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The classical Donsker weak invariance principle is extended to a Besov spaces framework. Polygonal line processes build from partial sums of stationary martingale differences as well independent and identically distributed random variables are considered. The results obtained are shown to be optimal.

Introduction and main results

By weak invariance principle in a topological function space, say, E we understand the weak convergence of a sequence of probability measures induced on E by normalized polygonal line processes build from partial sums of random variables. The choice of the space E is important due to possible statistical applications via continuous mappings. Since stronger topology generates more continuous functionals, it is beneficial to have the weak invariance principle proved in as strong as possible topological framework. Classical Donsker's weak invariance principle considers the space E = C[0, 1] and polygonal line processes build from partial sums of i.i.d. centred random variables with finite second moment. An intensive research has been done in order to extend Donsker's result to a stronger topological framework as well to a larger class of random variables (see, e.g., [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF], [START_REF] Račkauskas | Necessary and sufficient condition for the Hölderian functional central limit theorem[END_REF], [START_REF] Giraudo | Holderian weak invariance principle for stationary mixing sequences[END_REF] and references therein).

In this paper we consider weak invariance principle in Besov spaces for a class of strictly stationary sequence of martingale differences. To be more precise, let us first introduce some notation and definitions used throughout the paper.

Let (Ω, F , P) be a probability space and T : Ω → Ω be a bijective bi-measurable transformation preserving the probability P. The quadruple (Ω, F , P, T) is referred to as dynamical system (see, e.g., [START_REF] Petersen | Ergodic theory[END_REF] for some background material). We assume that there is a sub-σ-algebra F 0 ⊂ F such that TF 0 ⊂ F 0 and by I we denote the σ-algebra of the sets A ∈ F such that T -1 A = A.

Next we consider a strictly stationary sequence (X j , j 0) constructed as X j := f • T j , where f : Ω → R is F 0 -measurable. We define also a non-decreasing filtration F k = T -k F 0 , k 1. Note that (X j , F j , j 0) is then a martingale differences sequence provided E (f | TF 0 ) = 0. Set S f,0 := 0, S f,n :=

n-1 j=0 f • T j , n 1.
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Our main object of investigation is the sequence of polygonal line processes ζ f,n := (ζ f,n (t), t ∈ [0, 1]), n 1, defined by ζ f,n (t) := S f,⌊nt⌋ + (nt -⌊nt⌋)f • T ⌊nt⌋ , where for a real number a 0, ⌊a⌋ := max{k : k ∈ {0, 1, . . .}, k a}. To define the paths space under consideration let L p ([0, 1]) be the space of Lebesgue integrable functions with exponent p (1 p < ∞) and the norm

x p = 1 0 |x(t)| p d t 1/p , x ∈ L p ([0, 1]).
If x ∈ L p ([0, 1]) its L p -modulus of smoothness is defined as

ω p (x, δ) = sup |h| δ I h |x(t + h) -x(t)| p d t 1/p , δ ∈ [0, 1],
where

I h = [0, 1] ∩ [-h, 1 -h]. Let α ∈ [0, 1). The Besov space B o p,α = B o p,α ([0, 1]
) is defined by

B o p,α := x ∈ L p ([0, 1]) : lim δ→0 δ -α ω p (x, δ) = 0 .
Endowed with the norm

x p,α = x p + sup δ∈(0,1)

δ -α ω p (x, δ), x ∈ B o p,α , the space B o p,α is a separable Banach space and the following embeddings are continuous:

B o p,α ֒→ B o p,β , for 0 β < α; B o p,α ֒→ B o q,α , for 1 q < p < ∞.

Each B o p,α (0, 1) where p 1, 0 α < 1/2, supports a standard Wiener process W = (W (t), 0 t 1) (see, e.g., [START_REF] Roynette | Mouvement brownien et espaces de Besov[END_REF]). We note also, that any polygonal line process belongs to each of B o p,α , p 1, α ∈ [0, 1).

As usually D -→ denotes convergence in distribution.

Theorem 1. Let p > 2, 1/p < α < 1/2 and q(p, α) := 1/(1/2 -α + 1/p).

(1)

Let (f • T i , T -i F 0 , i 0 
) be a martingale differences sequence. Assume that the following two conditions hold :

(i) lim t→∞ t q(p,α) P {|f | t} = 0; (ii) E E f 2 | TF 0 q(p,α)/2 < ∞. Then the convergence n -1/2 ζ f,n D ----→ n→∞ E (f 2 | I) W holds in the space B o p,α , where W is indepen- dent of E f 2 | I .
Let us note that condition (i) is stronger for the function f than its square integrability since (i) yields E (|f | r ) < ∞ for any r < q(p, α) and q(p, α) > 2 when α > 1/p. However as shows our next result, condition (i) is necessary and sufficient for independent identically distributed (i.i.d.) random variables. To formulate the result let Y, Y 1 , Y 2 , . . . be mean zero i.i.d. random variables with finite variance

σ 2 = E Y 2 > 0. Let ξ n = (ξ n (t), t ∈ [0, 1]), be defined by ξ n (t) = ⌊nt⌋ k=1 X k + (nt -⌊nt⌋)X ⌊nt⌋+1 .
Theorem 2. Let p > 2, 1/p < α < 1/2 and let q(p, α) be defined by [START_REF] Billingsley | Convergence of probability measures[END_REF]. Then

n -1/2 σ -1 ξ n D ----→ n→∞ W in the space B o p,α (2) 
if and only if lim t→∞ t q(p,α) P {|Y | t} = 0.

(3) Since B o ∞,α matches Hölder spaces we see, that Theorems 2 and 1 complement the weak invariance principle obtained in a Hölderian framework by [START_REF] Račkauskas | Necessary and sufficient condition for the Hölderian functional central limit theorem[END_REF] and [START_REF] Giraudo | Holderian weak invariance principle for stationary mixing sequences[END_REF]. Concerning condition (ii) of Theorem 1 we prove a need of certain extra assumption by a counterexample which for any dynamical system with positive entropy constructs a function f that satisfies the condition (i) but the convergence of polygonal line processes fails. Precise result reads as follows.

Theorem 3. Let p > 2, 1/p < α < 1/2 and q(p, α) be given by [START_REF] Billingsley | Convergence of probability measures[END_REF]. For each dynamical system (Ω, F , P, T) with positive entropy, there exists a function m : Ω → R and a σ-algebra F 0 for which TF 0 ⊂ F 0 such that:

(i) the sequence m • T i , T -i F 0 , i 0 is a martingale difference sequence;
(ii) the convergence lim t→+∞ t q(p,α) P |m| t = 0 takes place;

(iii) the sequence n -1/2 ζ m,n is not tight in B o p,α .
As it is seen from our next results the case where 0 α 1/p is indeed quite different from the previously considered case where 1/p < α < 1/2.

