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A New Formulation of the Spectral Energy Budget of the Atmosphere,
with Application to Two High-Resolution General Circulation Models

PIERRE AUGIER AND ERIK LINDBORG

Linn�e Flow Centre, KTH Mechanics, Stockholm, Sweden

ABSTRACT

A new formulation of the spectral energy budget of kinetic and available potential energies of the atmo-

sphere is derived, with spherical harmonics as base functions. Compared to previous formulations, there are

threemain improvements: (i) the topography is taken into account, (ii) the exact three-dimensional advection

terms are considered, and (iii) the vertical flux is separated from the energy transfer between different

spherical harmonics. Using this formulation, results from two different high-resolution GCMs are analyzed:

the Atmospheric GCM for the Earth Simulator (AFES) T639L24 and the European Centre for Medium-

Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) T1279L91. The spectral fluxes show

that the AFES, which reproduces quite realistic horizontal spectra with a k25/3 inertial range at the meso-

scales, simulates a strong downscale energy cascade. In contrast, neither the k25/3 vertically integrated spectra

nor the downscale energy cascade are produced by the ECMWF IFS.

1. Introduction

The atmospheric horizontal spectra of velocity com-

ponents and temperature show a robust k25/3 range at

the mesoscales (10–500 km) (Nastrom and Gage 1985).

This power law and the corresponding one for the hor-

izontal second-order structure functions r2/3 are obtained

from signals measured in the troposphere and the

stratosphere over both land and sea (e.g., Frehlich and

Sharman 2010). It still remains a challenge to reproduce

these results in simulations. Some general circulation

models (GCMs) (e.g., Koshyk and Hamilton 2001;

Hamilton et al. 2008) and mesoscale numerical weather

prediction (NWP) models (Skamarock 2004) reproduce

quite realistic mesoscale spectra. Other GCMs, as for

example theEuropeanCentre forMedium-RangeWeather

Forecasts (ECMWF)’s weather prediction model In-

tegrated Forecast System, produce mesoscale spectra

significantly steeper and with smaller magnitude than

the measured ones, even with relatively high-resolution

versions (e.g., Shutts 2005). The inability of someGCMs

to simulate realistic mesoscale spectra must have im-

portant consequences in terms of predictability (Vallis

2006), dispersiveness of ensemble prediction systems

(Palmer 2001), and, evidently, mesoscale NWP.

Even though one can now simulate realistic mesoscale

spectra, it is still unclear what physical mechanisms

produce them. Theoretically, the only convincing ex-

planation of the k25/3 power law is the hypothesis that it

is produced by an upscale or downscale energy cascade

with a constant energy flux through the scales. There-

fore, most of the different theories proposed are based

on the hypothesis of an energy cascade: upscale cascade

due to 2D stratified turbulence (Gage 1979; Lilly 1983)

or downscale cascade due to internal gravity waves (Dewan

1979; Smith et al. 1987), quasigeostrophic dynamics (Tung

and Orlando 2003), surface quasigeostrophic dynamics

(Tulloch and Smith 2009), or 3D strongly stratified

turbulence (Lindborg 2006).

The principle of energy conservation strongly con-

strains the dynamics of the atmosphere. To explain the

maintenance of the general circulation, Lorenz (1955)

developed the concept of available potential energy (APE)

and derived an approximate expression proportional to

the variance of the temperature fluctuation. His work

has laid the foundations for several studies investigating

APE (e.g., Boer 1989; Shepherd 1993; Siegmund 1994;

Molemaker and McWilliams 2010) and the atmospheric

energy budget through diagnostics of data from global

meteorological analysis and GCMs (e.g., Boer and
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Lambert 2008; Steinheimer et al. 2008). Because of

the multiscale nature of atmospheric motions, spectral

analysis can reveal valuable pieces of information from

the data (Fjørtoft 1953) and have therefore become

a standard method for diagnostics. However, drawbacks

of different used formulations of the spectral energy

budget severely limit the results. First, the attention has

been focused on the budget of kinetic energy (KE) so

that in many studies the APE budget is not considered.

Most studies investigate only the budget integrated over

the total height of the atmosphere and thus the vertical

fluxes of energy are not computed. Another very im-

portant limitation is that most studies are based on the

formulation proposed by Fjørtoft (1953), in which only

the purely horizontal and nondivergent flow is consid-

ered (e.g., Burrows 1976; Boer and Shepherd 1983;

Shepherd 1987; Boer 1994; Straus and Ditlevsen 1999;

Burgess et al. 2013). This approximation is justified for

the very large scales of the atmosphere for which the

divergence is indeed very small. However, the approx-

imation may lead to large errors at the mesoscales.

Atmospheric measurements show that divergent and

rotational spectra are of the same order (Lindborg 2007)

and atmospheric simulations produce divergent spectra

of the same order of magnitude as rotational spectra at

the mesoscales (e.g., Hamilton et al. 2008; Burgess et al.

2013). Moreover, these results are consistent with the-

oretical results showing that strongly stratified and weakly

rotating flows tend to evolve toward states in which the

divergent and rotational components are of the same

order ofmagnitude (Billant and Chomaz 2001; Lindborg

and Brethouwer 2007; Augier et al. 2012). Therefore,

the spectral energy budget formulations based on the

two-dimensional vorticity equation cannot capture the

dynamics at the mesoscales.

There is no theoretical obstacle in considering the

exact three-dimensional advection including both rota-

tional and divergent components of the flow. Lambert

(1984) has developed a formulation of the spectral en-

ergy budget considering both KE and APE and taking

into account the exact advection term. However, the

diagnostics was integrated over the total height of the

atmosphere so vertical fluxes were not considered.

Koshyk and Hamilton (2001) performed a diagnostic of

the equation for the KE spectrum (the APE budget was

not investigated). The exact advection was computed

but the vertical flux was not separated from the energy

transfer between spherical harmonics, so it was impos-

sible to define spectral fluxes in a conservative way.

Koshyk and Hamilton (2001) separated the spectral

pressure term into adiabatic conversion and vertical

flux. However, the separation was only approximate.

Moreover, as in all previous studies on the spectral

energy budget, the topography was neglected. Recently,

Brune and Becker (2013) have investigated the effect of

the vertical resolution in a mechanistic GCM. Just as

in Koshyk and Hamilton (2001), all of the terms in the

kinetic spectral energy equation were computed at dif-

ferent pressure levels and it was demonstrated that they

balance each other. However, spectral fluxes were de-

fined in a nonconservative way and actually also in-

cluded vertical fluxes.

To investigate the energetics of the mesoscales simu-

lated by GCMs, it would be desirable to formulate the

spectral energy budget considering both KE and APE,

taking the topography into account and making an exact

separation of the advection terms into spectral transfer

and vertical flux and a corresponding separation of the

pressure term into adiabatic conversion and vertical

flux. A formulation meeting these requirements is de-

rived in section 2. In section 3, results from two high-

resolution GCMs are analyzed.

2. Formulation of the spectral energy budget

a. Governing equations in p coordinates

The analysis is performed in pressure coordinates

in which variables are functions of time t, longitude l,

latitude u (the horizontal coordinates are denoted by

xh), and pressure p. The main advantage of the p co-

ordinates is that mass conservation can be expressed in

the same way as for an incompressible fluid: $ � v 5 0,

where$5 ($h, ›p) is the gradient operator and v5 (u,v)

is the total velocity [$h is the horizontal gradient opera-

tor, u is the horizontal velocity, and v 5 Dtp is the

pressure velocity (Dt is the material derivative)]. The

hydrostatic equation is ›pF 5 2a 5 2RT/p, where F is

the geopotential and a is the volume per unit mass.

