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The control over stationary liquid thread fragmentation in confined co-flows is a key issue for
the processing and transport of fluids in (micro-) ducts. Confinement indeed strongly enhances
the stability of capillary threads, and also induces steric and hydrodynamic feedback effects on
diphasic flows. We investigate the thread-to-droplet transition within the confined environment
of a microchannel by using optocapillarity, i.e. interface stresses driven by light, as a wall-free
constriction to locally flow-focus stable threads in a tunable way, pinch them and force their frag-
mentation. Above some flow-dependent onset in optical forcing, we observe a dynamic transition
alternating between continuous (thread) and fragmented (droplets) states and show a surprising
gradual thread-to-droplet transition when increasing the amplitude of the thread constriction. This
transition is interpreted as an evolution from a convective to an absolute instability. Depending
on the forcing amplitude, we then identify and characterise several stable fragmented regimes of
single and multiple droplet periodicity (up to period-8). These droplet regimes build a robust
flow-independent bifurcation diagram that eventually closes up, due to the flow confinement, to a
monodisperse droplet size, independent of the forcing and close to the most unstable mode expected
from the Rayleigh–Plateau instability. This fixed monodispersity can be circumvented by tempo-
rally modulating the optocapillary coupling, as we show that fragmentation can then occur either
by triggering again the Rayleigh–Plateau instability when the largest excitable wavelength is larger
than that of the most unstable mode, or as a pure consequence of a sufficiently strong optocap-
illary pinching. When properly adjusted, this modulation allows to avoid the transient reforming
and multidisperse regimes, and thereby to reversibly produce stable monodisperse droplet trains of
controlled size. By actuating local flow-focusing in time and amplitude, optocapillarity thus proves
an efficient way to characterise and understand the thread-to-droplet transition in microchannels
and to advance channel constriction strategies for the production of tunable monodisperse droplets
when the overall confinement is important.

I. INTRODUCTION

The fractionation of a liquid thread into droplets of
controlled size has known a long-standing history and
interest [1], dating back from the seminal observations
of Savart [2], later rationalised by Plateau [3] and Lord
Rayleigh [4–6]. The recent development of digital mi-
crofluidics [7] has renewed this interest, and opened new
avenues in the formation of bubbles and droplets [8, 9].
Discrete droplets indeed represent individual digits for
(bio-)chemical analyses [10] as well as material synthe-
sis [11], motivating the investigation on techniques for
dispensing calibrated droplets at high throughput [12].
The main approaches explored to this end relied on the
geometrical properties of the channel, for example by
focusing a stream of fluid to be dispersed into another
immiscible fluid with a lateral constriction [13, 14], or
by abruptly releasing a thread confined vertically when
reaching a thicker terrace [15–17]. Many active ap-
proaches were also prompted to actuate the detachment
of individual droplets from a fluid reservoir [18–23], such
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as electric-field induced ejection of droplets from a Taylor
cone [24], or a mechanical stimulation of a liquid thread
by a transducer [25, 26]. In the jetting regime, droplet
actuation was also provoked by AC electric fields [27], or
modulated laser heating of the interface [28].

Fragmentation at low Reynolds number relies on the
destabilisation of a liquid thread under local capillary
and viscous forces. When the geometrical confinement
is important enough to squeeze it, the thread becomes
stable in respect with the Rayleigh–Plateau instability
[29, 30]. In addition, non-linear disturbances, such as
collective effects due to the traffic in the channel [31, 32]
or partial clogging from the local inflation of the thread
[33, 34], affect the local flow conditions and thereby the
thread stability. These effects are indeed particularly im-
portant in digital microfluidics where the flows are gen-
erally confined both vertically and laterally due to the
rectangular cross-section of the channels. A rich variety
of flow regimes, including jetting [30], periodic [13, 14] or
non-periodic [35] dripping was thus reported. Although
jetting and dripping regimes are respectively associated
with the convective and absolute nature of the capillary
instability [36], a unified picture distinguishing the ef-
fects of advection, confinement and even droplet traffic
feedback on the mechanisms leading to the destabilisa-
tion and breakup of a confined thread, and to the sub-
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sequent droplet distribution, is still lacking. In this pa-
per, we explore this issue, by investigating the thread-to-
droplet transition in strong geometric confinement condi-
tions using optocapillarity, i.e. Marangoni stresses driven
by light, as a tunable wall-free flow-focusing constriction
[37]. This forcing thus allows to initiate the pinching
of an initially stable thread over a wide range in am-
plitude to unveil the role played by the constriction on
the drop generation. We first show surprising transient
stages, marked by the alternation of discrete (thread frag-
mented in trains of droplets) and continuous (thread re-
formed) flows over time scales of minutes. We interpret
these transient stages as a signature of the evolution from
a convective to an absolute instability when increasing
the thread pinching induced by the optical forcing. We
then observe and fully characterise several droplet gen-
eration sequences, mono- and multidisperse, that form
a bifurcation–reconnection diagram in the drop genera-
tion when increasing the forcing amplitude under con-
tinuous laser exposure. We show that this reconnection
is driven by the confinement which prevents any active
control on the droplet size. By temporally chopping the
optical excitation, i.e. by modulating both the duration
and the initial amplitude of the wall-free constriction, we
then evidence a preferred frequency, synchronised with
the most unstable Rayleigh mode of the thread, which
facilitates the steady fragmentation of the initially stable
thread by avoiding both thread reformation and multidis-
perse droplet regimes. Forced fragmentation within the
Rayleigh–Plateau stability domain is also demonstrated
in the strong pinching regime. We finally show that, de-
spite the complex feedback operations occurring within
confined channels, the modulated forcing of the thread-
to-droplet transition allows the reversible generation of
calibrated droplets of controlled size, provided that the
experimental parameters are carefully chosen.

II. EXPERIMENTAL PROCEDURE

We force the fragmentation of confined water-in-oil
threads into PDMS microfluidic channels [38] using
optocapillary pinching. Optocapillarity relies on the
generation of tangential stresses on a liquid interface
(Marangoni effect) by local laser heating [39, 40]. These
stresses induce interface deflections that can lead to the
fragmentation of a liquid thread [37].

