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Glucosinolate-derived
isothiocyanates impact
mitochondrial function in fungal cells
and elicit an oxidative stress
response necessary for growth
recovery
Benoit Calmes1†, Guillaume N’Guyen1†, Jérome Dumur1, Carlos A. Brisach1,
Claire Campion1, Béatrice Iacomi2, Sandrine Pigné1, Eva Dias1, David Macherel1,
Thomas Guillemette1 and Philippe Simoneau1*

1 Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAV, Angers, France, 2 Universitatea de
Ştiinţe Agronomice şi Medicinǎ Veterinarǎ Bucureşti, Bucharest, Romania

Glucosinolates are brassicaceous secondary metabolites that have long been
considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs),
are glucosinolate-breakdown products that have negative effects on the growth of
various fungal species. We explored the mechanism by which ITCs could cause fungal
cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model
organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption
rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-
membrane depolarization. We also found that two major regulators of the response to
oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were
activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found
to promote the expression of different oxidative-response genes. This response might
play a significant role in the protection of the fungus against ICTs as mutants deficient in
AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the
loss of these genes was accompanied by a significant decrease in aggressiveness on
Brassica. We suggest that the robust protection response against ICT-derived oxidative
stress might be a key adaptation mechanism for successful infection of host plants by
Brassicaceae-specialist necrotrophs like A. brassicicola.

Keywords: Alternaria brassicicola, isothiocyanates, oxidative stress, mitochondria, ROS

Introduction

Plants- as part of their overall defense arsenal- counter pathogen attack by producing de novo
antimicrobial phytoalexins (Hammerschmidt, 1999; Ahuja et al., 2012). Besides these newly
synthesized metabolites, many plant species also constitutively accumulate compounds referred
to as phytoanticipins (Osbourn, 1996) that, due to their high concentration in tissues and potential
antimicrobial activities, may also contribute to protecting the plant from pathogen infection. For
instance, it has been reported that falcarinol-type polyacetylenes accumulate in carrot leaves at
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concentrations estimated as being 5- to 15-fold higher than
IC50 values reported for the fungal pathogen Alternaria dauci
(Lecomte et al., 2012). In the same vein, garlic can yield ∼2 mg
g−1 of the thiosulfinate allicin (Slusarenko et al., 2008) while
sevenfold lower quantities are sufficient to inhibit the growth of
numerous fungal pathogens (Curtis et al., 2004). Phytoanticipins
are a very heterogeneous group of molecules with high structural
diversity and the basis of their biocidal activity on fungal cells may
not be unique. Indeed, the toxicity of the major oat root saponin
avenacin has been associated with its ability to form complexes
with fungal membrane sterols, leading to pore formation and loss
of membrane integrity (Morrissey and Osbourn, 1999). Similarly,
falcarindiol might induce permeabilization of the fungal plasma
membrane (Lecomte et al., 2012). By contrast, allicin is readily
taken up by fungal cells and, due to its oxidizing properties, might
activate apoptosis (Gruhlke et al., 2010).

Members of the Brassicaceae plant family constitutively
accumulate high levels (up to 1% of dry weight) of sulfur-
containing glucosides called glucosinolates (GLS; Fahey et al.,
2001). Upon tissue damage (e.g., during pathogen invasion), GLS
are enzymatically converted into various breakdown products.
Isothiocyanates (ITCs) are one of these myrosinase-catalyzed
hydrolytic products (Lambrix et al., 2001) which have been shown
to inhibit the growth of various pathogens in vitro (Tierens
et al., 2001; Sellam et al., 2007a). In planta, the protective role
of GLS against pathogen invasion has yet to be clarified but their
catabolism could yield products able to confine fungal infection
via their cytotoxicity or through activation of innate immune
responses (Bednarek et al., 2009; Clay et al., 2009; Stotz et al.,
2011). The cell toxicity of ITCs has mainly been studied on
mammal cells due to their antitumor activity. They indeed have
the capacity to inhibit the growth of several types of cancer cells
by causing apoptotic and autophagic cell death (Cuddihy et al.,
2008; Mi et al., 2008; Boreddy et al., 2011). The mechanism by
which ITCs causes cell death is not yet fully understood and they
may mediate their effects either via direct protein modification
or indirectly by disruption of redox homeostasis and increased
thiol oxidation (Brown and Hampton, 2011). In line with this,
it has been shown that following exposure to ITC, fungal cells
displayed a response similar to that elicited during oxidative
stress with over-expression of several genes potentially involved
in cell protection against oxidative damage (Sellam et al., 2007b).

The aim of this study was to further explore the mechanism
by which ITCs exert their toxicity on fungal cells and to study
the adaptive response of a Brassicaceae- specific fungus. We
used as a model Alternaria brassicicola, the causal agent of the
black spot disease of Brassicaceae, to dissect the effects of these
glucosinolate-breakdown products on mitochondrial function,
intracellular accumulation of reactive oxygen species (ROS) and
oxidative stress signaling.

Materials and Methods

Fungal Strains and Growth Conditions
The A. brassicicola wild-type (WT) strain Abra43 used in this
study has previously been described (Dongo et al., 2009; Joubert

et al., 2011). For routine culture, A. brassicicola was grown and
maintained on potato dextrose agar (PDA). The method based
on micro-scale liquid cultivation (from conidial suspensions)
and automated nephelometric recording of growth, followed by
extraction of relevant variables (lag time and growth rate), was
described by Joubert et al. (2010). To study the susceptibility of
fungal strains to ITC, allyl-ITC (AlITC), benzyl-ITC (BzITC),
or phenetyl-ITC (PhITC), all purchased from Aldrich Chemical
Co. (Milwaukee, WI, USA), were diluted from stock solutions
prepared in methanol at the final desired concentrations. Solvent
concentrations in controls and assays did not exceed 1% (v/v).

