛ1/2eiθ.

Since Λ1/2Heiθ = Λ1/2eiθ = eiθ, the last formula can be written as

Λ1/2h̃ = HΛ1/2h̃ (4.2)

for the function h̃ defined by
h̃ = aΛaeiθ. (4.3)

Applying the operator Λ1/2 to equality (4.2), we obtain (Λ− Λ1/2HΛ1/2)h̃ = 0. With the
help of (3.2), this can be written as

(Λ−D)h̃ = 0. (4.4)

As follows from definitions of Λ and D, (Λ−D)h̃ = −2
∑

k<0 k
ˆ̃hke

ikθ. Therefore each of
equations (4.2) and (4.4) is equivalent to the statement:

h̃ admits a holomorphic extension to D. (4.5)

Next, we prove that

δ = (aeiθ)m admits a holomorphic extension to D. (4.6)

This follows from (1.4). Indeed, since Zm(a) = 0, we see that (̂am)j = 0 for |j| ≥ m+ 1.
Hence δ admits the holomorphic extension given by the polynomial

2m∑

j=0

(̂am)j−mz
j (z ∈ D).

We assume for the rest of the proof that a is not identically zero. In particular the
function δ in (4.6) is not identically zero and a(θ) 6= 0 for θ belonging to a dense subset
of R. Then from (4.3) it follows that

h̃ = aΛaeiθ = a(Λ +D)(aeiθ)− (aDa)eiθ − a2eiθ.

Multiply this equation by δ

δh̃ = aδ(Λ +D)(aeiθ)− δ(aDa)eiθ − δa2eiθ. (4.7)

As easily follows from definition (4.6) of δ,

δ(aDa)eiθ + δa2eiθ =
1

m
a2(Dδ)eiθ.

Therefore (4.7) can be written as

δh̃ = aδ(Λ +D)(aeiθ)−
1

m
a2eiθDδ. (4.8)

Introduce the functions

f = −
1

m
eiθDδ, g = δ(Λ +D)(aeiθ), h = δh̃. (4.9)

Then equation (4.8) is written as

h = a2f + ag. (4.10)

Multiply this equation by am−2

amf = am−2h− am−1g.
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As is seen from definition (4.6) of δ, am = e−imθδ. Substitute this expression for a into
the left-hand side of the last formula

e−miθδf = am−2h− am−1g. (4.11)

Multiplying this equation by a and using am = e−imθδ again, we obtain one more equation

e−miθδg = am−1h− ae−miθδf. (4.12)

The function (Λ + D)u admits a holomorphic extension to D for every u ∈ C∞(S).
Besides this, if functions u and v admit holomorphic extensions to D, then the functions
u + v, uv, and Du are also holomorphically extendible to D. Therefore each of the
functions f, g, h admits a holomorphic extension to D as is seen from (4.5)–(4.6) and
(4.9). Since a is a real function that does not vanish on a dense subset of the circle,

(Λ +D)(aeiθ), aΛaeiθ, and Dδ are not identically zero.

Hence f , g, and h are not identically zero.
We will use the following

Lemma 4.1. Let a real function b ∈ C∞(S) be such that bseisθ admits a holomorphic
extension to D for some integer s ≥ 1. If b satisfies the equation

brϕr = ψr (4.13)

for some integer r ≥ 1, where both functions ϕ, ψ ∈ C(S) admit holomorphic extensions
to D and ψ is not identically zero, then the function b is of the form

b(θ) = b̂0 + 2ℜ(b̂1e
iθ) for some b̂0 ∈ R and b̂1 ∈ C. (4.14)

The proof of the lemma is given at the end of the section.
Now, we consider separately the case of m = 2. In this case δ = e2iθa2. Multiply

equation (4.10) by e2iθ

ae2iθg = −δf + e2iθh.

Hypotheses of Lemma 4.1 are satisfied for (b, ϕ, ψ, r, s) = (a, e2iθg,−δf + e2iθh, 1, m).
Applying Lemma 4.1, we obtain that a is of form (1.5). We assume m ≥ 3 for the rest of
the proof.