In the p coordinates, the evolution equations can be

written as

Dtu52f (u)ez ^ u2$hF1Du(u) , (1)

D
t
H5va1 _Q1D

H
(H) , (2)

where f(u) is the Coriolis parameter, ez is the upward

(radial) unit vector, H 5 cpT is the enthalpy per unit

mass, _Q is the rate of production of internal energy by

heating, and Du(u) and DH(H) are diffusion terms. The

thermodynamic equation (2) can be rewritten as a con-

servation equation for the potential temperature u 5

L(p)T, withL(p)5 (p0/p)
x, p05 1 bar, and x5R/cp’ 2/7.

For simplicity, the corrections related to the vapor con-

tent are neglected. However, the latent heat release is

taken into account through the associated heating.
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The main drawback of the p coordinates is the com-

plication related to the lower boundary condition (the

topography pierces the lower pressure levels). It can be

overcome with the formalism developed by Boer (1982)

(see appendix A) in which the dynamical equations can

be written as

›t~u52v � $~u2 f (u)ez ^ ~u2b$hF1bDu(u) , (3)

›t
~u0 52v � $~u02 ~v›phuir 1

~Q
u
2b›thuir 1bD

u
(u) ,

(4)

where Du(u) is a diffusion term, Qu [L(p) _Q/cp, and
~u5b(xh, p)u, with b(xh, p) equal to one above the sur-

face and to zero below. The potential temperature

fluctuation ~u0 is defined as ~u0 5 ~u2bhuir, where huir 5

hbui/hbi is the representative mean—that is, the mean

over regions above the surface (the angle brackets de-

note the mean over a pressure level).

b. Kinetic and available potential energy forms

Lorenz (1955) showed that the sum of the globally in-

tegrated KE and APE is approximately conserved. The

mean energies per unit mass are EK(p)5 hj~uj2i/2 and

EA(p)5 g(p)h~u02i/2, with g(p) 5 R/[2L(p)p›phuir].

The energy budget can be written as

›tEK(p)5C(p)1 ›pFK[
(p)2DK(p)1 S(p) , (5)

›tEA(p)5G(p)2C(p)1 ›pFA[
(p)2DA(p)1 J(p) ,

(6)

where G(p)5 g(p)h~u
0
~Q
0
ui is forcing by heating (differ-

ential heating at very large scales and latent heat release),

C(p)52h~v~ai is conversion of APE to KE, FA[(p)5

2g(p)hv~u02i/2 and FK[(p)52hvj~uj2i/22 h~v~Fi are ver-

tical fluxes, andDK(p) andDA(p) are diffusion terms. The

last terms in Eqs. (5) and (6), S(p) 5 2hd›t(psFs)i and

J(p)5 (›pg)hv~u
02i/22 hb2ihvirhair, correspond to adia-

batic processes that do not conserve the sumof theKEand

theLorenzAPE.However,when integrated over thewhole

atmosphere, these terms are negligible so that the sum of

the total kinetic energy and the total Lorenz APE is ap-

proximately conserved. Siegmund (1994) showed that the

globally integrated exact APE and Lorenz APE differ by

less than 3%. In appendix B, we show how Eqs. (5) and (6)

can be related to the equation of total energy conservation.

c. Spectral analysis based on spherical harmonic

transform

For clarity, the spectral energy budget is here derived

for levels above the topography for which b(xh, p) 5 1.

In this section, we do not include the nonconservative

term corresponding to J(p) (i.e., we considered g as

a constant). The general formulas used for the numerical

computations are given in appendix A. Each scalar

function defined on the sphere can be expanded as a sum

of spherical harmonics functions Ylm(xh), which are the

normalized eigenfunctions of the horizontal Laplacian

operator on the sphere: j$hj
2
Ylm 52l(l1 1)Ylm/a

2 and

hYl0m0* Ylmi5 dll0dmm0 , where the star denotes the complex

conjugate and l and m are the total and zonal wave-

numbers [for details, see Boer (1983)]. The potential

temperature fluctuation is written as

u0(x
h
, p)5 �

l$0
�

2l#m#l

u0
lm
(p)Y

lm
(x

h
) , (7)

and the other scalar variables are written in the corre-

sponding way. It follows that the mean over a pressure

level of the product of two functions can be written as

hvFi5 �
l$0

�
2l#m#l

(v, F)lm , (8)

where, by definition,

(v, F)
lm

[<fv
lm
* F

lm
g , (9)

with< denoting the real part. The spectral APE function

can thus be defined as

Elm
A (p)5 g(p)

(u0, u0)lm
2

5 g(p)
ju0lm(p)j

2

2
(10)

so as the mean APE at a pressure surface is given by

EA(p)5�l,mE
lm
A (p).

Themeridional and azimuthal components of a vector

field on the sphere are multiple valued at the poles be-

cause of the coordinate singularity. To expand a vector

field in spherical harmonics, it is thus appropriate to

decompose it in terms of two scalar functions. For exam-

ple, the velocity field is decomposed as u 5 $h ^ (cez) 1

$hx, where c(xh, p) is the spherical streamfunction and

x(xh, p) is the spherical velocity potential. The vertical

component of the vorticity is given by z[ roth(u)[

ez � ($h ^ u)5=
2
hc and the horizontal divergence by

d[ divh(u)[$h � u5=
2
hx. Our formulation is based on

a result obtained from the rotational–divergent split.

The mean value over a sphere with radius a (in our case

the radius of Earth) of the scalar product between two

horizontal vector fields a and b can be written as

ha � bi5 �
l$1

�
2l#m#l

(a, b)lm , (11)

where, by definition,
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(a, b)
lm

[
a2

l(l1 1)
<frot

h
(a)

lm
* rot

h
(b)

lm

1 divh(a)lm* divh(b)lmg , (12)

which rests on the fact thatYlm are eigenfunctions of the

Laplace operator. Here, we have used a similar notation

on the LHS of Eqs. (9) and (12). It should be understood

that when the two arguments of (� , �)lm are scalars, we

use Eq. (9) and when the arguments are two vector

fields, we use Eq. (12). From Eq. (11), it is clear that the

spectral KE function can be defined as

Elm
K (p)5

(u, u)
lm

2
5
a2(jz

lm
j21 jd

lm
j2)

2l(l1 1)
. (13)

The spectral energy budget is derived by substitut-

ing Eqs. (3) and (4) into the time differentiations of

Eqs. (13) and (10); that is, ›tE
[lm]
K (p)5 (u, ›tu)lm and

›tE
[lm]
A (p)5 g(p)(u0, ›tu

0)lm, respectively. Reorganizing

the different terms, the spectral energy budget can be

written as

›tE
lm
K (p)5Clm(p)1T lm

K (p)1Llm(p)

1 ›pF
lm
K[(p)2Dlm

K (p) , (14)

›
t
Elm
A (p)5Glm(p)2Clm(p)1T lm

A (p)

1 ›
p
F lm
A[(p)2Dlm

A (p) , (15)

whereT lm
K (p) andT lm

A (p) are spectral transfer terms due

to nonlinear interactions and Llm(p) is a spectral

transfer term arising from the Coriolis term. Each of

the other terms corresponds to a term in Eqs. (5) and (6).

We first focus on the nonlinear term2g(u0, v � $u0)lm.