A. Optocapillary pinching

The principle of optocapillary pinching of confined
threads can be unveiled by a simplified 1D model, de-
tailed in Ref. [37] and briefly summarised below. As
sketched in Fig. 1 (a), a water-in-oil thread can be viewed
as a superposition of three immiscible liquid layers, of
width H2, 2H1 and H2 respectively; the density and vis-
cosity of the phase i = 1, 2 are noted ρi and ηi. We
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Figure 1. (a) Sketch of the three-layer simplified 1D model
of the optocapillary pinching of a confined thread. Only the
upper half is represented (dotted box in the experimental im-
age). (b) Sketch of the experimental setup. The same objec-
tive is used for both focusing the laser beam and imaging the
microchannel onto the detector (dashed box) and a CMOS
camera. DM: dichroic mirror; BS: 50/50 beam splitter; SP:
signal processing. (c) Left: Typical images of the co-flowing
thread. From top to bottom: the unperturbed (laser off),
wavy and fragmented cases. The laser spot location is indi-
cated by the white dot due to the dye fluorescence. Right:
Corresponding signals as displayed by the oscilloscope when
the image of one pattern (wavelength or droplet) passes along
a pair of photodiodes connected head-to-tail.

solve the Stokes equation in each phase in the upper half
of the system, within the lubrication approximation [ve-
locity field vi = vz,i(y)ez] and assuming incompressible
fluids, and set the following boundary conditions: (i) no
slip at the wall [vz,2(y = H2) = 0], (ii) velocity profile
symmetric across y = −H1 [(dvz,1/dy)y=−H1

= 0] and

(iii) continuous across the liquid interface [vz,1(y = 0) =
vz,2(y = 0)]. In addition, the incompressibility imposes,
in a finite system, a deep-layer counterflow as sketched in
Fig. 1 (a) that prevents any net flow through each phase

[
∫ 0

−H1
vz,1(y)dy =

∫H2

0
vz,2(y)dy = 0].

A tangential interfacial tension gradient, dσ/dz =
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η1 (dvz,1/dy)y=0 − η2 (dvz,2/dy)y=0, drives interfacial

flows in both phases that deform the interface, of profile
h(z). For small deformations, solving the Stokes equation
with the above assumptions yields

dh

dz
=

ℓ2c
H1H2σ0

η1H
2
2 − 2η2H

2
1

η1H2 + 4/3η2H1

dσ

dz
, (1)

with ℓc =
√
σ0/(ρ1 − ρ2)g the capillary length (ρ1 > ρ2).

At the point of largest interfacial tension, the deforma-
tion should thus be oriented from liquid 1 to liquid 2 if

H2

H1

√
η1
2η2

> 1. (2)

In the presence of surfactants above the critical micelle
concentration (CMC), subtle couplings between ther-
mal and molecular transport may occur along the in-
terface, which can be accounted for by an effective co-
efficient of variation of interfacial tension with temper-
ature, (∂σ/∂T )eff [41]. We observed this coefficient to
be positive in our case [37, 39], meaning that the local
maximum of interfacial tension coincides with the laser
heating spot (neglecting a small shift downstream due
to the liquid advection). According to Eq. 2, given the
typical layer thicknesses involved on the one hand, and
the water and oil viscosities on the other hand, optocapil-
lary stresses thus pinch water-in-oil threads near the laser
spot, as represented in Fig. 1 (a). Note that modifying
either viscosity or thickness ratios produced opposite be-
haviours in agreement with Eq. 2 [37].

B. Experimental setup

We achieve optocapillary forcing by focusing a con-
tinuous TEM00 Argon-ion laser (wavelength in vacuum
514.5 nm) on the centreline of the flow as illustrated
in Fig. 1 (b). A dye, uranine (disodium fluorescein), is
added in water (0.1% w/w) to ensure heating occurs by
light absorption [39]; photo-degradation and -deposition
on the PDMS wall may appear at the beam location af-
ter long operating time or at large beam power excitation
without modifying the optocapillary coupling thanks to
the flow advection. A ×5 microscope objective (Olym-
pus UMPlan Fl, N.A. 0.15) both focuses the beam onto
the liquid interface and images the flow in the channel
onto a CMOS fast camera (Lightning RTD 16000, 100
frames per second) and a home-made detector sketched
in the dashed box of Fig. 1 (b). This detector, described
in details in Ref. [42], identifies continuous (thread) and
fragmented (droplets) states in real time, and measures
the droplet length L in the latter case. Briefly, it detects
the variation of illumination on a pair of photodiodes
connected head to tail, transversally to the flow, on the
passage of a flowing droplet. The projected front and
rear interfaces produce a differential signal, correspond-
ing to the contrast in light intensity detected by each
photodiode. By knowing the size of the photodiodes and

the distance between them, this signal can be processed
to calculate the droplet velocity and length. This detec-
tor was used to perform continuous measurements over
periods of time of several minutes to hours, representing
up to several 104 individual droplets. Such amount of
data would make image analysis cumbersome, assuming
image recording is even possible at high rate over such
long time.

Water (ηw = 1 mPa s) and hexadecane (ηo =
3.3 mPa s) are injected at constant flow rates (Qw and
Qo, respectively; typical flow velocities are in the cm s−1

range), meet at a cross-shaped junction, and flow coax-
ially further downstream as shown on the top image of
Fig. 1 (c); when turned on, the laser intercepts the water
thread 0.8 mm downstream of the junction. The rectan-
gular cross-section of the channel (width w = 100 µm,
height h = 55 µm) vertically confines the thread which
thereby stabilises it [30]. The flow rate ratio was kept
constant, Qw/Qo = 2, so as to ensure similar confine-
ment conditions when varying the thread velocity. To
favour thread formation at low flow rates, the interfacial
tension is reduced by adding two surfactants, sorbitan
monooleate (Span 80, 0.3% w/w) in oil and sodium do-
decyl sulfate (SDS, 2.5% w/w) in water, both above the
CMC. These two surfactants are widely used in digital
microfluidic applications; the resulting interfacial tension
σ0 was estimated in the order of 10−4 Nm−1 [43]. Appro-
priate choices of flow rates produce stationary water-in-
oil threads, stable during minutes to hours over the whole
length of the channel (1 cm, see Fig. 1); the weak verti-
cal squeezing allows to assume a circular cross-section of
diameter close to the channel height, 2R0 ≃ h = 55 µm.

Since a stable thread is uniform along the flow di-
rection, the differential signal produced by the detec-
tor is constantly zero [top row on Fig. 1(c)]. Turning
the laser on at moderate power locally heats the inter-
face, produces Marangoni stresses that deflect the inter-
face and thereby waves the thread, yet not enough to
induce its fragmentation [37]. This deformation prop-
agates downstream, leading to subsequent modulations
that decay within three to four wavelengths (wavelength
λ ≃ 300 µm) due to the stabilising effect of the confine-
ment. The passage of a node over the photodiodes pro-
duces a weak differential signal [Fig. 1 (c), middle row].
Since this signal is much weaker than the one produced
by the rear and front interfaces of a droplet, it is inter-
preted as null and nothing is measured. Increasing the
laser power may force the fragmentation of the thread,
downstream of the laser spot, into successive droplets;
turning the laser off allows the thread to eventually re-
form. The well defined front and rear interfaces of the
droplets thus produce a strong antisymmetric differen-
tial signal [Fig. 1 (c), bottom row]. Droplets are indi-
vidually identified and their passing time, velocity and
length are thus individually measured in real time. In-
dividual droplet measurements, collected into a text file,
were then processed with a home-written Matlab R⃝ rou-
tine to distinguish specific droplet emission sequences and
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Video 1. Movie illustrating the transient fragmentation and
reformation of the thread in the continuous (thread) regime.
The real-time dynamics is ten times faster; P = 24 mW,
(Qw, Qo) = (2, 1) µLmin−1.