Theorem 4. Let p 1 and α ∈ [0, 1/2) ∩ [0, 1/p]. Let f • T i , T -i F 0 , i 0 be a martingale differences sequence. If E f 2 < ∞ then n -1/2 ζ f,n D ----→ n→∞ E (f 2 |I)W in the space B o p,α , where W is independent of E f 2 | I .
Theorem 5. Let α and p be as in Theorem 4. Then

n -1/2 σ -1 ξ n D ----→ n→∞ W in the space B o p,α . (4) 
Let us note that the finiteness of the second moment E Y 2 is necessary for the convergence (4). The rest of the paper is organized as follows. In Section 2 we shortly present needed information on structure of Besov spaces and tightness of measures on these spaces. Section 3 contains proofs of Theorems 1, 2 and 3 whereas Section 4 is devoted to the proofs of Theorems 4 and 5. Finally, in Section 6 we discuss possible applications of invariance principle in the Besov framework.

Some functional analysis and probabilistic tools

We denote by D j the set of dyadic numbers in [0, 1] of level j, i.e.

D 0 = {0, 1}, D j = (2l -1)2 -j ; 1 l 2 j-1 , j 1. Set D = j 0 D j
and write for r ∈ D j , r -:= r -2 -j , r + := r + 2 -j .

The triangular Faber-Schauder functions Λ r for r ∈ D j , j > 0, are

Λ r (t) =    2 j (t -r -) if t ∈ (r -, r]; 2 j (r + -t) if t ∈ (r, r + ]; 0 else.
When j = 0, we just take the restriction to [0, 1] in the above formula, so

Λ 0 (t) = 1 -t, Λ 1 (t) = t, t ∈ [0, 1].
Theorem 6 ([3]). Let p > 1 and 1/p < α < 1. The Faber-Schauder system {Λ r , r ∈ D} is the Schauder basis for B o p,α : each x ∈ B 0 p,α has the unique representation,

x = r∈D λ r (x)Λ r ,
where

λ r (x) := x(r) - x(r + ) + x(r -) 2 , r ∈ D j , j 1 
and in the special case j = 0, λ 0 (x) := x(0), λ 1 (x) := x(1).

Moreover the norm is equivalent to the sequential norm:

x p,α ∼ x seq p,α := sup j 0 2 jα-i/p r∈Dj |λ r (x)| p 1/p .
The Schmidt orthogonalization procedure (with respect to inner product in L 2 (0, 1)) applied to Faber-Schauder system leads to the Franklin system {f k , k 0}:

f k (t) = k i=0 c ik Λ i (t), t ∈ [0, 1],
with c kk > 0 for k 0, where the matrix (c ik ) is uniquely determined.

Theorem 7 ([3]

). The Franklin system {f n , n 0} is the basis for B o p,α , p 1, 0 α < 1: each x ∈ B o p,α has the unique representation,

x = ∞ k=0 x k f k ,
where

x k = x, f k := 1 0 x(t)f k (t)d t, k 0.
The following proposition is proved in [START_REF] Boufoussi | A Kolmogorov and tightness criterion in modular Besov spaces and an application to a class of Gaussian processes[END_REF] for α > 1/p but similar arguments works as well for any 0 α < 1. Proposition 8. Let p 1 and 0 α < 1. The set K ⊂ B o p,α is relatively compact if and only if

(i) sup x∈K ||x|| p < ∞, (ii) lim δ→0 sup x∈K δ -α ω p,α (x, δ) = 0.
Proof. One easily checks that (i) and (ii) yields relative compactness of K in L p ([0, 1]). Therefore for any sequence (x n ) n 1 of K there exists a subsequence, which we denote also (x n ), converging in L p ([0, 1]) to some x ∈ L p ([0, 1]). To finish the proof it suffices to prove that

(a) x ∈ B o p,α ; (b) (x n ) n 1 is a Cauchy sequence in B o p,α .
Taking a.s. convergence subsequence (x n ′ ) and applying Fatou lemma we easily obtain for any 0 < δ 1,

ω p (x, δ) lim inf n ′ ω p (x n ′ , δ) sup n ω p (x n , δ). (5) 
This yields (a). To prove (b) observe that for each ε > 0 there exists δ ε > 0 such that δ -α sup n ω p (x n , δ) < ε when δ < δ ε , hence, for n, m 1 

||x n -x m || p,α = ||x n -x m || p + max [ sup 0<δ δε ; sup δε<δ 1 ]δ -α ω p (x n -x m , δ) ||x n -x m || p + ε + 2δ -α ε ||x n -x
(i) lim b→∞ sup n 1 P ||Z n || p > b = 0; (ii) for each ε > 0 lim δ→0 sup n 1 P ω p,α (Z n , δ) ε = 0.
Proof. See, e.g., the proof of Theorem 8.2. in [START_REF] Billingsley | Convergence of probability measures[END_REF].

Theorem 10. Let 1 > α > 1/p. The sequence (Z n ) of random elements in the Besov space B o p,α (0, 1) is tight if and only if the following two conditions are satisfied:

(i) lim b→∞ sup n P ||Z n || p > b = 0; (ii) for each ε > 0, lim J→∞ lim sup n→∞ P sup j J 2 jα-j/p r∈Dj |λ r (ζ n )| p 1/p > ε = 0.
Proof. It is just a corollary of tightness criterion established in [START_REF] Ch | Tightness in Schauder decomposable Banach spaces[END_REF] for Schauder decomposable Banach spaces as Besov spaces B o p,α with α > 1/p, are such.

3 Proofs: the case α > 1/p

We start this section with some auxiliary results which could be helpful when dealing with weak invariance principle for stationary sequences. Throughout we denote

W f,n = n -1/2 ζ n .

Auxiliary results

Lemma 11. Let p 1 and α > 1/p. Assume that Z is a random element in boths spaces C[0, 1] and B o p,α . Then for any stationary sequence f • T j if

(i) W f,n D ----→ n→∞ Z in C[0, 1], and 
(ii) (W f,n ) is tight in B o p,α , then W f,n D ----→ n→∞ Z in B o p,α .
Proof. From (ii) we have that each subsequence of (W f,n ) has further subsequence that converges

in distribution. If W f,n ′ D ----→ n→∞ Y ′ and W f,n ′′ D ----→ n→∞ Y ′′ then we have that λ r (W f,n ′ ) D ----→ n→∞ λ r (Y ′ ) and λ r (W f,n ′′ ) D ----→ n→∞ λ r (Y ′′
) for any dyadic number r. But (i) gives that both λ r (Y ′ ) and λ r (Y ′′ ) have the same distribution as λ r (Z). Since Schauder coefficients (λ r (Z)) determines the distribution of Z we can conclude that Y ′ and Y ′′ are equally distributed with Z. This ends the proof.

For polygonal line processes build from any stationary sequence the tightness conditions given in Theorem 10 can be simplified.