From the expression of FA[(p) in Eq. (6), it is clear that

the APE vertical flux can be written as

F lm
A[(p)52g(u0, vu0)lm/2 . (16)

A simple method to obtain the spectral transfer term is

to compute the complementary part of the nonlinear

term

T lm
A (p)52g(u0, v � $u0)lm 1g›p(u

0, vu0)lm/2 . (17)

It is straightforward to show that the sum over all spherical

harmonics of T lm
A (p) is equal to 2gh$h � (uju0j2/2)i 5 0,

meaning that this transfer term is exactly conservative

and only redistributes energy among the different spherical

harmonics at a pressure level. The diabatic term, the

conversion term, and the APE diffusion term are

Glm(p)5 g(u0, Q0
u
)
lm
, (18)

Clm(p)52(v, a)lm, and (19)

Dlm
A (p)52g(u0, D

u
[u])

lm
. (20)

Using the continuity equation, the hydrostatic equa-

tion and the fact that the spherical harmonics are eigen-

functions of the Laplace operator, the pressure term is

separated into conversion and vertical flux:1

2(u, $hF)lm5Clm(p)2 ›p(v, F)lm . (21)

The total KE vertical flux is the sum of the pressure flux

plus the turbulent KE flux

F lm
K[(p)52(v, F)lm2 (u, vu)lm/2 . (22)

The nonlinear KE spectral transfer is computed as the

complementary part of the nonlinear terms

T lm
K (p)52(u, v � $u)lm 1 ›p(u, vu)lm/2 , (23)

which assures that it conserves energy at a pressure

level. The horizontal advection of the horizontal veloc-

ity is computed using the relation u � $hu 5 $hjuj
2/2 1

zez ^ u. A transfer term arises from the Coriolis term

Llm(p)52(u, f [u]ez ^ u)lm

5 (c, rot
h
f f [u]e

z
^ ug)

lm

1 (x, divhf f [u]ez ^ ug)lm . (24)

At the f plane, where f is constant and a Fourier de-

composition is used, the corresponding term is zero.

Using the definition of the Coriolis parameter f(u) 5

f0 sinu and splitting the velocity in rotational and di-

vergent parts, one can show that

Llm(p)5 f0[(c, sinud1 cosu›
u
x/a2)lm

2 (x, sinuz1 cosu›
u
c/a2)lm] . (25)

This implies that the linear transfer does not involve

rotational–rotational (or divergence–divergence)

interactions.

1Koshyk and Hamilton (2001) made a similar but approximate

decomposition using the spherical harmonics transforms of the

components of the vectors.
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To summarize, in contrast to the previous formula-

tions, here, the APE budget is included, the exact three-

dimensional advection is considered, and the vertical

flux terms and the horizontal spectral transfer terms are

exactly separated. Moreover, the topography, which has

been neglected in this section for clarity, can consistently

be taken into account in the spectral analysis, as shown

in appendix A.

d. Vertical integration, summation over zonal

wavenumbers, and cumulative summation over

total wavenumbers

Since the density strongly varies with height in the

atmosphere, we prefer to include the density when we

integrate spectral energies over layers, so that our

quantities have the dimension of energy rather than

energy per unit mass as in most other studies. With the

formulation by Boer, this can be done easily even for

pressure levels pierced by the topography. The vertically

integrated KE spectrum is defined as

EK
[l]

p
b

p
t
5

ðp
b

p
t

dp

g
�

2l#m#l

Elm
K (p) . (26)

The vertically integrated nonlinear spectral flux of ki-

netic energy is defined as

PK[l]
p
b

p
t
5 �

n$l

ðp
b

p
t

dp

g
�

2n#m#n
Tnm
K (p) , (27)

and the spectral flux of APE is defined in the corre-

sponding way. When Eqs. (14) and (15) are vertically

integrated, divided by g, and summed as in Eq. (27) over

all of the spherical harmonics with total wavenumber

greater than or equal to l, we obtain

›tEK[l]
p
b

p
t
5 C[l]

p
b

p
t
1PK[l]

p
b

p
t
1L[l]

p
b

p
t
1FK[

[l](pb)

2F
K[

[l](p
t
)2D

K
[l]

p
b

p
t
, (28)

›
t
E
A
[l]

p
b

p
t
5G[l]

p
b

p
t
2 C[l]

p
b

p
t
1P

A
[l]

p
b

p
t
1F

A[
[l](p

b
)

2FA[
[l](pt)2DA[l]

p
b

p
t
, (29)

where the terms named F[[l](p)5�n$lF[[n] are cu-

mulative vertical fluxes and each of the other terms is

an integrated cumulation of a corresponding term in

Eqs. (14) and (15). For example, EK[l]
pb
pt
5�n$lEK[n]

pb
pt

is the cumulative kinetic energy and CK[l]
pb
pt
5�n$lC[n]

pb
pt

is the cumulative conversion of APE into KE. Putting

l 5 0 in Eqs. (28) and (29) we recover Eqs. (5) and (6)

integrated between two pressure surfaces.

3. Application to two GCMs

a. Presentation of the data and the models

We have analyzed two datasets produced with two

spectral GCMs: the Atmospheric GCM for the Earth

Simulator (AFES) and ECMWF’s weather prediction

model Integrated Forecast System (IFS). For a precise

description of each simulations, see Hamilton et al.

(2008) and ECMWF (2010), respectively. The two sim-

ulations and the two models are quite different. The

AFES is a climate model using a spectral advection

scheme. It has been run at high resolution for research

purposes. The horizontal resolution is T639, which cor-

responds to a minimum wavelength of roughly 60 km.

The model is formulated in sigma coordinates with 24

vertical levels from the ground to about 1 hPa leading to

a vertical grid space corresponding to approximately

2 km in the high troposphere. Takahashi et al. (2006) and

Hamilton et al. (2008) showed that the AFES reproduces

many features of the atmospheric spectra, especially a

realistic k25/3 power law at the mesoscales. For each

truncation wavenumber lT, the value of the horizontal

hyperdiffusion coefficient kh was adjusted by trial and

error to produce power-law spectra that agree with ob-

servations. However, for the runs at sufficiently large

resolution (T639 and T1279) the existence of a distinct

k25/3 mesoscale range was shown to be independent of

the hyperdiffusion employed. Moreover, Takahashi et al.

(2006) showed that the tuned horizontal hyperdiffusion

coefficient scales with the truncation wavenumber as

kh } l23:22
T . According to energy cascade phenomenol-

ogy, this coefficient should only depend on the spectral

flux through the inertial range P, and the resolution

scale so that the dissipation will take place at the smallest

resolved scales and will be approximately equal to P.

Dimensional considerations then give kh ’ P
1/3l210/3

T .

This good agreement between the theoretical and the

empirically determined scaling laws indicates that the

k25/3 spectra in the AFES models are produced by

a downscale energy cascade (Hamilton et al. 2008).

ECMWF IFS is a model developed and used for oper-

ational deterministic forecast. It uses a semi-Lagrangian

advection scheme with a horizontal resolution T1279,

which corresponds to a minimum wavelength of roughly

30 km. The model is formulated in hybrid coordinates

with 91 vertical levels and a minimum pressure of 1 Pa.

This leads to a vertical grid space corresponding to

approximately 500m in the high troposphere. A semi-

implicit time scheme makes it possible to run this

model with a much larger time step (600 s) than the

one used for the AFES T639 model (100 s). The AFES

and the ECMWF simulations correspond to June and

December, respectively. We have averaged over 10 days
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(40 times) for the AFES dataset and over 25 days (5 dif-

ferent times) for the ECMWFdataset. The time variations

of the spectra and of the terms involved in the spectral

energy budget are not very large, so that averages over

such limited statistics represent the important features

of the models, especially at the mesoscales for which a

statistical convergence seems to be achieved. Other com-

putations for the ECMWF model for August have shown

that seasonality cannot explain the main differences be-

tween the models.

