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From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloro-methane, the corresponding N-chloromethyl 
derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, 
LMA10203, LMA10227 and LMA10228 against mammalian homomeric a7 nicotinic acetylcholine recep-tor expressed in Xenopus oocytes. We found that 
LMA10203 was a partial agonist of a7 receptor with a pEC50 value of 4.25 ± 0.06 lM whereas LMA10227 and LMA10228 were poorly active on a7 
homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 lM 
and 39.3 lM whereas LMA10203 and zacopride possessed IC50 val-ues of 8.07 lM and 7.04 lM, respectively. Moreover, despite their IC50 values, 
LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same 
inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced 
responses. Our results revealed differ-ent pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of 
action of benzamide compounds may need to be reinterpreted with respect to the potential role of a7 receptor.

Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-

gated ion channels that mediate fast excitatory synaptic transmis-

sion in central and peripheral nervous system of mammals.1 They

can be homomeric receptors composed of one subunit like the

homomeric a7 receptor2 which was proposed as a therapeutic tar-

gets for several pathologies such as Alzheimer’s and Parkinson’s

diseases, neuroinflammation and schizophrenia.3–8 Several studies

demonstrated that quinuclidine compounds could show dual affin-

ity at both serotoninergic (5-HT) and nicotinic receptors, due to

significant sequence homology between both receptor types which

is up to 30%.9 Because of their simple synthetic access, families of

ester or amide derivatives of 3-substituted quinuclidine were

reported in the literature as potent ligands of ion channel recep-

tors. Some of them were identified as a7 nAChR ligands with

nanomolar affinity or activity.10–12 As an example, the quinuclidine

ester analogue A (Fig. 1) of the well know 5-HT3 antagonist

tropisetron, was identified as a potent and selective partial agonist

of a7 nAChR (Tropisetron: EC50 = 1.3 lM and compound A:

EC50 = 0.58 lM).13 To our knowledge, no similar data were pub-

lished in the literature with the structurally close zacopride B also

known as a potent 5-HT3 antagonist.14 Even, if they are not

members of these ester or amide families, we could also notice that

quaternarized quinuclidine derivatives such as arylidene com-

pound C was revealed as a3b4 nAChR antagonist15 and that the

methiodide of 2-benzyl quinuclidine compound D (Fig. 1) also dis-

played antagonist profile on a7 nAChR.16 Furthermore, simple

quinuclidine benzamide such as the enantiomerically pure 4-fluoro

benzamide E (Fig. 2) was characterized as a potent a7 nAChR ago-

nist (EC50 = 0.56 lM) and then selected as a suitable [18F]PET tracer

for in vivo a7 nAChR imaging.17 We also recently demonstrated

that the 2-fluoro analogue compound LMA10203 (Fig. 2) acted as

a partial agonist of insect nicotinic acetylcholine receptors with a

specific affinity for a-bungarotoxin-insensitive nAChR2 expressed

in the insect neurosecretory cells.18
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In this work, we synthetized two analogues of LMA10203, the

