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Abstract

In Drosophila melanogaster, the functions of voltage-gated sodium (Na,) channels are
modulated by TipE and its orthologs. Here, we describe a novel 7/jpE homolog of the
American cockroach, Periplaneta americana, called PaTipE. Like DmTipE, PaTipE mRNAs
are ubiquitously expressed. Surprisingly, PaTipE mRNA was undetectable in neurosecretory
cells identified as dorsal unpaired median neurons. Phylogenetic analysis placed this new
sequence in TipE clade, indicating an independent evolution from a common ancestor.
Contrary to previous reports, our data indicate that the auxiliary subunits of insect Nay
channels are very distant from the mammalian BKCa auxiliary subunits. To decipher the
functional roles of PaTipE, we characterized the gating properties of DmNa,1-1 channels co-
expressed with DmTipE or PaTipE, in Xénopus oocytes. Compared to DmTipE, PaTipE
increased Na' currents by a 4.2-fold. The voltage-dependence of steady-state fast inactivation
of DmNa,1-1/PaTipE channels was shifted by 5.8 mV to more negative potentials than that of
DmNa,1-1/DmTipE channels. DmNa,1-1/PaTipE channels recovered 3.2-fold slower from
the fast-inactivated state than DmNa,1-1/DmTipE channels. In conclusion, this study supports
that the insect Na, auxiliary subunits share functional features with their mammalian

counterparts, although structurally and phylogenetically distant.

Keywords
Insect voltage-gated sodium channel; phylogenetic analysis; auxiliary subunit; Xeénopus

oocyte; two-electrode voltage-clamp technique.



1. Introduction

Voltage-gated sodium (Na,) channels represent crucial plasma membrane components, that
control depolarization-triggered fast Na' influx, allowing the generation and propagation of
action potentials in excitable cells (Hille, 2001). Na, channels consist of a large pore-forming
a-subunit (~260 kDa) and one or more smaller auxiliary proteins (Catterall et al., 2005). The
Na, channel a-subunit constitute molecular targets of numerous compounds such as, clinically
used drugs for treatments of various diseases (e.g., epilepsy, chronic pain and cardiac
arrhythmia), and also various animal and plant neurotoxins (Denac et al., 2000). Insect Na,
channels are targeted by extensively used insecticides belonging to pyrethroid or pyrazoline
families (Silver et al., 2010; Soderlund, 2008). However, these insecticides also impact the
functions of mammalian Na, channel a-subunits because of their high homology with insect

counterparts.

In contrast, the Na, channels auxiliary subunits are more divergent in sequences and
structure in both insects and mammals. In mammals, these auxiliary subunits, called -
subunits are glycoproteins containing a single transmembrane segment (Chahine and O'Leary,
2011). They modulate both trafficking and gating properties of Na, channels (Patino and
Isom, 2010). The Drosophila melanogaster genome analysis has revealed the absence of gene
encoding proteins homologous to the vertebrate Na, channel B-subunits (Littleton and
Ganetzky, 2000). However, a family of five homologous genes encoding proteins (DmTipE,
TEHI1, TEH2, TEH3 and TEH4) have been previously reported in 0. melanogaster with
functions similar to those of mammalian B-subunits (Derst et al., 2006; Feng et al., 1995;
Wang et al., 2015; Wang et al., 2013; Warmke et al., 1997). DmTipE is a glycosylated
membrane protein (~65 kDa) that contains two membrane-spanning segments, encompassing

a large extracellular loop and two intracellular extremities (Derst et al., 2006; Feng et al.,



1995). This topological organization is similar to that of B-subunits (Slo-f) of the mammalian

big conductance calcium-activated potassium channel (BK,), suggesting a common ancestor

(Derst et al., 2006).

The heterologous expression of insect Na, channel a-subunits is a notoriously
challenging task, limiting functional and pharmacological investigations. To date, the
Xenopus oocyte expression system is the unique suitable system to heterologously express
insect Na, channels. Only tiny currents are obtained when the Na, channel of D. melanogaster
(DmNa,1) is expressed alone in Xénopus oocyte (Feng et al., 1995; Warmke et al., 1997). By
contrast, the co-expression of DmNa, 1 with the auxiliary subunit DmTipE generates high Na"
current density that is associated with hastened inactivation kinetics (Derst et al., 2006; Feng
et al., 1995; Warmke et al., 1997). The discovery of TipE in D. melanogastér has greatly
improved the investigation of the molecular mechanisms of insecticides targeting Na,
channels (Dong, 2007). DmTEH1 and DmTipE robustly boost DmNa,1 expression, resulting
in 30-fold and 10-fold increases, respectively, in Na' current density. By comparison,
DmTEH2 and DmTEH3 have weaker effects (5 to 8-fold increase in Na' currents), and
DmTEH4 has no effect on DmNa,1 channel expression (Derst et al., 2006). In addition, when
DmNa, 1 is co-expressed with TipE or TEHI-4 subunits in Xenopus oocyte, elicited Na"
currents display distinct inactivation properties (Derst et al., 2006).

