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Abstract

In this paper we consider (large and complex) interconnected networks. We
assume that each state/node of the network can be selected to act as a steer-
ing node, meaning that such node then is influenced by its own individual
control. This control may influence other nodes indirectly through steering
node which it is controlling. The goal in this paper is to select steering nodes
such that the overall system (in)directly becomes structurally controllable,
where ”structurally” means that the system is controllable for almost all of its
numerical realizations. Obviously, it may happen that not every state needs
to act as a steering node. In fact, in configurations where the overall system
is required to be structurally controllable, some states may never need to be
steering node, while some other states always have to be a steering node.
In this paper, we aim to achieve structural controllability and we present
a classification of the associated steering nodes as being essential (always
required to be present), useful (present in certain configurations) and use-
less (never necessary in whatever configuration). The classification is based
on two types of decomposition that naturally show up in the context of the
two conditions (connection condition and rank condition) for structural con-
trollability. The underlying methods are related to well-known and efficient
network algorithms. The main result of the paper is the characterization of
useless, useful and essential steering nodes in order to obtain a system that
is structurally controlable. The results are illustrated by means of examples.

Keywords: Controllability, structured system theory, input connection
condition, rank condition, steering node.
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1. Introduction

The study and analysis of large complex networks has become extremely
important as nowadays society becomes more and more interconnected. Ex-
amples of such complex systems appear in biology, genetics, social networks,
large communication or energy networks, etc. After the analysis of the be-
havior of a particular complex network, one of the most relevant questions is
whether its behavior can be controlled. Therefore, the controllability of com-
plex networks has received a lot of attention in the recent years. Especially,
the question of interest is where to put so-called driver nodes by which the
behavior of the network can be controlled, see [10, 18, 25].

Here we call a state/node of the network a steering node if it can be
influenced from the outside of the network (externally) by a control. Various
types of control can be distinguished, like controls that influence possibly all
nodes simultaneously, controls that each influence an individual node, or a
mix of the previous two, see [4].

Next to the question of where to put the steering nodes, also their minimal
number is a relevant issue. Clearly, having as few as possible steering nodes
may be important in applications.

In this paper, we focus on the situation that each steering node is sup-
posed to be controlled by precisely one control. In principle, all nodes of a
network may act as steering nodes. However, it is clear that occasionally for
some nodes it is useless to be a steering node because they can also be con-
trolled indirectly by other nodes of the network. Therefore, a classification
seems appropriate of which nodes, seen as steering nodes, are always useless,
which nodes may play a role in certain steering node configurations, and
which nodes are essential in the sense that they always have to be present in
any appropriate steering node configuration.

The above classification can be compared with the component classifi-
cation in terms of the impact in case of their failure. This is a classical
field of reliability theory, see [2, 3]. Also in engineering, the classification of
sensors in terms of their importance for preserving some property (such as
observability) is an active research field, see [7]. In this paper we study the
classification of steering nodes in terms of their importance for controllabil-
ity. It should be noted that, although we use here some concepts and tools
of [7], the present paper is much more than a dualisation of the results of [7].
The main difference is that our classification does not rely on a given set of
inputs and corresponding actuators. Here the inputs have to be chosen in a
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given set and they impact only one state.
The steering node classification in this paper resembles a similar classi-

fication (in critical, redundant and intermittent nodes) in [16], see also [11]
for a quantitative approach of the importance of nodes. Notice that an alter-
native way to classify the nodes is to compute for each of them the control
centrality [19]. However, opposite to [16, 18], and as already indicated, we
suppose that a control can only influence one steering node. The latter also
seems to be much more realistic in applications. For this reason, we have to
also take into account the input connection condition, apart from the rank
condition that needs to be considered only when allowing controls that may
influence several (or even all) steering nodes simultaneously.

The input connection condition can most easily be studied by decom-
posing the digraph associated to our networks into strongly connected com-
ponents that are ordered themselves in an acyclic way. The rank condi-
tion that has to be checked can best be investigated by the so-called DM-
decomposition. By using this decomposition the results in this paper can
be presented in a more transparent and refined way than the results in [16],
where such decomposition is not considered.

We extend our classification to the case where some nodes cannot be
influenced by inputs. This situation, which is often met in practice, has also
been considered in [22].

Our results are related with the recent literature about the Minimal Con-
trollability Problem [4, 5, 21, 22, 1, 23].

The outline of this paper is as follows. In section 2 we introduce the
type of systems that we consider and formulate the problem of steering node
selection such that a system becomes controllable. We also introduce the
notions of useless, useful and essential nodes for a specific property that we
want the system to have. In section 3 we introduce structured systems, in-
troduce their graph representation and recall some well-known conditions
for structural controllability. The conditions consist of an input connection
condition and a rank condition. In section 4 the two conditions are further
analysed using connectivity aspects of the directed graph introduced in sec-
tion 3, and for the rank condition by means of a DM-decomposition of the
bipartite graph associated to the structured system. In section 5 we present
conditions for a steering node to be useless, useful or essential for each of the
two conditions for structural controllability. Our main result is the combina-
tion of all criteria to get characterizations of steering nodes that are useless,
useful or essential for structural controllability as a whole. In section 6 we
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comment on the obtained results and illustrate them by means of two exam-
ples. In section 7 we extend the classification to the case where some nodes
cannot be used as a steering node. In section 8 we pay some attention to the
computational aspects of verifying the conditions obtained in this paper. We
conclude by section 9 with a summary of the results of this paper and with
some topics for future research.