(R)-N-(chloromethyl) quinuclidinium compound LMA10227 and

the (S)-enantiomer LMA10228 (Fig. 2) and studied their pharma-

cological profiles on the mammalian homomeric a7 nicotinic

acetylcholine receptor. The novel enantiomerically pure com-

pounds LMA10227 and LMA10228 were prepared, respectively,

from commercial (R)- and (S)-3-aminoquinuclidine using a two

steps reaction sequence. The first step was acylation of the corre-

sponding 3-aminoquinuclidne with 2-fluorobenzoyl chloride and

the second step was the simple quaternarization of the purified

benzamide in dichloromethane used as the solvent (Fig. 1).19

There effects were compared to zacopride20 and LMA1020318 ear-

lier prepared, and using oocyte two-electrode voltage-clamp

electrophysiology.21

As illustrated in Figure 3, compared to ACh- and nicotine-in-

duced current amplitudes, zacopride has a very weak effect

whereas LMA10203 is a partial agonist of a7 receptors which

was in accordance with the previous studies showing that it

was a partial agonist of insect nAChR subtypes.18 No currents

were detected in all control oocytes tested (oocytes injected

with saline solution). The maximum currents of LMA10203,

zacopride and LMA10227 responses at 1 mM were

0.19 ± 0.01 lA (n = 8), 0.038 ± 0.002 lA (n = 7) and

0.021 ± 0.004 lA (n = 8) whereas LMA10227 and LMA10228

(n = 8) were ineffective in activating the a7 nicotinic acetyl-

choline receptor (Table 1). The concentration-response curves

allowed us to determine the pEC50 and the Hill’s coefficient val-

ues for each compound (Fig. 4). For ACh and nicotine, the pEC50

were 3.68 ± 0.06 and 3.96 ± 0.07, corresponding to the EC50 of

205.3 lM and 108.7 lM, respectively (Table 1). The pEC50 value

obtained for LMA10203 (4.25 ± 0.06 corresponding to an EC50

at 56.5 lM, Table 1) was significantly different to those deter-

mined for ACh (t test, p <0.0001) and nicotine (t test, p = 0.01).

Unfortunately, very small currents were recorded following the

application of zacopride and LMA10227 and it was not possible

to determine their pEC50 as for LMA10228. Nevertheless, we

proposed that LMA10203 was a partial agonist of a7 receptors.

The current studies showed that exposure to LMA10227 and

LMA10228 resulted in no activation of a7 receptors, which may

suggest that they can have a potential effect as inhibitors and/or

in the desensitization of ACh currents. We determined the inhibi-

tory curves by co-applying ACh (EC50: 205 lM) with each com-

pound. Each oocyte received two initial applications of ACh to

establish an internal control, then after 10 min, a co-application

of ACh and zacopride, LMA10203, LMA10227 or LMA10228. As

shown, the amplitude of control ACh responses was comparable

both before and after the co-application (Fig. 5A) but significantly
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Figure 3. Comparisons of the current responses to acetylcholine and nicotine with

those of LMA10203, LMA10227, LMA10228 and zacopride on a7 nAChRs expressed

on Xenopus oocytes, at concentration inducing the maximum response (1 mM).

Each bar indicates when the compound is added.

Table 1

Imax, pEC50 and Hill coefficient valuesa for acetylcholine, nicotine, LMA10203,

LMA10227, LMA10228 and zacopride on a7 nicotinic acetylcholine receptor

Imax
b (lA) pEC50 Hill

Acetylcholine 0.97 ± 0.05 3.68 ± 0.06 1.75 ± 0.29

Nicotine 0.93 ± 0.06 3.96 ± 0.07 1.99 ± 0.95

LMA10203 0.19 ± 0.01 4.25 ± 0.06 2.77 ± 1.14

LMA10227 0.021 ± 0.004 NDc NDc

LMA10228 NDc NDc NDc

Zacopride 0.038 ± 0.002 NDc NDc

Each line represents a mean ± SEM of at least eight oocytes.
a The values shown were determined using the concentration-response curves

illustrated in Figure 4.
b The maximum currents (Imax) were shown as the ratio of the maximum

response to each compound to that induced by 1 mM ACh.
c ND: not determined.
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decreased during co-application with zacopride, LMA10203,

LMA10227 and LMA10228 (Fig. 5B). We first observed that

LMA10203 and zacopride were the most effective inhibitors with

the following pIC50 values, 5.09 ± 0.04 (n = 5) and 5.15 ± 0.02

(n = 5), corresponding to IC50 of 8.07 lM and 7.04 lM, respectively,

whereas LMA10227 and LMA10228 were less effective (pIC50 val-

ues: 4.55 ± 0.04 corresponding to an IC50 of 28.4 lM (n = 5) and

4.41 ± 0.04 corresponding to an IC50 of 39.3 lM (n = 5), respectively

(Table 2)). Interestingly, when we co-applied nicotine (EC50:

108 lM) and each compound at their IC50 values obtained with

ACh (Table 2), we observed that they differently acted on nico-

tine-induced responses (Fig. 6). LMA10227 had a better and signif-

icant inhibitory effect on nicotine-induce responses (65.7 ± 2.1%, t

test, p <0.001, n = 6, Fig. 6A and B) whereas LMA10203 and

LMA10228 showed a lower effect (26.5 ± 7.5% and 33.2 ± 4.1%,

p <0.05, n = 6, respectively) compared to zacopride which was not

effective (4.37 ± 4%, t test, p >0.05, n = 6, Fig. 6B). Thus, our results

suggested that the (R)-benzamide LMA10227 was more potent

than its (S)-enantiomer on nicotine responses (t test, p <0.05,

n = 6, Fig. 6B).

