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Discovering Affordances Through Perception and Manipulation

R. Omar Chavez-Garcia, Pierre Luce-Vayrac and Raja Chatila

Abstract— Considering perception as an observation process
only is the very reason for which robotic perception methods
are to date unable to provide a general capacity of scene
understanding. Related work in neuroscience has shown that
there is a strong relationship between perception and action.
We believe that considering perception in relation to action
requires to interpret the scene in terms of the agent’s own
potential capabilities. In this paper, we propose a Bayesian
approach for learning sensorimotor representations through
the interaction between action and observation capabilities. We
represent the notion of affordance as a probabilistic relation
between three elements: objects, actions and effects. Experi-
ments for affordances discovery were performed on a real
robotic platform in an unsupervised way assuming a limited set
of innate capabilities. Results show dependency relations that
connect the three elements in a common frame: affordances.
The increasing number of interactions and observations results
in a Bayesian network that captures the relationships between
them. The learned representation can be used for prediction
tasks.

I. INTRODUCTION

Scene understanding has traditionally been addressed as a
process of observation. Even if active vision was introduced
by Krotov & Bajcsy in [1], this was to gain more information
through exploitation of different viewpoints. Considering
perception in relation to action requires to interpret the
scene in terms of the agent’s own potential activity. It is
increasingly acknowledged by psychologists, neurocientists
and roboticists that perception and action are parts of an
interactive, developmental and integrated process [2], [3].

Reasoning jointly on perception and action requires self-
localization with respect to the environment. Hence, devel-
oping sensorimotor representations and not just environment
representations puts the robot in the center of the perceptual
process, and provides for a link between self-awareness and
situation-awareness.

The representative features from perception and action
are typically defined in different feature spaces, making it
difficult to find relationships over different datasets, even
when they are semantically related. The need for a fusion ap-
proach that encodes sensorimotor correlations, without losing
frame-related information, becomes key for a developmental
approach.

In this paper, we propose a Bayesian approach for learning
sensorimotor representations in terms of affordances repre-
sented as probabilistic relations between three elements of
the perception-action process: objects, actions and effects.
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Our learning approach relies on acquired information from
interaction, and the innate robot knowledge for the elements
of the perception-action process. These innate capabilities
are kept minimal and will be extended with experience.

Figure1 shows a pipeline of the proposed affordance
learning approach. First, we develop a sensory perception
process to extract, from RGB-D data, salient elements which
are hypothesized as objects. Then, from a set of innate
basic actions, we select an action to execute on an object.
Innate effect detectors are triggered in case a change in the
perceptual or proprioceptual components is present during
the interaction. Finally, sensorimotor representations emerge
from affordances through the stochastic fusion of perception
and action components.

Fig. 1. Pipeline of the proposed affordance learning approach.

The rest of the paper is organized as follows. In section II
we discuss related work. Section III describes our perception
approach. In section IV, we define our sensorimotor repre-
sentation, its elements and the fusion approach for learning
affordances. Section V details our experimental setup and
the results evaluation. Conclusions and perspectives are pre-
sented in section VI.

II. RELATED WORK

Robotic autonomy aims at performing several tasks inside
a dynamic environment. Robots need to be able to identify
and learn novel objects, discriminate and recognize learned
objects, perceive their own dynamics and relate which ac-
tions can be performed with certain objects in order to
comply with required tasks.

In recent years, several works have followed develop-
mental ideas for exploring and learning robots’ environ-
ment [4], [5], [3]. This is generally carried on via a cycle of



exploration-manipulation which is initialized with a collec-
tion of minimal knowledge and innate capabilities.

Deterministic approaches such as [6] and [7], propose
learning affordances for pre-defined categories. Here the
relations between perception and action were not discovered
exclusively by exploration and relied on supervised classi-
fication between predefined categories. In [8] and [9] the
categorization between effects is found using unsupervised
clustering in the effect space. However, the categorization
was based only on the mapping between objects and effects,
leaving the action out of the process. Moreover, object
representation of the aforementioned work was related to
object recognition rather than object description.

Imitation-inspired and probabilistic-powered methods
have been explored in [10] and [11]. The latter work ex-
tracts knowledge through exploration from other knowledge,
and uses Bayesian Belief Networks to exclusively associate
motor commands and forward models. The former approach,
uses relational dependency networks to learn joint probability
estimates regarding the effect of sensorimotor features on
the predicted quality of desired behaviors. This approach
allows robots to determine which features in the world are
relevant to certain motor commands. In both works, the
notion of object is hardwired focusing only on the actions-
effects association.