RNA Isolation and Expression Analysis by
Real-Time Quantitative PCR
Total RNA was prepared according to the TRIzol reagent
protocol (Invitrogen). Additional cleanup and DNase treatment
were performed using the Nucleospin RNA II kit (Macherey-
Nagel) according to the manufacturer’s protocol. First-strand
complementary DNA was synthesized from 5 µg of total
RNA and used for real-time PCR. Amplification experiments
were conducted as previously described (Sellam et al., 2007b)
with specific primer combinations (Supplementary Table S1).
The relative quantification analysis was performed using the
comparative ��Ct method as described by Winer et al. (1999).
To evaluate the gene expression level, the results were normalized
using Ct values obtained from tubulin cDNA amplifications run
on the same plate.

Generation of Targeted Gene Replacement
Constructs and Fungal Transformation
The construction of the �abhog1 strain was previously described
by Joubert et al. (2011). To construct the �abap1 mutant
strains, a gene replacement cassette was generated using the
double-joint PCR procedure (Yu et al., 2004). The selectable
marker inserted in the PCR constructs corresponded to the Hph
gene cassette (1436 bp) from pCB1636 (Sweigard et al., 1995)
which confers resistance to hygromycin B. The sets of primers
used to amplify the 5′ and 3′ flanking regions of the targeted
gene are presented in Supplementary Table s1. The double-
joint final PCR products were used to transform A. brassicicola
Abra43 protoplasts as described by Cho et al. (2006). Potential
transformants were prescreened by PCR with relevant primer
combinations (Supplementary Table S1) to confirm integration of
the replacement cassette at the targeted locus. Two putative gene
replacement mutants were further purified by three rounds of
single-spore isolation and then confirmed by PCR and Southern
blot analysis. Genomic DNA extraction and Southern blot
analysis were conducted as previously described by Joubert et al.
(2011).

Generation of Fusion Protein Constructs
The AbHog1 and AbAp1 C-terminal GFP fusion constructs
were generated by fusion PCR as described in Pochon et al.
(2013). Using A. brassicicola genomic DNA as template, the
respective ORFs and 3′ flanking regions were amplified with
relevant primer combinations (Supplementary Table S1). In
parallel, a fragment containing the sGFP and Hyg B cassettes
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were amplified from the plasmid pCT74 (Lorang et al., 2001)
and pCB1636, respectively. The resulting PCR fragments were
mixed and subjected to second fusion PCR. A linker containing
three glycine residues was introduced at the 3′ end of the
respective ORFs to replace the stop codons. The final PCR
products were transformed either in the A. brassicicola WT
strain Abra43 or in a derivative strain constitutively expressing
mCherry-NLS from plasmid pBV579 (Khang et al., 2010) under
control of the ToxA promoter from pCT74. Transformants
with the expected genetic integration events were identified by
PCR.

Infection Assays
For plant infection assays on Brassica oleracea plants (var.
Bartolo), 5 µL drops of A. brassicicola conidia suspension (105
conidia/mL in water) with or without diphenyleneiodonium
(DPI; 0.4 µM) dissolved in DMSO were inoculated on leaves
from 5 weeks-old plants. Inocula were symmetrically deposited
on the left and right sides of the central vein. The plants were then
maintained under saturating humidity (100% relative humidity).
Symptoms were monitored at 7 days post-inoculation (dpi). Ten
leaves were inoculated per condition and the experiment was
repeated twice.

Western Blot Analysis
The phosphorylation status of Hog1-related MAPK in
A. brassicicola was studied by western blot using antibodies
directed against dually phosphorylated forms of p38 MAPK
(Cell Signaling Technology, Beverly, MA, USA). Total Hog1
proteins were detected using anti-Hog1 antibodies (Santa Cruz
Biotechnology). Samples for study of the Hog1-related protein
phosphorylation status were prepared from mycelia obtained by
growing conidial suspensions at 25◦C for 24 h in PDB (2 × 105
conidia/mL) and then exposed to 2.5 mM AlITC. Mycelia were
collected by filtration on filter paper, ground with a mortar and
pestle to a fine powder under liquid nitrogen and homogenized
in ice-chilled buffer containing protease and phosphatase
inhibitors [50 mM Na phosphate, pH 7.4, 1 mM EDTA, 5% (v/v)
glycerol, 1 mM PMSF, 50 mM NaF, 5 mM Na pyrophosphate,
0.1 mMNa vanadate, 10 mM b-glycerophosphate]. Extracts were
centrifuged at 10 000 g for 10 min, and the resulting supernatants
were stored at −80◦C until use. The protein concentration in
the extracts was calculated using a BCA protein assay reagent
(Pierce, Rockford, IL, USA). Equal quantities (5 µg) of protein
samples were loaded on 10% polyacrylamide gels and blotted
onto nitrocellulose membranes (Schleicher and Schuell, Dassel,
Germany). For each treatment, protein samples were prepared
from at least three independent cultures and each sample was
used to prepare at least three series of duplicated blots. Antibody
binding was visualized using an ECL Plus Western blotting
detection reagent (Amersham Biosciences, Buckinghamshire,
UK) after binding of a horseradish peroxidase-conjugated
secondary antibody.

Intracellular Detection of Oxidative Products
Intracellular ROS were detected on 16 h-old germinating conidia
after exposure to 2.5 mM Al-ITC or 1% (v/v) methanol for 1 h.