Two distinct types of Na, channels have been functionally characterized in the Dorsal
Unpaired Median (DUM) neurons of the cockroach, Periplaneta americana, which is a
commonly used neurophysiological model (Lavialle-Defaix et al., 2006; Lavialle-Defaix et
al., 2010; Zhao et al., 2005). We hypothesized that these Na, channels differ by the
composition of their auxiliary subunit. In this context, we cloned the Na, channel a-subunit of
P. americana, PaNa,1 (Moignot et al., 2009). Unfortunately, PaNa,l is not expressible in

Xenopus oocyte with DmTipE, DmTEH1 or PaTEH]1 variants (Bourdin et al., 2013; Moignot



et al., 2009). Then, BgNa,1 (Na, channel of Blattel/la germanica) and DmNa,1, sharing high
amino acid sequence identities with PaNa,1 have been used in electrophysiological
experiments in Xénopus oocytes. We have shown that the consequences of the interaction
between a-subunit and the auxiliary subunits of P. americana (PaTEH1) or 0. melanosgaster
(DmTEH1) are similar, demonstrating the functional conservation of these homologous
auxiliary subunits (Bourdin et al., 2013). Like DmTEH1, PaTEH]1 variants strongly increase
Na, channel expression in Xénopus oocytes. PaTEH1 subunits also shift the voltage-
dependence of Na’ currents of both activation and inactivation to more negative potentials,
compared to those elicited by BgNa, alone (Bourdin et al., 2013). Thus, both activation and
inactivation properties, as well as the expression level of Na, channels are modulated by co-

expressed TipE-related proteins.

To extend the knowledge concerning insect Na, channel auxiliary subunits, we
isolated ¢cDNAs encoding the DmTipE homolog, PaTipE, in the nervous system of P.
americana. We report here a phylogenetic analysis showing that this novel subunit is
evolutionary closely related to others TipE family members. Reverse Transcription-
Polymerase Chain Reaction (RT-PCR) experiments revealed a conserved tissue distribution of
PaTipE and DmTipE both within the central nervous system and in non-neuronal tissues.
Electrophysiological experiments were next performed to characterize the influence of

PaTipE on DmNa, channels expression and gating properties in Xénopus oocytes.



2. Material and methods

2.1. Animals
American cockroaches (P. americana) were reared in our laboratory under standard
conditions (29°C, photoperiod of 12-h light/12-h dark). Xenopus laevis females used for
oocytes preparations have been lab-bred. This study was carried out in strict accordance with
the recommendations in the Guide for the Care and Use of Laboratory Animals of the
European Community. The protocol was approved by the "Direction Départementale des
services Vétérinaire du Maine et Loire" (N°B49071) and by the "Comité d'Ethique en
Expérimentation Animale des Pays de la Loire" (N°CEEA.2012.68).
2.2. Molecular biology
Isolation of total RNA, reverse transcription (RT), PCR amplification and PCR product
purification were performed as previously described (Chatel et al., 2013). The nucleotide
sequences of primers used in our experiments are given in Table 1. For cloning a TipE-related
partial cDNA of P. americana, a set of degenerated primers (TDP-S1 and TDP-R1) was
designed from conserved amino acid sequences of TipE subunits of 0. melanogaster, Musca
domestica, Tribolium castaneum, Pediculus humanus corporis, Anopheles gambiae, Culex
quinquefasciatus and Aedes aegypti. PCR experiments were carried out with EuroTaq
polymerase (Eurobio, Courtaboeuf, France).

5’and 3’ RACE experiments were performed as previously described (Moignot et al.,
2009). Gene-specific primer sets used in RACE experiments were TP-R1, TP-R2, TP-S1 and
TP-S2 (Table 1). The complete ORF of PaTipE cDNA was obtained by nested PCR using
specific primers TP-S4 and TP-R4 followed by TP-S3 and TP-R3 (containing the restriction
sites Xmal and Xbal, respectively) and with a high fidelity hot start thermostable DNA
polymerase (KOD HiFi DNA Polymerase; Novagen, Darmstadt, Germany). Because of the

presence of a second ATG at 5° of PaTipE ORF, TP-S3 specific primer contained a silent



single base change in a putative second start codon (ATG to ACG) at position 6 to avoid the
translation of unwanted product. The amplicon of the second PCR was cloned into Xmal/Xbal
digested pGEM-HEJUEL plasmid (kindly provided by Prof. Olaf Pongs, Institute for Neural
Signal Transduction, Hamburg, Germany) and sequenced (GATC Biotech, Konstanz,
Germany). Each clone was sequenced twice on both strands using universal sense and reverse
primers. Sequences analyses were performed using BioEdit sequence analysis Software. The
amino-acid sequences deduced from ORFs were identified using BLAST research in
GenBank database (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and by sequences alignment
with DmTipE, performed using ClustalW method, as previously described (Moignot et al.,
2009).

Semi-quantitative RT-PCR experiments were performed to address the tissue
distribution pattern of PaTipE using TP-S3/R3 primer pair. Expression of PaTipE and
PaTEH]1 transcripts in DUM neurons was assessed by RT-PCR. The cytoplasm of 10 isolated
DUM neurons were harvested via a patch-pipette mounted on a micromanipulator as
described previously (Chatel et al., 2013). Total RNA was then purified using the Nucleospin
® RNA XS (Macherey-Nagel, Hoerdt, Germany) and reverse-transcribed as described above.
Nested amplification was performed with specific primer pairs encompassing ORF of PaTipE
or PaTEH1 (Table 1). Amplicons were prepared as mentioned above and cloned into
pGEMHE for sequence analysis. All RT-PCR experiments were carried out in triplicate.