An emerging field has categorized these works as Inter-
active Perception because they exploit sensory signals due
to interaction which would otherwise not be present. In
addition, these systems, in a minor or major degree, leverage
knowledge about regularities found in the combined frame
Sensor × Action × time [12]. Works like [13] and [14]
propose stochastic methods to discover object properties by
interaction. Although their results show important improve-
ments in object segmentation and action planning, they do
not consider the action component as a relevant element of
the sensorimotor learned model.

In our work, we follow a bottom-up approach that
starts from low-level data from sensors and actuators, up-
to learning relations between higher-level representations.
The probabilistic nature of the work maintains the un-
certainty characteristic of the perception-action cycle. Our
sensorimotor representation encodes, through the learning of
affordances, effects, objects and actions in the same feature
space. It enhances works such as [5] and [3] by including an
information-based methodology to find the relations in the
combined feature space instead of relying on a preferred-
relation list. Following the categorization proposed by Bohg
et al. [12], our work can be considered a multimodal
Interactive Perception approach with given priors on the
robot dynamics, and on the observations. It has as goals
automatic object segmentation, estimation of intrinsic object
parameters, sensorimotor learning, and eventually semantic
categorization.

III. SENSORY PERCEPTION

Usually, segmentation algorithms only consider low-level
information from the image or point cloud. Recent semantic

segmentation methods take advantage of high-level object
knowledge to help disambiguate object borders [15], [16].

A. Over-segmentation approach

Supervoxels are formed by over-segmenting a 3D image
into small regions based on local low-level features, reducing
the number of nodes which must be considered for segemen-
tation.We implemented a 3-D version of the Voxel Cloud
Connectivity Segmentation presented in [17], which takes
advantage of 3D geometry provided by RGB-D cameras
to generate supervoxels evenly distributed in the observed
space. This uses a seeding methodology based on 3D space
and a flow-constrained local iterative clustering which uses
color and geometric features. Due to ensuring strict partial
connectivity between voxels, this algorithm guarantees that
supervoxels cannot flow across boundaries which are disjoint
in 3D space.

Supervoxels features are represented by 39-dimension
vector composed of spatial coordinates (x, y, z), color
information (Lab color space), and 33 elements from
an extension of the Point Feature Histogram: F =
[x, y, z, L, a, b, FPFH1..33] [17]. This offers a multi-
dimensional pose-invariant representation based on the com-
bination of neighboring points. For each supervoxel, in an
outward direction, we calculate a normalized spatial distance
Ds, a normalized color distance Dc and the distance in the
FPFH space DHIK [17]. If the distance is the smallest seen,
this voxel and its neighbors (in the adjacency graph) become
part of the supervoxel. The result, as shown in Figure 2, is
an over-segmented cloud where each supervoxel (segment)
cannot cross over object boundaries that are not actually
touching in 3D space. Supervoxels tend to be continuous
in 3D space, since labels flow outward, at the same rate,
from the center of each supervoxel [17].

B. Intrinsic clustering

Figure 2 shows how supervoxels are still considered rep-
resentations of individual patches. A clustering process is
needed to group the supervoxels that possibly correspond to
the same object without relying on a priori information about
the number of objects. Regarding the feature representation
detailed in Section III-A, we proposed to use the non-
parametric technique described in [18] to find the shape of
the object hypotheses based on the set of supervoxels.

Fig. 2. Results from the sensory perception process. RGB-D cloud of
points from the real scenario (left); over-segmentation results from point
cloud (middle); results from intrinsic clustering (right).

Figure 2 shows the result of the clustering method. The
result of this intrinsic clustering is a set of labels Lhyp(t) for
a group of supervoxels that represent hypotheses of objects
in the current scenario.



C. Object hypotheses confirmation

The set of generated hypotheses from Section III-B are
built only using the sensory data. This means that segmenta-
tion issues can appear in the form of incomplete, divided and
false segments of real objects in the scenario. We perform a
tracking-by-detection approach to reduce the number of false
positive segmentations. Only the active segments hypotheses
with tracks lengths over a threshold τ are considered as
confirmed objects for our sensory-perception task. Each
object is represented by its centroid, which offers a point
of interaction (poi) for the interaction task.