After treatment, the incubation mixtures were mixed with 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCF-DA, Molecular
Probes) or dihydroethidium (DHE, Molecular Probes) solutions
(1 µM final concentration) and observations were performed
under a fluorescent microscope (Leica DM4500) with the
following filter combinations: 546 and 605 nm excitation and
emission wavelengths respectively for DHE or 480 and 527 nm
excitation and emissionwavelengths respectively for H2DCF-DA.

Measurement of Mitochondrial
Transmembrane Potential
To measure the change in mitochondrial transmembrane
potential (��m), 16 h-old germinating conidia were treated
for 10 min with 2.5 mM Al-ITC or 1% (v/v) methanol
and then the cationic lipophilic dye 5,5′,6′-tetrachloro
1,1′,3,3′tetraethylbenzimidazolylcarbocyanine iodide (JC-1;
Invitrogen) was added (2 µg /mL final concentration), and the
mixture was further incubated for 10 min in the dark. Fungal
mats were then collected by filtration, washed thoroughly with
PDB and observed under a fluorescent microscope with the
following filter combinations: 546 and 605 nm excitation and
emission wavelengths for the visualization of JC-1 aggregates
in mitochondrial matrix, or 480 and 527 nm excitation and
emission wavelengths for visualization of monomers in the
cytoplasm of cells with depolarized mitochondria. To calculate
the green/red fluorescence ratio of JC-1, images were all acquired
with the same settings and exported in the software ImageJ1
to quantify pixel numbers corresponding to green and red
fluorescence.

Oxygen Consumption Rate Measurement
The respiratory activity was measured using the MitoXpress
(Luxcel Biosciences, Cork, Ireland) fluorescent probe. Conidia
(104/mL) of WT Abra43 were germinated for 14 h at 25◦C in
PDB medium, in the wells of a 96-well plate, and growth was
monitored with nephelometry. The medium was then removed
by aspiration and replaced with 150 µL of diluted (10% v/v)
PDB medium containing 100 nM MitoXPress, and overlaid with
100 µL mineral oil. Inhibitors (Al-ITC or KCN) were added
at this stage. Oxygen depletion in the medium was estimated
from the increase in the fluorescence lifetime (LT) of the probe
using a Fluostar Omega plate spectrofluorometer equipped with
a time-resolved fluorescence head (BMG LABTECH GmbH,
Ortenberg, Germany). At each time point, fluorescence relative
units (340 nm excitation, 605–705 nm emission) were recorded
(50 flashes) for 30 µs after 30 and 70 µs, and the probe LT
was calculated from the fluorescence intensity ratio at 30 and
70 µs delays as follows: LT = (70-30)/Ln (W1/W2) where
70 is the W2 delay time (70 µs) and 30 is the W1 delay
time (30 µs). W1 is the RFU signal measured after the W1
delay, W2 is the RFU signal measured after the W2 delay.
MitoXpress LT data were analyzed using the MARS data analysis
software version 2.30 (BMG LABTECH GmbH, Ortenberg,
Germany). To assess the impact of Al-ITC or KCN on hyphae
respiration, the slopes of LT were measured 60–90 min after

1http://rsb.info.nih.gov/ij/
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the addition of the compounds, and compared to those of the
control.

Results

Susceptibility of A. brassicicola to ITC
Analyses of growth curves in liquid medium supplemented with
various concentrations of Al-ITC, Bz-ITC, or Ph-ITC were used
to assess the susceptibility of the WT A. brassicicola strain Abra43
to different ICTs. Areas under the curves were used to estimate
the growth inhibitory effect of each compound and calculate the
IC50. As shown in Figure 1, maximal and minimal inhibitions
were obtained with Al-ITC (IC50 2.9 mM) and Bz-ITC (IC50
6.0 mM), respectively. An intermediate effect was observed with
Ph-ITC (IC50 4.2 mM). Due to the higher toxic effect of Al-ITC
on A. brassicicola, most of the experiments were then performed
using this compound. Careful examination of the growth curves
revealed that the sensitivity of A. brassicicola to the different ITCs
was clearly explained by a delayed entry into the log phase (i.e.,
increased lag times) while its maximum growth rate was only
slightly affected.

ITC Induces Intracellular ROS Accumulation
Reactive oxygen species generation of fungal cells exposed
to 2.5 mM Al-ITC was monitored by using H2DCFDA,
a cell-permeable general ROS indicator that penetrates live
cells but does not fluoresce unless oxidized by ROS. Intense
green fluorescence was distributed along the hyphae in ITC-
treated sample, indicating that ROS was generated in the cells.
No ROS- specific signals were detected in control hyphae
(Figure 2). This result was confirmed after visualization of ROS
production by incubating cells with DHE, a non-fluorescent
compound which, upon reacting with superoxide, is converted
to a fluorescent derivative. These observations demonstrated
that ITC promoted intracellular ROS production. Similar
observations were obtained after exposure to Bz- and Ph-ITC
(not shown).

Hog1 MAP Kinase Activated Upon Exposure to
ITC
In some fungal species the MAP kinase Hog1 has been shown
to be activated by ROS and actually mediate oxidative stress
responses (Moye-Rowley, 2003; Aguirre et al., 2006; Lin and
Chung, 2010). We thus explored the phosphorylation status
of AbHog1 in A. brassicicola after exposure to Al-ITC using
a western blot approach. A. brassicicola cells were grown in
liquid medium, exposed for various times to Al-ITC and then
harvested for total protein extraction. Immunoblot analysis
using anti-phospho-p38 antibodies revealed that increased
phosphorylation of the AbHog1 MAPK occurred as early as
5 min after exposure (Figure 3). Longer exposures resulted
in a decreased signal and after 1 h over-phosphorylation of
AbHog1 compared to the control was no longer observed.
In response to various stresses, the activated Hog1 protein
accumulated in the nucleus (Reiser et al., 1999). To test whether
this phenomenon also occurs in A. brassicicola after exposure

