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The fluctuating superconducting correlations emerging in dirty hybrid structures under the conditions of
the strong proximity effect are demonstrated to affect the validity range of the widely used formalism of
Usadel equations at mesoscopic scales. In superconductor ferromagnet structures these giant mesoscopic
fluctuations originating from the interference effects for the Cooper pair wave function in the presence of
the exchange field can be responsible for an anomalously slow decay of superconducting correlations in a
ferromagnet even when the noncollinear and spin orbit effects are negligible. The resulting sample to
sample fluctuations of the Josephson current in superconductor ferromagnetic superconductor junctions and
the local density of states in superconductor ferromagnetic hybrid structures can provide an explanation of
the long range proximity phenomena observed in mesoscopic samples with collinear magnetization.

The successful development of modern experiments in a
wide class of superconductor-ferromagnet (S-F) hybrid
structures has opened a completely new research area, i.e.,
superconducting spintronics [1–4]. Despite the growing
number of various exciting experimental and theoretical
results in this field there remains still a very important and
puzzling contradiction between the experimental data and
the understanding of the physics of the proximity effect in
these systems. This contradiction relates to the length of
the decay of superconducting correlations, LS, in a dirty
ferromagnet. The standard Usadel theory gives us the
exponential suppression of superconducting correlations
at the length LS ∼ ξF ¼ ℏD=2h

p
, whereD is the diffusion

coefficient and h is the exchange field (see Ref. [5] for a
review). For most typical ferromagnets and alloys one can
get the estimate LS ∼ 1–10 nm while the existing exper-
imental data [6–15] show that superconducting correlations
survive for much larger distances from the S-F interface
comparable with the coherence length in the normal metal
(N) ξN ∼ D=T

p
. This puzzling discrepancy between the

theoretical estimate and experiment stimulated researchers
to suggest various fascinating mechanisms of such a long-
range proximity phenomenon. Most of these explanations
exploit the assumption of the inhomogeneous exchange
field, which generates the long-range triplet pairing com-
ponent in the anomalous Green functions (see, e.g.,
Ref. [16]). The resulting increase in the LS length has
been confirmed experimentally for a Josephson junction
with a composite F layer containing a region with non-
collinear magnetic moments [11,12]. Thus, the noncolli-
nearity of the magnetic structure nicely explains the
overwhelming majority of the above experiments. An
alternative source of the long-range effect originating from

the spin-orbit interaction has been recently discussed in
Refs. [17–20]. However, up to now there are no satisfactory
explanations of the experiments [6–8,13] where no traces
of a noncollinear magnetization were reported and the
strength of the spin-orbit effects can be a subject of debate.
Motivated by the above discrepancy between experiment

and theory we suggest to reexamine the standard Usadel-
type model and search for possible shortcomings of this
model, which can reveal themselves in the LS estimates.
One of the most important assumptions that form the basis
of the Usadel theory is that we operate with the ensemble-
averaged Green functions neglecting, thus, possible fluc-
tuations of the measurable quantities due to the random
distribution of impurities [21–23]. In the case of the dirty
ferromagnet this assumption is crucial to get the exponen-
tial decay of the anomalous Green function at the length ξF.
Indeed, the motion of quasiparticles in a ferromagnetic
metal occurs along random quasiclassical trajectories,
which experience sharp turns at the impurity positions
(see Fig. 1). The exchange field is responsible for the
relative phase γ gained between the electronic and hole
parts of the quasiparticle wave function along these
trajectories. Averaging the Green functions we average
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FIG. 1. Random quasiparticle trajectories in the S F S Joseph
son junction.
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in fact the exponential phase factor eiγ with the random
phase γ depending on the trajectory length, obtaining
naturally an exponentially decaying quantity ∝ e x=ξF,
where x is the distance from the S-F interface. This
destructive interference cannot play such a dramatic role
when we calculate root-mean-square (rms) values due to a
partial phase gain compensation in squared quantities.
Considering, e.g., the supercurrent I of the S-F-S
Josephson junction we can introduce the rms value of
the current as follows: δI ¼ hI2i − hIi2