2. Problem formulation

2.1. The controllability problem

In this paper, we consider a large scale system composed of n states
interacting together with linear dynamics. We assume that we can represent
the behavior of the whole system by the simple equation

ẋ(t) = Ax(t), (1)

where x(t) ∈ X = Rn is the state vector and A is a real constant n × n
matrix.

We will distinguish m states, called the steering nodes S = {xi1 , . . . , xim},
with ij ∈ {1, . . . , n} and i1 < i2 < · · · < im. To each steering node xij we
associate a control input uj that acts only on this state node. In this way we
obtain a system that can be represented as

Σ : ẋ(t) = Ax(t) +Bu(t), (2)

where matrix B has m columns and its j-th column has all its entries equal
to 0 except for bij( 6= 0), being the ij-th component of column j of B. Hence,
the node set S is in 1-1 correspondence with the (structure of) matrix B.

In the following we will be looking for a set of steering nodes such that
the pair (A,B), as introduced above, is controllable. Here we understand by
controllability of system Σ, see (2), the ability to steer Σ, in final time τ > 0,
from an arbitrary initial condition x0 = x(0) to an arbitrary final condition
x1 = x(τ), by the use of an appropriate control function u(t) over the time
interval [0, τ).

It is well-known that controllability of system Σ is equivalent, for instance,
to rank [B,AB, · · · , An−1B] = n. For this reason, the controllability of Σ is
also referred to as the controllability of the pair (A,B).

A challenging problem is to find the minimal number of steering nodes
such that (A,B) is controllable. This problem was tackled in [21], where it
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was proved to be NP-hard, see [14] for more on this notion. Moreover, it is
proved in [21] that the minimum number of inputs needed for controllability
in our context (one input acting on one state) is also the minimum number
of states which are impacted by inputs when no structure is imposed to the
B matrix. Minimizing the number of states that are impacted by inputs
is certainly a more convincing way to approach the controllability of large
scale systems. It is more appropriate than minimizing the number of inputs,
without taking into account the number states impacted by these inputs as
in [18, 25].

2.2. Steering node classification

A property P of the pair (A,B) can be seen as a mapping from the set
Rn×n×Rn×m into the set {0, 1} where the property P is true precisely when
P(A,B) = 1.

When a set of steerings nodes S ⊆ X , defining matrix B, and therefore
also the pair (A,B), is such that a given property P is true, we call S an
admissible steering node set for property P .

Definition 1. For a given property P, a node xi seen as steering node, can
be classified as follows, see for instance [7, 8, 27].

1. Node xi is called a useless steering node if for any admissible steering
node set S containing xi, S\{xi} is still an admissible steering node set
for P, where S\{xi} is the set S minus the node xi.

2. A steering node which is not useless is called a useful steering node.
Hence, node xi is useful if there is an admissible steering node set S
for P such that xi ∈ S, while S\{xi} is not admissible for P.

3. Node xi is called an essential steering node if xi belongs to any admissi-
ble steering node set S for P. Hence, xi is an essential node if S\{xi}
is not admissible for any admissible steering node set S for P. The set
of essential steering nodes is a subset of the set of useful steering nodes.

In this paper we will focus our attention on the search and classification
of steering nodes for the controllability in the context of structured systems.

3. Linear structured systems and structural controllability

In the remainder we assume that system (1) is structured, meaning that
we assume that only the zero/nonzero of the entries in matrix A is known.
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A structured system of type (1) can be associated with a directed graph
G(A) = (X ,W) as follows:

• the node set is X , being the set of state nodes {x1, x2, . . . , xn},

• the edge set is W = {(xi, xj)|aji 6= 0}, where aji denotes the (j, i)th
entry of matrix A and aji 6= 0 means that the (j, i)-th entry of A is a
structural nonzero.

We define a path in G(A) from a node xi0 to a node xiq to be a se-
quence of edges, (xi0 , xi1), (xi1 , xi2) , . . . , (xiq−1 , xiq), such that xit ∈ X for
t = 0, 1, . . . , q, and (xit−1 , xit) ∈ W for t = 1, 2, . . . , q.

Let A be a structured matrix and let the total number of nonzero entries
in A be given by l, then the structured system can be parameterized by a
parameter vector λ ∈ Rl, where each component of λ corresponds to precisely
one nonzero. Hence, for each vector λ, a completely numerically specified
system is obtained. The system is thus defined as

ẋ(t) = Aλx(t), (3)

where x(t) ∈ Rn is the state vector, and Aλ is the parameterized version of
the structured matrix A.

The previous systems are called linear structured systems if only the
zero/nonzero structure of the matrix A is known, or, equivalently, if the
entries of the matrix Aλ are either fixed zeros or independent parameters
(not related by algebraic equations), see [12, 20]. For such systems, we can
study generic properties, i.e., properties which are true for almost any value
of the parameters.

One such property is, for instance, the generic controllability of a struc-
tured system. Another such property is the generic rank of a structured
matrix. Given a structured matrix Q with k nonzeros and a parametrized
version Qµ, the generic rank of Q will be defined as the rank of Qµ for almost
all µ ∈ Rk and will be denoted by g-rank Q. It can be shown that g-rank
Q = max

µ∈Rk
rank Qµ. Later in this paper the generic rank of matrix A will be

used.
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Example 1. Consider the system defined by the structured matrix

A =



0 0 ∗ 0 0 0 0 0
0 0 ∗ 0 0 0 0 0
∗ 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 ∗ ∗
0 0 0 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 0 0 0


,

or by a parametrized version with λ ∈ R11 given by

AΛ =



0 0 λ1 0 0 0 0 0
0 0 λ2 0 0 0 0 0
λ3 0 0 0 0 0 0 0
0 λ4 0 0 0 0 λ5 λ6

0 0 0 0 λ7 0 0 0
λ8 0 0 λ9 0 0 0 0
0 0 0 0 λ10 λ11 0 0
0 0 0 0 0 0 0 0


.