2.3. Phylogenetic analysis

The accession numbers for cDNA sequences mentioned in this article are indicated in Table
S1. The phylogenetic trees were constructed from TipE and TEHs auxiliary subunits. Full-
length ORFs were identified by Blast search in Genbank (Table S1). The alignment of amino
acids deduced from DNA sequences was performed using ClustalW method (Thompson et al.,

1994) implemented in MEGAS.0 (Tamura et al., 2011). The phylogenetic trees were then



generated using Maximum likelihood method and confidence on node was assessed by
bootstrapping 1000 times.

2.4. Electrophysiological recording in Xenopus oocytes

The cloning of PaNa,1 (GenBank ID: GQ132119) into pGEMHE has been already described
by Moignot et al. (2009). DmNa,1-1 and DmTipE subunits have been cloned into pGH19 as
previously reported (Olson et al., 2008). pGEMHE and its derivative pGH19 contain both 5’-
and 3’-UTR from the Xénopus beta-globin gene, allowing high expression of foreign protein
in Xenopus oocytes (Shih et al., 1998). All recombinant plasmids were linearized with Mot/
(Invitrogen, Carlsbad, USA) or Spé/ (Promega, Madison, USA) and capped RNA were
transcribed in vitro using the T7 mMESSAGEmMACHINE kit (Ambion, Austin, USA). The
procedure for oocyte preparation was identical to that described previously (Bourdin et al.,
2013). About 7 to 35 ng of a and B subunits RNA mixture were injected in oocytes (1:1 ratio).
Injected oocytes were incubated in sterile medium composed of SOS supplemented with
gentamycin (50 pg/ml), penicillin (100 U/ml), streptomycin (100 pg/ml) and sodium pyruvate
(2.5 mM) at 18°C for 3 to 10 days before recordings. Electrophysiological recording by two-
electrode voltage-clamp (TEVC) technique were performed as described in Bourdin et al.
(2013). Briefly, oocytes were tested using 1 M-KCl1/2 M-Kacetate-filled borosilicate glass
electrodes connected to a TEVC amplifier (TEV-200, Dagan Corporation, Minneapolis,
Minnesota, USA). Digidata 1440A interface (Axon CNS Molecular Devices, California,
USA) and pCLAMP 10 software (Axon CNS Molecular Devices) were used for acquisition
and stimulation protocols. All experiments were performed at room temperature (18-21°C) in
standard oocyte saline composed of (in mM): NaCl 96, KC1 2, CaCl, 1.8, MgCl, 1, Hepes 5,
(pH 7.5).

For Na, channel activation, Na' current traces were generated by step depolarisations to test

potentials from -70 to 40 mV (10 mV increment, 20 ms duration) from a holding potential of -



100 mV, and Na, channel conductance (Gn,) was calculated as already described (Barela et
al., 2006). To determine the voltage-dependence of steady-state fast inactivation, Na™ current
traces were generated by a two-pulse protocol beginning with a prepulse step of depolarizing
potential ranging from -80 mV to 40 mV (5 mV increment) for 200 ms, followed by a second
pulse to -5 mV for 12 ms. Each set of double pulses was separated by 10 s. For determination
of the voltage-dependence of steady-state slow inactivation, a two-pulse protocol was used,
starting with a prepulse of depolarizing potential ranging from -90 mV to 20 mV (10 mV
increment) for 60 s, followed by a 100 ms interval at the holding potential. A second pulse to
-5 mV for 10 ms allowed measuring the available current. For both fast and slow inactivation,
the peak current recorded during the second pulse was analysed as previously described
(Lavialle-Defaix et al., 2006). For the recovery from inactivation, Na' currents were
generated by a two-pulse protocol beginning with a first pulse to -5 mV for 50 ms followed by
a second pulse to -5 mV for 14.5 ms. The duration between the two pulses was increased by
1 ms every set of double pulses and each set was separated by 10 s (Lavialle-Defaix et al.,
20006).

2.5. Slatistical analysis

Statistical analysis of data was performed using GraphPad Prism software (version 5). All
data are presented as mean + SEM. Significance tests between groups were performed using a
variance analysis (one-way ANOVA) followed by a Tukey post hoc test for comparison of all
groups, or the unpaired Student’s Ftest when appropriate. p values are specified. Statistical

analysis probabilities are expressed as *, p<0.05, **, p<0.01 and ***, p<0.001.

3. Results

3.1. Cloning and expression pattern of a novel TipE-like subunit of P. americana
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Since no sequence information was available in databases, for cloning TipE-related cDNA
from P. americana, we designed two degenerated primers DTP-S1 and DTP-R1 (Table 1)
targeting conserved regions which encompassed the extracellular loop of TipE-related
proteins. A single 417-bp cDNA fragment was amplified and cloned from the nerve cord. It
encoded a 139-amino acid polypeptide which was identified as the extracellular loop of a new
TipE-like protein after blast analysis against non-redundant protein sequences (nr) database.
Next, RACE and nested PCR experiments with gene-specific nested primers (Table 1) led us
to identify a 214-bp 5’-untranslated region (5’UTR) and a 737-bp 3’-untranslated region
(3°’UTR), encompassing a 1065-pb ORF (Fig. S1 in the supporting information). A gene-
specific primer set (TP-S3 and TP-R3, Table 1) were designed to amplify the complete ORF,
encoding a 354-amino-acid protein, called PaTipE (Fig. 1A) (GenBank ID: KC992733). The
hydrophobicity profile of PaTipE revealed two hydrophobic domains (from position 20 to 41
and 226 to 249) that well aligned with the two putative transmembrane domains of DmTipE
(Fig. 1B).