Video 2. Movie illustrating the permanent fragmentation
of the thread in the stationary fragmented regime. The
thread interface never touches the lateral walls. The real-
time dynamics is ten times faster; P = 37 mW, (Qw, Qo) =
(2, 1) µLmin−1.

continuous thread flow.
This setup therefore allows to make an immediate dis-

tinction between continuous (steady or wavy thread) and
fragmented (train of droplets) states, and thereby to
study the dynamic thread-to-droplet transition.

III. THREAD-TO-DROPLETS TRANSITION

To break the thread stability and force its fragmen-
tation, the amplitude of the optocapillary pinching must
be sufficient to make the thread locally three-dimensional
[37, 44]. At first sight, this condition seems equivalent
to an onset in optocapillary deformation; the thread-to-
droplet transition should therefore occur abruptly above
a threshold laser power. Surprisingly, however, we found
this transition not so abrupt, featuring remarkable al-
ternations of continuous and fragmented regimes over a
wide power range.

A. Continuous and fragmented states

The thread–droplet alternation is characterised by
recording the passing droplets over long time, under con-
stant laser forcing. Three examples are illustrated in
Fig. 2 (a) for (Qw, Qo) = (2, 1) µLmin−1. Low-power
forcing (P = 21 mW, top) does not break the thread
immediately; the transient fragmentation of the thread
may occur after a few seconds. During this transient
stage, the thread first breaks downstream of the laser
spot, then it gradually thickens upstream, thus produc-
ing droplets of size rapidly increasing from 200 to 500 µm
(see also Video 1). The thread eventually reforms spon-
taneously. This process may repeat after arbitrarily long
time. A quasi-steady fragmented state, characterised by
the regular production of droplets over significant time,
can be observed when moderately increasing the laser
power (P = 28 mW, middle). However, in this case the
thread ends up reforming after few dozens of seconds. A
higher laser power (P = 37 mW, bottom) is required to

finally get a stable fragmented state, producing trains of
droplets of uniform length L ≃ 280 µm (Video 2).

The transition from continuous to fragmented states
was then characterised by measuring the proportion of
liquid dispensed under fragmented state, which in aver-
age corresponds to the relative cumulated time interval
over which droplets are detected, for a given laser power.
Besides, since hysteretic thread-to-droplet transitions
were reported in the literature [45], we studied this transi-
tion for both increasing and decreasing laser powers. For
each measurement, the laser was thus turned on at very
low (resp. very high) power, ensuring a continuous (resp.
fragmented) initial state, and then gradually increased up
(resp. reduced down) to the studied power. Figure 2 (b)
depicts this transition for three couples of flow rates,
in the increasing (filled symbols) and decreasing power
(open symbols) cases. The proportion of droplets gradu-
ally increases, from a power threshold and over a power
range that linearly shifts up with the imposed flow rates:
17–33 mW at (Qw, Qo) = (2, 1) µLmin−1, 27–54 mW
at (3, 1.5) µLmin−1, and 34–74 mW at (4, 2) µLmin−1.
No significant hysteresis can be noted. The increasing
proportion of droplets is associated either to more fre-
quent transient fragmentation–reformation cycles, or to
the establishment of longer quasi-steady regimes. The
latter are favoured near the upper limit of the transition,
and at some particular power values within the transi-
tion, leading to remarkable peaks such as around 22 mW
(lowest flow rates) or, to a lesser extent, around 35 mW
(intermediate flow rates).

The flow rate dependence of the transition can be en-
lighten by reducing the experimental variables to the ra-
tio of the advective to optocapillary charateristic times.
As detailed in Ref. [37], one can define an optocapillary
time τopt from the tangential stress condition at the in-
terface of the thread, which characterises the dynamics
of deformation,

τopt =
ηoωthR0

ε∆σ
, (3)

where ωth ≃ 10 µm is the thermal length scale associ-
ated with the laser heating distribution [39], ε ∼ 0.3 µm
is the thickness of the lubrication oil films, set by the
disjoining pressure [46], and ∆σ = (∂σ/∂T )eff ∆T is the
interfacial tension increase with temperature. Assuming
(∂σ/∂T )eff in the order of 10−5 Nm−1 K−1 [37], and a
local temperature increase of about 1 KmW−1 near the
laser spot [39], the interfacial tension gradients produced
over the thermal length are typically in the range of few
101 Nm−2 in our experiments. The dependence in beam
power P is thus the experimental signature of the physi-
cal dependence in interfacial tension gradient.

In presence of flow, τopt should be compared to the
advection time,

τadv =
R0

v∥
, (4)

with v∥ the interface velocity, measured as detailed in Ap-
pendix A. The continuous (resp. fragmented) regime is
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Figure 2. (a) Successive fragmentations and reformations of a microfluidic thread under continuous laser exposure; (Qw, Qo) =
(2, 1) µLmin−1. At P = 21 mW (top), the flow is essentially continuous (thread), though transient fragmentations punctually
occur. At P = 28 mW (middle), fragmented (quasi-stationary regime) and continuous states coexist. Finally, at P = 37 mW
(bottom) the flow is permanently fragmented (no reformation). (b) Evolution of the proportion of fragmented fluid with laser
power (solid-line-connected filled symbols: increasing power, dotted-line-connected open symbols: decreasing power), for the
three couples of flow rates investigated. Inset: collapse of the same data when replotted against τadv/τopt.

expected for small (resp. large) τadv/τopt, with a value at
the transition in the order of unity. As illustrated in the
inset of Fig. 2 (b), the transition curves nicely collapse
when replotted against τadv/τopt ∝ P/v∥, confirming the
linear flow rate dependence of the thread-to-droplet tran-
sition as v∥ ∝ Q. Considering the uncertainty on the
estimate of ∆σ, the inset of Fig. 2 (b) also shows that
the thread-to-droplet transition consistently occurs in the
expected range in τadv/τopt.