Theorem 12. Let p 1 and α > 1/p. The sequence (W f,n ) is tight in B o p,α provided that lim J→+∞ lim sup N →+∞ N j=J 2 j 1 0 x p-1 P 2 -(N -j)/2 max 1 k 2 N -j |S f,k | > x2 j/q(p,α) dx = 0. ( 6 
)
Proof. Assume that f satisfies [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF]. We have to show that (W f,n ) satisfies the conditions of Theorem 10. First we check its condition (i). Since

||W f,n || p sup 0 t 1 |W f,n (t)| = n -1/2 max 0 t 1 |S f,k |, the proof of (i) reduces to lim b→+∞ sup N 1 P 2 -N/2 max 1 k 2 N |S f,k | > b = 0. (7) 
Notice that ( 6) implies (by considering the term of index J in the sum) that lim J→+∞ lim sup

N →+∞ 2 J P 2 -(N -J)/2 max 1 k 2 N -J |S f,k | > 1 2 2 J/q(p,α) = 0,
and consequently lim J→+∞ lim sup

N →+∞ 2 J P 2 -N/2 max 1 k 2 N |S f,k | > 2 J/q(p,α) = 0.
For a fixed ε, we choose J 0 such that lim sup

N →+∞ 2 J0 P 2 -N/2 max 1 k 2 N |S f,k | > 2 J0/q(p,α) < 2ε.
There exists an integer N 0 such that for N N 0 ,

P 2 -N/2 max 1 k 2 N |S f,k | > 2 J0/q(p,α) < ε. Since sup N N0 P 2 -N/2 max 1 k 2 N |S f,k | > b → 0 as b goes to infinity, we can choose b ′ 0 such that max N N0 P 2 -N/2 max 1 k 2 N |S f,k | > b ′ 0 < ε. Taking b 0 := max 2 J0/q(p,α) /2, b ′ 0 , we have for b b 0 , sup N 1 P 2 -N/2 max 1 k 2 N |S f,k | > b < ε,
which proves [START_REF] Gut | An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game[END_REF] and the same time (i) of Theorem 10. Now, let us prove condition (ii) of Theorem 10. Since

N j=J 2 j 1 0 x p-1 P 2 -(N -j)/2 max 1 k 2 N -j |S f,k | > x2 j/q(p,α) dx 2 N 3/4 1/2 x p-1 P |f | > x2 N/q(p,α) dx 2 N (1/2) p-1 P |f | > 3 4 2 N/q(p,α) ,
we infer that condition (6) implies

lim t→+∞ t q(p,α) P |f | > t = 0. ( 8 
)
We first prove that for each positive ε,

lim sup n→∞ P sup j ⌊log n⌋+1 2 jα-j/p r∈Dj |λ r (W f,n )| p 1/p > ε = 0.
We shall actually prove that lim sup n→∞ P sup

j ⌊log n⌋+1 2 jα-j/p r∈Dj W f,n (r + ) -W f,n (r) p 1/p > ε = 0, (9) 
since the differences W f,n (r) -W f,n (r -) can be treated similarly. To this aim, define for a fixed j ⌊log n⌋ + 1 the sets

I k := r ∈ D j , k n r < r + < k + 1 n , 0 k n -1;
and

J k := r ∈ D j , k n r < k + 1 n r + < k + 2 n , 0 k n -2.
Assume that r belongs to I k . Then ⌊nr⌋ = ⌊nr + ⌋ = k. We thus have

W f,n (r + ) -W f,n (r) = nr + -nr f • T k / √ n = n 1/2 2 -j f • T k . ( 10 
)
Now, assume that r belongs to J k . Then

W f,n (r + ) -W f,n (r) W f,n (r + ) -W f,n ((k + 1)/n) + |W f,n ((k + 1)/n) -W f,n (r)| = n -1/2 nr + -(k + 1) f • T k+1 + f • T k -(nr -k) f • T k ,
and using the fact that 0 nr + -(k + 1) nr + -nr = n2 j and 0 1 -

(nr -k) (nr + -k) - (nr -k) = n2 -j , we get W f,n (r + ) -W f,n (r) √ n2 -j f • T k + f • T k+1 . ( 11 
) Since D j = {1 -2 -j } ∪ n-1 k=0 I k ∪ n-2 k=0 J k and for r = 1 -2 -j , W f,n (r + ) -W f,n (r) n -1/2 2 -j |f • T n | ,
we have in view of ( 10) and [START_REF] Račkauskas | Hölder norm test statistics for epidemic change[END_REF],

r∈Dj W f,n (r + ) -W f,n (r) p 1/p n -1/2 2 -j |f • T n | + n 1/2 2 -j n-1 k=0 Card (I k ) f • T k p 1/p + n 1/2 2 -j n-2 k=0 Card (J k ) f • T k + f • T k+1 p 1/p .
We now have to bound Card (I k ) and Card (J k ). Let 1 l 2 j . If (2l -1)2 -j belongs to I k , then we should have 2 j k/n 2l -1 < 2l < 2 j (k + 1)/n hence 2 j-1 k/n l < 2 j-1 (k + 1)/n and it follows that I k cannot have more than 2 j /n elements. If (2l -1)2 -j belongs to J k , then we should have 2 j (k + 1)/n 2l < 2 j (k + 2)/n and we deduce that the cardinal of J k does not exceed 2 j /n. Therefore, we have

r∈Dj W f,n (r + ) -W f,n (r) p 1/p 3n 1/2 2 -j 2 j /n 1/p n k=0 f • T k p 1/p . and sup j ⌊log n⌋+1 2 jα-j/p r∈Dj |λ r (W f,n )| p 1/p 3 sup j ⌊log n⌋+1 n 1/2 2 -j 2 jα-j/p n k=0 f • T k p 1/p n -1/2+α-1/p n k=0 f • T k p 1/p = n -1/q(p,α) n k=0 f • T k p 1/p .
We thus have to prove that the latter term goes to zero in probability as n goes to infinity.

Lemma 13. Let f be a function such that (8) holds. Then

n -1/q(p,α) n k=0 f • T k p 1/p P ----→ n→∞ 0.
Proof. For fixed δ and n, define f ′ := f 1 |f | δn 1/q(p,α) and f ′′ = f -f ′ . By Markov's inequality, we have with q = q(p, α)

P n -1/q n k=0 f ′ • T k p 1/p > ε ε -p n -p/q n k=0 E f ′ • T k p 2ε -p n 1-p/q E |f ′ | p . (12) 
Now, note that

E |f ′ | p = p δn 1/q 0 t p-1 P(|f ′ | > t)dt p δn 1/q 0 t p-q-1 dt • sup s>0 s q P |f | > s = p p -q δ (p-q)/q n (p-q)/q • sup s>0 s q P |f | > s ,
hence by [START_REF] Račkauskas | Necessary and sufficient condition for the Hölderian functional central limit theorem[END_REF], we have

P n -1/q n k=0 f ′ • T k p 1/p > ε ε -p 2p p -q δ (p-q)/q . ( 13 
)
Notice also that

P n -1/q n k=0 f ′′ • T k p 1/p > ε (n + 1)P(|f | > δn 1/q ). ( 14 
)
The combination of ( 13) and ( 14) gives lim sup

n→+∞ P n -1/q n k=0 f • T k p 1/p > ε ε -p 2p p -q δ (p-q)/q
and since δ is arbitrary and p > q, this concludes the proof of Lemma 13.