Semi-quantitative RT-PCR was performed in different tissues (head, thoracic ganglia,
nerve cord, muscle, mushroom-shaped accessory gland and gut). Only one band of expected
size (1065 bp) was observed in each tissue with a high intensity in heads, thoracic ganglia,
nerve cords and muscle, and a lower intensity in mushroom-shaped accessory glands and gut
(Fig. 1C). Surprisingly and contrasting with PaTEH]1, PaTipE expression was undetectable in
DUM neurons, even after two-round PCR, while PaTEH1 c¢cDNA was amplified and its

sequence was confirmed after cloning (Fig. 1D).

3.2. Phylogenetic analysis
The deduced amino acid sequence of PaTipE was aligned with those of TipE-like

proteins from other insect species (Fig. S2 in the supporting information). PaTipE shares
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relative high sequence identities with TipE-like proteins of Apis floréa (AfTipE, 64%),
Nasonia vitripennis (NVTipE, 63.6%) and Bombus terrestris (BtTipE, 63.1%), and lower
sequence identities with TipE-like proteins of LJiptera species such as [. melanogaster
(42.1%), Culex quinquefasciatus pipiens (41.9%), Aedes aeqypti (38.7%) and Anopheles
gambiae (34.8%) (Table 2). Although the length of TipE-like protein varies among insect
species (from 336 to 506 amino-acid residues), the amino acid sequences alignment clearly
highlighted three distinct conserved regions. The first region comprises the N-terminal end,
M1 segment and the first 60 amino acids of the extracellular loop. The second region includes
the last 70-amino-acid residues of the extracellular loop N-terminal end and M2 segment
followed by a cytosolic string of 10-amino-acid residues. The third region consists of the last
65-amino-acid residues of the C-terminal end. The two transmembrane regions are over 84%
identical among all insect species, except for A. pisum (Table 2). The extracellular loop
includes two highly conserved regions at their N- (52-53 amino acids) and C-termini (70-72
amino acids) separated by a variable region. The cytoplasmic N-termini are relatively short
(19-22 amino acid residues) except for A. p/sum (46 amino acids), while the C-termini display
variable length among the insect species used in this study (102-167 amino acids).
Interestingly, the C-termini end with a highly conserved string of 19 amino acids in all

species, except in M. domestica and A. aegypti.

Aimed to establish the phylogenetic links between PaTipE and other insect auxiliary
subunits, we first built a phylogram from insect TipE homologs (Fig. 2A). This analysis
clearly indicated that PaTipE is phylogenetically related to eleven TipE homologs. The closest
homologs of PaTipE are TcTipE from Coleoptera and PhumTipE from Phthiraptera, and
afterwards NvTipE, BtTipE and AfTipE from Hymenoptera. Since a homology between
TipE-related proteins of D. melanogaster and Slo-B auxiliary subunits has been previously

pointed out (Derst et al., 2006; Li et al., 2011), these sequences were implemented in a second
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analysis encompassing the four other subfamilies of insect Na, auxiliary subunits. The
maximum likelihood method led to a single phylogram which was rooted at the branch
between two major clusters (bootstrap values: 91 and 99, Fig. 2B). One cluster contains TipE,
TEH1 and TEH2 homologs with high bootstrap values (99, 100, 99, respectively),
strengthening the phylogenetic relationships between the three subfamilies. The second
cluster assembles the two other subunits families, TEH3 and TEH4, with 90 and 95 bootstrap
values. Altogether, Slo- 1 to 4 sequences constitute a distant clade from the insect Na,

auxiliary subunits, although both types of proteins share a similar membrane topology.

3.3. Functional consequences of co-expression of DmMNavi-1 with DmTipE or
PaTipE

Because DmTipE is known to enhance the expression of DmNa,l or BgNa,l channels in
Xenopus oocytes, we assumed that it could also increase Na" current when co-expressed with
PaNa,l. Then, we measured Na" current elicited by PaNa,1 channels co-expressed with
DmTipE or PaTipE. Unfortunately, the oocytes injected with PaNa,1 mRNA (35 ng or up to
50 ng and incubated up to 15 days) did not generate any detectable currents with or without
DmTipE or PaTipE (Fig. 3A). By contrast, we detected small Na" currents (0.25 pA, 10-days
incubation, 35 ng of mRNA) from oocytes injected with mRNA of DmNa,1-1 alone, and
much larger Na* currents from oocytes co-injected with mRNA of DmTipE or PaTipE (Fig.
3A). Fig. 3B summarizes the quantitative analysis of Na' current density measured from
oocytes injected with mRNA of DmNa,1-1 alone or in combination with mRNA of DmTipE,
PaTipE or DmTEH1. When compared to the expression of DmNa,l-1 alone, all tested
auxiliary subunits enhanced Na" channel current density, although with different efficiencies.
The highest Na" current density was obtained with PaTipE (0.75 £ 0.09 nA/nF/ng of injected
RNA). Lower Na' current densities were recorded with DmTEH1 and DmTipE (0.47 + 0.06
and 0.18 = 0.03 pnA/nF/ng of injected RNA, respectively, Fig. 3B). In the presence of PaTipE,
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the Na' current density was increased by 22.8 fold compared to DmNa,l1-1 alone. Co-
expression of DmNa,1-1 with DmTipE or DmTEH1 induced an increase of Na' current
densities by 5.4 £ 0.9 (p>0.05) and 14.1 £ 1.7 fold (p<0.001), respectively. The finding that
PaTipE more efficiently facilitates DmNa,1-1-elicited Na currents than DmTipE (4.2-fold)

suggests that PaTipE subunit may display more robust chaperone properties.