B. From convective to absolute instability

The progressive fragmentation likely results from the
establishment of a capillary (Rayleigh–Plateau, RP) in-
stability on the initially stable thread. Such instability
would emerge assuming the thread locally loses its ver-
tical confinement over a given length downstream of the
laser beam. More specifically, without any forcing the
horizontal walls slightly squeeze the thread, which means
that the liquid interface is separated from these walls by
thin films (of thickness ε) due to the total wetting of
the oil phase. The laser forcing locally forms a neck
that lifts the interface by up to several microns. This
neck makes the thread locally unconfined which allows
the development of RP instability. The extent of this
unstable zone can be estimated by measuring the evo-
lution of the minimal thread radius as it advects within
the channel. Figure 3 depicts this evolution for a series
of pinching events taken from Video 1. In unfragmented
cases (open symbols, dotted lines), the pinching ampli-
fies over typically 300 µm (meanwhile the next pinching
begins), and then starts to decay. This attenuation con-
firms that the thread remains stable if neck breakup does
not occur when advected over about 300 µm (unstable

zone for the given couple of flow rates), preventing its
fragmentation as observed in the lowest-power region of
Fig. 2 (b). However, due to fluctuations of the sys-
tem, or under stronger forcing, the thread pinching may
amplify faster within the unstable zone. The resulting
breakup opens a succession of fragmentation events, the
first two of which are represented in Fig. 3 (filled sym-
bols, solid lines). In each case, the thread breaks at a
distance Lb from the laser spot, below about 300 µm in
the present case. Its typical evolution during a full se-
ries of breakups is represented in Fig. 4 in the transient
regime [P = 24 mW, analogous to Fig. 2 (a), top graph];
the images i–vi are snapshots at time tk, correspond-
ing to the k-th breakup. Starting around 330 µm, the
breakup length rapidly decreases, down to a minimum
value close to 60 µm after about 25 breakups (image iii,
k = 27). The breakup length then gradually increases,
as the thread thickens, and longer droplets are produced
again (image iv, k = 68). Finally, a delayed breakup in-
duces a dramatic increase of Lb, as for k = 99 (image
v; note that the next pinching has already started while
the breakup occurs). After this last breakup, which oc-
curs slightly below 300 µm, the next pinching will not
amplify enough to break the thread one more time, and
eventually decays when reaching the downstream end of
the unstable zone (image vi; the droplet emitted at t99
is the cropped one at the right edge of the frame). The
thread thus reforms.

In contrast, the stationary fragmentation regime fea-
tures much less variations in breakup length. As also
represented in Fig. 4, far beyond the transition (P =
66 mW) the breakup length is essentially flat and close
to 50 µm. Variations measured from droplet to droplet
actually result from the acquisition rate (100 fps), too
slow to accurately resolve each individual breakup event
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the propagation axis z (origin at the laser spot) of seven dis-
tinct pinching events not leading to the fragmentation (open
symbols, dotted lines), and the two first breakup events un-
der the same experimental conditions (filled symbols, solid
lines). The red, downwards and upwards vertical arrows high-
light a specific neck pinching, successively amplifying and de-
caying. Laser power P = 24 mW, flow rates (Qw, Qo) =
(2, 1) µLmin−1.

since the ultimate stages of the pinch-off typically scale
in the sub-millisecond range [43].

Since the breakup length can equivalently be seen as
the persistence length of the unstable thread [47], we can
assume that the continuous-to-fragmented state transi-
tion corresponds to the gradual evolution from a convec-
tive to an absolute instability, or equivalently, to the tran-
sition from the so-called jetting to the dripping regime
[36]. The instability indeed becomes absolute when an
unstable mode exists that nullifies its group velocity at a
specific location of the interface in the laboratory frame
of reference. In other words, the upstream (hence neg-
ative) velocity of the wave packet of unstable pertur-
bations, v∗, should balance the downstream velocity of
the interface v∥ [47]. When −v∗ < v∥, the instability is
convected and breakup occurs far from the laser beam.
Conversely, if −v∗ > v∥, the thread always breaks at
the upstream end of the unstable region, meaning that
its leading edge is located about one radius of horizon-
tal curvature from the laser beam, viz., in this case,
Lb ≃ w/2 = 50 µm (dripping regime).

The evolution of the persistence length can actually
shed light on this transition, as Lb(k) features a ‘stro-
boscopic’ evolution of the group velocity during a suc-
cession of breakup events. More specifically, an in-
creasing breakup length means that the wave packet
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bottom]. Images i–vi refer to the transient case represented
(24 mW), for several distinct breakup events k at the cor-
responding instants tk. The red, downwards and upwards
vertical arrows depict amplifying and decaying pinchings, re-
spectively. In all cases, (Qw, Qo) = (2, 1) µLmin−1.

becomes more convected from one breakup to another,
and therefore gradually decelerates (in other words, −v∗

increases). Conversely, a decreasing Lb(k) trend cor-
responds to a wave packet accelerating backwards; the
absolute instability regime should be reached when the
breakup length stabilises close to the limiting value Lb ≃
50 µm.

Figure 5 compares the evolution trends of the persis-
tence length for four laser powers below (24 and 28 mW),
at (33 mW) and well beyond (66 mW) the transiently-
to-permanently fragmented transition at the considered
couple of flow rates (Qw, Qo) = (2, 1) µLmin−1. As rep-
resented in the inset, the Lb(k) curves slowly increase at
all powers, yet the trend clearly flattens with increasing
power. Note that, in the 24-mW case, only the breakup
events in the k ∈ [27, 93] range are considered; the thread
dynamics outside this interval is discussed in Appendix
B. On the one hand, the progression rate of the thread
persistence length, dLb/dk, plotted against beam power
in Fig. 5, abruptly vanishes to zero below 33 mW, mean-
ing that the instability is convective in the transiently
and quasi-stationary fragmented regimes [Fig. 2 (a), top
and middle]. On the other hand, above 33 mW the sta-
bilised breakup length is close to 50 µm, which confirms
that the instability has become absolute. The thread yet
reaches a stationary dripping regime and no longer spon-
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taneously reforms.
This investigation thus demonstrates that the thread

fragmentation in a confined environment occurs by grad-
ually tuning, via the amplitude of the initial optocapil-
lary pinching, the spatio-temporal development of an in-
stability, from convective to absolute. It also shows the
robustness of the mechanisms of the jetting-to-dripping
transition in presence of strong confinement.
As a final remark, we note that the linear velocity de-

pendence of the thread-to-droplet forced transition, evi-
denced by the inset of Fig. 2 (b), also supports this inter-
pretation in terms of a transition from a convective to an
absolute instability. In unforced systems, the dripping-
to-jetting transition indeed occurs at a critical Weber
number [45, 48]. It is therefore consistent to find the
forced transition shifted towards higher forcing ampli-
tudes when increasing the flow velocity.