Let us also consider separately the case of m = 3. We write system (4.10)–(4.12) in the
matrix form 


−g −f
h −g

−e−3iθδf h



(

a
a2

)
=




−h
e−3iθδf
e−3iθδg


 . (4.15)

First, assume that w2 = g2 + fh is not identically zero. Eliminating a2 from first two
equations of system (4.15), we obtain

a(e3iθw2) = δf 2 + e3iθgh.

Hypotheses of Lemma 4.1 are satisfied for (b, ϕ, ψ, r, s) = (a, e3iθw2, δf
2 + e3iθgh, 1, m).

Applying Lemma 4.1, we obtain (1.5).
Next, assume that w2 is identically zero but β = δf 2 + ei3θgh is not identically zero.

Eliminating a2 from first and third equations of system (4.15), we obtain

aβ = −δfg + e3iθh2.

This again implies (1.5) with the help of Lemma 4.1.
Finally, consider the case when both β and w2 are identically zero, i.e., when

g2 + fh = 0, a3f 2 + gh = 0.
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This implies

a3f 3 = g3.

Applying Lemma 4.1 with (b, ϕ, ψ, r, s) = (a, f, g, 3, m), we obtain (1.5).
We assume m ≥ 4 for the rest of the proof. Multiply equation (4.10) by aℓ

aℓh = aℓ+2f + aℓ+1g (0 ≤ ℓ ≤ m− 1). (4.16)

We combine equations (4.16) and (4.9)–(4.10) into the system

−ga− fa2 = −h,

ha− ga2 − fa3 = 0,

ha2 − ga3 − fa4 = 0,

. . . . . . . . .

ham−3 − gam−2 − fam−1 = 0,

ham−2 − gam−1 = e−imθδf,

−e−imθδfa+ ham−1 = e−imθδg.

Write the system in the matrix form

M ′
m−1




a
a2

...
am−1


 =




−h
0
...
0

e−imθδf
e−imθδg




(4.17)

with the m× (m− 1)-matrix that has the block structure

M ′
m−1 =

(
Mm−1

−e−imθδf 0 · · · · · · 0 h

)
,

where Mm−1 coincides, for n = m− 1, with the three-diagonal n× n-matrix

Mn =




−g −f 0 0 0 . . . 0 0 0 0 0
h −g −f 0 0 . . . 0 0 0 0 0
0 h −g −f 0 . . . 0 0 0 0 0
· · · · · · · · · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·
0 0 0 0 0 . . . 0 h −g −f 0
0 0 0 0 0 . . . 0 0 h −g −f
0 0 0 0 0 . . . 0 0 0 h −g




.

The matrix Mn is well defined for n ≥ 2. Actually, we have already used M2: system
(4.15) is a partial case of (4.17).

Let wn be the determinant ofMn. Developing the determinant with respect to the first
row, we obtain the recurrent formula

wn = −gwn−1 + hfwn−2 for n ≥ 4. (4.18)

Additionally, for any n ≥ 2,

wn has a holomorphic extension to D
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since f, g, and h do have such extensions. Observe also that

w2 = g2 + fh, w3 = −g(g2 + 2fh). (4.19)

First, assume that wm−1 is not identically zero. Considering first m−1 equations of sys-
tem (4.17) and inverting the matrixMm−1, we obtain that a(eimθwm−1) has a holomorphic
extension to D. Applying Lemma 4.1, we obtain (1.5).

Next, assume that both functions wm−1 and wm−2 are identically zero. With the help
of (4.18), this implies wj = 0 for every j ≥ 2. In particular, w2 = w3 = 0 that gives, by
(4.19), g3 = 0. This contradicts our previous assumption on g. Therefore we assume for
the rest of the proof that wm−1 ≡ 0 but wm−2 is not identically zero.