An application of the Lemma 13 gives [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF]. Now, we have to prove that lim J→∞ lim sup n→∞ P sup

J j ⌊log n⌋ 2 jα-j/p r∈Dj W f,n (r + ) -W f,n (r) p 1/p > ε = 0.
It suffices to prove that lim J→∞ lim sup

n→∞ P n -1/2 sup J j ⌊log n⌋ 2 jα-j/p r∈Dj S ⌊nr + ⌋ -S ⌊nr⌋ p 1/p > ε = 0. ( 15 
)
Indeed, we have

W f,n (r + ) -W f,n (r) n -1/2 S f,⌊nr + ⌋ -S f,⌊nr⌋ + f • T ⌊nr + ⌋ + f • T ⌊nr⌋ ,
and for j ⌊log n⌋, 2 j n, so that the set {⌊nr + ⌋, ⌊nr⌋, r ∈ D j } consists of distinct elements. Therefore, sup

1 j ⌊log n⌋ 2 jα-j/p r∈Dj n -1/2 f • T ⌊nr + ⌋ + f • T ⌊nr⌋ p 1/p > ε 2n -1/q n k=0 f • T k 1/p ,
and this quantity goes to zero in probability by Lemma 13. The proof of (15) reduces to establish that for each positive ε,

lim J→+∞ lim n→+∞ ⌊log n⌋ j=J P (A n,j ) = 0, ( 16 
)
where

A n,j :=    2 j-1 l=1 S ⌊n2l2 -j ⌋ (f ) -S ⌊n(2l-1)2 -j ⌋ (f ) p > εn p/2 2 j(1-pα)    .
We now bound P (A n,j ) by splitting the probability over the set B n,j :=

2 j-1 l=1 S f,⌊n2l2 -j ⌋ -S f,⌊n(2l-1)2 -j ⌋ > n 1/2 2 j(1/p-α) .
One bounds P (A n,j ∩ B n,j ) by P(B n,j ), which can in turn be bounded by

2 j-1 l=1 P S f,⌊n2l2 -j ⌋ -S f,⌊n(2l-1)2 -j ⌋ > n 1/2 2 j(1/p-α)
and thanks to stationarity and the fact that

⌊n2l2 -j ⌋ -⌊n(2l -1)2 -j ⌋ n2 -j + 1 2n2 -j , (17) 
we obtain

P (A n,j ∩ B n,j ) 2 j-1 P max 1 k ⌊2n2 -j ⌋ |S f,k | > n 1/2 2 j(1/p-α) 2 j-1 2 p-1 1 1/2 t p-1 P max 1 k ⌊2n2 -j ⌋ |S f,k | > tn 1/2 2 j(1/p-α) dt. ( 18 
)
Now, in order to bound P A n,j ∩ B c n,j , we start by the pointwise inequalities

εn p/2 2 j(1-pα) 1(A n,j ∩ B c n,j ) 2 j-1 l=1 S f,⌊n2l2 -j ⌋ -S f,⌊n(2l-1)2 -j ⌋ p 1(A n,j ∩ B c n,j ) 2 j-1 l=1 S f,⌊n2l2 -j ⌋ -S f,⌊n(2l-1)2 -j ⌋ p 1 S f,⌊n2l2 -j ⌋ -S f,⌊n(2l-1)2 -j ⌋ n 1/2 2 j(1/p-α) .
Integrating and using the fact that for a non-negative random variable Y and a positive R,

E (Y p 1 {Y R}) = pR p 1 0 t p-1 P (Y > Rt) dt,
we derive by stationarity and (17) that

P A n,j ∩ B c n,j p ε 2 j-1 1 0 t p-1 P max 1 k ⌊2n2 -j ⌋ |S f,k | > tn 1/2 2 j(1/p-α) dt. ( 19 
)
Let us denote by K a constant depending only on p and ε which may change from line to line. By (18) and ( 19), we derive that

⌊log n⌋ j=J P (A n,j ) K ⌊log n⌋ j=J 2 j 1 0 t p-1 P max 1 k ⌊n2 1-j ⌋ |S f,k | > tn 1/2 2 j(1/p-α) dt. If 2 N n < 2 N +1
, then we have

⌊log n⌋ j=J P (A n,j ) K N j=J 2 j 1 0 t p-1 P max 1 k 2 N +2-j |S f,k | > t2 N/2 2 j(1/p-α) dt, hence ⌊log n⌋ j=J P (A n,j ) K N +2 j=J 2 j 1 0 s p-1 P max 1 k 2 N +2-j |S f,k | > s2 N +2 2 2 j(1/p-α) ds.
Splitting the integral into two parts, we infer that lim sup

n→+∞ ⌊log n⌋ j=J P (A n,j ) K lim sup N →+∞ N +2 j=J 2 j 1 0 s p-1 P max 1 k 2 N +2-j |S f,k | > s2 (N +2)/2 2 j(1/p-α) ds (20)
and the limit of the latter quantity as J goes to infinity is zero by [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF]. This concludes the proof of Theorem 12.

Remark 14. Using deviation inequalities, similar results as those found for the Hölderian weak invariance principle for stationary mixing and τ -dependent sequences in [START_REF] Giraudo | Holderian weak invariance principle for stationary mixing sequences[END_REF] can be found for Besov spaces.

Lemma 15 (Proposition 3.5 in [START_REF] Giraudo | Hölderian invariance principle for martingale difference random fields[END_REF] ). For any q > 2, there exists a constant c(q) such that if f • T i i 0 is a martingale differences sequence with respect to the filtration T -i F 0 i 0 then for each integer n 1,

P 1 √ n max 1 i n |S f,i | t c(q)n 1 0 P |f | √ nut u q-1 du+ + c(q) ∞ 0 P E f 2 | TF 0 1/2 > vt min v, v q-1 dv. (21)

Proof of Theorem 1

Acording to Lemma 11 we need only to prove that the sequence n -1/2 ζ f,n n 1 is tight in B o p,α . To this aim, we have to check the condition (6) of Theorem 12. For fixed N and J such that N J, j ∈ J, . . . , N and x ∈ [0, 1], we have by (21) of Lemma 15,

