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Abstract

The classical Donsker weak invariance principle is extended to a Besov spaces framework.

Polygonal line processes build from partial sums of stationary martingale differences as well

independent and identically distributed random variables are considered. The results obtained

are shown to be optimal.
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1 Introduction and main results

By weak invariance principle in a topological function space, say, E we understand the weak con-
vergence of a sequence of probability measures induced on E by normalized polygonal line processes
build from partial sums of random variables. The choice of the space E is important due to possible
statistical applications via continuous mappings. Since stronger topology generates more continuous
functionals, it is beneficial to have the weak invariance principle proved in as strong as possible
topological framework.

Classical Donsker’s weak invariance principle considers the space E = C[0, 1] and polygonal line
processes build from partial sums of i.i.d. centred random variables with finite second moment.
An intensive research has been done in order to extend Donsker’s result to a stronger topological
framework as well to a larger class of random variables (see, e.g., [9], [12], [4] and references therein).

In this paper we consider weak invariance principle in Besov spaces for a class of strictly stationary
sequence of martingale differences. To be more precise, let us first introduce some notation and
definitions used throughout the paper.

Let (Ω,F ,P) be a probability space and T : Ω → Ω be a bijective bi-measurable transformation
preserving the probability P. The quadruple (Ω,F ,P,T) is referred to as dynamical system (see,
e.g., [10] for some background material). We assume that there is a sub-σ-algebra F0 ⊂ F such that
TF0 ⊂ F0 and by I we denote the σ-algebra of the sets A ∈ F such that T−1A = A.

Next we consider a strictly stationary sequence (Xj, j > 0) constructed as Xj := f ◦ Tj , where
f : Ω → R is F0-measurable. We define also a non-decreasing filtration Fk = T

−kF0, k > 1. Note
that (Xj ,Fj, j > 0) is then a martingale differences sequence provided E (f | TF0) = 0.

Set

Sf,0 := 0, Sf,n :=
n−1
∑

j=0

f ◦ Tj, n > 1.
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Our main object of investigation is the sequence of polygonal line processes ζf,n := (ζf,n(t), t ∈ [0, 1]),
n > 1, defined by

ζf,n(t) := Sf,⌊nt⌋ + (nt− ⌊nt⌋)f ◦ T⌊nt⌋,

where for a real number a > 0, ⌊a⌋ := max{k : k ∈ {0, 1, . . .}, k 6 a}. To define the paths space
under consideration let Lp([0, 1]) be the space of Lebesgue integrable functions with exponent p
(1 6 p < ∞) and the norm

‖x‖p =

(
∫ 1

0

|x(t)|p d t
)1/p

, x ∈ Lp([0, 1]).

If x ∈ Lp([0, 1]) its Lp-modulus of smoothness is defined as

ωp(x, δ) = sup
|h|6δ

(∫

Ih

|x(t+ h)− x(t)|p d t
)1/p

, δ ∈ [0, 1],

where Ih = [0, 1] ∩ [−h, 1− h]. Let α ∈ [0, 1). The Besov space Bo
p,α = Bo

p,α([0, 1]) is defined by

Bo
p,α :=

{

x ∈ Lp([0, 1]) : lim
δ→0

δ−αωp(x, δ) = 0

}

.

Endowed with the norm

‖x‖p,α = ‖x‖p + sup
δ∈(0,1)

δ−αωp(x, δ), x ∈ Bo
p,α,

the space Bo
p,α is a separable Banach space and the following embeddings are continuous:

Bo
p,α →֒ Bo

p,β, for 0 6 β < α;

Bo
p,α →֒ Bo

q,α, for 1 6 q < p < ∞.

EachBo
p,α(0, 1) where p > 1, 0 6 α < 1/2, supports a standardWiener processW = (W (t), 0 6 t 6 1)

(see, e.g., [14]). We note also, that any polygonal line process belongs to each of Bo
p,α, p > 1,

α ∈ [0, 1).

As usually
D−→ denotes convergence in distribution.

Theorem 1. Let p > 2, 1/p < α < 1/2 and

q(p, α) := 1/(1/2− α+ 1/p). (1)

Let (f ◦ T
i, T

−iF0, i > 0) be a martingale differences sequence. Assume that the following two
conditions hold :

(i) limt→∞ tq(p,α)P {|f | > t} = 0;

(ii) E

(

[

E
(

f2 | TF0

) ]q(p,α)/2
)

< ∞.

Then the convergence n−1/2ζf,n
D−−−−→

n→∞

√

E (f2 | I) W holds in the space Bo
p,α, where W is indepen-

dent of E
(

f2 | I
)

.

Let us note that condition (i) is stronger for the function f than its square integrability since (i)
yields E (|f |r) < ∞ for any r < q(p, α) and q(p, α) > 2 when α > 1/p. However as shows our next
result, condition (i) is necessary and sufficient for independent identically distributed (i.i.d.) random
variables. To formulate the result let Y, Y1, Y2, . . . be mean zero i.i.d. random variables with finite
variance σ2 = E

(

Y 2
)

> 0. Let ξn = (ξn(t), t ∈ [0, 1]), be defined by

ξn(t) =

⌊nt⌋
∑

k=1

Xk + (nt− ⌊nt⌋)X⌊nt⌋+1.
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Theorem 2. Let p > 2, 1/p < α < 1/2 and let q(p, α) be defined by (1). Then

n−1/2σ−1ξn
D−−−−→

n→∞
W in the space Bo

p,α (2)

if and only if
lim
t→∞

tq(p,α)P {|Y | > t} = 0. (3)

SinceBo
∞,α matches Hölder spaces we see, that Theorems 2 and 1 complement the weak invariance

principle obtained in a Hölderian framework by [12] and [4]. Concerning condition (ii) of Theorem
1 we prove a need of certain extra assumption by a counterexample which for any dynamical system
with positive entropy constructs a function f that satisfies the condition (i) but the convergence of
polygonal line processes fails. Precise result reads as follows.

Theorem 3. Let p > 2, 1/p < α < 1/2 and q(p, α) be given by (1). For each dynamical system
(Ω,F ,P,T) with positive entropy, there exists a function m : Ω → R and a σ-algebra F0 for which
TF0 ⊂ F0 such that:

(i) the sequence
(

m ◦ Ti, T
−iF0, i > 0

)

is a martingale difference sequence;

(ii) the convergence limt→+∞ tq(p,α)P
(

|m| > t
)

= 0 takes place;

(iii) the sequence
(

n−1/2ζm,n

)

is not tight in Bo
p,α.

As it is seen from our next results the case where 0 6 α 6 1/p is indeed quite different from the
previously considered case where 1/p < α < 1/2.

Theorem 4. Let p > 1 and α ∈ [0, 1/2) ∩ [0, 1/p]. Let
(

f ◦ Ti, T
−iF0, i > 0

)

be a martingale

differences sequence. If E f2 < ∞ then n−1/2ζf,n
D−−−−→

n→∞

√

E (f2|I)W in the space Bo
p,α, where W is

independent of E
(

f2 | I
)

.

Theorem 5. Let α and p be as in Theorem 4. Then

n−1/2σ−1ξn
D−−−−→

n→∞
W in the space Bo

p,α. (4)

Let us note that the finiteness of the second moment EY 2 is necessary for the convergence (4).
The rest of the paper is organized as follows. In Section 2 we shortly present needed information

on structure of Besov spaces and tightness of measures on these spaces. Section 3 contains proofs
of Theorems 1, 2 and 3 whereas Section 4 is devoted to the proofs of Theorems 4 and 5. Finally, in
Section 6 we discuss possible applications of invariance principle in the Besov framework.

2 Some functional analysis and probabilistic tools

We denote by Dj the set of dyadic numbers in [0, 1] of level j, i.e.

D0 = {0, 1}, Dj =
{

(2l − 1)2−j; 1 6 l 6 2j−1
}

, j > 1.

Set
D =

⋃

j>0

Dj

and write for r ∈ Dj ,
r− := r − 2−j, r+ := r + 2−j.