Let M
(1)
m−1 (respectively, M

(2)
m−1) be the (m− 1)× (m− 1)-matrix obtained from M ′

m−1

by deleting the (m − 1)-th row (respectively, by deleting the first row). Denote the

determinant of M
(i)
m−1 by w

(i)
m−1 (i = 1, 2). A straightforward computation shows that

w
(1)
m−1 = hwm−2 − e−imθδfm−1, w

(2)
m−1 = (−1)m−1e−imθδfwm−2 + hm−1. (4.20)

If either w
(1)
m−1 or w

(2)
m−1 is not identically zero, we can conclude as we did before: either

a(eimθw
(1)
m−1) or a(e

imθw
(2)
m−1) has a holomorphic extension to D, and then obtain (1.5) by

Lemma 4.1.
Finally, assume that w

(1)
m−1 ≡ w

(2)
m−1 ≡ 0. Then (4.20) implies

δ2fm = (−1)m(e2iθh)m.

Since δ = ameimθ, this can be written as

(a2)mfm = (−h)m.

Applying Lemma 4.1 with (b, ϕ, ψ, r, s) = (a2, f,−h,m,m), we obtain

a2(θ) = ĉ0 + 2ℜ(ĉ1e
iθ).

In particular, e2iθa2 admits a holomorphic extension to D. Now, we can proceed in the
same way as in the above-considered case of m = 2. Namely, multiply equation (4.10) by
e2iθ

ae2iθg = e2iθh− e2iθa2f.

The right-hand side admits a holomorphic extension to D. Applying Lemma 4.1 with
(b, ϕ, ψ, r, s) = (a, e2iθg, e2iθh− e2iθa2f, 1, 2), we obtain (1.5). �

Proof of Lemma 4.1. Taking the sth power of both sides of (4.13), we obtain brsϕrs = ψrs

and brseirsθ admits a holomorphic extension to D. The lemma is thus reduced to the case
of r = s.

Assume hypotheses of Lemma 4.1 to be satisfied with r = s. Let ∆ be the holomorphic
extension of breirθ to D. We assume that ∆ is not identically zero, otherwise b ≡ 0 and
there is nothing to prove. Since b is a real function, we have

eirθ∆(eiθ) = e−irθ∆(eiθ). (4.21)

With the help of the Cauchy theorem, we derive from the last equation
∫ 2π

0

∆(eiθ)e−i(ℓ+2r)θdθ =

∫ 2π

0

∆(eiθ)e−iℓθdθ =

∫ 2π

0

∆(eiθ)eiℓθdθ = 0

for ℓ > 0. Therefore ∆(z) is a polynomial of degree at most 2r. In addition, as is seen
from (4.21),

∆(1/z̄) = z−2r∆(z) for z ∈ C\{0}. (4.22)
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If

∆(z) = α2rz
2r + α2r−1z

2r−1 + · · ·+ α1z + α0, (4.23)

then equation (4.22) is equivalent to

αi = α2r−i (0 ≤ i ≤ 2r). (4.24)

Let Φ and Ψ be analytic extensions to D of functions ϕ and ψ respectively. By the
uniqueness theorem for holomorphic functions, (4.13) implies

zrΨr(z) = ∆(z)Φr(z) for z ∈ D.

This implies: if z0 ∈
◦

D is a zero of order k for the function Φ(z), then z0 is zero of order
≥ k for zΨ(z). Therefore H(z) = zΨ(z)/Φ(z) is a well defined holomorphic function on
◦

D and

Hr(z) = ∆(z) for z ∈
◦

D . (4.25)

First, assume ∆ to have a zero 0 6= z0 ∈ C \ S. By (4.22), 1/z̄0 is also a zero for ∆
of the same order. We can assume |z0| < 1, otherwise change roles of z0 and 1/z̄0. By
(4.25), z0 is a zero of H . Therefore z0 and 1/z̄0 are zeros of order ≥ r for ∆ = Hr. Since
∆ is a polynomial of degree at most 2r, we see that

∆(z) = cr(z − z0)
r(z − z̄−1

0 )r (4.26)

for some constant c 6= 0. Thus, z0 is a simple zero of H . Now, (4.25) and (4.26) imply
that ∣∣∣∣

H(z)

c(z − z0)(z − z̄−1
0 )

∣∣∣∣ = 1 for z ∈
◦

D .