The associated digraph G(A) is depicted in Figure 1. In the figure, for later
use, also the strongly connected components are already indicated.
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3
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1

x
8

x
2

Figure 1: Digraph of Example 1

As in Section 2, we can select a set of m steering nodes in X , to which
we associate m control inputs. This induces an n×m matrix B with only m
nonzero entries, one in each column and at most one in each row.
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We can also parametrize the nonzeros in matrix B yielding a parameter-
ized version Bλ where each nonzero entry in B is replaced by a parameter and
in which the parameter vector λ is updated to also include the parameters
in Bλ. Then λ includes the parameters of all nonzero entries in A and B.

We get then a controlled system Σλ, which is the parametrized counter-
part of Σ defined in (2), described by

Σλ : ẋ(t) = Aλx(t) +Bλu(t). (4)

The graph G(Σ) can be obtained from G(A) by adding the m input nodes
through the set U = {u1, . . . , um} and m edges, one from each input node to
the corresponding steering node. Hence, G(Σ) has node set X ∪ U , and the
edge set is updated as W :=W ∪ {(uj, xij)|j = 1, 2, . . . ,m}.

In G(Σ), a path (vi0 , vi1), (vi1 , vi2), . . . , (viq−1 , viq), where vi0 ∈ U and viq ∈
X , is called an input-state path. The system Σ is said to be input-connected
if for any state node xi, i = 1, . . . , n, there exists an input-state path with
end node xi.

The notion of structural controllability was introduced and studied by
Lin, who proved a necessary and sufficient condition for structural controlla-
bility in terms of graph theoretic objects called cacti, see [17]. The following
result can proved to be equivalent to Lin’s result, see for instance [24, 26].

Theorem 1. Let Σ be the linear structured system defined by (2) with asso-
ciated graph G(Σ). The system is structurally controllable if and only if

1. the system Σ is input-connected,

2. g-rank[A,B]=n.

In the following, the conditions 1 and 2 of Theorem 1 will be referred to
as the input connection condition and the rank condition, respectively.

Given a structured system of type (1), with associated graph G(A), the
steering node selection problem then amounts to extend G(A) with edges
(input-steering node) in such a way that the conditions of Theorem 1 are
fulfilled in the extended graph G(Σ).

4. Structural controllability via steering node selection

We will first look at the two conditions for structural controllability indi-
vidually.
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4.1. Input connection condition

Consider the linear structured system defined by (1) with its associated
graph G(A). A strongly connected component C is defined to be a maximum
set of nodes of G(A) such that there exists a path, possibly of length zero,
between any two nodes of C. The graph can be partitioned into a set of
strongly connected components and this set can be endowed with a partial
order. We are then interested in strongly connected components which have
no incoming edges from other strongly connected components.

Definition 2. A strongly connected component of G(A) with no incoming
edge from another strongly connected component is called a Critical Connec-
tion Component (CCC). The number of Critical Connection Components is
called the connection defect and is denoted by dc(A).

From [4, 9], we can deduce a condition for a set of steering nodes to be
admissible for the input connection condition.

Proposition 1. Consider the linear structured system defined by (1) with
associated graph G(A). A steering node set S is admissible for the input
connection condition if and only if there exists a node of S in any Critical
Connection Component of G(A).

The previous notions and results can be illustrated on Example 1. The
graph possesses five strongly connected components, namely {x1, x3}, {x2},
{x5}, {x8} and {x4, x6, x7}, where {x1, x3}, {x5} and {x8} are the Critical
Connection Components, so that dc(A) = 3. It follows from Proposition 1,
and it is clear from the graph, that input connection is verified if and only if
x5, x8, and either x1 or x3 are steering nodes.

4.2. Rank condition

We next characterize the rank condition of Theorem 1, i.e., g-rank[A,B] =
n. We do this by first computing the generic rank of matrix A. Once this
rank is known, the rank condition of Theorem 1 can be fullfilled by an ap-
propriate choice of the steering nodes. The previous implies that the rank
condition of Theorem 1 can be studied by looking at the generic rank of
matrix A. The rank defect n− g-rank (A), which is denoted dr(A), equals the
number of steering nodes needed to make the rank condition of Theorem 1
become true.

9



Recall that in this paper matrix B is of special form as it consists of
columns each having only one structural nonzero at distinct rows and there-
fore can be identified with a set of steering nodes.

The generic rank of A will be computed using a bipartite graph associated
with the system (1). This bipartite graph H(A) can be introduced as follows.
The bipartite graph associated with system (1) is H(A) = (V+,V−;W ′)
where the sets V+ and V− are two disjoint node sets, andW ′ is the edge set.

• The node set V+ is given by {x+
1 , . . . , x

+
n } and the node set V− is given

by {x−1 , . . . , x−n }. Notice that we have in fact split each state node xi
of G(A) into two nodes x+

i and x−i .