P 2 -N -j 2 max 1 k 2 N -j |S f,k | > x2 j q(p,α) c(q)2 N -j 1 0 P |f | 2 N -j 2 x2 j q(p,α) u u q-1 du + c(q) ∞ 0 P E f 2 | TF 0 1/2 > vx2 j q(p,α)
min v, v q-1 dv, ( 22) from which we infer that

N j=J 2 j 1 0 x p-1 P 2 -N -j 2 max 1 k 2 N -j |S f,k | > x2 j q(p,α) dx c(q)2 N N j=J 1 0 x p-1 1 0 P |f | 2 N 2 x2 j(1/p-α) u dxu q-1 du + c(q) ∞ 0 1 0 x p-1 N j=J 2 j P E f 2 | TF 0 1/2 > vx2 j q(p,α) min v, v q-1 dvdx =: A(N, J) + B(N, J). (23)
Using the fact that P |f | t t -q(p,α) sup s t s q(p,α) P |f | s , we derive the bound

A(N, J) c(q)2 N (1-q(p,α)/2) N j=0 2 j(1/p-α) 1 0 1 0
x p-q(p,α)-1 u q-q(p,α)-1 sup s q(p,α) P |f | s , s 2 N 2 xu2 j(1/p-α) dxdu.

Since j N , we have 2 N 2 xu2 j(1/p-α) xu2 N/q(p,α) and accounting the inequality N j=0 2 j(1/p-α) 2 N (1/p-α) /(1 -2 1/p-α ), we obtain A(N, J) c(q) 1 0 1 0 x p-q(p,α)-1 u q-q(p,α)-1 sup s q(p,α) P |f | s , s 2 N q(p,α) xu dxdu.

Since p > q(p, α) and q > q(p, α), the integral 1 0 1 0 u q-q(p,α)-1 x p-q(p,α)-1 dxdu is convergent and we infer by the monotone convergence theorem that ∀J 1, lim

N →+∞ A(N, J) = 0. (24) 
Now, in order to control B(N, J), we use the following elementary inequality: if Y is a non-negative random variable, then for each J 1, α) .

j J 2 j P Y 2 j/q(p,α) 2E Y q(p,α) 1 Y 2 J/q(p,
Applying this to Y := E f 2 | TF 0 1/2 /(vx), we obtain that

B(N, J) c(q) ∞ 0 1 0 x p-q(α)-1 E E f 2 | TF 0 q/2 1 E f 2 | TF 0 1/2 vx2 J/q(p,α)
• min v, v q-1 v -q(p,α) dvdx.

Here again, we conclude by monotone convergence that lim

J→+∞ sup N 1 B(N, J) = 0, (25) 
since the integrals 1 0 x p-q(α)-1 dx and +∞ 0 min v, v q-1 v -q(p,α) dx are finite (as q > q(α)).

Tightness of the sequence (W f,n ) n 1 now follows from Theorem 12 and the combination of ( 23), ( 24) and (25). Acounting Lemma 11 this concludes the proof of Theorem 1.

Proof of Theorem 2

Sufficiency of the condition is contained in Theorem 1. Indeed, we represent the sequence (Y j ) j 0 by f • T j j∈Z , that is, f • T j j∈Z is an i.i.d. sequence and Y j has the same distribution as f • T j . To this aim we define Ω = R Z , F = B Z and P = P Z Y , where P Y is the distribution of Y 0 . Let f ((ω j )) = ω 0 for (ω j ) ∈ R Z and let T : Ω → Ω be the shift operator: T((ω j )) = (ω j+1 ). Next let F 0 := σ f • T j , j 0 . Then TF 0 ⊂ F 0 and E (f | TF 0 ) = 0, since f is independent of TF 0 and centered. Moreover, E f 2 | TF 0 = E f 2 , again by independence. Therefore, condition (ii) of ( 1) is satisfied. Since I is trivial, E f 2 | I = E f 2 , which gives the convergence (2).

Let us prove the necessity of (3) for the invariance principle in B o p,α . Since the space B o p,α is a separable Banach space, the sequence (W 2 n ) n 1 is tight in B o p,α . Using Theorem 1 in [START_REF] Rosenbaum | First order p-variations and Besov spaces[END_REF], we can find for any positive η a number J 0 such that lim sup

n→∞ P sup j J0 2 jα-j/p r∈Dj W 2 n (r + ) -W 2 n (r) p 1/p > ε η.
Therefore, if n is large enough, we have

P 2 nα-n/p r∈Dn W 2 n r + -W 2 n (r) p 1/p > ε 2η. Since r∈Dn W 2 n (r + ) -W 2 n (r) p = 2 -np/2 2 n-1 l=1 |S 2l -S 2l-1 | p = 2 -np/2 2 n-1 l=1 |X 2l-1 | p ,
we have the convergence in probability of the sequence 2 nα-j/p 2 -np/2 2 n-1 l=1 |X 2l-1 | p to 0. By [START_REF] Gut | An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game[END_REF], this implies that 2 nα-j/p 2 -np/2 P |X 1 | > 2 n → 0, hence (3) holds. This ends the proof of Theorem 2.

Proof of Theorem 3

We first start by a lemma which guarantees the lake of tightness of the partial sum process.

Lemma 16. Let 1/p < α < 1/2 and let f be a function such that there exist increasing sequences of real numbers (n l ) l 1 and (k l ) l 1 satisfying the following properties: k l /n l → 0 as l goes to infinity and

inf l 1 P 1 n q(p,α) l max 1 k k l 1 k α n l -k i=0 |S f,i+k -S f,i | p 1/p > 1 > 0,
where q(p, α) is given by (1). Then the sequence

(W n (f )) n 1 is not tight in B o p,α .
Proof. If the sequence (W n (f )) n 1 was tight in B o p,α , then we would be able to extract a weakly convergence subsequence of (W n l (f )) l 1 . Therefore, we can assume without loss of generality that (W n l (f )) l 1 converges in distribution in B p,α . Consequently, the sequence sup |t| k l /n l t -α ω p (W n l , t) l 1 should convergence to 0 in probability as l goes to infinity. But

sup |t| k l /n l t -α ω p (W n l , t) c(p) n q(p,α) l max 1 k k l 1 k α n l -k i=0 |S f,i+k -S f,i | p 1/p
for some constant depending only on p (this can be seen by restricting the supremum over the t of the form k/n l where 1 k k l ).

Let us recall the statement of Lemma 3.8 in [START_REF] Lesigne | Large deviations for martingales[END_REF].

Lemma 17. Let (Ω, F , P, T) be an ergodic probability measure preserving system of positive entropy.

There exists two T-invariant sub-σ-algebras B and C of F and a function g : Ω → R such that:

• the σ-algebras B and C are independent;

• the function g is B-measurable, takes the values -1, 0 and 1, has zero mean and the process (g • T n ) n∈Z is independent;

• the dynamical system (Ω, C, P, T) is aperiodic.