D. Features extraction

In this work, we assume that the robot has minimal
innate perceptual capabilities that allow it to discretize the
environment. These capabilities are related to segmentation.
It can differentiate from color values. It has geometrical
notion of position, continuity of segments and normal ex-
traction for surfaces. Therefore, the robot can extract higher
level features for the description of confirmed objects. By
analyzing the segment representing an object, we focus on
three main features: color, size and shape. Transforming
from RGB to HSV color model, we extract the dominant hue
of the object. Size of the object is obtained from the distance
between the start and end of the largest segment of the cluster
representing the object. Four-dimensional templates are used
to select the form of the object from a set of fixed three-
dimensional forms: cube, cuboid, sphere, irregular. Our
object description allows for expanding the set of perceptual
features, e.g., histogram of shapes.

IV. SENSORIMOTOR LEARNING
In addition to the perceptual information, object manip-

ulation allows the robot to learn sensorimotor correlations
between the sensor inputs fused in the object descriptions
O, robot basic actions A and the salient changes represented
by the effects E. Starting from built-in actions, the evolution
of the environment is captured by perception through the in-
formation provided by effect detectors, e.g. object movement
detection and proprioceptive feedback. The goal is to learn
from regularities in the occurrences of elements in O and E
when an action ai ∈ A is triggered.

A. Actions

Making an analogy to a newborn’s rough motor abili-
ties [19], we assume that the robot is built with a set of
basic motor capabilities, which we call actions. In this set of
basic actions A = {a1, ..., an} , each action can be defined
as follows:

ai(V
∗, γ, σai

), (1)

where V ∗ represents the desired value for the robot con-
trolled variables V , γ is its proprioceptive feedback and σai

represents the parameters for the particular action ai.
Hypotheses obtained from sensory perception provide

points of interest in the perceptual frame identifying objects.
These points are used as targets for the actions approaching
to the object through perceptual servoing.

The interaction focus of our work is on object manipula-
tion, therefore our proposed set of actions A is composed
of 4 actions. Lean-toward (lean t) moves toward the current
position of the end effector in a constant velocity fashion.
Poke (poke) behaves in a similar way as lean t but using
a constant acceleration movement. Open (open g) and close
gripper (close g) are self-explanatory. Due to the general
affordance learning goal of our approach, we decided to
fix the parameters σai , i.e., velocity for lean t, acceleration
for poke, and force for close g. Information provided by γ
includes the joint and force values of the actuators and the
state of the end effector of the robot.

B. Effect detectors

We consider an effect as a correlation between an action
and a change in the state of the environment, which includes
the agent itself. For example, when a robot interacts with an
object, it can perceive changes related to the position of the
object, proprioceptive values of the actuators and feedback
from the end effectors. An effect is an important element in
our sensorimotor fusion and its detection (or lack thereof)
plays the role of common ground for perception and action
frames. The robot’s innately detectable effects are divided
in two groups: perceptual-based (object’s linear movement);
and proprioceptive-based (end effector linear force, distance
between gripper’s fingers and effector’s linear movement).

C. Affordance learning

An affordance is an acquired relation between an effect
e in E, a capability (in our case an action) in A over an
entity in O. One can state that when an agent g applies its
capability a over an entity o, an effect e is generated [20].
From an agent’s perspective, from now on the robot, the ith
affordance is defined as follows:

αi = (el, (ok, aj)), for el ∈ E, ok ∈ O, and aj ∈ A. (2)

Figure 3 shows an example of a relation between an entity
toy perceived by the agent robot, and the application of
its capability grasp, implying that there is a potential of
generating an effect grasped. We can label this relation using
its semantic value, grasp− ability.

Fig. 3. Representation of an affordance relation labeled grasp− ability.

In sections III and IV-A we have defined the three
elements mentioned in our affordance definition. We can
state our problem as learning the set of affordances for data
extracted from E, O, and A.



D. Structure Learning for affordances discovery

Let us represent the members of the set of elements E, O
and A as discrete random variables of a Bayesian Network
(BN) G. Therefore, we can define these elements as the
discretization E = {el}, O = {ok} and A = {aj}. Let
us assume that through the cycle of perception-interaction
we obtained instances of these variables generating a data
set D. Our problem of discovering the relations between
E, O and A can be translated to finding dependencies
between the variables in G, i.e., learning the structure of the
corresponding BN from data D. Using the BN framework
we are capable of displaying relationships between variables.
The directed nature of its structure allows us to represent
cause-effects relationships. It can handle uncertainty through
the established probability theory. In addition to direct de-
pendencies, we can represent indirect causation.