By the maximum principle, there exists a constant c1 6= 0 such that

H(z) = c1(z − z0)(z − z̄−1
0 ).

Now, we have

cr1(z − z0)
r(z − z̄−1

0 )r = zrbr(z) for z ∈ S.

Since the left-hand side does not vanish on S, this implies the existence of a constant
c2 ∈ C such that

b(z) = c2z
−1(z − z0)(z − z̄−1

0 ) for z ∈ S.

For a real function b, the last equation implies (4.14).
Next, assume 0 to be a zero of ∆. Again 0 is a zero of H and then 0 is a zero of order

≥ r for ∆, i.e., α0 = · · · = αr−1 = 0 on (4.23). With the help of (4.24), this implies the
existence of a constant c 6= 0 such that ∆ = crzr. Hence b is a constant function and
(4.14) holds.

Finally, assume that all zeroes of the polynomial ∆ belong to S and let z0 be one of
them. Since ∆(z) = zrbr(z) for z ∈ S, we see that b(z0) = 0. This implies that z0 is a
zero of order ≥ r for ∆. Therefore ∆ has either two distinct zeros of order r or a single
zero of order 2r. Therefore there exist a constant c and z1, z2 ∈ S such that

∆(z) = c(z − z1)
r(z − z2)

r = br(z)zr for z ∈ S.

Since b is an infinitely smooth function, this implies the existence of a constant c1 ∈ C

such that

b(z) = c1z
−1(z − z1)(z − z2).

Again, the latter equation implies (4.14) for a real function b. �
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5. The compactness theorem

The following statement belongs to Edward [3, Proposition 1]. The proof is presented
in [1]. Since the latter paper is not easily accessible, we present a proof in Appendix.

Lemma 5.1. Given a positive function a ∈ C∞(S), there exists a function b ∈ C∞(S)
which is conformally equivalent to a via a conformal transformation of the disk D and
such that b̂1 = 0.

We will need one more Edward’s result [3, Propositions 3 and 4]:

Lemma 5.2. Let an ∈ C∞(S) (n = 1, 2, . . . ) be a sequence of positive functions such that
the Steklov spectrum Sp(an) is independent of n. Assume additionally that (ân)1 = 0 for
every n. Then

|(ân)0| ≤ C0 (5.1)

and

an(θ) ≥ c (θ ∈ R) (5.2)

with positive constants c and C0 independent of n.

Let us remind that, for every real s, the Hilbert space Hs(S) is the completion of C∞(S)
with respect to the norm

‖u‖2Hs(S) =
∑

n∈Z

(1 + |n|2s)|ûn|
2. (5.3)

Lemma 5.3. Let an ∈ C∞(S) (n = 1, 2, . . . ) be a sequence of positive functions such that
the Steklov spectrum Sp(an) is independent of n. Assume additionally that (ân)1 = 0 for
every n. Then the sequence is bounded in Hs(S) for every s ∈ R, i.e.,

‖an‖Hs(S) ≤ Cs (5.4)

with a constant Cs independent of n.

Proof. Zeta-invariants Zm(an) are independent of n. By Edward’s formula (1.3),

Z1(an) =
2

3

∑

k≥2

(k3 − k)|(ân)k|
2 ≥

4

9

∑

k≥2

(1 + k3)|(ân)k|
2 =

2

9

(
‖an‖

2
H3/2(S) − |(ân)0|

2
)
.

We have used that (ân)1 = 0. With the help of (5.1), this implies

‖an‖
2
H3/2(S) ≤

9

2
Z1(an) + |(ân)0|

2 ≤
9

2
Z1(an) + C2

0 .