In the sequel, we shall assume for simplicity that P g = 1 = P g = -1 = 1/2. The construction follows the lines of that of Theorem 2.1 in [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF]. We define three increasing sequences of positive integers (I l ) l 1 , (J l ) l 1 , (N l ) l 1 and a sequence of real numbers (L l ) l 1 such that

∞ l=1 1 L l < ∞ and
L l is a continuity point of the cumulative distribution function of the random variable 2 -1 Y 1/2,1 , which is defined in (45). Now, we define a sequence of real numbers (J l ) l 1 in such a way that for each l 1,

J l P Y 1/2,1 > 2L l -7/8 1/16. ( 26 
)
Now, by Proposition 22, we can choose for each l 1 an integer I l such that

∀n I l , P Y n,1/2,1 (g) > 2L l -P Y 1/2,1 > 2L l 1 lJ l . ( 27 
)
Let K l := 2 I l +J l . We define the sequence (N l ) l 1 in such a way that for each l 1,

1 N 1/q(p,α) l K 1-α l l-1 u=1 N u 2 Iu 1/q(p,α)
1 and (28)

N l +∞ u=l+1 K u /N u < 1 16 . ( 29 
)
Using Rokhlin's lemma, we can find for any integer l 1 a measurable set C l ∈ C such that the sets T i C l , i = 0, . . . , N l -1 are pairwise disjoint and

P N l -1 i=0 T i C l > 1/2. We define for l 1 f l := 1 L l J l j=1 N l 2 I l +j 1/q(p,α) 1 2 J l +j+1 i=2 J l +j +1 T N l -i C l and
(30)

f := +∞ l=1 f l , m := g • f. ( 31 
)
Note that P (f l = 0) K l /N l , hence by ( 29) and the Borel-Cantelli lemma, the function f is well defined almost everywhere. Define

F 0 := σ g • T i , i 0 ∨ C.
Proposition 18. The σ-algebra F 0 satisfies TF 0 ⊂ F 0 . The function m defined by (30) and (31) is F 0 -measurable and satisfies E [m | TF 0 ] = 0 and lim t→+∞ t q(p,α) P {|m| > t} = 0.

A proof can be found in [START_REF] Giraudo | Holderian weak invariance principle under a Hannan type condition[END_REF] It remains to prove that the sequence (W n (m)) n 1 is not tight in B o p,α . To this aim, we shall check the conditions of Lemma 16. We first show the following intermediate step.

Lemma 19. For each integer l 1,

P 1 N 1/q(p,α) l max 1 k K l k -α N l -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p > 2 > 1 8 .
Let l 1 be fixed. Assume that ω belongs to T N l -i0 for some i 0 ∈ {K l , . . . , N l -1}. Let i be such that i 0 -2 I l +j+1 i i 0 -2 I l +j + 1 for some j ∈ {1, . . . , J l }. We have

f l • T i (ω) = 1 L l N l 2 I l +j 1/q(p,α) .
Consequently, for any k such that 2 I l +j-1 < k 2 I l +j and each i such that i 0 -2

I l +j+1 i i 0 -k -2 I l +j + 1, we have |S gf l ,i+k -S gf l ,i | = 1 L l N l 2 I l +j 1/q(p,α) |S g,i+k -S g,i | . It thus follows that 1 N 1/q(p,α) l max 1 k K l k -α N -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p 1 T N l -i0 C l max 1 j J l max 2 I l +j-1 <k 2 I l +j k -α 1 L l 1 2 I l +j 1/q(p,α) i0-k-2 I l +j +1 i=i0-2 I l +j+1 |S g,i+k -S g,i | p 1/p 1 T N l -i0 C l ,
and using disjointness of the sets T N l -i0 C l , K l i 0 N l -1, we infer that

P 1 N 1/q(p,α) l max 1 k K l k -α N -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p > 2 P 1 N 1/q(p,α) l max 1 k K l k -α N -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p > 2 ∩ N l -1 i0=K l T N l -i0 C l = N l -1 i0=K l P 1 N 1/q(p,α) l max 1 k K l k -α N -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p > 2 ∩ T N l -i0 C l N l -1 i0=K l P(A i0 ∩ T N l -i0 C l ) (32)
where

A i0 = max 1 j J l max 2 I l +j-1 <k 2 I l +j k -α 1 L l 1 2 I l +j 1/q(p,α) i0-k-2 I l +j +1 i=i0-2 I l +j+1 |S g,i+k -S g,i | p 1/p > 2 .
Since T is measure-preserving, the events A i0 ∩ T N l -i0 C l , K l i 0 N l -1 have the same probability, which is equal to P(A K l ∩T N l -K l C l ). The events A K l and T N l -K l C l belong respectively to B and C, hence they are independent. In view of (32), we obtain

P 1 N 1/q(p,α) l max 1 k K l k -α N l -k i=0 |S gf l ,i+k -S gf l ,i | p 1/p > 2 (N l -K l ) P(A K l )P(C l ) P(A K l )/2. (33)
Now, in order to control the latter term, we shall use the following lemma:

Lemma 20. Let (H l ) l 1 be an increasing sequence of integers. Assume that for each l 1, the family of events (A l,j ) 1 j H l is independent and that H l j=1 P (A l,j ) ∈ [3/4, 1]. Then for each l 1,

P H l j=1 A l,j 1/4.
Proof of Lemma 20. By Bonferroni's inequality, we have for any l 1,

P H l j=1 A l,j H l j=1 P (A l,j ) - 1 i<j H l P (A l,i ∩ A l,j ) .
Using independence of (A l,j ) 1 j H l , we derive that

P   H l j=1 A l,j   H l j=1 P (A l,j ) - 1 2   2 
1 i<j H l P (A l,i ) P (A l,j )   = H l j=1 P (A l,j ) - 1 2      H l j=1 P (A l,j )   2 - H l j=1 (P (A l,j )) 2    H l j=1 P (A l,j ) - 1 2   H l j=1 P (A l,j )   2 3/4 -1/2 = 1/4.
We now use Lemma 20 with the choices H l = J l and

A l,j :=      max 2 I l +j-1 <k 2 I l +j k -α 1 L l 1 2 I l +j 1/q(p,α)   K l -k-2 I l +j +1 i=K l -2 I l +j+1 |S g,i+k -S g,i | p   1/p > 2      .
We indeed have, with the notations of (45) and by (27), 

J l j=1 P (A l,j ) -J l P Y 1/2,1 > 2L l J l j=1 1 lJ l = 1/

Proofs: the case α 1/p

We start with the following lemma which reduces the proof of convergence to that of tightness.