TheAFES data are already linearly interpolated from

the model levels and consist of the horizontal velocity,

the pressure velocity, and the temperature at pressure

levels. The geopotential is computed by integrating the

hydrostatic relation from the ground. The ECMWFdata

are raw data from the model outputs. They contain the

vorticity, the divergence, the pressure velocity, and the

temperature at hybrid vertical levels. We compute hori-

zontal velocity and the geopotential and then linearly

interpolate the data at pressure levels. The interpolation

method is thus the same for both models. Since we do

not have access to the heating rate and to the total dis-

sipative terms, theAPE forcing G[l]pbpt and the dissipative

terms DK[l]
pb
pt

and DA[l]
pb
pt

have not been computed.

Since the surface fluxes are modeled in aGCM, we focus

on the vertical flux at pressure levels not pierced by the

topography. Finally, we have computed the terms C[l]pbpt ,

PK[l]
pb
pt
, PA[l]

pb
pt
, and L[l]pbpt for all levels and the vertical

fluxes FK[[l](p) and FA[[l](p) for pressure levels not

pierced by the topography. The spectral flux arising

from the Coriolis term L[l]pbpt is completely negligible at

wavenumbers l * 10, consistent with previous compu-

tations by Koshyk and Hamilton (2001). At larger scales,

it is not negligible and is quite similar for bothmodels. The

Coriolis strength leads to a positive vertically integrated

spectral flux on the order of 1Wm22 from l ’ 2 to l ’ 6

with dominant contribution from the stratosphere. The

linear flux L[l](p) is small in the troposphere for all

wavenumbers. Since our main interest here is the dy-

namics of the mesoscales and for clarity, this spectral

flux is not included in the figures.

b. Vertically integrated spectral energy budget

Figure 1a presents the globally integrated spectral

fluxes and cumulative conversion for the AFES model.

When vertically integrated over the total height of the

atmosphere, these quantities are simply denoted PK[l],

PA[l], and C[l] (i.e., without the top and bottom pres-

sures in subscript and exponent). By construction, the

fluxes are equal to zero at l 5 lmax and should also be

equal to zero at l 5 0, since they represent conservative

processes. The total spectral flux (black thick line) is

positive at all wavenumbers, which means that on av-

erage, the energy is transferred toward large wave-

numbers. At leading order, energy is forced at the very

large planetary scales and dissipated at smaller scales,

and a substantial part is dissipated at the smallest scales

simulated.

However, the total spectral flux has a somewhat in-

tricate shape. It reaches a maximum equal to 1.3Wm22

around l 5 4, decreases to 0.55Wm22 at l ’ 20, and

increases again to reach a plateau between l ’ 70 and

l ’ 200 where P[l] ’ 0.82Wm22 before dropping down

to zero at the largest wavenumbers. At l , 15, the total

flux is largely dominated by the APE spectral flux (blue

line), which also increases abruptly around l 5 2 and

FIG. 1. Total, KE, and APE nonlinear spectral fluxes and cumulative conversion C[l] vs total wavenumber for (a) the AFES T639

simulation and (b) the ECMWF IFS T1279 simulation. The cross in (a) marks the maximum value of the KE nonlinear spectral flux
~PK 5max(PK)5 0:62 used for nondimensionalization of the spectra in Fig. 2. In (b), the black dashed line is the spectral fluxP[l] for the

AFES T639 simulation.
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decreases abruptly between l 5 6 and l 5 20. This in-

dicates that there is a transfer of APE from wavelengths

on the order of 10 000 km to wavelengths between 2000

and 5000 km. The strong decrease of PA[l] is associated

with a strong increase of the KE spectral flux (red line)

and a strong decrease of the cumulative conversion

(dashed–dotted line) from C[l] 5 1.13 to 20.14Wm22.

The amount of energy that is converted from APE

to KE in the wavenumber range [l1, l2] is equal to DC [

C[l1] 2 C[l2]. (Note here the nonstandard definition of

the difference operator D.) Therefore, the strong de-

crease of the cumulative conversion over the range of

wavelengths between 1000 and 5000 km corresponds to

a conversion of APE to KE of DC ’ 1.27Wm22. This

large conversion at the synoptic scales and the spectral

transfer of APE from the planetary scales toward the

synoptic scales are mainly due to the baroclinic in-

stability. It is interesting to compare these results with

the spectral energy budget of an equilibrated Eady flow

(Molemaker andMcWilliams 2010). The general picture

is very similar with a dominance of the APE flux at large

scales and a stronger KE flux at small scales. The in-

crease of the total nonlinear flux at wavelengths between

700 and 2000 km indicates that there is a direct forcing

of APE at these scales, most probably because of latent

heat release organized at large scales. This interpre-

tation is consistent with results byHamilton et al. (2008),

who reported spectral magnitude at the mesoscales

much smaller for the dry dynamical core than for the full

AFES.

As already shown, the KE is mainly forced (by a con-

version of APE) over a range of wavelengths between

1000 and 5000 km. At larger scales, the KE spectral flux

is negative and reaches a minimum value approximately

equal to20.5Wm22. A portion of the KE is transferred

upscale, toward the planetary scales, and feeds the large-

scale zonal winds. At smaller scales, the KE spectral flux

reaches a plateau at 0.62Wm22. This shows that a non-

negligible portion of the KE cascades toward small

scales at the mesoscales. The value 0.62Wm22, which

after conversion gives 6.1 3 1025m2 s23, is consistent

with previous estimations for the KE spectral flux and

for the small-scale dissipation rate (Cho and Lindborg

2001). Remarkably, the cumulative conversion C[l] in-

creases at the mesoscales (the local conversion is nega-

tive), showing that the conversion is from KE to APE.

This demonstrates that the KE k25/3 spectrum is not

produced by direct forcing of the KE. Note that this

conversion from KE to APE is consistent with strongly

stratified turbulence.

The nonlinear KE spectral flux computed only with

the rotational flow Prot is plotted as a red dotted line.

The interactions between the rotational modes conserve

both KE and enstrophy (j$h ^ uj2/2), exactly as in two-

dimensional turbulence. Note that Prot[l] is the spectral

flux computed when the framework based on the two-

dimensional vorticity equation is adopted, as for example

in Boer and Shepherd (1983). We see that these in-

teractions are responsible for the upscale flux, which

actually starts at wavelengths on the order of 2000 km. In

contrast, the complementary flux, PK[l] 2 Prot[l] (red

dashed line), is responsible for the downscale energy

flux that starts at wavelengths on the order of 3000 km.

Indeed, the downscale energy cascade is produced by

interactions involving the divergent part of the ve-

locity field (Molemaker et al. 2010; Deusebio et al.

2013).

As shown by Lambert (1984), the variations of the

cumulative conversion at very small wavenumbers, l, 8,

are due to the Hadley and Ferrel circulations. The de-

crease of C[l] at l 5 2 corresponding to a conversion of

APE to KE of approximately 0.6Wm22 is mainly the

signature of the Hadley cell. The increase of C[l] at l5 4

corresponding to a conversion of KE to APE of ap-

proximately 0.5Wm22 is mainly the signature of the

Ferrel cell. The conversion at l 5 2 is weaker than pre-

viously computed by Lambert (1984). Further investi-

gations are necessary to understand if this effect is due

to averaging over an insufficient amount of data or if it is

a robust aspect of the AFES.