IV. WEAKLY-TO-STRONGLY CONFINED
TRANSITION

The forced thread-to-droplet transition in channels is
thus unexpectedly smooth, featuring transient regimes
as a global instability builds up. Besides, the optocapil-
lary pinching also produces upstream a local bulging [see
Fig. 1 (c)] that may partly clog the channel (except gut-
ters in the corners) and thereby prevent or slow down the
subsequent breakup. This local confinement should thus
produce a rich dynamic behaviour at the single droplet
level [35], regardless of the convective or absolute nature
of the instability. Figure 6 depicts several temporal se-
quences that were observed in distinct experimental con-
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Figure 6. (a) Main fragmentation sequences. From top to
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and -8. Experimental conditions are inserted in each graph
as (Qw, Qo;P ) in µLmin−1 and mW. The time origin was set
arbitrarily.

ditions. The simplest case, already mentioned above,
corresponds to the periodic emission of monodisperse
droplets (hereafter referred to as period-1), see Fig. 6 (a),
top row. Sequential regimes were also observed, the most
common ones are illustrated in Fig. 6 (a):

• The period-2 regime consists of a very long droplet
(1) followed by a short one (2);

• The period-3 regime is an alternation between a
moderately short (1), a long (2) and a very short
droplet (3) — the symmetric 3 → 2 → 1 succession
was also observed but much more scarcely;

• The period-4 regime corresponds to a couple of
period-2 successions entangled (compare droplets
1 and 2 with 3 and 4, respectively).

To be complete, we also mention three higher-order
regimes that were sporadically observed (over a few con-
secutive periods only), see Fig. 6 (b):

• Period-5: alternation between a period-2 and a
period-3 successions;

• Period-6: two distinct period-3 successions entan-
gled (droplet 1 is systematically smaller than 4;
droplets 2 and 3 are closer in size than 5 and 6);
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• Period-8: alternation between a period-4 and a
period-3 immediately followed by a single short
droplet.

These sequences were observed reproducibly, over long
times, under given experimental conditions. The left
panel of Fig. 7 presents the droplet series observed over
a few minutes at different laser powers, for (Qw, Qo) =
(2, 1) µLmin−1. The period-1 regime clearly dominates
at both low (37 mW) and high powers (66 mW), while
higher-order sequences (mostly period-4 at 45 mW and
period-3 at 54 mW) are produced in between. Note that
several distinct regimes may coexist or alternate over
time scales of minutes, as for instance at 41 mW fea-
turing period-4, period-1 and period-2 regimes succes-
sively, in alternation with several occurrences of period-3
sequences. Note also that the period-3 regime is rather
scarcely reported in the literature. In a dripping faucet
configuration, Subramani et al. predicted a stationary
period-3 regime within a small interval in Bond number;
small variations beyond this slender window lead either
to a monodisperse regime or to intermittent routes to
chaos [49]. Here, period-3 sequences are either intermit-
tent (41- and 45-mW cases) or stationary (54 mW).
The three graphs in the right panel of Fig. 7, where the

droplet length is plotted against the laser power, gather
the main regimes (those representing less than 1% of the
total population are ignored) obtained for the three in-
vestigated flow rates. In all cases, the diagrams feature
a similar bifurcation–reconnection shape, though the de-
tailed specific regimes may differ — especially, in the in-
termediate flow rates case when the period-3 regime is al-
most absent and appears only intermittently at the open-
ing of the bifurcation. The three diagrams superimpose
provided that the laser power is slightly corrected by a
factor α, close to unity (α = 1, 0.92 and 0.84 respectively,
for increasing flow rates). This remarkably similar trend
shows that the bifurcating (period-1 to period-n, with
n > 2) and reconnecting (period-n to period-1) transi-
tions are primarily driven by the confinement rather than
fluid advection. This is particularly noticeable for the
largest couple of flow rates (Qw, Qo) = (4, 2) µLmin−1,
in which the low-power period-1 regime and the period-
1–period-2 bifurcation cannot be triggered due to the
fluid advection, yet the droplet formation starts in the
same period-2 regime as those observed at lower flow
rates. In addition, comparing the experimental images in
the low- and high-power period-1 regimes (Fig. 7, cases
i and v; see also Videos 2 and 3) actually shows that
boundary conditions remain fairly constant during the
succession of pinching events: the inflated part of the
thread after breakup either never (low power) or always
(high power) touches the lateral walls. In contrast, in
the period-n regimes these boundary conditions strongly
vary from one drop to another: a long droplet forms when
the thread touches the wall, and a short one is released
when it does not (Fig. 7, cases ii–iv and Video 4). Thus,
while this nonlinear behaviour reminds of feedback mech-
anisms occurring in distinct fluid mechanical systems,

Video 3. Movie illustrating the periodic fragmentation of
the thread under continuous laser forcing. The thread in-
terface permanently touches the lateral walls. The real-time
dynamics is ten times faster; P = 66 mW, (Qw, Qo) =
(2, 1) µLmin−1.

Video 4. Movie illustrating the high-periodic (here, period-4)
fragmentation of the thread under continuous laser forcing.
The thread interface alternatively does and does not touch
the lateral walls. The real-time dynamics is ten times faster;
P = 45 mW, (Qw, Qo) = (2, 1) µLmin−1.

such as the leading edge of a thread in the widely-studied
dripping faucet [45, 50], or into microfluidic constrictions
[35, 51], it is here clearly related to the interplay between
the pinching and the obstruction due to the channel con-
finement.

We finally note that, while the droplet length in high
periodicity regimes (n > 2) depend on the laser power,
the droplet length is essentially constant in the period-
1 regime. This length actually coincides well with the
wavelength λ∗ = 293 µm of the most unstable RP mode
calculated according to the linear stability analysis of
an unconfined water jet in oil [52]. Retrieving the un-
confined most unstable mode in such confined case may
sound rather surprising, yet it agrees with the exper-
imental findings of Son et al., who observed that the
wavelength converges towards the unconfined one quite
abruptly as soon as the confinement between two squeez-
ing walls decreases [53]. This convergence suggests that
the RP instability eventually selects the breakup mode
although it does not trigger the initial thread pinching.

To summarise, laterally confined threads submitted
to a continuous local forcing experience two distinct
transitions, that produce non-uniform droplet emission
regimes. First, the jetting-to-dripping transition is linked
to the establishment of an absolute instability. Second,
the weakly-to-strongly confined fragmentation is a sig-
nature of the interplay between the imposed deformation
and the partial obstruction of the channel near the pinch-
ing point. Since they rely on distinct mechanisms, these
two transitions are independent and may occur either
successively or simultaneously, depending on the thread
velocity and the channel geometry, respectively.