Lemma 21. Let p 1 and 0 α min{1/2, 1/p}. Assume that Z is a random element in B o p,α . Then for any stationary sequence f • T j if

(i) W f,n D ----→ n→∞ Z in L p [0, 1],
and

(ii) (W f,n ) is tight in B o p,α , then W f,n D ----→ n→∞ Z in B o p,α .
Proof. From (ii) we have that each subsequence of (W f,n ) has further subsequence that converges 

in distribution. If W f,n ′ D ----→ n→∞ Y ′ and W f,n ′′ D ----→ n→∞ Y ′′ then we have that for Franklin basis (f k ) it holds that W f,n ′ , f k D ----→ n→∞ Y ′ , f k and W f,n ′′ , f k D ----→ n→∞ Y ′′ ,
I n (δ, ε) = 0, (37) 
where

I n (δ, ε) = P δ -α sup |h| δ 1 0 |W f,n (t + h) -W f,n (t)| p d t 1/p > ε .
Since the function W f,n (t), 0 t 1 is affine in each interval ((k -1)/n, k/n], it holds for s, t ∈

[(k -1)/n, k/n], |W f,n (s) -W f,n (t)| n 1/2 |s -t| • f • T k . ( 38 
)
This observation leads to

ω p (W f,n , δ) c p [U f,n (δ) + V f,n (δ)] ,
where c p > 0 is a constant depending on p only,

U f,n (δ) := min{δ, n -1 }n 1/2 1 n n k=1 |f • T k | p 1/p , V f,n (δ) := n -1/2 max 1 ℓ ⌊nδ⌋   1 n n-ℓ k=0 k+ℓ j=k+1 f • T j p   1/p .
As a consequence in order to establish (37) we have to prove

lim δ→0 sup n 1 P δ -α U f,n (δ) ε = 0, (39) lim δ→0 sup n 1/δ P δ -α V f,n (δ) > ε = 0. ( 40 
)
Consider first (39) and start with p = 2 and 0 α < 1/2. By Chebyshev inequality

P δ -α U f,n (δ) ε ε -2 δ -2α min{δ 2 , n -2 }E n k=1 |f • T k | 2 ε -2 δ -2α min{δ 2 , n -2 }nE f 2 ε -2 δ 1-2α
and (39) follows in this case. Now let p > 2 and 0 α 1/p. For this case we shall use truncation.

Set for τ > 0,

f ′ = f 1(|f | τ max{n, δ -1 }), f ′′ = f -f ′ . Then P(δ -α U f,n (δ) > ε) nP(|f | τ max{n, δ -1 }) + P(δ -α U f ′ ,n (δ) > ε) and, since nP(|f | τ max{n, δ -1 }) τ -2 E (f ) 2 1(|f | √ δ -1 )
we reduce the proof of (39) to

lim δ→0 sup n 1 P δ -α U f ′ ,n (δ) ε = 0. ( 41 
)
We have by Chebyshev inequality,

P δ -α U f ′ ,n (δ) ε ε -p δ -pα min{δ p , n -p }n p/2 E n -1 n k=1 |f ′ • T k | p ε -p δ -pα min{δ p , n -p }n p/2 E ((f ′ ) p ) ε -p δ -pα min{δ p , n -p }n p/2 τ p-2 (max{n, δ -1 }) (p-2)/2 E f 2 ε -p τ p-2 (min{δ, n -1 }) 1-pα E f 2 .
Hence lim

δ→0 sup n 1 P δ -α U f ′ ,n (δ) ε ε -p τ p-2 .
Since τ > 0 is arbitrary, the limit is indeed zero, and the proof of (41) is completed.

To prove (40) we start again with the case p = 2 and 0 α < 1/2. In this case Chebyshev inequality along with stationarity and Doob-Kolmogorov inequality yields

P(δ -α V f,n (δ) > ε) ε -2 δ -2α E (V f,n (δ)) 2 ε -2 δ -2α n -1 E max 1 ℓ ⌊nδ⌋ ℓ j=1 f • T j 2 ε -2 δ 1-2α E f 2
and (40) follows. This ends the proof of (40) in the case p = 2.

Assume that p > 2 and α 1/p. Let us fix ε > 0. Define for any δ ∈ (0, 1) and any integer n 1/δ the events

A n,δ :=   δ -α n -1/2 max 1 ℓ ⌊nδ⌋   1 n n-ℓ k=0 k+ℓ-1 j=k f • T j p   1/p > ε    B n,δ,τ := max 1 ℓ ⌊nδ⌋ n -1/2 max 1 k n-l |S f,k+l -S f,k | ε p p-2 τ p p-2
, where τ is an arbitrary but fixed positive number. We have the bound

P (B n,δ,τ ) P sup 0 s<t 1,|t-s|<δ n -1/2 |ζ f,n (t) -ζ f,n (s)| ε p p-2 τ p p-2 .
Since the sequence (ζ f,n ) is tight in the space C[0, 1] (see [START_REF] Billingsley | Convergence of probability measures[END_REF]), we have

lim δ→0 sup n 1/δ P (B n,δ,τ ) = 0. (42) 
Now, note that on A n,j ∩ B c n,j,τ , we have for any 0 ℓ ⌊nδ⌋,

n-ℓ k=0 k+ℓ-1 j=k f • T j p n-ℓ k=0 k+ℓ-1 j=k f • T j 2 max 1 ℓ ⌊nδ⌋ n -1/2 max 1 k n-l |S f,k+ℓ -S f,k | p-2 n (p-2)/2 (43) n-ℓ k=0 k+ℓ-1 j=k f • T j 2 n (p-2)/2 ε p τ p . (44) 
Therefore, we have

ε < δ -α n -1/2 max 1 ℓ ⌊nδ⌋   1 n n-ℓ k=0 k+ℓ-1 j=k f • T j p   1/p δ -α n -1/2 n -1/p n (p-2)/2 ε p τ p 1/p max 1 ℓ ⌊nδ⌋    n-ℓ k=0 k+ℓ-1 j=k f • T j 2    1/p = δ -α n -2/p ετ max 1 ℓ ⌊nδ⌋    n-ℓ k=0 k+ℓ-1 j=k f • T j 2    1/p
, and we infer that

P A n,δ ∩ B c n,δ,τ P   δ -αp n -2 τ p max 1 ℓ ⌊nδ⌋ n-ℓ k=0 k+ℓ-1 j=k f • T j 2 > 1    .
By Markov's inequality, stationarity and Doob's inequality, we have

P A n,δ ∩ B c n,δ,τ δ -αp n -2 τ p E    max 1 ℓ ⌊nδ⌋ n-ℓ k=0 k+ℓ-1 j=k f • T j 2    δ -αp n -2 τ p E    n k=0 max 1 ℓ ⌊nδ⌋ k+ℓ-1 j=k f • T j 2    = δ -αp n -1 τ p E max 1 ℓ ⌊nδ⌋ |S f,ℓ | 2 2δ 1-αp τ p E f 2 .
Since pα 1, we get

P A n,δ ∩ B c n,δ 2τ p E f 2
and since τ is arbitrary, we get lim δ→0 sup n 1/δ P (A n,δ ) = 0 in view of (42). This concludes the proof of (40) and that of Theorem 4.