The triangular Faber-Schauder functions Λr for r ∈ Dj , j > 0, are

Λr(t) =







2j(t− r−) if t ∈ (r−, r];
2j(r+ − t) if t ∈ (r, r+];
0 else.
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When j = 0, we just take the restriction to [0, 1] in the above formula, so

Λ0(t) = 1− t, Λ1(t) = t, t ∈ [0, 1].

Theorem 6 ([3]). Let p > 1 and 1/p < α < 1. The Faber-Schauder system {Λr, r ∈ D} is the
Schauder basis for Bo

p,α: each x ∈ B0
p,α has the unique representation,

x =
∑

r∈D

λr(x)Λr ,

where

λr(x) := x(r) − x(r+) + x(r−)

2
, r ∈ Dj , j > 1

and in the special case j = 0,
λ0(x) := x(0), λ1(x) := x(1).

Moreover the norm is equivalent to the sequential norm:

‖x‖p,α ∼ ‖x‖seqp,α := sup
j>0

2jα−i/p
(

∑

r∈Dj

|λr(x)|p
)1/p

.

The Schmidt orthogonalization procedure (with respect to inner product in L2(0, 1)) applied to
Faber-Schauder system leads to the Franklin system {fk, k > 0}:

fk(t) =
k
∑

i=0

cikΛi(t), t ∈ [0, 1],

with ckk > 0 for k > 0, where the matrix (cik) is uniquely determined.

Theorem 7 ([3]). The Franklin system {fn, n > 0} is the basis for Bo
p,α, p > 1, 0 6 α < 1: each

x ∈ Bo
p,α has the unique representation,

x =

∞
∑

k=0

xkfk,

where xk = 〈x, fk〉 :=
∫ 1

0
x(t)fk(t)d t, k > 0.

The following proposition is proved in [2] for α > 1/p but similar arguments works as well for
any 0 6 α < 1.

Proposition 8. Let p > 1 and 0 6 α < 1. The set K ⊂ Bo
p,α is relatively compact if and only if

(i) supx∈K ||x||p < ∞,

(ii) limδ→0 supx∈K δ−αωp,α(x, δ) = 0.

Proof. One easily checks that (i) and (ii) yields relative compactness of K in Lp([0, 1]). Therefore
for any sequence (xn)n>1 of K there exists a subsequence, which we denote also (xn), converging in
Lp([0, 1]) to some x ∈ Lp([0, 1]). To finish the proof it suffices to prove that

(a) x ∈ Bo
p,α;

(b) (xn)n>1 is a Cauchy sequence in Bo
p,α.

Taking a.s. convergence subsequence (xn′ ) and applying Fatou lemma we easily obtain for any
0 < δ 6 1,

ωp(x, δ) 6 lim inf
n′

ωp(xn′ , δ) 6 sup
n

ωp(xn, δ). (5)
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This yields (a). To prove (b) observe that for each ε > 0 there exists δε > 0 such that δ−α supn ωp(xn, δ) <
ε when δ < δε, hence, for n,m > 1

||xn − xm||p,α = ||xn − xm||p +max

{

[ sup
0<δ6δε

; sup
δε<δ61

]δ−αωp(xn − xm, δ)

}

6 ||xn − xm||p + ε+ 2δ−α
ε ||xn − xm||p

and we complete the proof since limn,m→∞ ||xn − xm||p = 0.

Consider stochastic processes Z, (Zn)n>1 with paths space Bo
p,α which is endowed with Borel σ-

algebra B(Bo
p,α). Let PZ , PZn , n > 1, be the corresponding distributions. As generally accepted the

sequence (Zn) converges in distribution to Z in Bo
p,α (denoted Zn

D−−−−→
n→∞

Z in Bo
p,α) provided (PZn)

converges weakly to PZ : limn→∞

∫

fdPZn =
∫

fdPZ for each bounded continuous f : Bo
p,α → R.

The sequence (Zn) is tight in Bo
p,α if for each ε > 0 there is a relatively compact set Kε ⊂ Bo

p,α

such that infn>1 P(Zn ∈ Kε) > 1 − ε. Due to the well known Prohorov’s theorem convergence in
distribution in a separable metric space is coherent with tightness. Indeed, to prove convergence in
distribution one has to establish tightness and to ensure uniqueness of the limiting distributions.

The following tightness criterion is obtained from Proposition 8.

Theorem 9. The sequence (Zn) of random processes with paths in Bo
p,α(0, 1) is tight if and only if

the following two conditions are satisfied:

(i) limb→∞ supn>1 P

(

||Zn||p > b
)

= 0;

(ii) for each ε > 0

lim
δ→0

sup
n>1

P

(

ωp,α(Zn, δ) > ε
)

= 0.

Proof. See, e.g., the proof of Theorem 8.2. in [1].

Theorem 10. Let 1 > α > 1/p. The sequence (Zn) of random elements in the Besov space Bo
p,α(0, 1)

is tight if and only if the following two conditions are satisfied:

(i) lim
b→∞

sup
n

P
{

||Zn||p > b
}

= 0;

(ii) for each ε > 0, lim
J→∞

lim sup
n→∞

P

(

sup
j>J

2jα−j/p
(

∑

r∈Dj

|λr(ζn)|p
)1/p

> ε
)

= 0.

Proof. It is just a corollary of tightness criterion established in [15] for Schauder decomposable
Banach spaces as Besov spaces Bo

p,α with α > 1/p, are such.

3 Proofs: the case α > 1/p

We start this section with some auxiliary results which could be helpful when dealing with weak
invariance principle for stationary sequences. Throughout we denote

Wf,n = n−1/2ζn.

3.1 Auxiliary results

Lemma 11. Let p > 1 and α > 1/p. Assume that Z is a random element in boths spaces C[0, 1]
and Bo

p,α. Then for any stationary sequence
(

f ◦ Tj
)

if

(i) Wf,n
D−−−−→

n→∞
Z in C[0, 1], and
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(ii) (Wf,n) is tight in Bo
p,α,

then Wf,n
D−−−−→

n→∞
Z in Bo

p,α.

Proof. From (ii) we have that each subsequence of (Wf,n) has further subsequence that converges

in distribution. If Wf,n′

D−−−−→
n→∞

Y ′ and Wf,n′′

D−−−−→
n→∞

Y ′′ then we have that λr(Wf,n′)
D−−−−→

n→∞
λr(Y

′)

and λr(Wf,n′′ )
D−−−−→

n→∞
λr(Y

′′) for any dyadic number r. But (i) gives that both λr(Y
′) and λr(Y

′′)

have the same distribution as λr(Z). Since Schauder coefficients (λr(Z)) determines the distribution
of Z we can conclude that Y ′ and Y ′′ are equally distributed with Z. This ends the proof.

For polygonal line processes build from any stationary sequence the tightness conditions given
in Theorem 10 can be simplified.

Theorem 12. Let p > 1 and α > 1/p. The sequence (Wf,n) is tight in Bo
p,α provided that

lim
J→+∞

lim sup
N→+∞

N
∑

j=J

2j
∫ 1

0

xp−1
P

(

2−(N−j)/2 max
16k62N−j

|Sf,k| > x2j/q(p,α)
)

dx = 0. (6)

Proof. Assume that f satisfies (6). We have to show that (Wf,n) satisfies the conditions of Theo-
rem 10. First we check its condition (i). Since

||Wf,n||p 6 sup
06t61

|Wf,n(t)| = n−1/2 max
06t61

|Sf,k|,

the proof of (i) reduces to

lim
b→+∞

sup
N>1

P

(

2−N/2 max
16k62N

|Sf,k| > b
)

= 0. (7)

Notice that (6) implies (by considering the term of index J in the sum) that

lim
J→+∞

lim sup
N→+∞

2JP

(

2−(N−J)/2 max
16k62N−J

|Sf,k| >
1

2
2J/q(p,α)

)

= 0,

and consequently

lim
J→+∞

lim sup
N→+∞

2JP

(

2−N/2 max
16k62N

|Sf,k| > 2J/q(p,α)
)

= 0.