• The edge setW ′ is described byW ′ = {(x+
i , x

−
j )|aji 6= 0}. In the latter,

as before, aji 6= 0 means that the (j, i)-th entry of the matrix A is a
structural nonzero.

A matching in the bipartite graph H(A) = (V+,V−;W ′) is a set of edges
M⊆W ′ such that the edges inM have no common node. A node is covered
by a matching if there exists an edge in the matching that is incident to the
node. The cardinality of a matching, i.e., the number of edges it consists of,
is also called its size. A matching M is called maximum if its cardinality is
maximum. The maximum matching problem consists of finding a matching
of maximum cardinality. The maximum matching problem can be solved by
using efficient combinatorial algorithms, see for example [15]. We recall the
following proposition, see [9].

Proposition 2. Consider the linear structured system defined by (1) with
associated bipartite graph H(A). The generic rank of A is equal to the size
of a maximum matching in H(A). In particular, dr(A) = n− g-rank (A) is
the minimal number of steering nodes needed to make the rank condition of
Theorem 1 become true.

A useful tool to parameterize all maximum matchings in a bipartite
graph is the Dulmage-Mendelsohn decomposition, see [13], abbreviated as
DM-decomposition, which will be presented now, see also [20]. The DM-
decomposition of the bipartite graph H(A) = (V+,V−;W ′) is the uniquely
defined family of bipartite subgraphs Hi = (V+

i ,V−i ;W ′i), called the DM-
components, where {V+

0 ,V+
1 , · · · ,V+

r ,V+
∞} is a partition of V+, and likewise

for V− and W ′. In the decomposition, the bipartite subgraph H0 is called
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minimal inconsistent part, the bipartite subgraph H∞ is called maximal in-
consistent part, and the other subgraphs Hi, i = 1, . . . , r, are called consistent
parts. The used names come from a partial ordering ≺ that can be assigned
to the bipartite subgraphs, implying that H0 ≺ Hi ≺ H∞, for i = 1, . . . , r.

The DM-decomposition and the above components have the following
properties, for details see [20].

Proposition 3. Let H(A) = (V+,V−;W ′) be a bipartite graph having a
DM-decomposition, with Hi = (V+

i ,V−i ;W ′i), i = 0, 1, . . . , r,∞, as its DM-
components. Then we have the following.

1. A maximum matching on H(A) is a union of maximum matchings on
the DM-components Hi, i = 0, 1, . . . , r,∞.

2. Every node of V−0 (or V+
∞ ,or V+

i , V−i , i = 1, . . . , r) is covered by any
maximum matching on H(A).

3. A node v+ ∈ V+ belongs to the minimal inconsistent part H0 if and
only if there exists a maximum matching on H(A) that does not cover
node v+, implying that |V+

0 | > |V−0 |.
4. A node v− ∈ V− belongs to the maximal inconsistent part H∞ if and

only if there exists a maximum matching on H(A) that does not cover
node v−, implying that |V−∞| > |V+

∞|.

Note that for the consistent parts there holds |V+
i | = |V−i | for i = 1 . . . , r.

The rank condition for controllability can then be expressed using only
the maximal inconsistent part of the DM-decomposition as follows, see [6].

Proposition 4. Consider the linear structured system defined by (1) with
associated bipartite graph H(A) and the corresponding DM-decomposition.
We have that g-rank (A) = n−

(
|V−∞| − |V+

∞|
)
.

The result follows from Proposition 3, especially point 4. Indeed, the
size of a maximum matching equals |V−0 |+ |V+

∞|+ |V±1 |+ . . .+ |V±r |, whereas
n = |V−0 |+ |V−∞|+ |V−1 |+ . . .+ |V−r |, where |V+

i | = |V−i | for i = 1 . . . , r.

Proposition 5. Consider the linear structured system defined by (1) with
associated bipartite graph H(A) and the corresponding DM-decomposition.
A steering node set S is admissible for the rank condition if and only if there
exists a maximum matching of the bipartite subgraph H∞ such that for every
node x−i in V−∞ that is not covered by the matching, there holds xi ∈ S.
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Figure 2: DM-decomposition of Example 1

The DM-decomposition corresponding to the bipartite graph associated
with Example 1 is given in Figure 2. The maximum size of a matching
in H(A) is 6. Hence, the generic rank of A is equal to 6 and dr(A) =
2. From Proposition 5 it follows that a maximum matching of H∞ can be
(x+

3 , x
−
1 ), which implies that a possible admissible steering node set for the

rank condition is {x2, x8}, but also {x1, x8} can act an admissible steering
node set when (x+

3 , x
−
2 ) is choosen as maximum matching of H∞.

5. Steering node classification for structural controllability

We start now with a structured system of type (1), hence only defined by
the matrix A. As before, we denote the associated directed graph by G(A)
and the associated bipartite graph by H(A). In this section we will give
a classification of steering nodes according to the definitions of Section 2.
We will provide this classification first for each condition (input connection
condition and rank condition) and then for controllability.

5.1. Classification of steering nodes for input connection

For the input connection condition we have the following.

Proposition 6. Consider a linear structured system of type (1) with associ-
ated graph G(A). For the input connection property, node xi, being element
of an admissible steering node set S for the input connection condition, is

1. useless if and only if it belongs to no Critical Connection Component,

2. useful if and only if it belongs to a Critical Connection Component,
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3. essential if and only if it belongs to a Critical Connection Component
of cardinality one.