V. CHOPPED FORCING: FROM
INSTABILITY-DOMINATED TO CONTROLLED

FRAGMENTATION

Digital microfluidic applications usually require the
production of well-defined and calibrated droplets. In
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Figure 7. Left: Examples of temporal fragmentation patterns observed when gradually increasing laser power. From top to
bottom, P = 37, 41, 45, 54 and 66 mW; (Qw, Qo) = (2, 1) µLmin−1. Right: Bifurcation diagrams representing the main
regimes obtained for the three couples of flow rates investigated. Error bars are ±1 standard deviation. Inset in the bottom
graph: superimposed bifurcation diagrams for the three couples of flow rates through a corrected power αP . Circles, triangles
and squares correspond to the three couples of flow rates in increasing order.

this scope, avoiding both transient and inherent high-
periodicity fragmented regimes is crucial. Besides, a con-
tinuous laser forcing does not allow to select a specific
droplet size in the presence of confinement. We thus
modulate the laser forcing at the frequency f , by insert-
ing a mechanical chopper (SRS SR 540) in the optical
path, which produces step-shaped light pulses of dura-
tion 1/(2f) alternating with ‘dark’ half periods (no sig-
nal). Contrary to conventional modulation, which usu-
ally produces a sinusoidal signal and therefore only ex-
cites a well defined sine mode, here the excitation is

continuous-like during the pulse. All modes of wave-
length shorter than the slice of liquid flowing during the
pulse (first half-period) get excited. The chopper fre-
quency thus defines the upper limit of the excited wave-
lengths, λmax = v∥/(2f), with v∥ the interface velocity.

A. Phase diagrams

Figure 8 depicts the thread-to-droplet transition in
the form of a ‘phase diagram’ in the (frequency, power)
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plane, for the three couples of flow rates investigated.
In analogy with the continuous forcing case, we identify
three regimes: ‘continuous’ [crosses, almost no fragmen-
tation, including situations analogous to Fig. 2 (a)-top],
quasi-stationary ‘fragmented (QS)’ [triangles, analogous
to Fig. 2 (a)-middle], and stationary ‘fragmented (S)’,
[circles, analogous to Fig. 2 (a)-bottom]. These regimes
approximately lie within the dark, medium and light grey
areas, respectively.

The general shape of the three diagrams is remark-
ably similar, the transitions between thread and droplets
regimes being shifted roughly linearly in beam power
when increasing the flow rates linearly. Moreover, con-
sidering the two transitions between the three regimes
together allows to identify a critical forcing frequency,
f∗ (dotted arrows), that favours the direct transition
from the continuous to the stationary fragmented regimes
without crossing the intermediate convective-to-absolute
transition region. This frequency also seems to increase
linearly with the flow rates, suggesting that the exci-
tation is somehow synchronised with a preferred mode
of the thread instability. The maximal wavelength ex-
cited for each chopper frequency is calculated from the
interface velocity, measured for the three couples of flow
rates investigated according to the procedure detailed in
Appendix A. The phase diagrams are then replotted
together in the (λmax, τadv/τopt) space in Fig. 9. The
regimes corresponding to the three couples of flow rates
overlap very well. Moreover, as already illustrated in
the continuous optical forcing case, we retrieve the fact
that the thread-to-droplet transition occurs for τadv/τopt
in the order of 1. Finally, the direct continuous-steady
fragmented transition is found near λmax ≃ 315 µm, a
value very close to the most unstable mode of the RP
instability λ∗ = 293 µm — equivalently, the chopper fre-
quency associated to this mode is f∗ = v∥/(2λ

∗) = 13.0,
19.8 and 24.9 Hz for the three couples of flow rates, in

very good agreement with the values observed in Fig. 8
(12±3, 15±5 and 25±5 Hz, respectively). The thread-to-
droplet transition is also remarkably asymmetric around
this value, evidencing two distinct breakup regimes. Be-
low λ∗, the thread fragmentation requires more energy
as λmax decreases, while it remains relatively constant
above λ∗. This behaviour confirms that the most unsta-
ble mode λ∗ dominates the breakup process provided that
it is excited (i.e., when λmax > λ∗); shorter wavelengths
correspond to slower modes which require a stronger so-
licitation. In other words, the forced fragmentation re-
quires that the full deformation and destabilisation steps
(the optocapillary pinching and the RP instability) pro-
ceed while the neck remains within the unstable zone
defined in section III B, which is facilitated when fast RP
modes are excited. The thread-to-droplet transition de-
picted in this ‘phase diagram’ is thus a signature of the
dispersion relation of the confined thread.

In addition, even short wavelength solicitations can
still lead to the breakup of the thread. This appears
in contradiction with the Plateau criterion for stability
of a liquid cylinder, which states that only the modes
longer than the thread perimeter (here, λ0 = 173 µm,
corresponding to f0 = 22.0, 33.6 and 42.3 Hz for the
three couples of flow rates) are unstable [3]. In fact,
the optocapillary forcing intrinsically pinches the thread
and, if sufficiently strong, may force the breakup by it-
self due to the strong pushing flow induced around the
neck, regardless of the RP instability [34]. This ‘scissors-
cut’ forcing mechanism thus contrasts with remote forc-
ing approaches using pressure transducers [25, 26], ac-
tuation channels [54], or previously-reported low-power
laser heating [28], that modulate the pressure of an al-
ready unstable thread to excite a specific mode but do
not exert any local action that could force the breakup
of an initially stable thread.

Thus, depending on the excitation and stability con-
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ditions, the fragmentation is not necessarily driven by
the RP instability, which would essentially select a pre-
ferred droplet size according to the fluid properties.
Here, mono- and multidisperse droplets are actually pro-
duced, as represented in Fig. 8 (mono- and multidis-
perse regimes denoted by filled and open symbols, re-
spectively). In the low-frequency regime (f < f∗ or
equivalently λmax > λ∗), several droplets can be emit-
ted during a single pulse, as seen for example in Video 5.
The multi-sized droplet regime thus corresponds to a sit-
uation when the exposure time by pulse is not commen-
surate with the time needed to produce a droplet at the
same power under constant exposure. Note, in addition,
that the pinching–obstruction behaviour occurring dur-
ing the pulse is similar to that observed in continuous
period-n regimes (section IV). Conversely, at high fre-
quencies (f > f∗, λmax < λ∗, and more importantly
beyond f0), several periods may be necessary to break
the thread. The number of required periods depends on
the laser power, and may either be constant (for exam-
ple, one droplet produced every 2 periods, see Video 6),
or alternate from one droplet to another (for example,
2 periods to produce a droplet, then 3 periods to pro-
duce the next droplet, and back to 2 periods, Video 7),
leading to high-frequency multidisperse regimes. Both
mono- and multidisperse regimes can actually alternate
over the full acquisition time, as illustrated in Fig. 10.
Monodisperse droplets are first produced every period
(purple circles), then a bidisperse regime results from the
alternation of droplets produced in one and two periods
(grey squares), see left inset in Fig. 10, before retriev-

Video 5. Movie illustrating the low-frequency (f < f∗) multi-
disperse fragmentation of the thread under chopped laser forc-
ing. The real-time dynamics is ten times faster; P = 37 mW,
f = 5 Hz, (Qw, Qo) = (2, 1) µLmin−1.