For a fixed ε, we choose J0 such that

lim sup
N→+∞

2J0P

(

2−N/2 max
16k62N

|Sf,k| > 2J0/q(p,α)

)

< 2ε.

There exists an integer N0 such that for N > N0,

P

(

2−N/2 max
16k62N

|Sf,k| > 2J0/q(p,α)

)

< ε.

Since supN6N0
P
(

2−N/2max16k62N |Sf,k| > b
)

→ 0 as b goes to infinity, we can choose b′0 such that

maxN6N0 P
(

2−N/2max16k62N |Sf,k| > b′0
)

< ε. Taking b0 := max
(

2J0/q(p,α)/2, b′0
)

, we have for
b > b0,

sup
N>1

P

(

2−N/2 max
16k62N

|Sf,k| > b

)

< ε,

which proves (7) and the same time (i) of Theorem 10.
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Now, let us prove condition (ii) of Theorem 10. Since

N
∑

j=J

2j
∫ 1

0

xp−1
P

(

2−(N−j)/2 max
16k62N−j

|Sf,k| > x2j/q(p,α)
)

dx

>2N
∫ 3/4

1/2

xp−1
P

(

|f | > x2N/q(p,α)
)

dx

>2N (1/2)
p−1

P

(

|f | > 3

4
2N/q(p,α)

)

,

we infer that condition (6) implies

lim
t→+∞

tq(p,α)P
(

|f | > t
)

= 0. (8)

We first prove that for each positive ε,

lim sup
n→∞

P

(

sup
j>⌊log n⌋+1

2jα−j/p
(

∑

r∈Dj

|λr(Wf,n)|p
)1/p

> ε
)

= 0.

We shall actually prove that

lim sup
n→∞

P

(

sup
j>⌊log n⌋+1

2jα−j/p
(

∑

r∈Dj

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣

p
)1/p

> ε
)

= 0, (9)

since the differences Wf,n(r) − Wf,n(r
−) can be treated similarly. To this aim, define for a fixed

j > ⌊logn⌋+ 1 the sets

Ik :=
(

r ∈ Dj ,
k

n
6 r < r+ <

k + 1

n

)

, 0 6 k 6 n− 1;

and

Jk :=
(

r ∈ Dj ,
k

n
6 r <

k + 1

n
6 r+ <

k + 2

n

)

, 0 6 k 6 n− 2.

Assume that r belongs to Ik. Then ⌊nr⌋ = ⌊nr+⌋ = k. We thus have
∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣ =
∣

∣

(

nr+ − nr
)

f ◦ Tk/
√
n
∣

∣ = n1/22−j
∣

∣f ◦ Tk
∣

∣ . (10)

Now, assume that r belongs to Jk. Then
∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣ 6
∣

∣Wf,n(r
+)−Wf,n((k + 1)/n)

∣

∣+ |Wf,n((k + 1)/n)−Wf,n(r)|
= n−1/2

(∣

∣

(

nr+ − (k + 1)
)

f ◦ Tk+1
∣

∣+
∣

∣f ◦ Tk − (nr − k) f ◦ Tk
∣

∣

)

,

and using the fact that 0 6 nr+ − (k + 1) 6 nr+ − nr = n2j and 0 6 1 − (nr − k) 6 (nr+ − k) −
(nr − k) = n2−j, we get

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣ 6
√
n2−j

(∣

∣f ◦ Tk
∣

∣+
∣

∣f ◦ Tk+1
∣

∣

)

. (11)

Since Dj = {1− 2−j} ∪⋃n−1
k=0 Ik ∪⋃n−2

k=0 Jk and for r = 1− 2−j ,

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣ 6 n−1/22−j |f ◦ Tn| ,

we have in view of (10) and (11),

(

∑

r∈Dj

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣

p
)1/p

6 n−1/22−j |f ◦ Tn|+ n1/22−j
(

n−1
∑

k=0

Card (Ik)
∣

∣f ◦ Tk
∣

∣

p
)1/p

+ n1/22−j
(

n−2
∑

k=0

Card (Jk)
(∣

∣f ◦ Tk
∣

∣+
∣

∣f ◦ Tk+1
∣

∣

)p
)1/p

.
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We now have to bound Card (Ik) and Card (Jk). Let 1 6 l 6 2j. If (2l − 1)2−j belongs to Ik, then
we should have 2jk/n 6 2l − 1 < 2l < 2j(k + 1)/n hence 2j−1k/n 6 l < 2j−1(k + 1)/n and it
follows that Ik cannot have more than 2j/n elements. If (2l − 1)2−j belongs to Jk, then we should
have 2j(k + 1)/n 6 2l < 2j(k + 2)/n and we deduce that the cardinal of Jk does not exceed 2j/n.
Therefore, we have

(

∑

r∈Dj

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣

p
)1/p

6 3n1/22−j
(

2j/n
)1/p

(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p

.

and

sup
j>⌊log n⌋+1

2jα−j/p
(

∑

r∈Dj

|λr(Wf,n)|p
)1/p

6 3 sup
j>⌊logn⌋+1

n1/22−j2jα−j/p
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p

6 n−1/2+α−1/p
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p

= n−1/q(p,α)
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p

.

We thus have to prove that the latter term goes to zero in probability as n goes to infinity.

Lemma 13. Let f be a function such that (8) holds. Then

n−1/q(p,α)
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p P−−−−→

n→∞
0.

Proof. For fixed δ and n, define f ′ := f1
(

|f | 6 δn1/q(p,α)
)

and f ′′ = f−f ′. By Markov’s inequality,
we have with q = q(p, α)

P

(

n−1/q
(

n
∑

k=0

∣

∣f ′ ◦ Tk
∣

∣

p
)1/p

> ε
)

6 ε−pn−p/q
n
∑

k=0

E
∣

∣f ′ ◦ Tk
∣

∣

p

6 2ε−pn1−p/q
E |f ′|p. (12)

Now, note that

E |f ′|p = p

∫ δn1/q

0

tp−1
P(|f ′| > t)dt 6 p

∫ δn1/q

0

tp−q−1dt · sup
s>0

sqP
(

|f | > s
)

=
p

p− q
δ(p−q)/qn(p−q)/q · sup

s>0
sqP
(

|f | > s
)

,

hence by (12), we have

P

(

n−1/q
(

n
∑

k=0

∣

∣f ′ ◦ Tk
∣

∣

p
)1/p

> ε
)

6 ε−p 2p

p− q
δ(p−q)/q. (13)

Notice also that

P

(

n−1/q
(

n
∑

k=0

∣

∣f ′′ ◦ Tk
∣

∣

p
)1/p

> ε
)

6 (n+ 1)P(|f | > δn1/q). (14)

The combination of (13) and (14) gives

lim sup
n→+∞

P

(

n−1/q
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

p
)1/p

> ε
)

6 ε−p 2p

p− q
δ(p−q)/q

and since δ is arbitrary and p > q, this concludes the proof of Lemma 13.
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An application of the Lemma 13 gives (9). Now, we have to prove that

lim
J→∞

lim sup
n→∞

P

(

sup
J6j6⌊log n⌋

2jα−j/p
(

∑

r∈Dj

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣

p
)1/p

> ε
)

= 0.