Thus, the sequence an is uniformly bounded in H3/2(S). Since H3/2(S) ⊂ C(S), we have
in particular an(θ) ≤ C (θ ∈ R) with a constant C independent of n. Combine this with
(5.2)

0 < c ≤ an(θ) ≤ C (θ ∈ R). (5.5)

Now, we prove the statement: for every integer m ≥ 1, the sequence amn (n = 1, 2, . . . )
is uniformly bounded in Hm+1/2(S). Indeed, (5.5) gives

cm ≤ amn (θ) ≤ Cm (θ ∈ R). (5.6)

This implies

|(âmn )k| =

∣∣∣∣∣∣
1

2π

2π∫

0

e−ikθamn (θ) dθ

∣∣∣∣∣∣
≤ Cm. (5.7)
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By Theorem 1.1,
∞∑

k=m+1

k2m+1|(âmn )k|
2 ≤ c−1

m Zm(an).

Therefore
∞∑

k=m+1

(1 + k2m+1)|(âmn )k|
2 ≤ 2c−1

m Zm(an). (5.8)

Estimates (5.7) and (5.8) imply

‖amn ‖
2
Hm+1/2(S) =

∑

|k|≤m

(1 + |k|2m+1)|(âmn )k|
2 + 2

∑

k≥m+1

(1 + |k|2m+1)|(âmn )k|
2

≤ (2m+ 1)
(
1 +m2m+1

)
C2m + 4c−1

m Zm(an).

Thus,
‖amn ‖Hm+1/2(S) ≤ Cm,

where C2
m = (2m+1)

(
1+m2m+1

)
C2m+4c−1

m Zm(an) is independent of n. Since ‖·‖Hm(S) ≤
‖ · ‖Hm+1/2(S), we have

‖amn ‖Hm(S) ≤ Cm (m = 1, 2, . . . ). (5.9)

For an integer s = m, norm (5.3) can be equivalently written as

‖u‖2Hm(S) =

m∑

k=0

‖Dku‖2L2(S).

On using this definition and estimates (5.5), one easily proves the equivalence of the norms
‖an‖Hm(S) and ‖ log(an)‖Hm(S), i.e., the validity of estimates

1

C ′
m

‖an‖Hm(S) ≤ ‖ log(an)‖Hm(S) ≤ C ′
m‖an‖Hm(S) (5.10)

with a constant C ′
m independent of n. In view of (5.6), the same is true for amn

1

C ′′
m

‖amn ‖Hm(S) ≤ ‖ log(amn )‖Hm(S) ≤ C ′′
m‖a

m
n ‖Hm(S). (5.11)

Finally, we prove the uniform boundedness of the sequence an inH
m(S). Since log(an) =

1
m
log(amn ), estimates (5.9)–(5.11) give

‖an‖Hm(S) ≤ C ′
m‖ log(an)‖Hm(S) =

C ′
m

m
‖ log(amn )‖Hm(S)

≤
C ′
mC

′′
m

m
‖amn ‖Hm(S) ≤

CmC
′
mC

′′
m

m
.

Thus, the sequence an (n = 1, 2, . . . ) is uniformly bounded in Hm(S) for every integer m
and hence in Hs(S) for every real s. �

Proof of Theorem 1.3. Let a sequence an ∈ C∞(S) (n = 1, 2, . . . ) of positive functions
satisfy hypotheses of Theorem 1.3. With the help of Lemma 5.1, we can assume without
loss of generality that (ân)1 = 0 for every n. Therefore estimates (5.1) and (5.2) are valid
as well as estimate (5.4) is valid for every s ∈ R. Since the embedding H1(S) ⊂ C(S) is
compact, we can choose a subsequence converging in C(S). The limit function a ∈ C(S)
satisfy

a(θ) ≥ c (θ ∈ R)

as follows from (5.2). Since the embedding H1(S) ⊂ H2(S) is compact, we can choose
a sub-subsequence converging to a in H1(S), and so on. On using the classical trick
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of choosing the diagonal sequence, we obtain a subsequence ank
(k = 1, 2, . . . ) which

converges to a in Hs(S) for every s ∈ R. In other words, ank
converges to a in C∞(S). In

particular, a ∈ C∞(S). �

Finally, we give an interpretation of Theorem 1.3 in terms of Steklov isospectral families
of planar domains. Let Ωn (n = 1, 2, . . . ) be a sequence of smooth bounded simply
connected (probably multisheet) planar domains. We say that the sequence converges in
the C∞

hol(D)-topology if, for every n, there exists a biholomorphism Φn : D → Ωn such
that the sequence Φn converges to some Φ : D → R2 in the C∞(D)-topology; the set Φ(D)
is the limit of the sequence.