Video 6. Movie illustrating the monodisperse fragmentation
(1 drop every 2 periods) of the thread under chopped laser
forcing. The real-time dynamics is twenty times faster; P =
67 mW, f = 50 Hz, (Qw, Qo) = (2, 1) µLmin−1.

ing the initial one-pulse monodisperse regime. Note that
the one-pulse droplets obtained in alternation with two-
pulse ones are systematically larger than those of the
monodisperse sequence, which contrasts with the period-
1–period-2 transition in continuous forcing cases (see, for
instance, case ii in Fig. 7, left).

B. Controlled fragmentation

Obtaining monodisperse one-pulse droplets requires a
sufficient optocapillary forcing to induce breakup within
a single half-period. On the one hand, increasing the laser
power at high frequency (f > f∗) favours this regime by
reducing the number of pulses required to produce one
droplet. On the other hand, when this regime is reached,
the size of the obtained droplets does not depend any-
more on the laser power (Fig. 10, right inset) and only
varies with the chopper frequency and flow rates. Con-
sequently, for all frequencies and flow rates, a set of laser
powers exists that allows the formation of monodisperse
droplets, one per pulse. It is thus possible to control
the size of droplets through the chopper frequency. Mass
conservation between two consecutive breakups indeed
leads to

L =
Qw

whf
+ Lc, (5)

where the length Lc accounts for the front and rear cur-
vatures, corresponding to the minimal breakup length as
discussed in section III B, and is therefore expected close
to w. The mean thread velocity is calculated according to
the full channel cross section, wh, rather than the initial
thread cross section πR2

0 ≃ πh2/4 since, when droplets

Video 7. Movie illustrating the high-frequency (f > f∗) mul-
tidisperse fragmentation of the thread under chopped laser
forcing (1 drop in 2 and 3 periods in alternation). The real-
time dynamics is twenty times faster; P = 55 mW, f = 50 Hz,
(Qw, Qo) = (2, 1) µLmin−1.
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the average value for each series. Flow rates are (Qw, Qo) =
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are produced, the thread locally enlarges up to the lat-
eral walls. The droplet length produced by modulated
forcing, in cases when one droplet is released per pe-
riod, is plotted against the chopper frequency in Fig. 11.
Droplets of length comprised between 200 and 600 µm
are obtained in the frequency range investigated (essen-
tially, f > f∗, though values slightly below f∗ are also
taken into account). The trend expected according to
Eq. 5 (solid lines) is well retrieved, with values of Lc

found between 60 and 77 µm, reasonably close to the ex-
pected value considering the distorted shape of the rear
interface. The velocities v = Qw/(wh) issued from the fit
are respectively 5.6, 8.5 and 11.3 mms−1 for increasing
flow rate couples. They are 7% below the expected val-
ues (respectively, 6.1, 9.1 and 12.1 mms−1); this small
quantitative disagreement likely results from the crude-
ness of the model. Nonetheless, they nicely preserve the
flow rate ratio as also confirmed by comparing the time
to flow a slice of liquid of width L−Lc with 1/f (Fig. 11,
inset).
Note finally that droplets produced at f = f∗ are

about 530 µm in length, which is very close to the
sum of two wavelengths of the most unstable RP mode
(2λ∗ = 586 µm). At this particular frequency, the laser
excites the most unstable mode during the full exposure
time, which drives the breakup dynamics. The locally
inflated thread then advects by λ∗ during the dark half
period. When the next pinching starts, the thread has
practically retrieved its initial radius R0, rather than a
larger one due to the upstream bulging induced by the
previous pinch-off (see Video 8). This is the reason why
this chopper frequency favours a direct thread-to-droplet
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Video 8. Movie illustrating the monodisperse fragmentation
of the thread under synchronised chopped laser forcing (f ≃
f∗). The real-time dynamics is ten times faster; P = 31 mW,
f = 12 Hz, (Qw, Qo) = (2, 1) µLmin−1.

transition, and less power (typically reduced by about
30%) is needed to reach the stationary fragmented regime
compared to the continuous forcing case.

Chopped forcing thus allows to produce well-calibrated
droplets through controlled thread fragmentation. This
fragmentation occurs by destabilising an initially stable
thread, either by triggering the RP instability, or as a di-
rect result of a strong pinching. The wide operating range
of the method, actually limited by the channel width to
investigate the confinement effects, illustrates its poten-
tial for applications in digital microfluidics.

VI. CONCLUDING REMARKS

Building a tunable wall-free constriction, we have ex-
plored the rich topology patterns featured by a confined
thread when locally pinched. First, the thread can suc-
cessively break and reform, though subject to a contin-
uous and constant forcing. The origin of this breakup–
reformation alternation is likely connected to the estab-
lishment of a convective instability, competing with the
natural stability of the thread due to the geometric con-
finement by the channel [16, 29, 30]. Permanent fragmen-
tation is finally achieved when the triggered instability
becomes absolute. Second, the fragmentation can either
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be periodic or follow multidisperse regimes, featuring
a remarkable bifurcation–reconnection diagram reminis-
cent of distinct non-linear fluidic systems [35, 45, 50, 51].
The period-1–period-n–period-1 transition actually re-
sults from the interplay between the local forcing of the
thread and the local obstruction due to the channel con-
finement. Temporally modulating the optocapillary forc-
ing allows to avoid these period-n regimes, and to favour
stationary fragmentation, by synchronising the excita-
tion with the advection of the bulge. It also evidences
small wavelength fragmentation of threads, stable against
the Plateau criterion [3], by direct optocapillary pinching
at high modulation frequencies. In this regime, control
of the droplet size is thus achievable through the modu-
lation frequency, provided that the forcing amplitude is
sufficient to impose the thread breakup at every shot.