FIGURE 1 | Susceptibility of Alternaria brassicicola to allyl-, phenetyl-,
and benzyl-isothiocyanates. Nephelometric monitoring of the growth of
wild-type (WT) strain Abra 43 was automatically recorded for 33 h at 24◦C.
The Y-axis data correspond to the relative nephelometric units (RNUs).
Conidia were used to inoculate microplate wells containing standard PDB
medium that was supplemented with 1.25 mM (open circles), 2.5 mM (black
triangles), 5 mM (black diamonds), 10 mM (black circles), 20 mM (black
squares) of each isothiocyanate, or methanol (positive control; open squares).
Each condition was tested in triplicate and the experiments were repeated
twice. The areas under the curves were calculated from the growth curves
and used to calculate IC50.

to ITC, a strain constitutively expressing the mCherry-NLS
protein from the ToxA promoter and expressing a Hog1::eGFP
fusion protein from the AbHog1 promoter was constructed.
Under control conditions this strain showed green fluorescence
signals within the hyphae which did not co-localize with
the red labeled fluorescence observed in nuclei (Figure 4).
However, when cells were exposed for 20 min to 2.5 mM
ITC dense green fluorescent spots were observed along the
hyphae. Their distribution matched the labeled nuclei, thus
demonstrating nuclear migration of the MAP kinase in ITC-
treated cells.
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FIGURE 2 | Visualization of oxidative stress symptoms in
A. brassicicola treated with allyl-isothiocyanates. ROS within hyphae of
germinated conidia treated for 1 h with methanol 1% v/v (control) or 2.5 mM
Al-ITC were detected using the fluorescent dyes H2DCFDA and DHE. For
each panel, the right part corresponds to fluorescence microscopy and the
left part to bright-field microscopy. Scale bars = 50 µm.

AbAP1 Transcription Factor Activated and
Controlled Oxidative Response Gene
Expression after ITC Exposure
Saccharomyces cerevisiaeYAP1 protein and other AP1-like fungal
orthologs are considered as major oxidative stress response
transcription factors (TFs). An ortholog of this protein was
identified as AB04817.1 via BLAST analyses in the A. brassicicola
automatically annotated genome database2 and named AbAP1.
Analysis of AbAP1 showed the expected conserved bZIP DNA-
binding, nuclear localization, N-terminal and carboxyl terminal

2http://genome.jgi-psf.org/Altbr1

FIGURE 3 | Phosphorylation of the Hog1-like MAPK in A. brassicicola
after exposure to allyl-isothiocyanate. Germinated conidia from the WT
strain (Abra43) were grown for 24 h in PDB and exposed to 2.5 mM Al-ITC for
5–60 min. Control (Co) cultures were supplemented with methanol alone.
Total protein extracts, prepared from the harvested mycelia, were analyzed by
SDS-PAGE and blotting with either anti-Hog1 C-terminus antibody or
anti-dually phosphorylated p38 antibody.

FIGURE 4 | Isothiocyanate-induced nuclear accumulation of the
AbHog1-GFP fusion protein. Double-labeled strains expressing
AbHog1-GFP and mCherry-NLS were exposed to either methanol (control) or
2.5 mM Allyl-ITC for 20 min. Co-localization analyses were examined using
confocal microscopy. Bars = 25 µm.

cysteine-rich domains (Supplementary Figure S1). AP1-like
proteins behave like redox sensors that localize inside the nucleus
upon exposure to ROS and then regulate the expression of
a large set of genes including oxidative response genes (Lee
et al., 1999; Lev et al., 2005; Asano et al., 2007; Temme
and Tudzynski, 2009; Znaidi et al., 2009; Takahashi et al.,
2010; Guo et al., 2011; Tian et al., 2011; Montibus et al.,
2013). To determine whether this is also true for AbAP1
in response to ITC, we generated a strain co-expressing a
C-terminal AbAP1::eGFP fusion protein and the mCherry-NLS
protein. As shown in Figure 5, in the absence of oxidative
stress, green fluorescence was distributed throughout the hyphae,
suggesting cytoplasmic TF accumulation. By contrast after
20 min exposure to ITC, green fluorescence was concentrated in
discrete spots co-localizing with themCherry fluorescence signals
indicating nuclear localization of AbAP1::eGFP in response to
ITC.
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FIGURE 5 | Isothiocyanate-induced nuclear accumulation of the AbAP1-GFP fusion protein. Double-labeled strains expressing AbAP1-GFP and
mCherry-NLS were exposed to either methanol (control) or 2.5 mM Allyl-ITC for 20 min. Co-localization was examined using confocal microscopy. Bars = 25 µm.

TABLE 1 | Expression of oxidative stress response genes in the wild-type (WT) and �abap1 strains after 20 min of exposure to Al-ITC.