Theorem 5.4. Let Ωn (n = 1, 2, . . . ) be a sequence of smooth bounded simply connected
(probably multisheet) planar domains. Assume that the Steklov spectrum Sp(Ωn) is inde-
pendent of n. Then there exists a subsequence Ωnk

(k = 1, 2, . . . ) such that, for appro-
priately chosen isometries Ik : R2 → R2, the sequence Ik(Ωnk

) converges in the C∞
hol(D)-

topology to some smooth bounded simply connected multisheet planar domain.

Proof. By the Riemann theorem, there exists a biholomorphism Φn : D → Ωn for every
n. Define positive functions an ∈ C∞(S) by an(z) = |Φ′

n(z)|
−1 for z ∈ S. The Steklov

spectrum Sp(an) = Sp(Ωn) is independent of n. By Lemma 5.1, for every n, there exists a
conformal transformation Ψn : D → D such that the function bn(z) = an

(
Ψn(z)

)
|Ψ′

n(z)|
−1

satisfies (b̂n)1 = 0. Then bn(z) = |Φ̃′
n(z)|

−1 (z ∈ S) for the diffeomorphism Φ̃n = Φn ◦Ψn :
D → Ωn.

All Φn are biholomorphisms. In order to simplify notations, we assume without loss of
generality that all Ψn are identities, i.e., that Φ̃n = Φn.

Thus, for every n, we have a biholomorphism Φn : D → Ωn such that the function
an(z) = |Φ′

n(z)|
−1 (z ∈ S) satisfies (ân)1 = 0 and Sp(an) is independent of n. By Lemma

5.2 (see also (5.5)),
0 < c ≤ an(θ) ≤ C (θ ∈ R) (5.12)

with constants c and C independent of n. By Lemma 5.3, the sequence an (n = 1, 2, . . . )
contains a subsequence converging in C∞(S). Without loss of generality, we assume that
the sequence an itself to converge in C∞(S) to some function a ∈ C∞(S). The limit
function also satisfies

c ≤ a(θ) ≤ C (θ ∈ R) (5.13)

as follows from (5.12).

For every n, the function Φn is holomorphic on
◦

D, continuous with all its derivatives
on D, and satisfies the boundary condition

|Φ′
n(z)| = a−1

n (z) (z ∈ S).

The derivative Φ′
n(z) does not vanish in D because Φn is a biholomorphism. Therefore

log Φ′
n(z) is a well defined holomorphic function on

◦

D whose real part un(z) = ℜ(log Φ′
n(z))

solves the Dirichlet problem

∆un = 0 in
◦

D, un|S = log(a−1
n ).

The sequence a−1
n converges to a−1 in C∞(S). Applying standard Sobolev stability esti-

mates for an elliptic boundary value problem, we see that the sequence un converges in
the C∞(D)-topology to a function u ∈ C∞(D) which solves the Dirichlet problem

∆u = 0 in
◦

D, u|S = log(a−1).
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The function u satisfies

− log(C) ≤ u(z) ≤ − log(c) (z ∈ D) (5.14)

as follows from (5.13) with the help of the maximum principle for harmonic functions.
Now, we address the equation

ℜ(log Φ′
n(z)) = un(z). (5.15)

A holomorphic function f(z) is defined by its real part uniquely up to a pure imaginary
constant. Moreover, the dependence of f on ℜ(f) is continuous in corresponding Sobolev
norms. Therefore (5.15) implies with the help of (5.14) the existence of a function Φ ∈

C∞(D) which is holomorphic in
◦

D and such that the sequence

αnΦn + βn → Φ in C∞(D) (5.16)

with appropriately chosen constants αn ∈ C, |αn| = 1 and βn ∈ C. The derivative
Φ′(z) does not vanish in D because |Φ′(z)| = exp

(
u(z)

)
. Therefore Ω = Φ(D) is a smooth

simply connected (probably multisheet) planar domain. Define the isometry In : R2 → R2

by In(z) = αnz + βn. Then (5.16) can be rewritten as

In ◦ Φn → Φ in C∞(D).