Proof:

1. ⇒ Assume that xi belongs to a Critical Connection Component Cj and
consider an admissible steering node set S composed of a steering node
in each Critical Connection Component with xi the only steering node
in Cj. Then S\{xi} is no longer an admissible steering node set, and
consequently xi is not useless.
⇐ Conversely, assume now that the steering node xi belongs to no
Critical Connection Component, and consider any admissible steering
node set S such that xi ∈ S. From Proposition 1, the set S must con-
tain a node in each Critical Connection Component, therefore S\{xi}
is still an admissible steering node set and xi is useless.

2. Obvious from point 1.

3. ⇒ Assume that xi belongs to a Critical Connection Component Cj.
Hence, by the above point, xi is usefull. Now assume that Cj of car-
dinality more than one. Denote by xk another node of Cj. We can
construct an admissible steering node set containing xk, but not xi.
Therefore, xi is not essential.
⇐ Conversely, if xi belongs to a Critical Connection Component Cj
of cardinality one, it follows from Proposition 1, that any admissible
steering node set must contain xi. Therefore xi is essential.

Note that {xi} is a Critical Connection Component if and only if there is
no edge (xj, xi) in G(A) for j 6= i. Hence, node xi is essential for the input
connection condition if and only if there is no edge (xj, xi) in G(A) for j 6= i.

5.2. Classification of steering nodes for the rank condition

For the rank condition we have the following.

Proposition 7. Consider a linear structured system of type (1) with asso-
ciated bipartite graph H(A) and the corresponding DM-decomposition. For
the rank condition property, node xi, being element of an admissible steering
node set S for the rank condition, is

1. useless if and only if x−i does not belong to the V−∞ set of the DM-
decomposition,

2. useful if and only if x−i belongs to the V−∞ set of the DM-decomposition,
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3. essential if and only if there exists no edge (x+
j , x

−
i ) in H(A).

Proof:

1. ⇒ Assume that x−i ∈ V−∞. Then according to point 4 of Proposition 3,
there exists a maximum matching on the bipartite subgraph H∞ that
does not cover x−i . Denote such matching byM∞ and denote the nodes
ofM∞ incident to V−∞ byM−

∞. Define S− = V−∞\M−
∞ and let S denote

the corresponding nodes in X , i.e., x−k ∈ S− ⇐⇒ xk ∈ S. Then,
M−
∞ ∪ S− = V−∞, M−

∞ ∩ S− = ∅ and |S−| = |V−∞| − |V+
∞|. According

to Proposition 5 the set S is admissible. Clearly, xi ∈ S−. Now leave
xi out of S, or equivalently x−i out of S−, and consider S\{xi}. Then
according to Proposition 5, the set S\{xi} is not admissible. Indeed,
any maximum matching on H∞ has size |V+

∞|. The number of nodes
not covered by such matching is |V−∞| − |V+

∞|, implying that at least
one of the uncovered nodes can also not be covered by S−\{x−i }, as
|S−\{x−i }| < |V−∞|−|V+

∞|. With S\{xi} being not admissible, it follows
that xi is useful, i.e., is not useless.
⇐ Assume that x−i 6∈ V−∞. Then x−i ∈ V−\V−∞. Since S is admissible,
by Proposition 5, there exists a maximum matching on the bipartite
subgraph H∞ such that for every x−j ∈ V−∞ not covered by this matching
there holds that xj ∈ S. Now fix this matching. Recall that xi ∈ S
and leave xi out of S. Then still for every x−j ∈ V−∞ not covered by the
matching there holds that xj ∈ S\{xi}. Hence, by Proposition 5, it
follows that S\{xi} is also admissible and therefore xi is useless.

2. Obvious from point 1.

3. ⇒ Suppose that there exists an edge (x+
j , x

−
i ). Since xi is at least

useful, it follows from the ordering of the DM-components, see [20],
that x+

j ∈ V+
∞. Then there always exists a maximum matching of

H∞ that covers x−i . Indeed, if a given maximum matching does not
cover x−i , we can exchange the edge (x+

j , x
−
k ), which belongs to the

maximum matching, with (x+
j , x

−
i ) to get a new maximum matching

of H∞ that does cover x−i . The nodes in V−∞ not covered by this new
matching induce an admissible steering node set that does not contain
xi. Therefore, xi is not essential.
⇐ Assume that x−i ∈ V−∞. If H(A) has no edge (x+

j , x
−
i ), then no

(maximum) matching on H∞ will ever cover x−i . Hence, by Proposition
5, node xi has to be in any admissible steering node set S. Hence, xi
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is contained in any admissible steering node set and is consequently
essential.

The previous results can be compared with those of [16] (more precisely
with the Supplementary Information associated with this paper). Point 3 of
our Proposition 7 corresponds to the Supplementary Note 1, but our proof is
purely a graph theoretic one, instead of using integer programming arguments
as in [16]. Point 1 of our Proposition 7 corresponds to the Supplementary
Note 6, but our characterisation of useless nodes is much more explicit than
in [16].

5.3. Classification of steering nodes for controllability

Next we combine the previous results to obtain a classification of steering
nodes for structural controllability.

Theorem 2. Consider a linear structured system of type (1) with associ-
ated graph G(A), associated bipartite graph H(A) and the corresponding DM-
decomposition. For controllability, the steering node xi, being an element of
a steering node set S that is admissible for controllability, is

1. essential if and only if there exists no edge (xj, xi) for j 6= i in G(A).

2. useless if xi belongs to no Critical Connection Component and x−i does
not belong to the V−∞ set of the DM-decomposition.