It suffices to prove that

lim
J→∞

lim sup
n→∞

P

(

n−1/2 sup
J6j6⌊log n⌋

2jα−j/p
(

∑

r∈Dj

∣

∣S⌊nr+⌋ − S⌊nr⌋

∣

∣

p
)1/p

> ε
)

= 0. (15)

Indeed, we have

∣

∣Wf,n(r
+)−Wf,n(r)

∣

∣ 6 n−1/2
(

∣

∣Sf,⌊nr+⌋ − Sf,⌊nr⌋

∣

∣+
∣

∣

∣
f ◦ T⌊nr+⌋

∣

∣

∣
+
∣

∣

∣
f ◦ T⌊nr⌋

∣

∣

∣

)

,

and for j 6 ⌊logn⌋, 2j 6 n, so that the set {⌊nr+⌋, ⌊nr⌋, r ∈ Dj} consists of distinct elements.
Therefore,

sup
16j6⌊log n⌋

2jα−j/p
(

∑

r∈Dj

[

n−1/2
∣

∣

∣
f ◦ T⌊nr+⌋

∣

∣

∣
+
∣

∣

∣
f ◦ T⌊nr⌋

∣

∣

∣

]p)1/p

> ε
)

6 2n−1/q
(

n
∑

k=0

∣

∣f ◦ Tk
∣

∣

)1/p

,

and this quantity goes to zero in probability by Lemma 13. The proof of (15) reduces to establish
that for each positive ε,

lim
J→+∞

lim
n→+∞

⌊log n⌋
∑

j=J

P (An,j) = 0, (16)

where

An,j :=







2j−1
∑

l=1

∣

∣S⌊n2l2−j⌋(f)− S⌊n(2l−1)2−j⌋(f)
∣

∣

p
> εnp/22j(1−pα)







.

We now bound P (An,j) by splitting the probability over the set

Bn,j :=

2j−1
⋃

l=1

{

∣

∣Sf,⌊n2l2−j⌋ − Sf,⌊n(2l−1)2−j⌋

∣

∣ > n1/22j(1/p−α)
}

.

One bounds P (An,j ∩Bn,j) by P(Bn,j), which can in turn be bounded by

2j−1
∑

l=1

P

(

∣

∣Sf,⌊n2l2−j⌋ − Sf,⌊n(2l−1)2−j⌋

∣

∣ > n1/22j(1/p−α)
)

and thanks to stationarity and the fact that

⌊n2l2−j⌋ − ⌊n(2l − 1)2−j⌋ 6 n2−j + 1 6 2n2−j, (17)

we obtain

P (An,j ∩Bn,j) 6 2j−1
P

(

max
16k6⌊2n2−j⌋

|Sf,k| > n1/22j(1/p−α)

)

6 2j−12p−1

∫ 1

1/2

tp−1
P

(

max
16k6⌊2n2−j⌋

|Sf,k| > tn1/22j(1/p−α)

)

dt. (18)

Now, in order to bound P
(

An,j ∩Bc
n,j

)

, we start by the pointwise inequalities

εnp/22j(1−pα)1(An,j ∩Bc
n,j) 6

2j−1
∑

l=1

∣

∣Sf,⌊n2l2−j⌋ − Sf,⌊n(2l−1)2−j⌋

∣

∣

p
1(An,j ∩Bc

n,j)

6

2j−1
∑

l=1

∣

∣Sf,⌊n2l2−j⌋ − Sf,⌊n(2l−1)2−j⌋

∣

∣

p
1
{

∣

∣Sf,⌊n2l2−j⌋ − Sf,⌊n(2l−1)2−j⌋

∣

∣ 6 n1/22j(1/p−α)
}

.
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Integrating and using the fact that for a non-negative random variable Y and a positive R,

E (Y p1 {Y 6 R}) = pRp

∫ 1

0

tp−1
P (Y > Rt) dt,

we derive by stationarity and (17) that

P
(

An,j ∩Bc
n,j

)

6
p

ε
2j−1

∫ 1

0

tp−1
P

(

max
16k6⌊2n2−j⌋

|Sf,k| > tn1/22j(1/p−α)

)

dt. (19)

Let us denote by K a constant depending only on p and ε which may change from line to line. By
(18) and (19), we derive that

⌊log n⌋
∑

j=J

P (An,j) 6 K

⌊logn⌋
∑

j=J

2j
∫ 1

0

tp−1
P

(

max
16k6⌊n21−j⌋

|Sf,k| > tn1/22j(1/p−α)

)

dt.

If 2N 6 n < 2N+1, then we have

⌊log n⌋
∑

j=J

P (An,j) 6 K

N
∑

j=J

2j
∫ 1

0

tp−1
P

(

max
16k62N+2−j

|Sf,k| > t2N/22j(1/p−α)

)

dt,

hence
⌊log n⌋
∑

j=J

P (An,j) 6 K
N+2
∑

j=J

2j
∫ 1

0

sp−1
P

(

max
16k62N+2−j

|Sf,k| > s2
N+2

2 2j(1/p−α)

)

ds.

Splitting the integral into two parts, we infer that

lim sup
n→+∞

⌊logn⌋
∑

j=J

P (An,j)

6 K lim sup
N→+∞

N+2
∑

j=J

2j
∫ 1

0

sp−1
P

(

max
16k62N+2−j

|Sf,k| > s2(N+2)/22j(1/p−α)

)

ds (20)

and the limit of the latter quantity as J goes to infinity is zero by (6). This concludes the proof of
Theorem 12.

Remark 14. Using deviation inequalities, similar results as those found for the Hölderian weak
invariance principle for stationary mixing and τ -dependent sequences in [4] can be found for Besov
spaces.

Lemma 15 (Proposition 3.5 in [5] ). For any q > 2, there exists a constant c(q) such that if
(

f ◦ Ti
)

i>0
is a martingale differences sequence with respect to the filtration

(

T
−iF0

)

i>0
then for

each integer n > 1,

P

( 1√
n

max
16i6n

|Sf,i| > t
)

6 c(q)n

∫ 1

0

P

(

|f | >
√
nut
)

uq−1du+

+ c(q)

∫ ∞

0

P

(

(

E
(

f2 | TF0

))1/2
> vt

)

min
(

v, vq−1
)

dv. (21)

3.2 Proof of Theorem 1

Acording to Lemma 11 we need only to prove that the sequence
(

n−1/2ζf,n
)

n>1
is tight in Bo

p,α. To

this aim, we have to check the condition (6) of Theorem 12. For fixed N and J such that N > J ,

10



j ∈
(

J, . . . , N
)

and x ∈ [0, 1], we have by (21) of Lemma 15,

P

(

2−
N−j

2 max
16k62N−j

|Sf,k| > x2
j

q(p,α)

)

6 c(q)2N−j

∫ 1

0

P

(

|f | > 2
N−j

2 x2
j

q(p,α) u
)

uq−1du

+ c(q)

∫ ∞

0

P

(

(

E
(

f2 | TF0

))1/2
> vx2

j
q(p,α)

)

min
(

v, vq−1
)

dv, (22)

from which we infer that

N
∑

j=J

2j
∫ 1

0

xp−1
P

(

2−
N−j

2 max
16k62N−j

|Sf,k| > x2
j

q(p,α)

)

dx

6 c(q)2N
N
∑

j=J

∫ 1

0

xp−1

∫ 1

0

P

(

|f | > 2
N
2 x2j(1/p−α)u

)

dxuq−1du

+ c(q)

∫ ∞

0

∫ 1

0

xp−1
N
∑

j=J

2jP
(

(

E
(

f2 | TF0

))1/2
> vx2

j
q(p,α)

)

min
(

v, vq−1
)

dvdx

=: A(N, J) +B(N, J). (23)

Using the fact that

P

(

|f | > t
)

6 t−q(p,α) sup
s>t

sq(p,α)P
(

|f | > s
)

,

we derive the bound

A(N, J) 6 c(q)2N(1−q(p,α)/2)
N
∑

j=0

2j(1/p−α)

∫ 1

0

∫ 1

0

xp−q(p,α)−1uq−q(p,α)−1

sup
(

sq(p,α)P
(

|f | > s
)

, s > 2
N
2 xu2j(1/p−α)

)

dxdu.

Since j 6 N , we have 2
N
2 xu2j(1/p−α) > xu2N/q(p,α) and accounting the inequality

∑N
j=0 2

j(1/p−α) 6

2N(1/p−α)/(1− 21/p−α), we obtain

A(N, J) 6 c(q)

∫ 1

0

∫ 1

0

xp−q(p,α)−1uq−q(p,α)−1 sup
(

sq(p,α)P
(

|f | > s
)

, s > 2
N

q(p,α) xu
)

dxdu.