Next, we examined the biophysiological properties of DmNa,1-1/DmTipE and
DmNa,1-1/PaTipE channels in Xénopus oocytes (Fig. 4). We observed no significant
difference in the voltage dependence of activation between DmNa, 1-1/DmTipE and DmNa,1-
1/PaTipE channels (Fig. 4A, Table 3). Compared with DmTipE, PaTipE shifted the voltage
dependence of fast inactivation to more negative potentials (by 5.8 mV, p<0.05, Fig. 4B,
Table 3), but did not modify the voltage dependence of slow inactivation (Fig. 4C, Table 3).
In addition, the recovery from steady-state fast inactivation was 3.2-fold slower for DmNa,1-
1/PaTipE channels (t=3.8+0.3 ms) than DmNa,1-1/DmTipE channels (t=1.2+0.1 ms,

Fig. 4D, Table 3).

4. Discussion

TipE subunit and its homologs are relevant components of insect Na, channels,
enabling changes in channel expression, gating and pharmacological properties (Bourdin et
al., 2013; Derst et al., 2006; Feng et al., 1995; Wang et al., 2015; Wang et al., 2013; Warmke
et al.,, 1997). Here, we cloned a novel auxiliary subunit, PaTipE, from the American
cockroach, P. americana, which is phylogenetically affiliated to DmTipE. Both subunits share
similar chaperone properties when co-expressed with DmNay,1-1 in Xénopus oocytes. Like
DmTipE, PaTipE robustly increases Na' current density of DmNa,1-1 channels. In addition,

the biophysical properties of DmNay1-1/ DmTipE and DmNa,1-1/ PaTipE channels are
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similar. However, their fast inactivation properties slightly differ in voltage-dependency and
recovery from steady-state inactivation.

We showed that PaT/pE mRNA is broadly expressed in P. americana in both neuronal
and non-neuronal tissues, like OmTipE in D. melanogaster (Derst et al., 2006). The highest
expression level was detected whithin the central nervous system, matching thus the tissue
distribution of PalNav? (Moignot et al., 2009). We therefore propose that TipE-/iké gene
exhibit ubiquitous expression in other insect species and display similar functions. Likewise,
DmTEHI1 subunit and its homolog in P. americana, PaTEHI, share similar neuronal
expression patterns (Bourdin et al., 2013). Interestingly, PaTipE, PaTEH2 and PaTEH3
(unpublished data) are not expressed in DUM neurons. Since only PaTEH1 is expressed in
DUM neurons in which two Na, channels have been previously characterized by patch-clamp
technique (Lavialle-Defaix et al., 2006; Lavialle-Defaix et al., 2010; Zhao et al., 2005), we
suggest that this functional diversity is endorsed by the presence of two a-subunits, resulting
from splicing or RNA editing events associated with PaTEH]1. Indeed, extensive alternative
splicing and RNA editions are believed to be responsible of a fine tuning of Na, channels
gating properties in B. germanica and 0. melanogaster (Olson et al., 2008; Song et al., 2004).

Although TipE-like proteins display various lengths among insect species, the amino
acid sequence alignment clearly highlights three highly conserved regions and two variable
segments. This prompts us to hypothesize that these conserved regions are important for Na,
channel modulation and/or function. Our phylogenetic analysis points out that TipE homologs
cluster within a distinct sub-clade from TEH1 and TEH2, indicating that TipE has
independently evolved from a common ancestor. Phylogram indicates that the closest
members of the TipE sub-clade are those from Coleoptera ( 7. castaneum) and Phthiraptera (P.
humanus corporis). Additionally, we report that mammalian Slo-f1 to B4 subunits are

phylogenetically distant from insect Na, auxiliary subunits. This raises the question whether
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these two types of auxiliary subunits have evolved from a common ancestor or result of a
convergent evolution. However, since both TipE-like proteins and Slo-f auxiliary subunits
share similar membrane topology and ' cysteine patterns, we suggest that they have evolved
from an old common molecular ancestor. This is in agreement with previous studies reporting
sequence similarity between TipE-related proteins of 0. melanogaster and Slo-p auxiliary
subunits (Derst et al., 2006; Li et al., 2011).