One approach for inducing BN structures from data is the
score-based technique, especially for the purpose of proba-
bility distribution function estimation. The process assigns a
score to each candidate BN that measures how well that BN
describes the data set D. For a BN’s structure G, its score is
defined as the posterior probability given the data D:

Sc(G,D) = P (G|D). (3)

A score-based algorithm attempts to maximize this score.
Usually, this score is rewritten using Bayes’ rule as:

Sc(G,D) = P (D|G)P (G)
P (D)

, (4)

where algorithms only need to maximize the denominator,
since P (D) does not depend on G. If we assume a uniform
prior over the structures, we can focus only on P (D|G).
Usually, score functions work on the logarithmic space, i.e.,
log(P (D|G)). These algorithms select various structures for
examination and score them. The structure with the highest
score is selected. In this work, we implement an information-
based score.

1) Information compression score: We can define the
score of a BN as the compression rate of the data D
with an optimal code induced by the BN. D represents the
interactions of the robot with values for the variables in
O,A and E. Using Shannon’s noiseless coding theorem, we
establish the limits of the compression rate. Therefore, as
the number of independent and identical distributed random
variables tends to infinity, no compression of the data is
possible for a rate less than the Shannon entropy, without
losing information.

Bayesian Information Criterion (BIC) is a generalization
of the Minimum Description Length (MDL) score, which
uses a penalization based on the number of bits needed to
compress D, preferring simple BN over more connected and
complex ones [21]. We calculate the quality of G as:

η(G|D) = I(G|D)− s(N)|G| (5)

where I is the log-likelihood score that measures the number
of bits needed to describe D given P (G), and |G| denotes

the network complexity. This criterion does not depend on
a prior probability distribution on all the possible networks
P (G|S) which is usually a requirement for bayesian scores.

BIC uses a penalization defined as s(N) = log(N)
2 to

represent the number of bits needed to encode G. In order to
increase the likelihood of a structure, we can add parameters,
which can result in overfitting. BIC penalizes structures with
larger number of parameters.

2) Search algorithm: Our implementation, based on the
hill-climbing technique for learning BN structures, takes as
the inputs values for the variables in E, O, and A obtained
from robot’s interaction.

The procedure estimates the parameters of the local prob-
ability functions given a BN structure. Typically, this is
a maximum-likelihood estimation of the probability entries
from the data set, which for multinomial local pdfs consists
in counting the number of tuples that fall into each table
entry of each multinomial probability table in the BN. The
algorithm’s main loop consists in attempting every possible
single-edge addition, removal, or reversal, making the net-
work that increases the score the most the current candidate,
and iterating. The process stops when there is no single-edge
change that increases the score. There is no guarantee that
this algorithm will settle at a global maximum, but there
are techniques to increase its reaching possibilities. We use
simulated annealing [22].

V. EXPERIMENTS AND EVALUATION

The interest of the experiments is mainly in understanding
and relating the effects generated by the set of basic actions.
Our experiments rely on two assumptions. First, when the
robot repeatedly performs a particular action over a particular
object, the obtained effect is mostly the same. Second,
explicit information regarding the success of an action is not
provided; it is obtained through inference over the learned
BN. Therefore, our experiments are carried in an unsuper-
vised fashion. Starting with random exploration, we use a
motivational system to focus on object hypotheses closest to
the end effector to generate (object, action) couples.

A. Experimental setup

Our Baxter robot (see Figure 4) is equipped with 2 arms
with 7 degrees of freedom and torque sensors. One electrical
gripper is attached to each arm. Additionally, a Microsoft
kinect sensor captures RGB-D data which is used for the
sensory perception. For the environment interaction we use
the left arm and its gripper.

Fig. 4. Experiment setup. Baxter robotics platform (left). Kinect sensor
(middle). Subset of objects of interest (right).
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Fig. 5. 10-fold cross validation evaluation of the learned structure. x-axis
represents the number of instances (robot interactions) and y-axis accounts
for the log-likelihood loss function.