Since p > q(p, α) and q > q(p, α), the integral
∫ 1

0

∫ 1

0
uq−q(p,α)−1xp−q(p,α)−1dxdu is convergent and

we infer by the monotone convergence theorem that

∀J > 1, lim
N→+∞

A(N, J) = 0. (24)

Now, in order to control B(N, J), we use the following elementary inequality: if Y is a non-negative
random variable, then for each J > 1,

∑

j>J

2jP
(

Y > 2j/q(p,α)
)

6 2E
(

Y q(p,α)1
(

Y > 2J/q(p,α)
))

.

Applying this to Y :=
(

E
(

f2 | TF0

))1/2
/(vx), we obtain that

B(N, J) 6 c(q)

∫ ∞

0

∫ 1

0

xp−q(α)−1
E

(

[

E
(

f2 | TF0

)]q/2
1
(

(

E
(

f2 | TF0

))1/2
> vx2J/q(p,α)

))

·min
(

v, vq−1
)

v−q(p,α)dvdx.

11



Here again, we conclude by monotone convergence that

lim
J→+∞

sup
N>1

B(N, J) = 0, (25)

since the integrals
∫ 1

0
xp−q(α)−1dx and

∫ +∞

0
min

(

v, vq−1
)

v−q(p,α)dx are finite (as q > q(α)).

Tightness of the sequence (Wf,n)n>1 now follows from Theorem 12 and the combination of (23),

(24) and (25). Acounting Lemma 11 this concludes the proof of Theorem 1.

3.3 Proof of Theorem 2

Sufficiency of the condition is contained in Theorem 1. Indeed, we represent the sequence (Yj)j>0

by
(

f ◦ Tj
)

j∈Z
, that is,

(

f ◦ Tj
)

j∈Z
is an i.i.d. sequence and Yj has the same distribution as f ◦ Tj .

To this aim we define Ω = R
Z,F = BZ and P = P

Z

Y , where PY is the distribution of Y0. Let
f((ωj)) = ω0 for (ωj) ∈ R

Z and let T : Ω → Ω be the shift operator: T((ωj)) = (ωj+1). Next let
F0 := σ

(

f ◦ Tj , j 6 0
)

. Then TF0 ⊂ F0 and E (f | TF0) = 0, since f is independent of TF0 and

centered. Moreover, E
(

f2 | TF0

)

= E
(

f2
)

, again by independence. Therefore, condition (ii) of (1)

is satisfied. Since I is trivial, E
(

f2 | I
)

= E
(

f2
)

, which gives the convergence (2).
Let us prove the necessity of (3) for the invariance principle in Bo

p,α. Since the space Bo
p,α is a

separable Banach space, the sequence (W2n)n>1 is tight in Bo
p,α. Using Theorem 1 in [13], we can

find for any positive η a number J0 such that

lim sup
n→∞

P

(

sup
j>J0

2jα−j/p
(

∑

r∈Dj

∣

∣W2n(r
+)−W2n(r)

∣

∣

p
)1/p

> ε
)

6 η.

Therefore, if n is large enough, we have

P

(

2nα−n/p
(

∑

r∈Dn

∣

∣W2n
(

r+
)

−W2n(r)
∣

∣

p
)1/p

> ε
)

6 2η.

Since
∑

r∈Dn

∣

∣W2n(r
+)−W2n(r)

∣

∣

p
= 2−np/2

2n−1
∑

l=1

|S2l − S2l−1|p = 2−np/2
2n−1
∑

l=1

|X2l−1|p ,

we have the convergence in probability of the sequence
(

2nα−j/p2−np/2
∑2n−1

l=1 |X2l−1|p
)

to 0. By

[7], this implies that 2nα−j/p2−np/2
P

(

|X1| > 2n
)

→ 0, hence (3) holds. This ends the proof of

Theorem 2.

3.4 Proof of Theorem 3

We first start by a lemma which guarantees the lake of tightness of the partial sum process.

Lemma 16. Let 1/p < α < 1/2 and let f be a function such that there exist increasing sequences of
real numbers (nl)l>1 and (kl)l>1 satisfying the following properties: kl/nl → 0 as l goes to infinity
and

inf
l>1

P

( 1

n
q(p,α)
l

max
16k6kl

1

kα

(

nl−k
∑

i=0

|Sf,i+k − Sf,i|p
)1/p

> 1
)

> 0,

where q(p, α) is given by (1). Then the sequence (Wn(f))n>1 is not tight in Bo
p,α.

Proof. If the sequence (Wn(f))n>1 was tight in Bo
p,α, then we would be able to extract a weakly

convergence subsequence of (Wnl
(f))l>1. Therefore, we can assume without loss of generality that

12



(Wnl
(f))l>1 converges in distribution in Bp,α. Consequently, the sequence

(

sup|t|6kl/nl
t−αωp (Wnl

, t)
)

l>1

should convergence to 0 in probability as l goes to infinity. But

sup
|t|6kl/nl

t−αωp (Wnl
, t) >

c(p)

n
q(p,α)
l

max
16k6kl

1

kα

(

nl−k
∑

i=0

|Sf,i+k − Sf,i|p
)1/p

for some constant depending only on p (this can be seen by restricting the supremum over the t of
the form k/nl where 1 6 k 6 kl).

Let us recall the statement of Lemma 3.8 in [8].

Lemma 17. Let (Ω,F ,P,T) be an ergodic probability measure preserving system of positive entropy.
There exists two T-invariant sub-σ-algebras B and C of F and a function g : Ω → R such that:

• the σ-algebras B and C are independent;

• the function g is B-measurable, takes the values −1, 0 and 1, has zero mean and the process
(g ◦ Tn)n∈Z is independent;

• the dynamical system (Ω, C,P,T) is aperiodic.

In the sequel, we shall assume for simplicity that P
(

g = 1
)

= P

(

g = −1
)

= 1/2.

The construction follows the lines of that of Theorem 2.1 in [6]. We define three increasing
sequences of positive integers (Il)l>1, (Jl)l>1, (Nl)l>1 and a sequence of real numbers (Ll)l>1 such
that

∞
∑

l=1

1

Ll
< ∞ and

Ll is a continuity point of the cumulative distribution function of the random variable 2−1Y1/2,1,
which is defined in (45). Now, we define a sequence of real numbers (Jl)l>1 in such a way that for
each l > 1,

∣

∣

∣JlP
((

Y1/2,1 > 2Ll

))

− 7/8
∣

∣

∣ 6 1/16. (26)

Now, by Proposition 22, we can choose for each l > 1 an integer Il such that

∀n > Il,
∣

∣

∣P

((

Yn,1/2,1(g) > 2Ll

))

− P

((

Y1/2,1 > 2Ll

))∣

∣

∣ 6
1

lJl
. (27)

Let Kl := 2Il+Jl . We define the sequence (Nl)l>1 in such a way that for each l > 1,

1

N
1/q(p,α)
l

K1−α
l

l−1
∑

u=1

(

Nu

2Iu

)1/q(p,α)

6 1 and (28)

Nl

+∞
∑

u=l+1

Ku/Nu <
1

16
. (29)

Using Rokhlin’s lemma, we can find for any integer l > 1 a measurable set Cl ∈ C such that the

sets TiCl, i = 0, . . . , Nl − 1 are pairwise disjoint and P

(

⋃Nl−1
i=0 T

iCl

)

> 1/2. We define for l > 1

fl :=
1

Ll

Jl
∑

j=1

(

Nl

2Il+j

)1/q(p,α)

1
(

2Jl+j+1
⋃

i=2Jl+j+1

T
Nl−iCl

)

and (30)

f :=

+∞
∑

l=1

fl, m := g · f. (31)
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Note that P (fl 6= 0) 6 Kl/Nl, hence by (29) and the Borel-Cantelli lemma, the function f is well
defined almost everywhere. Define

F0 := σ
(

g ◦ Ti, i 6 0
)

∨ C.

Proposition 18. The σ-algebra F0 satisfies TF0 ⊂ F0. The function m defined by (30) and (31)
is F0-measurable and satisfies E [m | TF0] = 0 and limt→+∞ tq(p,α)P {|m| > t} = 0.