Target sequence
(GenBank acc. #)

PotentialFunctiona Fold induction
in WT (±SD)b

Fold induction in �abap1
/Fold induction in WT

p-Value (t-test)

A3H11 (DY542661) TRX 26.2 ± 4.6 0.07 8E-04

A2G8 (DY542662) TRX 107.6 ± 24 0.08 0.002

A3G5 (DY542663) TRX 77.4 ± 23.4 0.25 0.013

A1B12 (DY542664) TRX 116.2 ± 13 0.04 1E-04

A4D11 (DY542665) TRR 12.8 ± 0.88 0.22 1E-04

A2H9 (DY542667) QOX 22.44 ± 2.6 0.24 0.002

A3D2 (DY5426674) CytP450 8.39 ± 1.9 0.47 0.02

A3D10 (DY542658) GPX 10.36 ± 0.8 0.17 4.9E-05

A2F9 (DY542659) GCS 25.95 ± 6.1 0.05 0.002

A2H5 (DY542653) GST 39.23 ± 11.6 0.19 0.009

A2C10 (DY542656) GST 21.57 ± 1.27 0.09 1.9E-05

A1F1 (DY542654) GST 9.01 ± 2.2 0.77 0.165

A2C1 (DY542655) GST 12.78 ± 2.5 0.04 0.001

A4D12 (DY542657) GST 8.74 ± 1.27 0.12 4E-04

aTRX, thioredoxin; QOX, quinone oxidoreductase; CytP450, cytochrome P450 monooxygenase; GPX, glutathione peroxidase; GCS, g-glutamylcysteine synthetase; GST,
glutathione S-transferase. bFirst strand cDNAs were prepared from RNA samples extracted from germinated conidia either exposed to 2.5 mM allyl-isothiocyanate (Al-ITC)
or methanol 1% (control) for 20 min and used as template for real-time PCR. For each gene, expression induction is represented as a ratio (fold induction) of its relative
expression (studied gene transcript abundance/b-tubulin transcript abundance) in each inductive condition to its relative expression in the control. Each value is the mean
of two independent experiments with the WT strain and two independent �abap1 mutants, each with three replicates.

We then checked whether oxidative stress response genes,
previously reported as overexpressed inA. brassicicola exposed to
ITC (Sellam et al., 2007b), required AP1 for induction. Mutants
deficient in this TF were generated by gene replacement and
exposed to ITC. The expression levels of a set of 14 genes were
then compared to those measured in the same conditions for
the parental WT strain. As expected all the selected genes were
strongly overexpressed in the Abra43 WT strain after 20 min of
exposure to Al-ITC (Table 1). By contrast, the majority of the
selected genes (11/14) were no longer induced, or induced at a
significantly lower level (p < 0.01) under the same conditions in
the �abap1mutant. The expression of only three genes encoding
a putative thioredoxin, a cytochrome P450 monooxygenase and
a glutathione S-transferase was found independent of AbAP1 for
induction.

A. brassicicola Strains with an Impaired
Oxidative-Stress Response are Hypersensitive
to ITC
Two �abhog1 mutants (Joubert et al., 2011) and two �abap1
mutants were tested for their susceptibility to different oxidizing
compounds. Nephelometric monitoring of the initial growth
stages was used to assess the effects of H2O2, menadione,
and various ITCs (Al-, Bz-, and Ph-ITC) on the fungus. As
independent strains behaved similarly for each genotype, the
percentage of growth inhibition and growth curves shown
in Figures 6 and 7, respectively, correspond to means of
values obtained for individuals carrying the same mutation.
Under control conditions (PDB medium), �abhog1 mutant
growth was slower than that of the WT and �abap1
strains (Figure 7). All mutants were found to be more
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FIGURE 6 | Susceptibility of A. brassicicola wild-type (black bars),
�abhog1 (hatched bars) and �abap1 (stripped bars) strains to
oxidative stress. Conidia of each genotype were used to inoculate
microplate wells containing standard PDB medium supplemented with
various concentrations of H2O2 or menadione. Nephelometric

monitoring of growth was automatically recorded for 33 h at 24◦C.
Each condition was tested in triplicate and the experiments were
repeated twice. The areas under the curves were used to calculate
de percentages of inhibition for each treatment compared to control
growth curves.

FIGURE 7 | Susceptibility of A. brassicicola WT (open circle), �abhog1
(black square) and �abap1 (open square) to allyl-, phenetyl-, and
benzyl-isothiocyanates. Nephelometric monitoring of growth was
automatically recorded for 27 h at 24◦C. The Y-axis data correspond to RNUs.

Conidia were used to inoculate microplate wells containing standard PDB
medium supplemented with either 5 mM Al-ITC or 5 mM Bz-ITC or 5 mM
Ph-ITC or methanol (control). Each condition was tested in triplicate and the
experiments were repeated twice.

susceptible than the WT to the different treatments; �abap1
and �abhog1 mutants were highly susceptible to menadione
and moderately susceptible to H2O2 (Figure 6). Exposure
to all the tested ITCs dramatically affected �abhog1 mutant
growth and to a lesser extent that of �abap1 mutants
(Figure 7).

ITC Disrupts the Mitochondrial Membrane
Potential in Fungal Cells and Decreases
Oxygen Consumption Rate
Various studies on human cells have assessed the effects of
ICTs on mitochondria, and revealed that dissipation of the
mitochondrial membrane potential (��) occurs upon exposure.
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We tested whether a similar effect could be observed in
fungal cells exposed to ITC using JC-1 dye. This cationic dye
accumulates in the mitochondrial matrix as a function of the
membrane potential. At high concentrations (reflecting a high
��) JC-1 forms aggregates displaying orange–red fluorescence.
At lower concentrations, when �� decrease or collapse, JC-
1 is present as monomers exhibiting a green fluorescence.
The green/red fluorescence ratio of JC-1 is therefore an
indicator of the mitochondrial membrane potential, and thus
of mitochondrial function. After short-term exposure (10 min)
to 2.5 mM Al-ITC, there was an increase in green fluorescence
indicative of a decrease in mitochondrial �� (Figure 8).
The mean green/red fluorescence ratio of the probe increased
from 0.113 ± 0.037 in the control to 0.474 ± 0.021 after
treatment. Under similar exposure conditions, monomeric JC-
1 – associated green fluorescence in ITC-treated cells was
more pronounced in the �abap1 strain than in the WT
with the mean green/red fluorescence ratio of the probe
reaching 0.646 ± 0.095 (Figure 8C). These alterations in
�� indicate that Al-ITC can rapidly induce modifications in
mitochondrial functions and cellular energy metabolism. In
order to further assess the impact of the compound on fungal
respiration, oxygen consumption of hyphae was measured after
60 min exposure to Al-ITC using a water-soluble oxygen-
sensitive fluorescent probe. In comparison to the untreated
(solvent only) control, Al-ITC clearly inhibited respiration of
the WT cells in a dose-dependent manner, reaching 40%
inhibition at 10 mM (Figure 9). Cyanide, a strong inhibitor
of cytochrome oxidase, induced 85% inhibition of respiration,
suggesting low activity of the alternative oxidase in the WT strain
(Figure 9).