Proof:

1. ⇒ Note that xi is a node in the steering node set S that is admissible
for controllability. Then S is a steering node set that is also admissible
for both the input connection condition and the rank condition. Now
assume that there is an edge (xj, xi) in G(A), or equivalently (x+

j , x
−
i )

in H(A). Then, by Propositions 6 and 7, node xi is not essential for
both the input connection condition and the rank condition. Hence,
there exist steering node sets Sc and Sr that are admissible for the
input connection and the rank condition, respectively, that both do
not contain xi. Then the union Sc ∪ Sr does not contain xi too, and is
an admissible steering node set for both the input connection condition
and the rank condition, and consequently also for controllabiliy. Hence,
node xi is not essential for controllability.
⇐ If there is no edge (xj, xi) for i 6= j in G(A), then either there is
no edge (xj, xi) at all, or there is only an edge (xi, xi) in G(A). In the
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latter case, {xi} is a strongly connected component without incoming
edges and it follows from Proposition 6 that xi is essential for the input
connection condition. In the former case, there is no edge (x+

j , x
−
i ) at

all in H∞, and it follows from Proposition 7 that xi is essential for the
rank condition. Being essential for one of the two conditions, it follows
that xi is essential for controllability.

2. Assume that xi is useless for both properties and consider any steering
node set S containing xi that is admissible for controllability. The
two properties remain satisfied with S\{xi}, therefore controllability is
preserved too and consequently xi is useless for controllability.

6. Some remarks and examples

Some remarkable points follow from Theorem 2.

Remark 1. From the set of essential steering nodes for controllability, being
the union of the essential steering nodes for the two subproperties, it follows
that an essential steering node is a node with no incoming edge from another
state (but may have a self-loop). The latter can be related with the interesting
discussion in [10, 29] on the importance of self-loops in applications.

Remark 2. In Theorem 2, we only characterize a subset of the useless steer-
ing nodes for controllability (namely those which are useless for both subprop-
erties). Indeed, as will be seen in a next example, some steering nodes may
be useless for controllability, while being useful for one of the subproperties.

Example 1 (cont.) First we illustrate our main result on Example 1 whose
graph G(A) is depicted in Figure 1, while the bipartite graph H(A) and its
DM-decomposition are shown in Figure 2.

From Proposition 6 it follows that nodes x2, x4, x6, x7 are useless for in-
put connection, while nodes x1, x3, x5, x8 are useful, with nodes x5, x8 being
essential, because they correspond to Critical Connection Components of car-
dinality one.

From Proposition 7 it follows that nodes x3, x4, x5, x6, x7 are useless for
the rank condition, nodes x1, x2, x8 are useful, with node x8 being essen-
tial, because it has no incoming edge. From Theorem 2 it follows that nodes
x5, x8 are essential steering nodes for controllability, while nodes x4, x6, x7

are useless for controllability. It can be checked by inspection that besides
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nodes x5, x8 also the nodes x1, x2, x3 are useful for controllability. For ex-
ample, node x2 cannot be discarded from the admissible steering node set
{x2, x3, x5, x8} because of the rank condition.

We give now an example to illustrate Remark 2.

Example 2. Let A given below be a (3×3) structured matrix, whose digraph
G(A) is depicted in Figure 3.

A =

 0 ∗ 0
∗ 0 0
∗ ∗ 0

 .

x
2x

1

x
3

Figure 3: Digraph of Example 2 with strongly connected components
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Figure 4: DM-decomposition of Example 2

The graph G(A) possesses two strongly connected components, being {x1, x2}
and {x3}, where {x1, x2} is the Critical Connection Component. Hence,
dc(A) = 1.
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The DM-decomposition of H(A) is shown in Figure 4. Since the maximum
size of a matching in H(A) is 2, the generic rank of A is equal to 2 and
dr(A) = 1.

From Proposition 6 it follows that node x3 is useless for input connection,
while nodes x1 and x2 are useful.

From Proposition 7 it follows that there are neither useless nor essential
nodes for the rank condition, so that nodes x1, x2 and x3 are just useful for the
rank condition. From Theorem 2 we get no information about useless steering
nodes for controllability because there are no useless steering nodes for both
subproperties. However, it is clear that node x3 is useless for controllability.
Indeed, the input connection implies that nodes x1 or x2 should be steering
nodes, which is also enough to ensure the rank condition.

7. Extension to the case of forbidden nodes

In this Section, as in [22], we assume that there is a set of forbidden
nodes, which cannot be used as steering nodes. This situation is frequently
met in applications.

Let us denote by F ⊆ X the set of forbidden nodes, and the complemen-
tary subset by E = X\F . The nodes of E will be called effective nodes. These
effective nodes E = {xi1 , . . . , xip}, with ij ∈ {1, . . . , n} and i1 < i2 < · · · < ip,
can be associated with control inputs in order to define a steering node set
S ⊆ E as in Section 2.

We extend the notions and definitions of Section 2, by restricting the
possible sets of steering nodes S to be subsets of E . It is clear that, depending
on E , an admissible steering node set for controllability does not necessarily
exist. Let us first examine this question.

As was done for the steering node set in Section 2, we can associate
a matrix BE with the effective node set E . The condition of existence of
an admissible steering node set for controllability is stated in the following,
rather obvious, lemma, which is given without proof.

Lemma 1. There exists an admissible effective steering node set for control-
lability for the system (1) if and only if the pair (A,BE) is controllable.