Figure 1b presents the globally integrated spectral

fluxes and cumulative conversion as in Fig. 1a, but for

the ECMWF model. The planetary-scale features are

overall quite similar to the results for the other model

even though the conversion at wavenumbers smaller

than 4 corresponding to theHadley cell is much stronger

(DC ’ 1Wm22). The total conversion C[l5 0] is equal to

2.9Wm22, consistent with results by Boer and Lambert

(2008), who, averaging over a longer time period, com-

puted a total conversion for the ECMWF model of

3.1Wm22. The baroclinic instability leads to large-scale

positive APE flux and strong conversion at the synoptic

scales DC ’ 1.5Wm22. However, the KE flux increases

much less than for the AFES, indicating that there is

strong dissipation at wavelengths on the order of

2000 km. The total spectral flux for the AFES is also

plotted in dashed black line for comparison. The total

flux for the ECMWF model is slightly smaller than for

the AFES at the synoptic scales and is negative and very

small at the mesoscales. This is related to the weakness

of the downscale mesoscale KE cascade (PK[l] ’

0.15Wm22) and to the fact that the APE flux is negative

(PA[l] ’ 20.3Wm22). This unexpected result could be

due to direct forcing of APE by release of latent heat at

the smallest resolved scales on the order of 50 km. This

interpretation is consistent with the sign of the local
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conversion at the mesoscales, from APE to KE, in

contrast to the case of AFES.

We shall now present a quantitative comparison be-

tween the two models. In a stationary state, the amount

of KE that is dissipated in a wavenumber range [l1, l2]

can be estimated as

DDK ’ DC1DPK , (30)

whereDC[ C[l1]2 C[l2] is the amount ofAPE converted

to KE in the range [l1, l2] and DPK [ PK[l1] 2 PK[l2] is

the net amount of energy going into the range [l1, l2] by

the nonlinear fluxes at l1 and l2. The effective forcing of

APE can be evaluated in the corresponding way as

DG2DD
A

’ DC2DP
A
. (31)

Finally, the effective total forcing can be evaluated as

DG2DD ’ 2DP , (32)

where D[l] 5 DK[l] 1 DA[l] is the total energy dissipa-

tion andP[l] the total energy spectral flux. Any increase

(decrease) of the total energy flux implies a net positive

(negative) forcing of the total energy.

Table 1 summarizes the main differences between the

twomodels in terms of the energy budget of the synoptic

scales, with l1 5 12 and l2 5 40 corresponding to wave-

lengths between 1000 and 3200 km. The most important

difference for these scales is DDK, which is equal to

0.10Wm22 for the AFES model and to 0.72Wm22 for

theECMWFmodel. As alreadymentioned, theECMWF

model is very dissipative at the synoptic scales. We have

verified that a large part of this synoptic-scale dissipa-

tion takes place in the free atmosphere (i.e., far from the

surface). This unexpected and anomalous result could

explain the lack of downscale energy cascade at the me-

soscales observed for this model. For both models, there

is a net positive effective forcing of APE, DG 2 DDA,

which is the signature of release of latent heat orga-

nized at the synoptic scales. For the AFES, this re-

lease of latent heat is larger than the KE dissipation

(DG 2 DD . 0), which leads to an increase of P[l]. In

contrast, for the ECMWF model the KE dissipation is

larger than the effective forcing of APE (DG 2 DD , 0)

so that the total flux decreases to approximately zero at

l 5 1000.

Table 2 presents a similar energy budget as Table 1,

but for l . 100 (i.e., for the mesoscales and the smallest

length scales resolved by the models). Only a small

fraction (0.24Wm22) of the total KE dissipation (C[0]5

2.9Wm22) takes place at these scales for the ECMWF

model, whereas these scales account for a significant

part of the KE dissipation for the AFES. Remarkably,

DG2 DDA is negative for the AFES (20.32Wm22) and

positive for the ECMWF model (0.41Wm22). In this

model, the APE and KE are directly forced at small

scales by latent heat release and conversion character-

ized by a weak spatial coherence.

c. Vertically integrated nondimensional spectra

If it is assumed that the l25/3 range of the kinetic en-

ergy spectrum is of a similar form as the Kolmogorov

spectrum of isotropic turbulence, then EK }P
2/3
K l25/3. If

it is further assumed that the only other parameters that

determine the spectrum are the radius of Earth and the

total mass per unit area, which is equal to hpsi/g, then

dimensional considerations give

EK[l]5C(hpsi/g)
1/3(aPK)

2/3l25/3 , (33)

where C is a constant supposedly on the order of unity. In

the following, we choose as the typical KE flux the maxi-

mum of the KE flux: ~PK 5max(PK)5 0:62. (This value

is marked by a cross in Fig. 1a.) In Fig. 2a the nondimen-

sional compensated spectra E[l]l5/3(hpsi/g)
21/3(a~PK)

22/3

for the AFES model are plotted as a function of the total

wavenumber. At l 5 1, the APE spectrum (blue line) is

TABLE 1. Quantitative energy budget (Wm22) for the range of

wavenumbers from l1 5 12 to l2 5 40—that is, for wavelengths

between 1000 and 3200 km corresponding approximately to the

synoptic scales, for the AFES and the ECMWF models. The

quantitiesDC, DPK,DPA, and DP are directly obtained from Fig. 1.

The other quantities are evaluated using Eqs. (30)–(32).

AFES ECMWF

DC 0.73 1.23

DPK 20.63 20.51

DPA 0.54 1.83

DP 20.09 0.32

DDK 0.10 0.72

DG 2 DDA 0.19 0.41

DG 2 DD 0.09 20.31

TABLE 2. As in Table 1, but for l2 equal to the largest wavelength

resolved by the model and for l1 5 100, which corresponds to

a wavenumber of approximately 400 km. This range of wave-

numbers includes the mesoscales and the smallest length scales

resolved by the models.

AFES ECMWF

DC 20.13 0.11

DPK 0.62 0.13

DPA 0.19 20.30

DP 0.81 20.17

DDK 0.48 0.24

DG 2 DDA 20.32 0.41

DG 2 DD 20.81 0.17
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much larger than the KE spectrum (red line), as predicted

by Lorenz (1955). This leads to a ratio mean APE over

mean KE approximately equal to 3. However, for other

wavenumbers (except at the largest ones), both spectra

are of the same order of magnitude. At the synoptic

scales, the KE spectrum is quite steep. It shallows at the

mesoscales and presents a flat plateau corresponding to

an l25/3 inertial range from 650 km up to the large-

wavenumber dissipative range. Remarkably, the con-

stant C in Eq. (33) is very close to unity, which indicates

that the l25/3 mesoscale range may be explained in a

similar way as Kolmogorov (1941) explained the k25/3

range of isotropic turbulence. At wavelengths between

700 and 2000 km, the APE spectrum (blue line) is equal

to or larger than the KE spectrum and there are fluc-

tuations resembling noise. However, the fluctuations do

not seem related to lack of statistics. They could be due

to the direct forcing of APE at these scales (see Fig. 1a).