In conclusion, our data suggested that LMA10227 and

LMA10228 cannot activate a7 nAChR compared to LMA10203.

However, they had all an inhibitory effect on ACh-induced

responses. Interestingly, these results were modified with nico-

tine and the (R)-enantiomer LMA10227 showed the best inhibi-

tory effect on nicotine responses, compared to LMA10203 and

LMA10228. Similar results were earlier published on using non

quaternalized quinuclidine benzamide compounds, toward a7-
5-HT3 chimera.11 They were found to have agonist activities

and the (R)-enantiomers were more active than the correspond-

ing (S)-enantiomers.11 It was suggested that on the benzamide

portion, small substituents in the para position gave the most

active analogues.11 In the present studies, we demonstrated that

the quaternarized fluorobenzamide analogues acted as a7
nAChRs antagonists. Despite that several data are needed to

identify their binding sites on a7 nAChRs and also their mode

of action on other nAChRs such as a4b2, we hypothesize that

(1) nicotine is a poor competitor against LMA10227. Thus, the

affinity of LMA10228 for a7 nAChR sites is lower than for

LMA10227. (2) LMA10227 and LMA10228 could act differently

as allosteric inhibitors, a property allowing them to modulate

the a7 receptors at various concentrations of ACh or nicotine.

In addition, the discrepancy between LMA10203, LMA10227

and LMA10228 on a7 nAChRs suggested that they have different

in vivo effects. We propose that LMA10227 could be used as an

available tool to pharmacologically characterized nAChRs acti-

vated with exogenous drugs such as nicotine. Our future work

will address this issue and how these quaternarized analogues

will activate different mammalian nAChR subtypes. In final, we

also demonstrate for the first time that zacopride, known as a

gastrointestinal prokinetic drug22 and a specific antagonist of

5-HT3 receptors,23 can induce an inhibitory effect on ACh-in-

duced currents.
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Figure 4. Concentration-response relationships for acetylcholine (ACh), nicotine,

LMA10203, LMA10227, LMA10228 and zacopride. Data are peak current responses

calculated relative to control ACh responses obtained from the same cells and

subsequently normalized to the maximum ACh responses. Control ACh concentra-

tion was 500 lM for all experiments. Each point plotted in the concentration-

response curves represents mean ± SEM of at least seven oocytes.
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Figure 5. Effects of zacopride, LMA10203, LMA10227 and LMA10228 on the

amplitude of ACh responses. An example of oocyte responses expressing rat a7
nAChR to the application of 205 lM (EC50) ACh before and after co-application with

50 lM LMA10227 and 50 lM LMA10228. Each bar indicates when the compound is

added. (B) Inhibitory curves illustrating the effects of zacopride, LMA10203,

LMA10227 and LMA10228 on ACh responses. Responses for a7 nAChR are based

on peak current amplitudes, calculated relative to ACh control responses obtained

from the same cells. Data are plotted as mean ± SEM from at least six oocytes.

Table 2

Inhibitory effect of LMA10203, LMA10227, LMA10228 and zacopride on ACh-induced

currents

pIC50 Hill

LMA10203 5.09 ± 0.04 5.53 ± 2.01

LMA10227 4.55 ± 0.05 1.72 ± 0.22

LMA10228 4.41 ± 0.04 2.24 ± 0.53

Zacopride 5.15 ± 0.02 4.30 ± 0.58

Each line represents a mean ± SEM of at least eight oocytes.

The values shown were determined using the inhibitory curves presented in

Figure 5.
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