Our training set was generated autonomously by the
robot’s perception-action interaction. Five objects were used
for dataset generation, highlighting the variance in their
perceptual information and in their effects with relation to the
action set, e.g., objects with different perceptual descriptions
and similar expected effects, different expected effects for
similar actions. Learning of affordances, as described in
section IV-D was done online using data instances obtained
periodically. We discretized the values of each effect, object
and action variables. A video demonstration of the experi-
mental setup is found at https://cloud.isir.upmc.
fr/owncloud/s/eYof23AtCqHtY4J.

B. Experiment results

In figure 5, we present the evolution of the network seen
from the point of view of the log-likelihood loss. These
results come from the 10 fold cross validation approach over
the current set of data. We can see how the expected loss is
reduced with the number of interactions. This means that the
learned structure is generalizing better for related scenarios.
Although most of the network relations evolve with the
number of tries, there are some dependency connections that
are confirmed in early stages of the experiment (see figure 6).

Figure 6 shows some examples of the relations learned by
our approach during the evolution of the experiment. The first
relation was learned from the beginning of the experiments.
It shows a dependency between the variables representing
the perceptual information. The second relation shows a
strong casual dependency of the state of the gripper (g state)
with respect to the actions open and close gripper (open g,
close g). Finally, the third relation shows an example of an
affordance relation. It connects the perceptual nodes with
the action lean toward(lean t) and the effect poi obj mov
which indicates a movement of a point of interest from an

Fig. 6. Examples of relations learned with the proposed approach. Left
relation appeared at 30 interactions, middle relation since the iteration 50,
right relation appeared at 150 iterations.
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Fig. 7. Learned structure of the BN obtained by our affordances learning
method after 400 interactions.

object perceived by the robot. Figure 7 shows the complete
learned BN after 400 interactions. Some of the relations
shown in figure 6 are kept from early interactions.

Based on the posterior classification error, we perform a
10-fold cross validation scheme to evaluate the performance
of the learned network. Table I shows the prediction error
for each variable in the learned BN of figure 7. Predic-
tion is computed w.r.t. a set of variables in the BN using
likelihood weighting to obtain Bayesian posterior estimates.
These results show how robust is the learned network to
perform inference with novel data. Prediction error values
for variables not present in table I are equal to 0.

Using probabilistic inference over a set of variables in
the learned BN, the robot is able to provide information for
effects prediction P (E|O,A), feedback in action selection
P (A|O,E) or object recognition given its behavioral de-
scription P (O|A,E). For example, when we fix a set of
perceptual evidence to define an object, and a desired effect,



TABLE I
PREDICTION ERROR FOR EACH VARIABLE IN THE LEARNED BN.

Tested variable Prediction error
color 0.1125
size 0.0725

open g 0.1125
end eff force 0.1775
end eff mov 0.025

poi5 mov 0.025
poi6 mov 0.055
poi7 mov 0.05
poi8 mov 0.05

we can obtain a probability distribution of the available
actions. The blue object from figure 4, has the highest
predicted action probability, for the effect poi obj mov,
of P (lean t|objblue, poi objblue mov) = 0.1577 while the
green object which is fixed to the table has zero probability
for either manipulation action, due to its nature. Blue object
has also a high probability for poke action. These results are
coherent with the two affordances (or lack thereof) on these
objects: poke-ability and lean-ability.

VI. CONCLUSIONS AND PERSPECTIVES
In this paper, we have presented a general approach

for learning sensorimotor representations from the unsuper-
vised interaction between perception and action. Bayesian
framework captures the relation between the three elements
of the affordance definition: effects, objects and actions.
Our approach does not rely on a priori dependency as-
sumptions between them. It allows the robot to infer the
dependencies between the elements while interacting and
combining percetual and proprioceptual data. The learned
sensorimotor representation along the Bayesian framework
allows the robot’s motivational system to make predictions
about elements in the environment. Moreover, this inferred
information can be used for future planning tasks or to add
sensor and motor capabilities to the innate repertoire.

We have shown the connection between the three elements
of affordance, which allows to represent the learned knowl-
edge in a fused feature frame. We believe that our approach
offers a base for further work on the discovery of high level
affordances and robot skills.

Currently, we are working on a deep structure learn-
ing evaluation using a set of Bayesian-based metrics and
information compression metrics to automatically decide
the better performance strategy for the affordance learning
approach. We are also exploring the learning of innate
capabilities of the robot using deep learning techniques to
identify salient perceptual features for object representation
and salient changes for effect detectors, whereas we made a
priori hypotheses for them in this paper.
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