If considering the problem in the structured system framework, the con-
trollability of (A,BE) can be tested using a version of Lin’s theorem as in
Theorem 1. First define the bipartite graph H(A,BE) by adding to V+, on
H(A), a set of inputs vertices u1, . . . , up and edges (uj, x

−
ij

), for j = i, . . . , p.
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Using refinements of the two conditions of Theorem 1, see for example
[4], the result can be reformulated as follows.

Proposition 8. There exists an admissible steering node set for controlla-
bility of the structured system (1) if and only if

1. for any Critical Connection Component Ci of G(A) we have Ci∩E 6= ∅,
2. the size of a maximum matching in H(A,BE) is n.

Definition 1 can readily be extended to the case of forbidden nodes by
simply adding that S ⊆ E , i.e., admissible steering nodes should be effective.

For a given property P , we denote by Es the set of essential nodes and by
Us the set of useless nodes when there is no restriction on the set of possible
steering nodes, i.e., when F = ∅. Denote by EsE the set of essential nodes
and UsE the set of useless nodes when the set of possible steering nodes is E .
Then we have the following simple general result.

Lemma 2. With the previous definitions, we have:

1. Es ⊂ EsE ,

2. Us ∩ E ⊂ UsE .

Proof:
Consider again the definitions of essential and useless nodes in Definition

1. It is obvious that the restriction of the set of possible nodes do not change
their properties, and the result follows.

In simple terms, the previous means that the introduction of forbidden
nodes can only increase the sets of essential and useless nodes.

Notice that in point 1 of Lemma 2, the intersection with E need not be
explicited, since the essential nodes of the problem without forbidden nodes
must belong to any set of effective nodes.

7.1. Classification of steering nodes for input connection

For the input connection condition we have the following.

Proposition 9. Consider a linear structured system of type (1) with associ-
ated graph G(A) and effective node set E. For the input connection property,
node xi, being element of an admissible steering node set S ⊆ E for the input
connection condition, is
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1. useless if and only if it belongs to no Critical Connection Component,

2. useful if and only if it belongs to a Critical Connection Component,

3. essential if and only it is the unique effective node in a Critical Con-
nection Component.

Proof:

1. The arguments are exactly the same as those of point 1 in the proof of
Proposition 6.

2. Obvious from point 1.

3. ⇒ Assume that xi is effective and belongs to a Critical Connection
Component Cj. Hence, by the above point, xi is usefull. Now assume
that there exists another effective node xk ∈ Cj. We can construct an
admissible steering node set containing xk, but not xi. Therefore, xi is
not essential.
⇐ Conversely, if xi is the unique effective node in a Critical Connec-
tion Component Cj, it follows from Proposition 1, that any admissible
steering node set must contain xi. Therefore xi is essential as effective
node

It is immediate to check that Proposition 9 reduces to Proposition 6 when
F = ∅.

7.2. Classification of steering nodes for the rank condition

Proposition 10. Consider a linear structured system of type (1) with asso-
ciated graph G(A), associated bipartite graph H(A), and the corresponding
DM-decomposition. Consider a set of effective nodes E, BE the correspond-
ing input matrix, and H(A,BE) the associated bipartite graph with its DM-
decomposition. For the rank condition property, node xj, being element of an
admissible steering node set S ⊆ E for the rank condition, is

1. useless if and only if x−i does not belong to the V−∞ set of the DM-
decomposition of H(A),

2. useful if and only if x−i belongs to the V−∞ set of the DM-decomposition
of H(A),

3. essential if and only if the corresponding input node uij does not belong
to the V+

0 set in H(A,BE).

Proof:
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1. ⇒ We have at our disposal p effective basis vectors {vi1 , . . . , vip} such
that rank [A, vi1 , . . . , vip ] = n. If vik is such that rank [A, vik ] = rankA,
or vik ∈ SpanA, this node is clearly useless for the rank condition. In
graph terms this corresponds to the fact that x−k does not belong to
the V−∞ set of H(A).
⇐ The arguments are the same as in the proof of Proposition 7.

2. Obvious from point 1.

3. ⇒ Notice first that, since the size of a maximum matching in H(A,BE)
is n, the H∞ part of H(A,BE) is empty. Suppose now that uij belongs
to the V+

0 set in H(A,BE). Then there exists a maximum matching
in H(A,BE) which does not cover uij . Therefore one can build an
admissible steering node set which does not contain xj, so xj is not
essential.
⇐ Assume that uij does not belong to the V+

0 set in H(A,BE). Then,
any maximum matching in H(A,BE) contains uij and discarding uij
(which is equivalent to discard the corresponding effective node xj from
the set S), would decrease the size of a maximum matching. Then
S\{xj} is not admissible and xj is essential.

7.3. Classification of steering nodes for controllability

The two previous propositions can be combined to get the general classi-
fication of nodes for controllability.

Theorem 3. Consider a linear structured system of type (1) with associ-
ated graph G(A), associated bipartite graph H(A), and the corresponding
DM-decomposition. Consider a set of effective nodes E, BE the correspond-
ing input matrix, and H(A,BE) the associated bipartite graph with its DM-
decomposition. For controllability, the steering node xj, being an element of
a steering node set S ⊂ E that is admissible for controllability, is

1. essential if and only xj is the unique effective node in a Critical Con-
nection Component or the corresponding input node uij does not belong
to the V+

0 set in H(A,BE).