DmTipE is the first insect auxiliary subunit described for its ability to enhance Na"
currents when co-expressed with Na, a-subunit in Xérn0pus oocytes, indicating that this
protein display a chaperone-like or stabilizing effects on channel expression (Derst et al.,
2006). Surprisingly, Na" current densities are much higher when PaTipE, rather than
DmTipE, is co-expressed with DmNa,. Such a species-dependent difference has also been
observed with TEHI-like subunit (Bourdin et al., 2013). Further structure-function
relationship studies are needed to decipher the molecular basis of this difference. Our results
show that, the voltage-dependence of activation of Na' currents generated by DmNa,]I-
1/DmTipE or DmNa,1-1/PaTipE channels is indistinguishable. These findings, in addition to
other studies (Silver et al., 2010; Warmke et al., 1997) strongly suggest that activation
properties of Na, channels do not depend on the auxiliary TipE subunit. Similar observations
have been reported for the Na, channels of Musca domestica, Vsscl1/Vsscf (Lee et al., 2000).
With respect to inactivation properties, only the fast inactivation differs significantly between
DmNa,1-1/DmTipE and DmNa,1-1/PaTipE channels. When co-expressed with PaTipE,
DmNa,1-1 displayed a more negative voltage-dependence of fast inactivation (-5.8 mV) and
recovered 3.2-fold slower from steady-state fast inactivation compared to the DmNa,l-
1/DmTipE combination. This could reflect the differences in amino acid sequences of both
auxiliary subunits. We also suggest that TipE subunits are involved in the modulation of fast

inactivation properties of Na, channels. Recently, Wang and colleagues reported that DmTipE
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impacts the voltage dependence of fast inactivation of only one DmNa, variant out of the
three variants examined (Wang et al., 2013), reinforcing thus the idea that TipE-like proteins
are fast inactivation regulators, but their effects on gating may depend on Na’ channel
variants.

In conclusion, the insect Na, auxiliary subunits PaTipE and DmTipE display similar
functional characteristics (chaperon-like effects and inactivation properties) and an ubiquitous
tissue distribution. The activation properties of Na, channels co-expressed with both auxiliary
subunits are similar, but their fast inactivation properties slightly differ by their voltage-
dependency and stability. These differences point the functional importance of the species-
specific interaction between auxiliary subunits and native Na, channels. The TipE
homologous genes constitute a phylogenetical distinct sub-clade originated from a common
ancestry, which is clearly distant from the unique structurally related proteins found in
mammals, that is the Slo-f auxiliary subunit family. In regard to the absence of mammalian
counterpart of insect auxiliary subunits, and their low amino acid sequence identity, it will be
of a great interest to investigate the structure-function relationship of TipE homologs with the

idea to develop insect species-specific insecticides.
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8. Figure legends

Figure 1. Cloning and molecular characterization of PaTipE subunit of P. ameéricana. A.
Alignment of deduced amino acid sequences of the PaTipE and DmTipE proteins.
Transmembrane segments (M1 and M2) are indicated with bold line above the sequences.
Conserved N-glycosylation sites are indicated by asterisk (*) (www.cbs.dtu.dk). Gaps are
indicated by dashes. B. Hydrophobicity profile and deduced topological organization of
PaTipE (left) and DmTipE (right). Hydrophobicity analysis was performed using the
algorithm of Kyte and Doolittle (1982). The amino acid residue position is plotted along the
x-axis and the calculated mean hydrophobicity is plotted along the y-axis. Regions above the
dashed line are hydrophobic. The two putative membrane-spanning segments of both PaTipE
and DmTipE are indicated (M1 and M2). C. Semi-quantitative RT-PCR analysis of PaTipE
expression in various P. americana tissues. RT-PCR was performed using 5 pug of mRNA
extracted from heads, thoracic ganglia, nerve cords, muscles, gut and mushroom-shaped
accessory glands (Msag). D. Expression analysis of PaTipE and PAaTEH1 mRNA in DUM
neurons by RT-PCR. No transcript was found for PaTipE. Conversely, PATEH1 mRNA was
detected as a single band and its sequence was identical to PATEH1C variant (Genbank ID:

KC247670). Actin (Genbank ID : AY116670) was used as an internal quantitative control.

Figure 2. Phylogenetic analyses of TipE-like protein family. A. Sequences of TipE and TipE-
related (TEH) proteins of D. melanogaster, Musca domestica, Anopheles gambiae, Aedes
aeqypti, Culex quinquefasciatus pipiens, Tribolium castaneum, Pediculus humanus corporis,
Apis florea, Bombus terrestris, Acyrthosiphon pisum and P. americana were aligned using
ClustalW. B. Phylogenetic tree of TipE-like protein family and human Slo-f subunits
proteins. All sequences were aligned using ClustalW. Human B-slo subunits accession
numbers are: hslobetal, NM 004137; hslobeta2, NM_005832; hslobeta3, NM 171828;

hslobeta4, NM_014505. Bootstrap values are indicated and the scale bar represents
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substitutions per site. The accession numbers of the sequences included in the tree are listed in

the Table S1.

Figure 3. Distinct effect of the auxiliary subunit DmTipE, PaTipE or DmTEH1 on Na’
currents evoked by PaNav1 and DmNa,1-1 channel activation. A. Chart recordings of of Na"
currents measured at test potentials of -70 mV to 40 mV from a holding potential of -100 mV,
in response to the expression of PaNa,1 alone, PaNa,1/ DmTipE, PaNa,1/ PaTipE, DmNa,1-1
alone, DmNa,1-1/ DmTipE, DmNa,1-1/ PaTipE in Xénopus oocytes injected with about 11
ng, 7.4 ng, 5 ng, 35 ng, 7 ng and 3 ng of RNA (1:1 ratio), respectively. B. Na" current density
(LA per ng of injected RNA) after 3-day incubation, except for DmNa,1-1 (10 days after

injection). The number of recorded oocytes is indicated in the bar histogram.