In Fig. 2 are also plotted the rotational spectrum

Erot[l] and the divergent spectrumEdiv[l] computed as in

Eq. (13). At large scales, Erot[l] (dashed red line) totally

dominates over Ediv[l] (dashed–dotted red line). Re-

markably, the compensated divergence spectrum in-

creases with l, meaning that Ediv[l] is shallower than an

l25/3 power law. Such very shallow divergent spectra

were also obtained by simulations of strongly strati-

fied and strongly rotating turbulence forced in geo-

strophic modes (Deusebio et al. 2013) and of strongly

stratified turbulence forced with rotational modes

(Augier et al. 2013, manuscript submitted to J. Fluid

Mech.). However, other simulations with higher reso-

lution would be necessary in order to check whether the

divergent spectra are sensitive to model parameteri-

zations and resolution. At the mesoscales, both spectra

are of the same order of magnitude even though Erot[l]

is larger than Ediv[l].

Figure 2b shows the nondimensional compensated

spectra for the ECMWF model (we use the same value

as for the AFES of ~PK in order to allow an easier

comparison between both models). The planetary-scale

features are quite similar to the AFES. At the synoptic

scales, the ratio EK[l]/EA[l] is approximately equal to 2,

indicating that the energy is partitioned equally between

the two components of KE and theAPE, as predicted by

Charney (1971). In contrast to theKE spectrum, theAPE

spectrum becomes shallower at high wavenumbers. This

is probably due to direct forcing of APE at the meso-

scales. Interestingly, the compensated divergent spec-

trum is flat, which means that it follows an l25/3 power

law. However, its magnitude is very small so that the

vertically integrated KE spectrum at the mesoscales is

nearly not affected. It is interesting to note the similarity

with the k25/3 divergent spectra obtained by Waite and

Snyder (2009) simulating a baroclinic life cycle.

d. Vertical decomposition and vertical energy fluxes

Figure 3 presents the spectral fluxes and the cumu-

lative conversion integrated over two different layers

corresponding approximately to the upper troposphere

(Figs. 3a,b) and the stratosphere (Figs. 3c,d). Figures 3a

and 3c correspond to the AFES T639 simulation and

Figs. 3b and 3d to the ECMWF IFS T1279 simulation.

Figure 3 also presents the cumulative total vertical

fluxes, F[[l](pb) at the bottom and F[[l](pt) at the top

of the layer (magenta dashed and dashed–dotted lines,

respectively). The balance between these two inward

and outward terms, Dpb
pt
F[[l]5F[[l](pb)2F[[l](pt), is

plotted in magenta as a continuous line.

FIG. 2. Nondimensional compensated spectra vs total wavenumber for (a) the AFES T639 simulation and (b) the ECMWF IFS T1279

simulation. The black dashed line represents the prediction in Eq. (33) with ~PK 5 0:62 (valuemarked by a cross in Fig. 1a). The continuous

straight line indicates the l23 power law.
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For the AFES simulation, the spectral fluxes and the

cumulative conversion integrated over the upper tro-

posphere (Fig. 3a) present roughly the same features as

the globally integrated terms shown in Fig. 1a. The KE

flux in the upper troposphere accounts for approxi-

mately one-third of the globally integrated KE spectral

flux. The cumulative vertical flux D
pb
pt
F[[l] is relatively

small at the mesoscales and at the synoptic scales, in-

dicating that at leading order, the energy budget in this

layer and at these scales is dominated by the spectral

fluxes rather than by the vertical fluxes. However, at the

top and the bottom of the layer, there are large vertical

fluxes that are approximately equal. These fluxes through

the upper troposphere (upward at wavenumbers 7# l#

20 and downward at wavenumbers 3# l# 6) account for

exchanges of energy between the lower troposphere and

the stratosphere. At wavenumbers 1 # l # 2, F[[l](pt)

decreases from 0.8 to 0Wm22, indicating a strong up-

ward vertical flux at pt 5 233 hPa. Since the vertical

flux at the bottom layer is small at these wavenumbers,

the layer loses energy. The wavenumber ranges of the

upward and downward fluxes at the planetary scales

nearly coincide with the wavenumber ranges of the

conversion due to the Hadley and Ferrel cells, which

seems to indicate that these vertical fluxes are related to

the large-scale cells. In contrast, the upward flux at the

synoptic scales indicates the presence of upward-

propagating planetary waves. At l . 70, F[[l](pb) and

F[[l](pt) increase, meaning that there is a downward

vertical flux at these scales. This shows that in theAFES,

the mesoscales of the upper troposphere are not directly

forced by upward-propagating gravity waves, as was the

case in the simulation by Koshyk and Hamilton (2001)

using the SKYHI model.

Figure 3b presents the same quantities as Fig. 3a, also

integrated over the upper troposphere, but for the

ECMWF model. Comparing Figs. 3a and 3b, we see

the same differences as we saw between Figs. 1a and 1b.

The vertical fluxes are also quite different from theAFES

with small upward fluxes at the mesoscales and a smaller

magnitude of the variations of the cumulative fluxes at

large scales.

FIG. 3. As in Fig. 1, but integrated over layers corresponding approximately to (a),(b) the stratosphere and (c),(d) the upper tropo-

sphere. Panels correspond to (a),(c) the AFES T639 simulation and (b),(d) the ECMWF IFS T1279 simulation. The legend is given in

(a) and D
pb
pt
F[[l]5F[[l](pb)2F[[l](pt) is the cumulative inward vertical flux.
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Figure 3c shows the same quantities as Fig. 3a, also

for the AFES, but integrated over the stratosphere. At

the large scales, the spectral fluxes and the cumulative

conversion are quite different from the terms integrated

over the height of the atmosphere and over the upper

troposphere. TheAPEflux has no large peak at l’ 4 and

there is a conversion from KE to APE at synoptic scales

rather than the other way around, as in the upper tro-

posphere. On the other hand, there is a strong upward

energy flux at large scales from the bottom layer at pb 5

233 hPa while the corresponding flux at the top layer at

pt 5 15 hPa is very small. Thus, the stratosphere is not

directly forced by baroclinic instability, but by an energy

flux from the troposphere, owing to upward-propagating

planetary waves and possibly also the effects of the

Hadley and the Ferrel cells (see Fig. 3a). At the meso-

scales, there is a conversion of KE intoAPE and a strong

downscale cascade of KE and APE, accounting for ap-

proximately half the globally integrated flux. At l . 80,

D
pb
pt
F[[l] ’ F[[l](pb) increases, meaning that the strato-

sphere loses energy by a downward flux through the

tropopause.

Figure 3d presents the same quantities as Fig. 3c, also

integrated over the stratosphere, but for the ECMWF

model. Note that the vertical axis is different from

Fig. 3c. In contrast to the AFES, the downscale energy

cascade is very small and the stratospheric mesoscales

are directly forced by an upward energy flux.

Figure 4 presents the KE and APE spectra integrated

over three layers corresponding approximately to the

lower troposphere, the upper troposphere, and the up-

per atmosphere for theAFES (Fig. 4a) and the ECMWF

model (Fig. 4b). Note that the axes and the straight lines

are exactly the same in both figures. At the large scales

the spectra for both models are similar, but at the me-

soscales the spectral magnitude of the ECMWF is much

smaller than the magnitude of the AFES. Spectra in-

tegrated over the different layers lie closer to each other

for the AFES than for the ECMWF. For the AFES

the KE spectra have similar shapes at different layers,

whereas for the ECMWFmodel, they are quite different

with a shallowing at the mesoscales only in the strato-

sphere (blue and red dotted lines) as reported by Burgess

et al. (2013). However, these shallow spectra are much

smaller in magnitude than the corresponding spectra

from the AFES model (more than one order of magni-

tude smaller at l’ 100). From Fig. 3d it is quite clear that

the shallowing of the stratospheric spectra of the ECMWF

model is not caused by an energy cascade, but rather by

gravity waves propagating from the troposphere. The

integrated spectra of the ECMWF model (Fig. 2b) is

dominated by the contribution from the troposphere. In

the lower troposphere, the APE spectrum presents an

l25/3 dependency and is larger than the KE spectrum at

large wavenumbers. However, this cannot be explained

by a downscale energy cascade since the APE spectral

flux is small and negative. These differences between the

APE and the KE spectra could be due to a damping of

the KE and to a direct diabatic forcing of the APE at

the very large wavenumbers (l ; 1000). For the AFES

model (Fig. 4a), the spiky irregular shape observed at

the synoptic scales for the globally integrated APE spec-

trum (Fig. 2a) is also observed for the tropospheric APE

spectra but not for the stratosphericAPE spectrum. This

could indicate that this effect is related to the topogra-

phy. However, the spikes are present in not only the

lower- but also the upper-tropospheric spectra whereas

the upper troposphere is not pierced by the topography.