2. useless if xj belongs to no Critical Connection Component and x−j does
not belong to the V−∞ set of the DM-decomposition of H(A).

Proof: Follows the same lines as the proof of Theorem 2.

21



7.4. Examples

Example 1 (cont.) Consider again Example 1, assume that the set of
forbidden nodes is F = {x1, x4, x7} and then that E = {x2, x3, x5, x6, x8}. As
previously, nodes x5 and x8 are essential for input connection, but now x3

is essential too, since it is the only effective node in the Critical Connection
Component {x1, x3}. Concerning the rank condition, nodes x3, x5 and x6 in
E are useless since x−3 , x

−
5 and x−6 do not belong to the V−∞ set of the DM-

decomposition of H(A). The DM-Decomposition of the graph H(A,BE), see
Figure 5, shows that the input nodes u2 and u8 do not belong to the V+

0 set

x
5

-

u
2

x
4

+

x
7

-

u
5

x
5

+

u
8

x
8

-

V
1

+

V
2

-

x
3

+ x
1

-

V
2

+

V
1

-

x
2

-

u
6

x
6

-

V
0

-

V
0

+

x
1

+

x
3

-

u
6

x
7

+

x
6

u
3

x
4

-x
2

+

x
6

+

x
8

+

Figure 5: Digraph of bipartite graph of H(A,BE) in Example 1

in H(A,BE), so x2 and x8 are essential nodes for the rank condition.
In summary, for controllability, as nodes in E nodes x2, x3, x5 and x8

are essential, and node x6 is useless because it does not belong to a Critial
Connection Component.

Notice that in this case, {x2, x3, x5, x8} is also a solution for the minimal
controllability problem, see [22, 1, 23]. This solution contains 4 nodes, while
when F = ∅, it can be checked that {x1, x5, x8} is a solution for the minimal
controllability problem with only 3 nodes.

Example 3. In this example the use of forbidden and effective nodes will be
illustrated in more details since the example will show that the inclusions in
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Lemma 2 can be strict. Therefore, consider the system described by the 4× 4
structured matrix

A =


0 ∗ 0 0
∗ 0 0 0
∗ 0 ∗ 0
0 ∗ 0 0

 .

The digraph G(A) of the system is displayed in Figure 6. The DM-

x x

xx 1 2

43

Figure 6: Digraph of Example 3

decomposition of the bipartite graph H(A) is displayed in Figure 7.
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Figure 7: DM-decomposition of bipartite graph of Example 3

From the results of Section 4, we can compute the sets of useless and es-
sential nodes. In summary, in the context of Lemma 2, we have the following
sets Es and Us with the associated properties.

Es Us
input connection ∅ {x3, x4}
rank ∅ {x2, x3}
controllability ∅ {x3}

23



Now consider E = {x1, x3, x4} as a set of effective nodes, so that x2 is a
forbidden node.

From the results of this section, and using the DM-decomposition of the
bipartite graph H(A,BE), which is displayed Figure 8, one can compute the
sets of useless and essential nodes.

x

x

x

x

x

x x

x

VV +

-

-

-

-

-

+

+

+

+

1

1

2

2

3 3

4

4

0 0

u

u

u3

4

1

Figure 8: DM-decomposition of bipartite graph of H(A,BE) in Example 3

In summary, in terms of Lemma 2 and the effective node set E = {x1, x3, x4},
we have the following sets Es, Us, EsE and UsE with the associated properties.

Es Us EsE UsE
connection ∅ {x3, x4} {x1} {x3, x4}
rank ∅ {x2, x3} ∅ {x3}
controllability ∅ {x3} {x1} {x3, x4}

So, in the context of Lemma 2, we have a strict inclusion Es ⊂ EsE for
the input connection condition and the controllability condition, and a strict
inclusion Us ∩ E ⊂ UsE for the controllability condition.

Conversely, it can be seen from the comparison of Propositions 6 and 9,
that for input connection, in point 2 of Lemma 2 (concerning useless steer-
ing nodes) we have indeed an equality. The same can be said for the rank
condition by comparing Propositions 7 and 10.

8. Complexity analysis

The classification of steering nodes mainly implies the computation of the
Critical Connection Components of G(A) and of the DM-decomposition of
H(A).

24



The decomposition of a graph into strongly connected components is a
standard combinatorial problem for which very efficient polynomial algo-
rithms are available [28]. In particular, Kosaraju’s algorithm gives the de-
composition in strongly connected components with a complexity O(n+ k),
where k is the number of non-zero entries in A.

The DM-decomposition implies first the determination of a particular
maximum matching, which is then completed by an alternate chain tech-
nique, see the details in [20]. Since the alternate chain technique is of a
lower complexity than the maximum matching search, the complexity of the
DM-decomposition is the same as, for example, in [15].

It follows that steering nodes classification for structured systems is a
polynomial problem.

9. Conclusions and outlook

In this paper we studied a classification of steering nodes into useless,
usefull or essential ones in order for a large complex structured system to
become structually controllable. For the individual conditions for structural
controllability, being the input connection condition and the rank condition,
this classification could be given completely. However, for their combination,
culminating in a classification of steering nodes for structural controllabilty,
this still is not settled completely as far as useless steering nodes are con-
cerned. This will remain a topic for further research. The methods under-
lying the obtained classifications are based on well-understood algorithms
coming from the theory of flows in networks. A generalization of the results
is given in case the nodes of the system can be divided into forbidden and
effective (=non-forbidden) nodes.
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