Figure 4. Biophysical properties of Na“ currents elicited by co-expression of DmNa,]l-
1/DmTipE and DmNa,1-1/PaTipE channels. A. Voltage-dependences of activation of
DmNa,1-1/DmTipE (n =6, filled circles) and DmNa,1-1/PaTipE (n=7, open squares). G
represents the conductance. B. Voltage dependence of fast steady-state inactivation of
DmNa,1-1/DmTipE (n=7) and DmNa,1-1/PaTipE (n=7) C. Voltage-dependence of slow
steady-state inactivation of DmNa,1-1/DmTipE (n=35) and DmNa,1-1/PaTipE (n=4). D.
Recovery from fast inactivation of DmNa,1-1/DmTipE (n=6) and DmNa,l1-1/PaTipE
(n=7). Na' current amplitudes (I) were measured using the pulse protocols described in the
Materials and Methods section and were normalized to the largest current amplitude (Imax).

Standard protocols are shown in /715éf. Values are mean + SEM.

Figure S1. Composite nucleotide sequence of PaTipE and its complete deduced amino acid

sequence. The open reading frame begins at nucleotide 215 (sequence ATG: M) and closes at
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nucleotide 1279 (TGA). A putative polyadenylation signal is underlined. The numbers on the
right indicate the position of the nucleotides.

Figure S2. Amino acid sequences alignment of TipE homologs. Identical and similar amino
acids are highlighted in dark grey and grey, respectively. Putative transmembrane regions are
boxed. Conserved half-cystines are indicated by an arrow. The accession numbers of the

sequences included in the alignment are listed in the Table S1.

22



Table 1

Table 1

Sequences of the oligonucleotides used in PCR and their corresponding region

Primers name  Nucleotide sequence Domain

1-Degenerated primer used to amplify PaTipE

TDP-S1 5’-CCBGCNTTCACSACDATYTTCATG-3’ MS1-MS2

TDP-R1 5’-RTAVCCRCADCCYTTBACRTTBGG-3’ MS1-MS2

2-Specific primers used in RACE

TP-R1 5’-CCACTCCGAGTCGTTCCCCAT-3’ 5’UTR partial ORF PaTipE(PCR#1)
TP-R2 5’-TCTCTTGGACCGCAGATATTCGTG-3’ 5’UTR partial ORF PaTipE(PCR#2)
TP-S1 5’-GTGGCGGAGCTCCACGAATATCTGC-3’ 3’UTR partial ORF PaTipE(PCR#1)
TP-S2 5’-GGACTCATGGGGAACGACTCGGA -3’ 3’UTR partial ORF PaTipE(PCR#2)
3-Primers used to amplify the full-length ORF

TP-S3 5’-AAACCCGGGCCAACCATGGACGAGCCGGAGATTGAGC-3>  Full-length ORF PaTipE

TP-S4 5’-GGGTGCATTCAAAGCACGATGACT-3’ Complete cDNA PaTipE

TP-R3 5’-CAAAATCTAGATCAGACTTCCGCTATCGGCCCAG-3’ Full-length ORF PaTipE

TP-R4 5’-CCACACAAGGTTAAAGCCTGTGGC-3’ Complete cDNA PaTipE

TP-S5 5’- AAAAGTTGTCAGCTGTTCGGCG-3’ Complete cDNA PaTEH1

TP-S6 5’-CAGATCCCGGGATGAGGAGCAGCAGCTCGGAG-3’ Full-length ORF PaTEH1

TP-R5 5’-(T)23CAAAATATAGGCCATGTATTTCTACC-3’ Complete cDNA PaTEH1

TP-R6 5’-CTGATTCTAGACCGAATCATGTTCTATCTTCT-3’ Full-length OFR PaTEH1

Designation of oligonucleotide mixtures: R=G+A ; S=G+C; Y=C+T; M=A+C; B= G+T+C; D= G+A+T ; V=G+A+C ;

N=G+A+T+C.
UTR, untranslated region; ORF, open-reading frame

Restriction enzyme recognition sequences are underlined and correspond to Xmal site (CCCGGG) and Xbal site (TCTAGA).



Table2

Table 2

Amino acid sequence homology between PaTipE and TipE-like protein of others species.

Species

D. melanogaster

M. domestica

A. aeqyptii

A. gambiae

C. quinquefasciatus pipiens
N. vitripennis

A. florea

B. terrestris

A. pisum

P. humanus corporis
T. castaneum

N-terminal ™1 Extracellular loop ™2 C-terminal Total
% Amino acid identity with PaTipE
523 88 419 90.9 31.6 42.1
57.1 84 37.6 86.3 20.7 36
61.9 84 349 95.4 24.6 38.7
61.9 88 32.1 95.4 33.1 34.8
66.6 92 34.5 86.3 347 41.9
59 92 60.4 95.4 53 63.6
66.6 88 57.9 95.4 59.2 64
66.6 88 58.5 95.4 55.7 63.1
13 72 313 54.5 17.9 254
52.1 88 452 86.3 46.5 53.9
76.1 92 46.5 86.3 53.2 54.1




Table 3

Table 3
Parameters of voltage-dependence of activation, fast and slow steady-state inactivation, and recovery from fast
inactivation for DmNa,1-1 co-expressed with DmTipE or PaTipE in Xenopus oocytes.