FIGURE 8 | Effect of allyl-isothiocyanate on the mitochondrial
membrane potential of A. brassicicola cells. The mitochondrial
membrane potential was assessed within hyphae of germinated conidia from
the WT strain Abra43 (A,B) or the �abap1 mutant (C) using the fluorescent
potentiometric dye JC-1 after 10 min treatment with methanol 1% v/v
(A, control) or 2.5 mM Al-ITC (B,C). For panels (A,B,C) the left part
corresponds to bright-field microscopy and the right parts to fluorescence
microscopy. Red signals correspond to cells containing mitochondria with
high membrane potential and green signals represent mitochondria with low
membrane potential. Scale bars = 50 µm.

Mutants Defective in the Oxidative Stress
Response have Decreased Aggressiveness on
Glucosinolate Accumulating Host Plants
To test the effects of targeted AbHog1 and AbAP1 gene knockout
on pathogenicity, B. oleracea leaves were inoculated with drops
of conidia suspension (105 conidia/mL) with or without the
NADPH oxidase inhibitor DPI (0.4 µM). Necrotic areas were
measured at 7 dpi. As shown in Figure 10, in the absence
of DPI the virulence of �abhog1 and �abap1 mutants was
significantly decreased compared to the WT strain. When
the NADPH oxidase inhibitor was applied with the fungal
inoculum significantly smaller necrotic areas were observed
for all tested genotypes. At the selected concentration, DPI
had no negative effect on conidia germination and hyphal
growth. In such conditions, i.e., when oxidative stress generated
in planta was mainly due to glucosinolate-derived ITCs, the
�abap1� and the �abhog1 mutants were almost completely
non-virulent.

Discussion

Glucosinolates are a class of S- and N- containing secondary
metabolites that are found in only 15 botanical families of the
Capparales order and are very abundant in the Brassicaceae
family (Fahey et al., 2001). They are thought to play a variety of
roles in plant defense responses. Indeed, it has been repeatedly
reported that GLS-derived ICTs have a negative effect on the
growth of various fungal species including specialist Brassica
pathogens (Manici et al., 1997; Smolinska et al., 2003; Sellam
et al., 2007a). It was previously reported that the inhibitory
effect of ITCs depends on their type, and aliphatic ITCs usually
have stronger in vitro inhibitory effects on fungi than aromatic
ITCs (Smolinska et al., 2003). Moreover, it was shown that
Arabidopsis thaliana mutants with low aliphatic GLS content
had decreased ability to defend themselves against necrotrophic
fungi (Stotz et al., 2011; Buxdorf et al., 2013). In line with these
studies, we showed here that ITCs, at concentrations in the
millimolar range, significantly slowed down the development
of A. brassicicola, with allyl-ITC being much more efficient
than phenetyl- and benzyl-ITC. These differences might reflect
differential accumulation of ITCs in the fungal cell due to the
side-chain structures or different mechanisms of action.

Many studies have explored the cellular targets of ITCs in
mammalian cells that might explain their chemoprotective and
anticarcinogenic properties (for recent reviews see Zhang, 2010;
Navarro et al., 2011). By contrast, the mechanism by which they
exert their toxicity on fungal cells has been poorly documented.
Sellam et al. (2007b) conducted a transcriptomic analysis of
the response of A. brassicicola to Al-ITC exposure. Among the
overexpressed genes, more than one third could be considered
as related to an adaptive response to cellular oxidative stress
suggesting that the ITC mediates redox dysregulation in the
fungal cell. Increased ITC-induced ROS accumulation was indeed
demonstrated here using DHE and H2DCFDA probes. This
observation corroborates the observed effects of ITC on many
mammal cell lines such as human lung (Wu et al., 2010; Liu
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FIGURE 9 | Effect of Al-ITC on A. brassicicola hyphae respiration. The graph shows the inhibitory effects (% of the control) of ITC or KCN on the respiration
rate of 14 h germinated conidia, measured 60 min after the addition of the compounds. SD is indicated.

et al., 2012), breast (Xiao et al., 2008), and prostate (Xiao et al.,
2010) cancer cells. In the latter study, it was demonstrated
using the MitoSOX Red probe that ROS generation by ITC
in cancer cells was mitochondria-derived. MitoSOX Red was
previously reported to be a useful intracellular ROS indicator in
different fungal species such as Mycosphaerella graminicola and
S. cerevisiae (Batova et al., 2010; Scalliet et al., 2012). However,
we did not succeed in localizing ROS accumulated in ITC-
treated A. brassicicola cells using this fluorescent compound
probably due to its weak penetration across the fungal cell-
walls. Using JC-1 dye we clearly observed that ITC treatment of
A. brassicicola disrupted the mitochondrial membrane potential.
A similar observation was reported in breast cancer cells exposed
to Bz-ITC (Xiao et al., 2006) and mitochondria were found to
be the primary targets of ITCs in human bladder cells (Tang
and Zhang, 2005). The question of whether the collapse of the
mitochondrial membrane potential was caused by mitochondria-
generated ROS has to be raised. In human breast and prostate
cancer cells, it was indeed shown that ITC treatment reduced the
oxygen consumption rate due to inhibition of complex III activity
(Xiao et al., 2008, 2009). Using phosphorescence-quenching
oxymetry, we showed here that exposure to a high concentration
(10 mM) of Al-ITC also resulted in a significant decrease in
the oxygen consumption rate by A. brassicicola. This suggested
a possible effect on mitochondrial oxidative phosphorylation
although inhibition of glycolysis or of the tricarboxylic acid cycle
cannot be excluded.