Finally, practically and from a thread actuation view-
point, externally forcing the thread-to-droplet transi-
tion also allows the reversible production of calibrated
droplets within confined channels by simply setting or
stopping the laser on demand. This reversibility in time
is a definite asset compared to passive, geometry-based
droplet production devices subject to long-lasting tran-
sient stages [42]. In addition, optically-based approaches
such as presented here may be displaced on demand, fea-
turing by this way an extended versatility compared to al-
ternatives based on integrated electrical [24] or microme-
chanical [25] devices, which set actuation in space.
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Appendix A: Velocity of the interface

The geometry considered here (a cylindrical thread in
a rectangular channel) does not allow the analytical cal-
culation of the velocity profile. We therefore deduced the
interface velocity from measurements of the pinching and
relaxation dynamics in the wavy regime under chopped
optocapillary forcing. These dynamics were taken with
a ×20 microscope objective (Olympus SLMPlan, N.A.
0.35), the camera operating at 3, 000 fps. The laser was
modulated at 30 Hz with a mechanical chopper which
produces step-shaped light pulses of duration 1/60 s al-
ternating with 1/60 s dark, and set at various power in
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Figure 12. Temporal evolution of the neck radius (red trian-
gles, left scale) and axial position (blue circles, right scale)
under moderate pulsed optocapillary forcing, during the half-
period pulse exposure (filled symbols) and the subsequent re-
laxation (open symbols) during the following dark half-period.
The solid line is a linear fit of slope v∥. The filled (resp. open)
red and blue arrows on the bottom left (resp. right) images
set the definition of the neck radius and its axial position.
Flow rates and laser power are (2, 1) µLmin−1 and 9 mW,
respectively. Inset: Interfacial velocities v∥ measured during
the relaxation stage plotted against laser power for three cou-
ples of flow rates. The horizontal lines depict the average
value for each series.

the wavy regime. Each measurement consists of the av-
erage of ten successive pinching–relaxations series.

During one period, the thread pinches under light ex-
posure, then slowly relaxes when the laser is off, as de-
picted in Fig. 12 (red triangles, left scale). The axial
position of the neck (blue circles, right scale in Fig. 12) in-
creases linearly, but at a rate systematically smaller when
the laser is on (filled symbols) than when off (open sym-
bols). This difference is due to the fact that the pinching
concerns distinct fluid elements as it proceeds, as a result
the neck (defined as the thinnest part of the thread) ad-
vects slower than the interface during the exposure time.
Conversely, during the ‘dark’ half-period the neck ap-
proximately follows the interface propagation, though a
small correction could nonetheless result from the relax-
ation dynamics. We thus measure the interface velocity,
v∥, during this second half-period. Measurements per-
formed at different laser powers are depicted, for each
couple of flow rates, in the inset of Fig. 12. The interface
velocity is found constant over the power range investi-
gated, confirming that the relaxation of the pinching de-
formation does not influence the interface advection sig-
nificantly. More importantly, the average values preserve
the flow rate ratio, yielding v∥ = 7.60±0.74, 11.63±0.67,

and 14.62 ± 1.13 mms−1 for (Qw, Qo) = (2, 1), (3, 1.5)
and (4, 2) µLmin−1, respectively.
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Appendix B: Transient fragmentation dynamics

In the transiently fragmented regime, the breakup
length varies a lot from one breakup event to the other.
At low powers, for example P = 24 mW at (Qw, Qo) =
(2, 1) µLmin−1, case represented in Fig. 4, Lb(k) starts
by strongly decreasing from about 300 µm (the extent of
the unstable zone) to about 50 µm (the channel half-
width, w/2), as represented in Fig. 4 (24-mW case).
Remarkably, minimal breakup lengths are reproducibly
found around the breakup event k ≃ 25–30, regardless
of the laser power and flow rates considered. This ro-
bustness strongly suggests that the initial decrease in Lb

is related to the number of droplets flowing in the chan-
nel. As a matter of fact, the total capacity of the channel
downstream of the laser beam is typically 30±5 droplets,
assuming each droplet is 200–300-µm long and followed
by a 50-µm wide slice of oil. While the channel gradually
saturates with droplets, its hydrodynamic resistance in-
creases [31, 32] due to its partial obstruction which forces
the continuous phase to mainly flow through corners [55].
This rapidly increasing resistance slows down the thread
velocity, which comparatively accelerates the instability
as τadv/τopt ∝ 1/v∥ locally increases — Lb decreases
and approaches the w/2 limit —, making it transiently
absolute-like.
At the same time, the slowing down of the velocity

at constant flow rates gradually thickens the thread, as
observed in Video 1 after the first breakup events. This
lateral expansion reinforces the confinement, increasing
the thread stability. The breakup location then shifts
downstream and the instability turns back convective.
Longer droplets are thus produced, increasing the cu-
mulated plug length in the channel, and thereby its hy-
drodynamic resistance again. Figure 2 (a) top and mid-
dle illustrate well such a self-sustained competition. At

P = 21 mW [Fig. 2 (a), top], the drop size decreases at
early stage, then grows until the eventual thread refor-
mation.

In the transiently fragmented regime, optocapillary
breakup indeed remains very sensitive to weak random
variations in flow and thread radius near the laser beam
location and this sensitivity to fluctuations, which drives
the first thread breakup, may also make the thread miss a
breakup event, leading to its reformation. The reformed
thread is transiently thicker than before the first fragmen-
tation event, and takes back its initial cross section after
a few seconds — this delay corresponds to the evacuation
of the residual droplets out of the channel (v ≃ 5 mms−1,
section VB), or symmetrically to the initial transient
breakup succession when droplets fill the channel.

Increasing the laser power strengthens the optocapil-
lary pinching and triggers thread breakup much sooner
[37]. The fragmentation dynamics continues to show
the initial variations in drop size but becoming less sen-
sitive to fluctuations, ends up with a quasi-stationary
regime before thread reformation [Fig. 2 (a), middle,
P = 28 mW]. A close view on initial breakup events
(Fig. 5) also shows that the first breakup now occurs
closer to the laser beam due to a more efficient optocap-
illary pinching. The instability nonetheless remains con-
vected as illustrated by the weak increase of the breakup
length due to the slowly increasing hydrodynamic resis-
tance, evidenced by the slow enlargement of the droplets
in the quasi-stationary regime [Fig. 2 (a), middle]. Self-
sustained evolution still proceeds and eventually leads
to the thread reformation, similarly to the lower power
case. Finally, the instability becomes and remains abso-
lute at higher laser power when optocapillary pinching
dominates variations in thread radius and hydrodynamic
resistance; a stationary fragmented regime is reached —
typically, when τadv/τopt > 0.4 [Fig. 2 (b), inset].
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