Activation Fast inactivation Slow inactivation Recovery

V % (mV) k V % (mV) k V % (mV) k t (ms)

DmTipE  -202+1.4(5) 10.6+13  -473+05(7) 7.1+04 -51.1+1.0(4) 68+09 12+0.1(6)
PaTipE  -15.7+2.0(7) 144+21  -53.1+05(5" 6.5+04 -546+09(7) 89+08 38+03(5"

Values are mean = SEM derived from the number of individual experiments, each performed with a different oocyte. The
number of recorded oocytes is indicated in parenthesis

# significant difference p < 0.05 compared to DmTipE

® Significant difference p < 0.001 compared to DmTipE
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Figure 3
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Figure 4

A B

1.0 +40 mV 1.0 4
+40 mV 5mv
-70
-100 __| 0 -80)

08 | 20 ms 0.8 4 -100 200 ms 12 ms

S 06 0.6
»

3 £

0.4 | S 04

0.2 | 0.2 |

0.0 T T T T T T T T T T T T 1 0.0 T T T T T T = T e —a it 2 2 2 2 2

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50
Potential (mV) Potential (mV)
1.0 4 1.0
-5mV
0.8 - 7“ 0.8 ]
12 ms

0.6 0.6
x x
© ©
£ £
s 0.4 - s 0.4 1 -5mv H’f mv

10070 ms 14.5 ms
0.2 4 0.2
- 1to25ms
W +——7 0.0 8—— . ; . .
-100-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 0 5 10 15 20 25

Potential (mV) Time (ms)



Table S1

Accession numbers of sodium channel auxiliary subunits used for the phylogenetic analysis

Specie Names Prefix TipE TEH1 TEH2 TEH3 TEH4
Acyrthosiphon pisum Ap XM_003247842 XM_001944580 - XM_003247843 XM_003247846
Aedes aegypti Aa XM_001654675 - XM_001654677 XM_001654676 -
Anopheles gambiae Ag XM_563317 XM_310354 XM_312094 XM_312093 -

Apis florea Af XM_003697956 XM_003689858 XM_003697957 XM_003697954 XM_003697996
Bombus terrestris Bt XM_003393369 XM_003393464 XM_003393371 XM_003393372 XM_003393368
Culex quinquefasciatus pipiens Cq XM_001845887 XM_001847934 XM_001845889 XM_001845888 -
Drosophila melanogaster Dm NM_079196 NM_141702 NM_139610 NM_144078 NM_139609
Musca domestica Md AF131734 - - - -
Nasonia vitripennis Nv XM_003425721 XM_003425719 XM_001606821 - XM_001606830
Periplaneta americana Pa KC992733 - - - -
Pediculus humanus corporis Phum XM_002430448 XM_002430447 XM_002430450 XM_002430449 XM_002430451
Tribolium castaneum Tc XM_964916 XM_964728 XM_964775 XM_964845 XM_964710




gaaacttctttagttacaagccggggcatgggtaggtttggcaacgcagagtggaggecgggagattttagagegatattgtgtttgetca 90
ttgctttcgttatacgtaacgecgtattttttcaatattacttcatgcacaaagggtgcattcaaagcacgatgacttatagatggaggta 180
gggtgcgatgcgggecggtctaacgegegtgegeccATGGATGAGCCGGAGATTGAGCGGACTTTGGTGCAGAAACTGTTGTTCTACACCAC 270

M D E P E I E R T L V QQ K L L F Y T T

CGCTTTCTTCGTCCTCCTTGGCACTTTCGGCCTCTTCGCCTTCCTCTTCCTGGTGCCTTTCGTCATCGATCCGGCCTTCACGACCATCTT 360
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CATGCAGTTCGACCCTGTGGCCGCCCTTTGCCAGACGGTGCATACCGAAACGAGGCATGGCGCGTCCAATTGCACGTGGAGCTCCTGTAG 450
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CCTCGTGAATGCGGCCGGGGAGACGGTGGAGGGAGACGCCGCCGAGAACGGCGTGACGCCGGTGCCGCCTCTCACGAGCGGCGCCATCAC 1080
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GCCGGGCAGCGAGATCTTCAGGGAGGATCTCGCGAGCTTCGGGCACCAGCTCAAAGTGGCGATGGCAGACGAGATGAGCAGAGAGAGTGT 1170
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taaccttatagtaacattacatttagttttcttcaacttatatttttcaggaaactttgaagtaaactttactctctacactaagttgttta 1710
ttgttagggaatttgaataaatctgaagaccataagaaataagtattttgtaagtttcgaaattcgtgtggcttaataatgactctatct 1800
tgtttaaaattttgaaaacaaatataatcaagaatggaattttcatcttctgaagtattgtatgataacaaaatataaagcttaacggct 1890

tgtattgcagaaaagacaattgagctctttattttcgacgctcttgtcactgttttaaagaatatgaacttaatttcatacagagacacg 1980

aatctctcaaagtgaaaaaaaaaaaaaaaaaaaaaa 2016
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