Moreover, the vertical fluxes at p 5 412 hPa are rather

regular. Therefore, the spiky irregular shape of the APE

spectra seems to be due to processes happening in the

troposphere and not only at the surface. The release of

FIG. 4. KE and APE spectra integrated over three layers cor-

responding approximately to the lower troposphere, the upper

troposphere, and the upper atmosphere. The straight black lines

indicate the l23 and l25/3 dependencies as guides for the eye. Note

that the axes and the straight lines are exactly the same in both

panels.
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latent heat organized at the synoptic scales could be an

explanation.

4. Conclusions

A new formulation of the spectral energy budget has

been presented and applied to study the results of two

different GCMs. In contrast to previous formulations,

both KE and APE are considered and the topography is

taken into account. Moreover, the advection terms are

exactly separated into spectral transfer and vertical flux

and the pressure term is exactly separated into adiabatic

conversion and vertical flux.

The spectral fluxes show that the AFES, which pro-

duces realistic k25/3KE spectra at themesoscales, simulates

a strong downscale energy cascade of P[l]5 0.8Wm22.

The vertical fluxes for the upper troposphere show that

the mesoscales are not directly energized by gravity waves

propagating from the ground. Moreover, the spectra

collapse on the prediction based on the existence of the

cascade, indicating that the mesoscale k25/3 power law is

due to the downscale energy cascade. In contrast, nei-

ther the k25/3 KE spectrum nor the downscale energy

cascade is produced by the ECMWFmodel. The analysis

of the spectra and their tendencies integrated over dif-

ferent layers reveals that in the ECMWF, the strato-

spheric mesoscales are directly forced by gravity waves

propagating from the troposphere. In contrast, the

stratospheric spectra of the AFES are forced by the

downscale energy cascade and at the mesoscales, gravity

waves produced in the stratosphere propagate to the

troposphere.

These results show that our spectral energy budget

formulation is a convenient tool to investigate the issue

of the mesoscale dynamics and its simulation by GCMs.

In particular, we have shown that the flux computed only

with the rotational part of the velocity fieldProt [as, e.g.,

in Fjørtoft (1953) and Boer and Shepherd (1983)] ac-

counts only for the upscale KE flux. Since the downscale

energy cascade is produced by interactions involving the

divergent part of the velocity field (Vallgren et al. 2011;

Deusebio et al. 2013; Molemaker et al. 2010), one must

consider the nonlinear transfers computed with the total

advection term. To do this in a consistent way, the ad-

vection terms in the spectral energy budget have to be

split as shown in section 2.

Our results raise many interesting questions. In par-

ticular, we have shown that the two studied models

simulate very different dynamics at the mesoscales. The

AFES model reproduces a downscale energy cascade at

the mesoscales, whereas such a cascade is absent in the

ECMWFmodel. One important difference between the

two models is the vertical resolution. The vertical grid

space in the high troposphere in approximately 500m

for the ECMWF model and 2 km for the AFES model.

A coarser resolution should be a drawback for simu-

lating the mesoscale dynamics, both gravity waves and

strongly stratified turbulence. The ECMWF model can

simulate gravity waves with smaller vertical resolution

than those simulated by the AFES model. Stratified

turbulence is very demanding in terms of vertical reso-

lution, since it is necessary to resolve the buoyancy length

scale,Lb;U/N, which is the characteristic vertical length

scale of horizontal layers (Waite and Bartello 2004;

Lindborg 2006; Waite 2011). Here,U is the characteristic

velocity of the horizontal wind and N is the Brunt–

V€ais€al€a frequency. Since Lb is on the order of 1 km in

the atmosphere, none of the models really resolves this

length scale. The question is, then, how is it possible that

either of these twomodels is able to simulate a downscale

energy cascade? Our tentative answer to this question is

that vertical resolution does not seem to be very critical in

order to reproduce a downscale energy cascade, because

such a cascade seems to be a very general property of

rotating and stratified hydrodynamic systems that are not

too close to the quasigeostrophic regime. That a down-

scale energy cascade emerges in such systems has been

demonstrated in recent simulations (Molemaker et al.

2010) that do not have extremely fine vertical resolution.

Dynamically, the downscale cascade is characterized by

the importance of the interactions involving ageostrophic

modes. This raises the question of how ageostrophic

motions at scales on the order of thousands of kilometers

are produced from geostrophic motions at large scales. In

particular, the baroclinic instability does not produce

ageostrophic motions. Our results indicate that other

ageostrophic instabilities are active and very important in

the AFES model.

In subsection 3b, we have discussed the energy budget

of the synoptic scales (see Table 1). We have shown that

the ECMWFmodel is very dissipative, even at these very

large scales. In the atmosphere, the dissipation takes

place at scales on the order of 1 cm or smaller. In a

GCM, dissipation—namely, loss of energy at resolved

scales—has to correspond to physical processes trans-

ferring energy to unresolved scales. It seems unlikely

that physical processes could account for such large

highly nonlocal transfer from the synoptic scales to

the unresolved scales, which are relatively small for the

ECMWF T1279L91 model. This indicates that the

synoptic-scale dissipation for the ECMWF model is too

large. Since energy is removed at the synoptic scales, it

is not available to feed the downscale energy cascade.

Our interpretation of the data analysis is that the

ECMWF model does not simulate the downscale cas-

cade at themesoscales because of an excessive dissipation
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at the synoptic scales. If this interpretation is correct,

a decrease of the dissipation at the synoptic scales would

have strong consequences in terms of the mesoscale

dynamics. Thus, it would be important to understand

why the ECMWF model is so dissipative at the synoptic

scales. One explanation could be numerical dissipation

related to the semi-Lagrangian semi-implicit scheme.

However, it seems unlikely that the numerical scheme

could account for such large dissipation at scales ap-

proximately 200 times larger than the typical horizontal

grid scale, which is equal to 16 km. Therefore, it would

be interesting to explicitly compute the dissipation spec-

trumof all nonconservative terms related to, for example,

the turbulent scheme and the wave drag.

Future investigations could also compare different

models varying the resolution, the convection schemes,

the advection scheme, and the turbulent models. It would

be desirable to analyze simulations over long periods to

obtain better statistical convergence at large scales. It

could be informative to analyze idealized simulations

using dry dynamical core and/or aquaplanet versions of

the models with variation of physical parameters such as

the rotation rate and the large-scale forcing. Other in-

teresting aspects for future work are the consideration

of the effects of the water content and the adaptation of

the formulation for nonhydrostatic simulations.
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APPENDIX A

Technical Details on Topography in p Coordinates

Following Boer (1982), the equations are extended

over a domain including subterranean pressure levels.