A proof can be found in [6]
It remains to prove that the sequence (Wn(m))n>1 is not tight in Bo

p,α.
To this aim, we shall check the conditions of Lemma 16. We first show the following intermediate

step.

Lemma 19. For each integer l > 1,

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

> 2
)

>
1

8
.

Let l > 1 be fixed. Assume that ω belongs to T
Nl−i0 for some i0 ∈ {Kl, . . . , Nl − 1}. Let i be

such that i0 − 2Il+j+1 6 i 6 i0 − 2Il+j + 1 for some j ∈ {1, . . . , Jl}. We have

fl ◦ Ti(ω) =
1

Ll

(

Nl

2Il+j

)1/q(p,α)

.

Consequently, for any k such that 2Il+j−1 < k 6 2Il+j and each i such that i0 − 2Il+j+1 6 i 6

i0 − k − 2Il+j + 1, we have

|Sgfl,i+k − Sgfl,i| =
1

Ll

(

Nl

2Il+j

)1/q(p,α)

|Sg,i+k − Sg,i| .

It thus follows that

1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

N−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

1
(

T
Nl−i0Cl

)

> max
16j6Jl

max
2Il+j−1<k62Il+j

k−α 1

Ll

(

1

2Il+j

)1/q(p,α)
(

i0−k−2Il+j+1
∑

i=i0−2Il+j+1

|Sg,i+k − Sg,i|p
)1/p

1
(

T
Nl−i0Cl

)

,

and using disjointness of the sets TNl−i0Cl, Kl 6 i0 6 Nl − 1, we infer that

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

N−k
∑

i=0

|Sgfl,i+k − Sgfl,i|p
)1/p

> 2
)

> P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

N−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

> 2 ∩
Nl−1
⋃

i0=Kl

T
Nl−i0Cl

)

=

Nl−1
∑

i0=Kl

P

({ 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

N−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

> 2
}

∩ T
Nl−i0Cl

)

>

Nl−1
∑

i0=Kl

P(Ai0 ∩ T
Nl−i0Cl) (32)

where

Ai0 =
{

max
16j6Jl

max
2Il+j−1<k62Il+j

k−α 1

Ll

(

1

2Il+j

)1/q(p,α)
(

i0−k−2Il+j+1
∑

i=i0−2Il+j+1

|Sg,i+k − Sg,i|p
)1/p

> 2
}

.
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Since T is measure-preserving, the events Ai0 ∩ T
Nl−i0Cl, Kl 6 i0 6 Nl − 1 have the same

probability, which is equal to P(AKl
∩T

Nl−KlCl). The events AKl
and T

Nl−KlCl belong respectively
to B and C, hence they are independent. In view of (32), we obtain

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

> 2
)

> (Nl −Kl)P(AKl
)P(Cl)

> P(AKl
)/2. (33)

Now, in order to control the latter term, we shall use the following lemma:

Lemma 20. Let (Hl)l>1 be an increasing sequence of integers. Assume that for each l > 1, the

family of events (Al,j)16j6Hl
is independent and that

∑Hl

j=1 P (Al,j) ∈ [3/4, 1]. Then for each l > 1,

P

(

Hl
⋃

j=1

Al,j

)

> 1/4.

Proof of Lemma 20. By Bonferroni’s inequality, we have for any l > 1,

P

(

Hl
⋃

j=1

Al,j

)

>

Hl
∑

j=1

P (Al,j)−
∑

16i<j6Hl

P (Al,i ∩ Al,j) .

Using independence of (Al,j)16j6Hl
, we derive that

P





Hl
⋃

j=1

Al,j



 >

Hl
∑

j=1

P (Al,j)−
1

2



2
∑

16i<j6Hl

P (Al,i)P (Al,j)





=

Hl
∑

j=1

P (Al,j)−
1

2











Hl
∑

j=1

P (Al,j)





2

−
Hl
∑

j=1

(P (Al,j))
2







>

Hl
∑

j=1

P (Al,j)−
1

2





Hl
∑

j=1

P (Al,j)





2

> 3/4− 1/2 = 1/4.

We now use Lemma 20 with the choices Hl = Jl and

Al,j :=











max
2Il+j−1<k62Il+j

k−α 1

Ll

(

1

2Il+j

)1/q(p,α)




Kl−k−2Il+j+1
∑

i=Kl−2Il+j+1

|Sg,i+k − Sg,i|p




1/p

> 2











.

We indeed have, with the notations of (45) and by (27),

∣

∣

∣

∣

∣

∣

Jl
∑

j=1

P (Al,j)− JlP
((

Y1/2,1 > 2Ll

))

∣

∣

∣

∣

∣

∣

6

Jl
∑

j=1

1

lJl
= 1/l

hence by (26),

∣

∣

∣

∣

∣

∣

Jl
∑

j=1

P (Al,j)− 7/8

∣

∣

∣

∣

∣

∣

6
1

16l
+
∣

∣

∣JlP
((

Y1/2,1 > 2Ll

))

− 7/8
∣

∣

∣ 6
1

8
.
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We get, in view of (33) the lower bound

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

|Sgfl,i+k − Sgfl,i|
p
)1/p

> 2
)

>
1

8
.

This concludes the proof of Lemma 19.
Now, we prove that for any l > 1,

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

|Sm,i+k − Sm,i|p
)1/p

> 1
)

>
1

16
. (34)

We first prove that

1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

∣

∣

∣Sf ′

l ,i+k − Sf ′

l ,i

∣

∣

∣

p )1/p

6 1, (35)

where f ′
l :=

∑l
i=1 gfi. First note that for 1 6 k 6 Kl and 0 6 i 6 Nl − k,

∣

∣

∣Sf ′

l
,i+k − Sf ′

l
,i

∣

∣

∣ 6

l−1
∑

u=1

|Sgfu,i+k − Sgfu,i| 6 k

l−1
∑

u=1

max
i6v6i+k−1

|fu ◦ Tv|

6 k ·
l−1
∑

u=1

max
06v6Nl

|fu ◦ Tv| ,

hence

1

N
1/q(p,α)
l

max
16k6Kl

k−α

(

Nl−k
∑

i=0

∣

∣

∣Sf ′

l ,i+k − Sf ′

l ,i

∣

∣

∣

p
)1/p

6
1

N
1/q(p,α)
l

K1−α
l ·

l−1
∑

u=1

· max
06v6Nl

|fu ◦ Tv| .

Now, by definition of fu, for each ω ∈ Ω, the following inequality holds: |fu (ω)| 6
(

Nu

2Iu

)1/q(p,α)
.

Consequently,

1

N
1/q(p,α)
l

max
16k6Kl

k−α

(

Nl−k
∑

i=0

∣

∣

∣Sf ′

l
,i+k − Sf ′

l
,i

∣

∣

∣

p
)1/p

6
1

N
1/q(p,α)
l

K1−α
l

l−1
∑

u=1

(

Nu

2Iu

)1/q(p,α)

,

and this term does not exceed 1 by (28). This proves (35)
Now, defining f ′′

l :=
∑+∞

u=l+1 gfu, we have

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α
(

Nl−k
∑

i=0

∣

∣

∣
Sf ′′

l
,i+k − Sf ′′

l
,i

∣

∣

∣

p )1/p

6= 0
)

6

+∞
∑

u=l+1

P

(

max
16k6Kl

k−α

(

Nl−k
∑

i=0

|Sgfu,i+k − Sgfu,i|p
)1/p

6= 0
)

6

+∞
∑

u=l+1

P

(

max
06v6Nl−1

|gfu ◦ Tv| 6= 0
)

6 Nl

+∞
∑

u=l+1

P

(

|gfu| 6= 0
)

6 Nl

+∞
∑

u=l+1

P

(

fu 6= 0
)

.

By constructing of fu, we have P

((

fu 6= 0
))

6 Ku/Nu, hence

P

( 1

N
1/q(p,α)
l

max
16k6Kl

k−α

(

Nl−k
∑

i=0

∣

∣

∣Sf ′′

l ,i+k − Sf ′′

l ,i

∣

∣

∣

p
)1/p

6= 0
)

6 Nl

+∞
∑

u=l+1

Ku

Nu
6 1/16, (36)
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by (29).
Thus (34) follows from the combination of Lemma 19, (35) and (36). This ends the proof of

Theorem 3.