Proof of Theorem 5

It follows from Theorem 4 and the same arguments as used in the proof of Theorem 2.

Some applications

As already was mentioned in the introduction, a choice of functional spaces for polygonal line processes is usually inspired by possible applications in statistics via continuous mappings: if

W f,n D ----→ n→∞ W in the space B o p,α , then T (W f,n ) → T (W )
for any continuous function T : B o p,α → R. This general observation can be used, for example, to analyse so called k-scan processes

S (i) f,k = i+k-1 j=i f • T j , i = 1, . . . , n -k + 1. Proposition 22. Let f be a function such that the sequence (W n (f )) n 1 converges to a standard Brownian motion W in B o p,α , where 1/p < α < 1/2. For each a, b ∈ [0, 1] such that a < b, we define Y n,a,b (f ) := n -1/q(p,α) max ⌊an⌋<k ⌊bn⌋+1 1 k α n-k i=0 S (i) f,k p 1/p .
Then the following convergence holds: Now, take q > p. Using Hölder's inequality with the exponents q/p and q/(q -p), we have N -(p-q)/q W q,α N -(p-q)/q .

Y n,a,b (f ) 
Since W q,α is almost surely finite, we get from (48) that (47) holds.

Statistics based on k-scan processes can be used to detect epidemic change in the mean of a sample of size n (see, e.g., [START_REF] Račkauskas | Hölder norm test statistics for epidemic change[END_REF], and reference therein). More precisely, given a sample X 1 , X 2 , . . . , X n , consider the model X i = µ1 (k * ,m * ] (i) + ε i , i = 1, . . . , n, where (ε i ) is a stationary sequence, µ = 0 and k * , m * are unknown parameters of the model. We want to test the null hypothesis H 0 : µ = 0 against the alternative µ = 0. To this aim one can consider the statistics

T n = n -1/q(p,α) max 0<k n 1 k α n-k i=0 |X i + • • • + X i+k | p 1/p .
Under null its limit is defined by Proposition 22 provided (ε i ) satisfies the weak invariance principle in the Besov space B o p,α . Under alternative then we see that

T n = 1 - h * n 1/p h * n 1-α n 1/2 + O P (1)
as n → ∞, where h * = m * -k * is the duration of the epidemic state.

  Let use define a functional F : B o p,α → R by F (x) := sup a<t b t -α It |x(s + t) -x(s)| p ds 1/p . Then F is continuous with respect to the topology of B o p,α and F (W ) = Y a,b . We thus have F (W n (f )) D ----→ n→∞ Y a,b . To conclude that (45) holds, it suffices to prove thatZ n := F (W n (f )) -Y n,a,b (f ) → 0 in probability as n → +∞.First note that Z n is non-negative. Second, we haveF (W n (f )) max ⌊an⌋ k ⌊bn⌋+1 max k/n t<(k+1)/n

δ[ 1 - 1 /

 11 δ -α ω p (W n (f ), δ) k+1)/n |W n (f, s + k/n) -W n (s)| p ds -α ω p (W n (f ), δ) . (46)By Theorem 9, the second term in the right hand side of (46) goes to zero in probability. Therefore, it suffices to prove that max probability as n → +∞.(47) To see this, we start from the inequality max|W n (f, s + t) -W n (f, s)| p ds |W n (f, s) -W n (f, s -t)| p ds 1/p .Let N be a fixed integer. The functionalG N : B o p,α → R, G N (x) = sup 0<t<1 t -α [1-1/N,1]∩I-t |x(s) -x(s -t)| p ds 1/p is continuous. Therefore, if ε > 0 is a continuity point of the cumulative distribution function of G N (W ) for each N , k+1)/n |W n (f, s + k/n) -W n (f, s)| p ds N,1]∩I-t |W (s) -W (s -t)| p ds 1/p > ε . (48)

  |W (s) -W (s -t)| q ds 1/q

  m || p and we complete the proof since lim n,m→∞ ||x n -x m || p = 0. Zn ) converges weakly to P Z : lim n→∞ f d P Zn = f d P Z for each bounded continuous f : B o p,α → R.

	Consider stochastic processes Z, (Z n ) n 1 with paths space B o p,α which is endowed with Borel σ-p,α ). Let P Z , P Zn , n 1, be the corresponding distributions. As generally accepted the algebra B(B o sequence (Z n ) converges in distribution to Z in B o p,α (denoted Z n D ----→ n→∞ Z in B o p,α ) provided (P The sequence (Z n ) is tight in B o p,α p,α if for each ε > 0 there is a relatively compact set K ε ⊂ B o such that inf n 1 P(Z n ∈ K ε ) > 1 -ε. Due to the well known Prohorov's theorem convergence in distribution in a separable metric space is coherent with tightness. Indeed, to prove convergence in
	distribution one has to establish tightness and to ensure uniqueness of the limiting distributions.
	The following tightness criterion is obtained from Proposition 8.
	Theorem 9. The sequence (Z n ) of random processes with paths in B o p,α (0, 1) is tight if and only if
	the following two conditions are satisfied:

  f k for any k. But (i) gives that both Y ′ , f k and Y ′′ , f k have the same distribution as Z, f k . Since coefficients Z, f k determines the distribution of Z we can conclude that Y ′ and Y ′′ are equally distributed with Z. This ends the proof.

	4.1 Proof of Theorem 4			
	Due to continuity of the embedding B o 2,α ֒→ B o p,α if 1	p	2 and 0	α < 1/2. it is enough to
	prove the case where either p = 2 and 0 α < 1/2 or p > 2 and 0 α 1/p.
	Recall W f,n = n -1/2 ζ f,n . We shall prove for each ε > 0	
	lim δ→0	sup n 1		

  It|W n (f, s + t) -W n (f, s)| p ds Let k be an integer such that ⌊an⌋ k ⌊bn⌋ + 1 and let t be a real number such that k/n t < (k + 1)/n. ThenIt |W n (s + t) -W n (s)| p ds |W n (s + k/n) -W n (s)| p ds |W n (f, s + k/n) -W n (s)| p ds |W n (f, s + t) -W n (s + k/n)| p ds |W n (f, s + k/n) -W n (s)| p ds 1/p + ω p (W n (f ), t -k/n) ,which implies thatF (W n (f )) -Y n,a,b (f ) max |W n (f, s + k/n) -W n (s)| p ds

				1/p						1/p
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						+			
	1-t							0	
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We get, in view of (33) the lower bound

This concludes the proof of Lemma 19. Now, we prove that for any l 1,

We first prove that 1

where

Now, by definition of f u , for each ω ∈ Ω, the following inequality holds:

1/q(p,α) .

Consequently,

, and this term does not exceed 1 by (28). This proves (35) Now, defining f ′′ l := +∞ u=l+1 gf u , we have

By constructing of f u , we have P f u = 0 K u /N u , hence