This means that the sequence of domains In(Ωn) = (In ◦ Φn)(D) converges to Ω = Φ(D)
in the C∞

hol(D)-topology. �

Appendix A. Proofs of Lemmas 2.2 and 5.1

We will need the following

Lemma A.1. Let A and B be pseudodifferential operators on S. If B is a smoothing
operator, then Tr[AB] = Tr[BA].

Proof. Denote by P0 the bounded operator on L2(S) defined as the orthogonal projector

onto the one-dimensional subspace of constant functions: P0(f) = f̂0 for f ∈ L2(S). Then
Λ + P0 is a first order elliptic positive pseudodifferential operator. For every µ ∈ R, the
power (Λ + P0)

µ is a well defined pseudodifferential operator of order µ.
Let µ be the order of the pseudodifferential operator A. Then A(Λ+P0)

−µ is a bounded
operator on L2(S) and (Λ+P0)

µB is a smoothing operator. Then by the classical property
of the trace [8, Theorem 3.1]

Tr[AB] = Tr[A(Λ + P0)
−µ(Λ + P0)

µB] = Tr[(Λ + P0)
µBA(Λ + P0)

−µ].

We compute the right-hand side on using the trigonometric basis: (Λ + P0)e
inθ = (|n| +

1)einθ and

〈(Λ + P0)
µBA(Λ + P0)

−µeinθ, einθ〉 = 〈BAeinθ, einθ〉.

Two last formulas give Tr[AB] = Tr[(Λ + P0)
µBA(Λ + P0)

−µ] = Tr[BA]. �

Proof of Lemma 2.2. It suffices to prove that

Tr
[
(Lj1H)(Lj2H) . . . (Lj2sH)− (LH)2m

]
= Tr

[
(Lj2H) . . . (Lj2sH)(Lj1H)− (LH)2m

]

(A.1)
for a sequence of non-negative integers (j1, . . . , j2s) satisfying j1 + · · · + j2s = 2m. We
prove this by induction in s.

First let s = 1 and 0 ≤ j ≤ 2m. Then

Tr
(
LjHL2m−jH − (LH)2m

)
= Tr

(
[H,L2m−j ]HLj

)
+ Tr

(
L2m − (LH)2m

)
. (A.2)
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Applying Lemma A.1 with A = Lj , B = [H,L2m−j ]H and using H2 = I, we have

Tr
(
Lj [H,L2m−j ]H

)
= Tr

(
[H,L2m−j ]HLj

)

= Tr
(
HL2m−jHLj − L2m

)
= Tr

(
L2m−jHLjH − L2m

)
.

Substituting this value into (A.2), we obtain (A.1) for s = 1.
Assume (A.1) to be valid for some s ≥ 1. Let j1 + · · ·+ j2s+2 = 2m. Then

Tr
(
(Lj1H) . . . (Lj2s+2H)− (LH)2m

)
= Tr

(
(Lj1H) . . . (Lj2sH)[Lj2s+1 , H ]Lj2s+2H

)

+ Tr
(
(Lj1H) . . . (Lj2s−1H)Lj2s+j2s+1+j2s+2H − (LH)2m

)
.

(A.3)

Applying Lemma A.1 with A = Lj1H and B = (Lj2H) . . . (Lj2sH)[Lj2s+1, H ]Lj2s+2H , we
obtain

Tr
(
(Lj1H) . . . (Lj2sH)[Lj2s+1, H ]Lj2s+2H

)

= Tr
(
(Lj2H) . . . (Lj2sH)[Lj2s+1, H ]Lj2s+2H(Lj1H)

)

= Tr
(
(Lj2H) . . . (Lj2s+2H)(Lj1H)− (Lj2H) . . . (Lj2s−1H)Lj2s+j2s+1+j2s+2H(Lj1H)

)
.