4 Proofs: the case α 6 1/p

We start with the following lemma which reduces the proof of convergence to that of tightness.

Lemma 21. Let p > 1 and 0 6 α 6 min{1/2, 1/p}. Assume that Z is a random element in Bo
p,α.

Then for any stationary sequence
(

f ◦ Tj
)

if

(i) Wf,n
D−−−−→

n→∞
Z in Lp[0, 1], and

(ii) (Wf,n) is tight in Bo
p,α,

then Wf,n
D−−−−→

n→∞
Z in Bo

p,α.

Proof. From (ii) we have that each subsequence of (Wf,n) has further subsequence that converges

in distribution. If Wf,n′

D−−−−→
n→∞

Y ′ and Wf,n′′

D−−−−→
n→∞

Y ′′ then we have that for Franklin basis (fk) it

holds that 〈Wf,n′ , fk〉 D−−−−→
n→∞

〈Y ′, fk〉 and 〈Wf,n′′ , fk〉 D−−−−→
n→∞

〈Y ′′, fk〉 for any k. But (i) gives that

both 〈Y ′, fk〉 and 〈Y ′′, fk〉 have the same distribution as 〈Z, fk〉. Since coefficients 〈Z, fk〉 determines
the distribution of Z we can conclude that Y ′ and Y ′′ are equally distributed with Z. This ends the
proof.

4.1 Proof of Theorem 4

Due to continuity of the embedding Bo
2,α →֒ Bo

p,α if 1 6 p 6 2 and 0 6 α < 1/2. it is enough to
prove the case where either p = 2 and 0 6 α < 1/2 or p > 2 and 0 6 α 6 1/p.

Recall Wf,n = n−1/2ζf,n. We shall prove for each ε > 0

lim
δ→0

sup
n>1

In(δ, ε) = 0, (37)

where

In(δ, ε) = P

(

δ−α sup
|h|6δ

(

∫ 1

0

|Wf,n(t+ h)−Wf,n(t)|pd t
)1/p

> ε
)

.

Since the function Wf,n(t), 0 6 t 6 1 is affine in each interval ((k − 1)/n, k/n], it holds for s, t ∈
[(k − 1)/n, k/n],

|Wf,n(s)−Wf,n(t)| 6 n1/2|s− t| ·
∣

∣f ◦ Tk
∣

∣ . (38)

This observation leads to
ωp(Wf,n, δ) 6 cp [Uf,n(δ) + Vf,n(δ)] ,

where cp > 0 is a constant depending on p only,

Uf,n(δ) := min{δ, n−1}n1/2

(

1

n

n
∑

k=1

|f ◦ Tk|p
)1/p

,

Vf,n(δ) := n−1/2 max
16ℓ6⌊nδ⌋





1

n

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ
∑

j=k+1

f ◦ Tj

∣

∣

∣

∣

∣

∣

p



1/p

.
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As a consequence in order to establish (37) we have to prove

lim
δ→0

sup
n>1

P

(

δ−αUf,n(δ) > ε
)

= 0, (39)

lim
δ→0

sup
n>1/δ

P

(

δ−αVf,n(δ) > ε
)

= 0. (40)

Consider first (39) and start with p = 2 and 0 6 α < 1/2. By Chebyshev inequality

P

(

δ−αUf,n(δ) > ε
)

6 ε−2δ−2α min{δ2, n−2}E
(

n
∑

k=1

|f ◦ Tk|2
)

6 ε−2δ−2α min{δ2, n−2}nE
(

f2
)

6 ε−2δ1−2α

and (39) follows in this case. Now let p > 2 and 0 6 α 6 1/p. For this case we shall use truncation.
Set for τ > 0,

f ′ = f1(|f | 6 τ
√

max{n, δ−1}), f ′′ = f − f ′.

Then P(δ−αUf,n(δ) > ε) 6 nP(|f | > τ
√

max{n, δ−1}) + P(δ−αUf ′,n(δ) > ε) and, since

nP(|f | > τ
√

max{n, δ−1}) 6 τ−2
E (f)

2
1(|f | >

√
δ−1)

we reduce the proof of (39) to

lim
δ→0

sup
n>1

P

(

δ−αUf ′,n(δ) > ε
)

= 0. (41)

We have by Chebyshev inequality,

P

(

δ−αUf ′,n(δ) > ε
)

6 ε−pδ−pα min{δp, n−p}np/2
E

[

n−1
n
∑

k=1

|f ′ ◦ Tk|p
]

6 ε−pδ−pα min{δp, n−p}np/2
E ((f ′)p)

6 ε−pδ−pα min{δp, n−p}np/2τp−2(max{n, δ−1})(p−2)/2
E f2

6 ε−pτp−2(min{δ, n−1})1−pα
E f2.

Hence
lim
δ→0

sup
n>1

P

(

δ−αUf ′,n(δ) > ε
)

6 ε−pτp−2.

Since τ > 0 is arbitrary, the limit is indeed zero, and the proof of (41) is completed.
To prove (40) we start again with the case p = 2 and 0 6 α < 1/2. In this case Chebyshev

inequality along with stationarity and Doob-Kolmogorov inequality yields

P(δ−αVf,n(δ) > ε) 6 ε−2δ−2α
E (Vf,n(δ))

2
6 ε−2δ−2αn−1

E max
16ℓ6⌊nδ⌋

(

ℓ
∑

j=1

f ◦ Tj
)2

6 ε−2δ1−2α
E f2

and (40) follows. This ends the proof of (40) in the case p = 2.
Assume that p > 2 and α 6 1/p. Let us fix ε > 0. Define for any δ ∈ (0, 1) and any integer

n > 1/δ the events

An,δ :=






δ−αn−1/2 max

16ℓ6⌊nδ⌋





1

n

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

p



1/p

> ε
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Bn,δ,τ :=

(

max
16ℓ6⌊nδ⌋

n−1/2 max
16k6n−l

|Sf,k+l − Sf,k| > ε
p

p−2 τ
p

p−2

)

,

where τ is an arbitrary but fixed positive number. We have the bound

P (Bn,δ,τ ) 6 P

(

sup
06s<t61,|t−s|<δ

n−1/2 |ζf,n(t)− ζf,n(s)| > ε
p

p−2 τ
p

p−2

)

.

Since the sequence (ζf,n) is tight in the space C[0, 1] (see [1]), we have

lim
δ→0

sup
n>1/δ

P (Bn,δ,τ) = 0. (42)

Now, note that on An,j ∩Bc
n,j,τ , we have for any 0 6 ℓ 6 ⌊nδ⌋,

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

p

6

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2

max
16ℓ6⌊nδ⌋

(

n−1/2 max
16k6n−l

|Sf,k+ℓ − Sf,k|
)p−2

n(p−2)/2 (43)

6

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2

n(p−2)/2εpτp. (44)

Therefore, we have

ε < δ−αn−1/2 max
16ℓ6⌊nδ⌋





1

n

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

p



1/p

6 δ−αn−1/2n−1/p
(

n(p−2)/2εpτp
)1/p

max
16ℓ6⌊nδ⌋







n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2






1/p

= δ−αn−2/pετ max
16ℓ6⌊nδ⌋







n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2






1/p

,

and we infer that

P
(

An,δ ∩Bc
n,δ,τ

)

6 P






δ−αpn−2τp max

16ℓ6⌊nδ⌋

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2

> 1






.