For any function f(xh, p) whose values below the sur-

face have been obtained by interpolation, we define a

corresponding function ~f (xh,p)5b(xh,p)f (xh,p), where

b(xh, p)5H[ps(xh)2 p] andH is theHeaviside function.

In the extended domain, the boundary condition at

the earth surface is expressed as Dtb5 0, with Dt 5 ›t 1

v � $. Using the chain rules ›tb5 d›tps, $hb5 d$hps, and

›pb 5 2d, we recover the classical boundary condition

for the atmospheric domain in pressure coordinates:

Dtb5 d(›tps 1 u � $hps 2 vs)5 0, where d5 d( ps 2 p)

is the Dirac distribution with impulse at the surface.

Note that taking into account the topography has of

course no influence for the high troposphere and the

stratosphere. However, the increase of the accuracy is

important for the lower troposphere, especially through

the computation of the representative mean tempera-

ture without using interpolated subterranean data.

For each pressure level, even those pierced by the

topography, the spectral energy functions are defined as

Elm
K (p)5

(~u, ~u)
lm

2
and Elm

A (p)5 g(p)
j~u0
lm
(p)j2

2
.

The spectral energy budget is derived as in section 2—

that is, using the relations ›tE
lm
K (p)5 (~u,›t~u)lm and

›tE
lm
A (p)5g(p)(~u0, ›t~u

0)lm. For levels pierced by the

topography, a surface term arises from the pressure term

(~u, b$hF)lm and can be expressed as

Slm(p)52(~v, dF
s
)
lm

2 (d›
t
p
s
, ~F)

lm
1 (~u, dF

s
$
h
p
s
)
lm
.

(A1)

The sum over all spherical harmonics of Slm(p) is

equal to the surface term S(p) in Eq. (5). However,

the term Slm(p) is difficult to evaluate and has not been

computed.

The expressions of the other terms are very similar as

those derived in section 2. The nonlinear transfers can

be written as

T lm
K (p)52(~u, u � $h

~u1 d~u/2)lm1 [(›p~u, v~u)lm

2 (~u, v›
p
~u)

lm
]/2 , (A2)

T lm
A (p)52g(~u0, u � $

h
~u0 1d~u0/2)

lm
1 g[(›

p
~u0, v~u0)

lm

2 (~u0, v›
p
~u0)

lm
]/2 . (A3)

The linear transfer arising from the Coriolis strength is

Llm(p)5 f0f[c
�, sinudiv

h
(~u)1 cosu›

u
x�]

lm

1 [x�, sinuroth(~u)2 cosu›
u
c�]lmg , (A4)

where c� and x� are the streamfunction and velocity po-

tential computed from ~u. The diabatic term, the con-

version term, and the diffusion terms are

Glm(p)5g(~u0, ~Q0
u
)lm , (A5)

Clm(p)52(~v, ~a)
lm
, (A6)

Dlm
K (p)52[~u, bDu(u)]lm, and (A7)

Dlm
A (p)52g[~u0, bD

u
(u)]

lm
. (A8)
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The vertical fluxes and the nonconservative term can be

computed as

F lm
K[(p)52(~v, ~F)lm 2 (~u, v~u)lm/2 , (A9)

F lm
A[(p)52g(~u0, v~u0)lm/2, and (A10)

Jlm(p)52(›p logg)F
lm
A[(p) . (A11)

In practice, computing the spherical harmonics trans-

form of ~u5bu is not numerically feasible at pressure

levels pierced by the topography (i.e., where b is equal

to 1 or 0). We must use a modified smooth b. Moreover,

the spherical harmonic transform of ~u5bu should not

reflect the spectral content of the topography rather

than that of u. Therefore, it is convenient to use an al-

ternative b computed with a time-averaged pressure

surface ps(xh) (Boer 1982). A smooth low-pass filter

with a cutoff total wavenumber equal to 40 is then

applied to this function H[ps(xh)2 p]. As a conse-

quence, a large part of the interpolated subterranean

data (mainly under the large topographic highs—i.e.,

Antarctic continent and Himalaya and Andean

mountain ranges) are not used in the calculations, but

the spectral quantities at relatively high wavenumbers

are not affected by the high wavenumber content of the

topography.

APPENDIX B

Total Energy Conservation and APE

In this appendix, we investigate the meaning of the

surface term appearing in Eq. (5) and show how Eqs. (5)

and (6) can be related to the total energy conservation.

Neglecting all diabatic processes, it is straightforward to

derive the local conservation equation

Dt
(E

K
1H)52$ � (vF) , (B1)

with EK(xh, p) 5 juj2/2. By computing Dt[b(EK 1 H)],

we obtain an equation that is valid over a domain in-

cluding subterranean pressure levels

Dt(
~EK 1 ~H)52b$ � (vF)52$ � (v~F)1Fv � $b .

(B2)

Taking the horizontal mean and integrating over pres-

sure gives

›
t

ð
‘

0
h ~E

K
1 ~Hi dp/g52›

t
hF

s
p
s
i/g , (B3)

where we have used the relations Fv � $b 5 2F›tb 5

2dFs›tps and the fact that Fs(xh) is not a function of

time.

Using the hydrostatic equation, it can be shown that

EI 1 F 5 H 1 ›p(pF), which, after integration, gives

›thFspsi/g5 ›t

ð
‘

0
h ~EI 1

~F2 ~Hi dp/g , (B4)

where EI is the internal energy per unit mass. Sub-

stituting this result into Eq. (B3) finally gives the total

energy conservation equation

›t

ð
‘

0
h ~EK 1 ~EI 1

~Fi dp/g5 0. (B5)

Note that Eqs. (B3) and (B4) can be rewritten as

›t

ð
‘

0
h ~EKi dp/g5

ð
‘

0
C(p) dp/g2 ›thFspsi/g , (B6)

›
t

ð
‘

0
h ~E

I
1 ~Fi dp/g52

ð
‘

0
C(p) dp/g1 ›

t
hF

s
p
s
i/g ,

(B7)

which shows that the term ›thFspsi/g can be interpreted

as a conversion of EK into EI1F. Using the hydrostatic

equation, we find that hFspsi/g5 hFsrAi, where rA(xh, t)

is the mass per unit area of the total depth of the at-

mosphere. Thus, hFspsi/g may be interpreted as the

mean potential energy per unit area of an atmosphere

where the center of mass of each air column has been

moved to the ground. This quantity can change only if

the density distribution is changed with respect to to-

pography, so that high- or low-density air on average is

moved to high- or low-topography regions.

The sum of Eqs. (5) and (6) integrated over pressure is

›t

ð
‘

0
h ~EK 1 ~EAi dp/g5

ð
‘

0
[S(p)1 J(p)] dp/g,

52›thFspsi/g1

ð
‘

0
J(p) dp/g .

(B8)

The sum of the integrated KE and the Lorentz APE is

not exactly conserved and can be produced by two adi-

abatic nonconservative terms, the volumetric term J(p)

related to the nonlinearity of the potential temperature

profile and the surface term S(p). The total mass con-

servation can be written as ›thpsi 5 0, which implies

that ›thFspsi5 ›thFsp
0
si, where p

0
s 5 ps 2 hpsi. Moreover,

sinceFs does not vary with time, we also have ›thFsp
0
si5

›thFs(p
0
s 2p0s)i, where the overbar denotes the temporal
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average. We have computed the quantity hFs(p
0
s 2 p0s)i/g

and it is very small compared to the horizontally aver-

aged vertically integrated KE and APE. This explains

why it is relevant to neglect the topography as done by

Lorenz (1955).
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