Another mechanism by which ITC might disrupt cell redox
homeostasis has been proposed and at least in part involves

the glutathione cycle (Brown and Hampton, 2011). It has been
suggested that these metabolites exacerbate oxidative stress by
causing depletion of intracellular glutathione (Sahu et al., 2009;
Wu et al., 2010; Tusskorn et al., 2013). GSH depletion is
quite likely due to the inhibition of glutathione reductase (Hu
et al., 2007) and increased conjugation of glutathione to ITC
catalyzed by induced glutathione-S-transferases (Sahu et al.,
2009). A similar mechanism has been proposed to explain the cell
toxicity of another plant-derived thiol-selective reagent (Gruhlke
et al., 2010). In line with this hypothesis, we showed here that
the expression of five fungal GSTs was strongly induced after
short-term exposure to ITC. However, it has yet to be determined
whether these enzymes are all able to catalyze the conjugation of
glutathione to ITC.

Irrespective of the mechanism by which ITC exerts its toxicity,
exposure to even low concentrations of Al-ITC could thus
potentially negatively impact the fungal cell metabolism, but
interestingly, A. brassissicola seemed to manage the exposure
to the compound (e.g., at 2.5 mM) since growth was delayed,
but then proceed at an almost normal rate. This suggests
that moderate concentrations of Al-ITC induce alterations in
mitochondria (e.g., complex III inhibition) and/or depletion
of intracellular glutathione, which results in increased ROS
production. The latter elicits AbHog1- and AbAP1-mediated
responses (and possibly others), which reinforce anti-oxidant
mechanisms, allowing the energy metabolism to cope with the
presence of Al-ITC.

In line with this hypothesis, the ITC-induced overexpression
of the majority of the oxidative stress response genes analyzed
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FIGURE 10 | Impact of AbHog1 and AbAP1 mutations on A. brassicicola
aggressiveness. WT and mutant strains were inoculated on cabbage leaves
with or without (controls) the NADPH oxidase inhibitor DPI. Necrotic areas were
observed and measured at 7 dpi. Photographs (A) represent typical symptoms
for each genotype at 7 dpi. Necrotic areas were measured on 10 inoculated

leaves per genotype and condition. On the graphs (B), stars indicate a
significant difference between mutant and WT strains using the Student test
(P < 0.05 single star, P < 0.01 double star) and black triangles indicate a
significant difference between the control and DPI treatment using the Student
test (P < 0.01)

in our study was found to be AP1-dependent. AP1-like TFs
have been shown to have crucial roles in the regulation of the
oxidative stress responses in yeast and filamentous fungi. These
TFs induce, when activated, the expression of many antioxidants
and related protein-encoding genes such as genes involved in
the thioredoxin and glutathione systems (Temme and Tudzynski,
2009; Takahashi et al., 2010; Guo et al., 2011; Tian et al.,
2011). For instance, in line with our findings, among the 12
menadione-induced genes identified as expressed in an AP1-
dependent manner in Neurospora crassa by Takahashi et al.
(2010) four were putative GSTs. Yeast AP1 and other fungal
AP1-like proteins characterized so far are B-ZIP TFs whose
subcellular localization is under redox control (Kuge et al., 2001;
Lev et al., 2005; Yang et al., 2009; Guo et al., 2011). Regulation
of the AP1 protein by subcellular localization has been studied in
detail in yeast and relies on the reversible binding of an export
receptor, CRM1, to the YAP1 nuclear export signal (Kuge et al.,
2001). We observed here that the AbAP1-eGFP fusion protein
localized inside the nucleus upon exposure to ITC suggesting that
AbAP1 also functions as a redox sensor that undergoes rapid
activation (i.e., conformational change) due to the ITC-driven
cellular redox dysregulation. As expected from this observation,

the AbAP1-deficientA. brassicicolamutant strain was found to be
highly sensitive to oxidative stress caused by H2O2, menadione
and ITCs.