(A.4)
By the induction hypothesis,

Tr
(
(Lj1H) . . .(Lj2s−1H)Lj2s+j2s+1+j2s+2H − (LH)2m

)

= Tr
(
(Lj2H) . . . (Lj2s−1H)Lj2s+j2s+1+j2s+2H(Lj1H)− (LH)2m

)
.

(A.5)

Substituting (A.4) and (A.5) into (A.3), we obtain

Tr
[
(Lj1H) . . . (Lj2s+2H)− (LH)2m

]
= Tr

[
(Lj2H) . . . (Lj2s+2H)(Lj1H)− (LH)2m

]
.

�

Proof of Lemma 5.1 (by [9] and [10]). Let a ∈ C∞(S) be a positive function. For r ∈
[0, 1) and α ∈ R, let br,α ∈ C∞(S) be the function conformally equivalent to a via the
conformal transformation Φr,α : D → D defined by

Φr,α(z) = eiα
z − r

1− rz
,

i.e.,

br,α(z) = a(Φr,α(z))|Φ
′
r,α(z)|

−1 = a
(
eiα

z − r

1− rz

) |1− rz|2

1− r2
(z ∈ S). (A.6)

Define the function H ∈ C∞([0, 1)× R) by

H(r, α) = (1− r2)e−iα(b̂r,α)1 =
1

2π

∫ 2π

0

e−i(α+θ)a
(
eiα

eiθ − r

1− reiθ

)
|1− reiθ|2 dθ. (A.7)

Observe that H(0, α) = â1 for every α. Therefore H can be considered as the continuous

function H :
◦

D → C such that H(reiα) = H(r, α).
The integrand in (A.7) is bounded uniformly in (r, α, θ) ∈ [0, 1)× R× R and

a
(
eiα

eiθ − r

1− reiθ

)
→ a(−eiα) as r → 1− 0.

Therefore

H(r, α) = a(−eiα)e−iα
1

2π

∫ 2π

0

e−iθ|1− eiθ|2 dθ + E(r, α), (A.8)
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where the error term E(r, α) → 0 uniformly in α as r → 1− 0. Substituting the value

1

2π

∫ 2π

0

e−iθ|1− eiθ|2 dθ =
1

2π

∫ 2π

0

e−iθ(2− eiθ − e−iθ) dθ = −1

into (A.8), we obtain
H(r, α) = −a(−eiα)e−iα + E(r, α). (A.9)

Since a is a positive function, (A.9) implies that the closed curve α 7→ H(r, α) (0 ≤ α ≤
2π) goes around 0 if r ∈ (0, 1) is sufficiently close to 1. Therefore there exists (r0, α0) ∈

[0, 1)× R such that H(r0, α0) = 0. Together with (A.7), this gives (b̂r0,α0
)1 = 0. �

References

[1] J. Edward, Spectral invariants of the Neumann operator on planar domains, Thesis (Ph.D.), Mas-
sachusets Institute of Technology, Dept. of Math., (1989), Supervised by R. Melrose, Accession
number: mit.000405207, OCLC: 21880044.

[2] J. Edward, An inverse spectral result for the Neumann operator on planar domains, J. Funct. Anal.
111:2 (1993), 312–322.

[3] J. Edward, Pre-compactness of isospectral sets for the Neumann operator on planar domains, Com-
mun. in PDE’s, 18 no. 7–8 (1993), 1249–1270.

[4] A. Jollivet, V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian

surface, Contemporary Mathematics, 615 (2014), 165–191.
[5] A. Jollivet, V. Sharafutdinov, An inequality for the Steklov spectral zeta function of a panar

domain, J. of Spectral Theory, to appear.
[6] E. Mal’kovich and V. Sharafutdinov, Zeta-invariants of the Steklov spectrum of a planar

domain, Siberian Math. J., 56 (2015), no. 4, 678–698.
[7] B. Osgood, R. Phillips, and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal.,

80 (1988), 212–234.
[8] B. Simon, Trace ideals and their applications. Second edition. Mathematical Surveys and Mono-

graphs, 120. American Mathematical Society, Providence, RI (2005). viii+150 pp.
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