By Markov’s inequality, stationarity and Doob’s inequality, we have

P
(

An,δ ∩Bc
n,δ,τ

)

6 δ−αpn−2τpE






max

16ℓ6⌊nδ⌋

n−ℓ
∑

k=0

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2






6 δ−αpn−2τpE







n
∑

k=0

max
16ℓ6⌊nδ⌋

∣

∣

∣

∣

∣

∣

k+ℓ−1
∑

j=k

f ◦ Tj

∣

∣

∣

∣

∣

∣

2






= δ−αpn−1τpE

(

max
16ℓ6⌊nδ⌋

|Sf,ℓ|2
)

6 2δ1−αpτpE
(

f2
)

.
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Since pα 6 1, we get
P
(

An,δ ∩Bc
n,δ

)

6 2τpE
(

f2
)

and since τ is arbitrary, we get
lim
δ→0

sup
n>1/δ

P (An,δ) = 0

in view of (42). This concludes the proof of (40) and that of Theorem 4.

4.2 Proof of Theorem 5

It follows from Theorem 4 and the same arguments as used in the proof of Theorem 2.

5 Some applications

As already was mentioned in the introduction, a choice of functional spaces for polygonal line
processes is usually inspired by possible applications in statistics via continuous mappings: if

Wf,n
D−−−−→

n→∞
W in the space Bo

p,α, then T (Wf,n) → T (W ) for any continuous function T : Bo
p,α → R.

This general observation can be used, for example, to analyse so called k-scan processes

S
(i)
f,k =

i+k−1
∑

j=i

f ◦ Tj, i = 1, . . . , n− k + 1.

Proposition 22. Let f be a function such that the sequence (Wn(f))n>1 converges to a standard
Brownian motion W in Bo

p,α, where 1/p < α < 1/2. For each a, b ∈ [0, 1] such that a < b, we define

Yn,a,b(f) := n−1/q(p,α) max
⌊an⌋<k6⌊bn⌋+1

1

kα

(

n−k
∑

i=0

∣

∣

∣S
(i)
f,k

∣

∣

∣

p )1/p

.

Then the following convergence holds:

Yn,a,b(f)
D−−−−→

n→∞
Ya,b := sup

a<t6b
t−α
(

∫

It

|W (s+ t)−W (s)|p ds
)1/p

. (45)

Proof. Let use define a functional F : Bo
p,α → R by

F (x) := sup
a<t6b

t−α

(∫

It

|x(s+ t)− x(s)|p ds
)1/p

.

Then F is continuous with respect to the topology of Bo
p,α and F (W ) = Ya,b. We thus have

F (Wn (f))
D−−−−→

n→∞
Ya,b. To conclude that (45) holds, it suffices to prove that

Zn := F (Wn (f))− Yn,a,b(f) → 0 in probability as n → +∞.

First note that Zn is non-negative. Second, we have

F (Wn (f)) 6 max
⌊an⌋6k6⌊bn⌋+1

max
k/n6t<(k+1)/n

t−α

(∫

It

|Wn(f, s+ t)−Wn(f, s)|p ds
)1/p

6 max
⌊an⌋6k6⌊bn⌋+1

max
k/n6t<(k+1)/n

(

k

n

)−α(∫

It

|Wn(f, s+ t)−Wn(f, s)|p ds
)1/p

.
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Let k be an integer such that ⌊an⌋ 6 k 6 ⌊bn⌋+ 1 and let t be a real number such that k/n 6 t <
(k + 1)/n. Then

∣

∣

∣

∣

∣

∣

(∫

It

|Wn(s+ t)−Wn(s)|p ds
)1/p

−
(

∫

Ik/n

|Wn(s+ k/n)−Wn(s)|p ds
)1/p

∣

∣

∣

∣

∣

∣

6

(

∫ 1−k/n

1−t

|Wn(f, s+ k/n)−Wn(s)|p ds
)1/p

+

(∫ 1−t

0

|Wn(f, s+ t)−Wn(s+ k/n)|p ds
)1/p

6

(

∫ 1−k/n

1−(k+1)/n

|Wn(f, s+ k/n)−Wn(s)|p ds
)1/p

+ ωp (Wn(f), t− k/n)

=

(

∫ 1−k/n

1−(k+1)/n

|Wn(f, s+ k/n)−Wn(s)|p ds
)1/p

+ ωp (Wn(f), t− k/n) ,

which implies that

F (Wn (f))− Yn,a,b(f) 6 max
⌊an⌋6k6⌊bn⌋+1

(

k

n

)−α
(

∫ 1−k/n

1−(k+1)/n

|Wn(f, s+ k/n)−Wn(s)|p ds
)1/p

+ max
⌊an⌋6k6⌊bn⌋+1

(

1

k

)α

sup
|δ|61/n

δ−αωp (Wn(f), δ)

6 max
16k6n−1

(n

k

)α
(

∫ 1−k/n

1−(k+1)/n

|Wn(f, s+ k/n)−Wn(s)|p ds
)1/p

+ sup
0<|δ|61/n

δ−αωp (Wn(f), δ) . (46)

By Theorem 9, the second term in the right hand side of (46) goes to zero in probability. Therefore,
it suffices to prove that

max
16k6n−1

(n

k

)α
(

∫ 1− k
n

1−k+1
n

∣

∣

∣

∣

Wn

(

f, s+
k

n

)

−Wn(f, s)

∣

∣

∣

∣

p

ds

)
1
p

→ 0 in probability as n → +∞. (47)

To see this, we start from the inequality

max
16k6n−1

(n

k

)α
(

∫ 1−k/n

1−(k+1)/n

∣

∣

∣

∣

Wn

(

f, s+
k

n

)

−Wn(f, s)

∣

∣

∣

∣

p

ds

)1/p

6 sup
0<t<1

t−α

(

∫ 1−t

1−t−1/n

|Wn(f, s+ t)−Wn(f, s)|p ds
)1/p

= sup
0<t<1

t−α

(

∫ 1

1−1/n

|Wn(f, s)−Wn(f, s− t)|p ds
)1/p

.

Let N be a fixed integer. The functional

GN : Bo
p,α → R, GN (x) = sup

0<t<1
t−α

(

∫

[1−1/N,1]∩I−t

|x(s)− x(s− t)|p ds
)1/p

is continuous. Therefore, if ε > 0 is a continuity point of the cumulative distribution function of
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GN (W ) for each N , we have

lim sup
n→+∞

P

(

max
16k6n−1

(n

k

)α
(

∫ 1−k/n

1−(k+1)/n

|Wn(f, s+ k/n)−Wn(f, s)|p ds
)1/p

> ε
)

6 P

(

sup
0<t<1

t−α
(

∫

[1−1/N,1]∩I−t

|W (s)−W (s− t)|p ds
)1/p

> ε
)

. (48)

Now, take q > p. Using Hölder’s inequality with the exponents q/p and q/(q − p), we have

sup
0<t<1

t−α

(

∫

[1−1/N,1]∩I−t

|W (s)−W (s− t)|p ds
)1/p

6 sup
0<t<1

t−α

(

∫

I−t

|W (s)−W (s− t)|q ds
)1/q

N−(p−q)/q
6 ‖W‖q,αN−(p−q)/q.

Since ‖W‖q,α is almost surely finite, we get from (48) that (47) holds.

Statistics based on k-scan processes can be used to detect epidemic change in the mean of a
sample of size n (see, e.g., [11], and reference therein). More precisely, given a sampleX1, X2, . . . , Xn,
consider the model

Xi = µ1(k∗,m∗](i) + εi, i = 1, . . . , n,

where (εi) is a stationary sequence, µ 6= 0 and k∗,m∗ are unknown parameters of the model. We
want to test the null hypothesis H0 : µ = 0 against the alternative µ 6= 0. To this aim one can
consider the statistics

Tn = n−1/q(p,α) max
0<k6n

1

kα

(

n−k
∑

i=0

|Xi + · · ·+Xi+k|p
)1/p

.

Under null its limit is defined by Proposition 22 provided (εi) satisfies the weak invariance principle
in the Besov space Bo

p,α. Under alternative then we see that

Tn =
(

1− h∗

n

)1/p(h∗

n

)1−α

n1/2 +OP (1)

as n → ∞, where h∗ = m∗ − k∗ is the duration of the epidemic state.
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[8] Emmanuel Lesigne and Dalibor Volný. Large deviations for martingales. Stochastic Process.
Appl., 96(1):143–159, 2001.
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