In mammals, ITCs have been repeatedly reported to activate
parallel MAP kinase cascades, e.g., extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 (Juge et al.,
2007; Sahu et al., 2009; Geng et al., 2011; Liu et al., 2012). The
MAP kinase Hog1 is the yeast homolog of p38 (Sheikh-Hamad
andGustin, 2004) and is a crucial participant in osmotic stress but
has limited functions in the oxidative-stress response (Toone and
Jones, 1998). By contrast, Hog1 homologs in several other fungal
species have a pivotal role in the response to oxidant challenge
(Moye-Rowley, 2003; Aguirre et al., 2006; Segmüller et al., 2007;
Lin and Chung, 2010). Our results show that the phosphorylation
status of AbHog1 changed soon after exposure to ITC and that
the phosphorylated form of the protein transiently accumulated
in A. brassicicola. In parallel we demonstrated that the MAP
kinase migrated into the nucleus in fungal cells challenged with
ITC. Taken together these observations strongly suggest that the
MAP kinase AbHog1 is activated in response to ITC exposure.
As the �abhog1 mutant strains were found to be hypersensitive
to oxidative stress and ITC, it could be hypothesized that the
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nuclear form of the MAP kinase controls the expression of a set
of oxidative response genes. However, none of the ITC-induced
oxidative response genes selected in our study were found to
require Hog1 for induction (data not shown). In line with
this observation, Enjalbert et al. (2006) showed that although
inactivation of Hog1 resulted in high sensitivity toward oxidative
stress in Candida albicans, only 46 of the 246 genes induced in
response to H2O2 displayedHog1 dependency for their induction
and none of them encoded proteins with obvious antioxidant
function. More recently, Heller et al. (2012) showed that the
majority of gene regulated by BcSak1, the Hog1 homolog in
B. cinerea, are not involved in the oxidative stress response.
In C. albicans, it was also shown that mutants that lack the
Hog1 MAP kinase had an enhanced basal respiratory rate, higher
levels of intracellular ROS and increased sensitivity to inhibitors
of the respiratory chain (Alonso-Monge et al., 2009). If such
link between the Hog1 MAP kinase pathway and respiratory
metabolism also exists in A. brassicicola, this could at least partly
explain the high sensitivity of the AbHog1-deficient mutant to
ITCs.

The importance of glucosinolate and glucosinolate-
breakdown products in the interaction between Brassicaceae and
fungal pathogens has long been a matter of debate. While some
reports suggest that glucosinolate-breakdown products actively
participate in plant defense (Tierens et al., 2001; Stotz et al., 2011),
a correlation between glucosinolate content and resistance has
not always been demonstrated (Kliebenstein et al., 2002). These
apparent contradictions might reflect different lifestyles, i.e.,
biotrophic versus necrotrophic (Sanchez-Vallet et al., 2010), and
host-ranges, i.e., broad-spectrum versus Brassicaceae-specialist
(Buxdorf et al., 2013) of the pathogens as well as the variety of
GLS and glucosinolate-breakdown products of the host plants.
For instance, in addition to sinigrin, the precursor of Al-ITC,
fifteen other GLS (aliphatic, aromatic and indolic) were identified
in seeds of various Brassica species with high inter-specific or
even inter-cultivar variability (Bennett et al., 2004). Our previous
observations (Sellam et al., 2007a) and the data reported here
demonstrated that WT strains of the Brassicaceae-specific
fungus A. brassicicola were only slightly sensitive to various
ITCs with in vitro IC50 in the millimolar range, i.e., 100- to
1000-fold higher than those measured for human bacterial
pathogen (Dufour et al., 2012) and mammalian cancer cells (Liu
et al., 2013), respectively. Although such high concentrations
of glucosinolate-breakdown products are likely to accumulate
in some parts (e.g., midvein and leaf periphery) of colonized
plant tissues (Shroff et al., 2008), the ability of A. brassicicola
to develop successful infections suggests that this fungus has
evolved efficient mechanisms to overcome their toxicity. In the
present study, we hypothesized that enhanced expression of
oxidative response genes could represent a key mechanism for
fungal protection against glucosinolate-breakdown products.
In planta oxidative stress may originate from reactions other
than the release of ITCs during infection, and the generation of
ROS catalyzed by membrane-bound NADPH oxidases (Lamb
and Dixon, 1997) is regarded as one of the first responses to
fungal invasion (Mellersh et al., 2002). Plant inoculations were
thus performed in the presence or absence of an NADPH

oxidase inhibitor (diphenylene iodonium). When leaves were
inoculated in the presence of the NADPH oxidase inhibitor,
smaller lesions were observed irrespective of the fungal genotype.
This observation is in line with previous reports showing that the
oxidative burst produced by the host may facilitate colonization
by necrotrophic fungi (Govrin and Levine, 2000; Williams
et al., 2011; Singh et al., 2012). It is also in agreement with
Pogany et al. (2009) who reported slower tissue colonization
by A. brassicicola of the A. thaliana NADPH oxidase mutant
AtrbohD compared to the WT ecotype. The reduced size of
lesions on DPI-treated samples may also be explained by an
inhibition of fungal NADPH oxidases that have been shown to
be essential for fungal differentiation processes that are necessary
for virulence (Heller and Tudzynski, 2011). Irrespective of the
conditions used, �abap1 and the �abhog1 mutants produced
significantly smaller lesions than the WT strain when inoculated
on B. oleracea leaves. Although these observations indicate that
ITCs are important in the defense of Brassica plants against
A. brassicicola, it should be remembered that besides its role in
the response to oxidative stress, AbHog1 has been shown to play
a central role in the response to many other stresses, including
phytoalexin-induced stress (Joubert et al., 2011). Similarly,
although the expression of several oxidative response genes was
found to be dependent of AbAP1, it has been shown that AP1
homologs may also regulate the expression of genes directly
involved in pathogenicity (Guo et al., 2011). Consequently,
the failure of the �abhog1 and �abap1 mutants to colonize
B. oleracea leaves may not only be linked to their increased ITC
sensitivity.

Recently, by comparing the behavior of the broad-
spectrum pathogen Botrytis cinerea and the Brassica specialist
A. brassicicola on different Arabidopsis thaliana genotypes,
Buxdorf et al. (2013) suggested that A. brassicicola has adapted
to the presence of GLS and can cope with glucosinolate-
hydrolysis products more efficiently than the generalist B. cinerea
which is more sensitive to these phytochemicals. In line with
this, our results strongly suggest that the robust protection
response against ICT-derived oxidative stress might be a key
adaptation mechanism for successful infection of host plants
by Brassicaceae-specialist necrotrophs like A. brassicicola. An
important next step is thus to compare the cell responses to ITC
in Brassica specialists like A. brassicicola and generalists like
B. cinerea.
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