p
. The compensa-

tion of the phase factor γ can occur only for correlated
random trajectories passing at a distance not exceeding the
Fermi wavelength λF ¼ 2π=kF. This restriction causes
the reduction of the δI value by a factor of N

p
, where

N is the number of transport channels in the junction.
Finally, we obtain δI=hIi ∼ ed=ξF= N

p
, where d is the

distance between the S electrodes. The number of channels
can be of course pretty large: N ∼ kFL for two-dimensional
and N ∼ ðkFLÞ2 for three-dimensional junctions with the
transverse dimension L. Nevertheless, the current fluctua-
tions can strongly exceed the average value at large
distances d well above the coherence length ξF. In this
sense these fluctuations are giant compared to the ones in
S-N-S junctions where the value δI ∼ eΔ0=ℏ for short
junctions with d ≪ ξS [24] is known to be determined by
the universal conductance fluctuations [25,26] or even
smaller for long junctions with d ≫ ξS [27]. Here, Δ0 is
the gap in the bulk superconductor and ξS is the super-
conducting coherence length. Experimentally, in each
particular sample we can expect to measure a random
critical current value, which should exhibit giant sample-to-
sample fluctuations. Thus, in a given experiment one can
easily obtain the critical current well above the limit
imposed by the Usadel theory, which can give us only
the average current value. The above arguments and
standard Landauer relation between the normal junction
resistance R and the N number make it possible to guess a
simple estimate for the fluctuating critical current:

δI ∼ Δ0= ℏR
p

: ð1Þ
Note that this inverse square root dependence differs
strongly from the standard relation Ic ∼ Δ0=ðeRÞ for the
S-N-S junction. Our further calculations nicely confirm the
above δI estimate and, thus, the observation of this unusual
relation between the supercurrent and normal junction
resistance could provide a verification of the long-range
proximity mechanism caused by mesoscopic fluctuations.
The ensemble averaging lying in the basis of the derivation
of the Usadel equations from the quasiclassical Eilenberger
theory overlooks the above fluctuation effects emerging at
mesoscopic scales. As we show below these fluctuation
effects reveal themselves even in the quasiclassical limit
λF → 0 when we can neglect the corrections found in
Refs. [22,23], which vanish in this limit corresponding to a
large junction conductance.

We proceed with a detailed consideration of the critical
current fluctuations in the S-F-S junction using an
approach based on the averaging over the random quasi-
particle trajectories passing in the field of point scatterers
(see Ref. [28] for a review). For each random trajectory
inside the F layer one can consider the 1D problem for
propagating electrons and holes experiencing Andreev
reflection at the point where the trajectory touches the left
or right S electrode. We start from the case d ≪ ξS
and assume the superconducting gap (exchange field) to
vanish inside (outside) the F layer. Thus, we neglect the so-
called inverse proximity effect, i.e., the mutual influence of
the order parameters at the interface. The current-phase
relation for the short junction limit can be defined only
from the spectra of the subgap Andreev states at the
trajectories ending at both the left and right S electrodes
ϵ ¼ �Δ0 cos ½ðφ� γÞ=2�, neglecting the contributions
from the states above the gap. Here, φ is the phase
difference between the S electrodes, and �γ is the spin-
dependent phase shift between the electronlike- and hole-
like parts of the total wave function along the quasiclassical
trajectory Γ12 (see Fig. 1). Each trajectory Γ can touch each
of the S electrodes only once; otherwise, part of the
trajectory Γ touching the same electrode two times can
be considered separately and the corresponding spectrum
does not depend on the phase difference φ (trajectories Γ11

and Γ22 in Fig. 1). Certainly, there exist trajectories of the
length exceeding ξS with the quasiparticle spectrum con-
sisting of several subgap branches but the probability to get
such trajectories vanishes for short junctions. According to
the procedure suggested in Ref. [17], the phase shift γ can
be determined from the equations that formally coincide
with the Eilenberger-type equations written for the singlet
and triplet parts of the anomalous quasiclassical Green
function f ¼ fsing þ ftσ̂ and zero Matsubara frequencies

−iℏVF∂sfsing þ 2hft ¼ 0;

−iℏVF∂sft þ 2fsingh ¼ 0: ð2Þ
Here, VF is the Fermi velocity, s is the trajectory coor-
dinate, and the function fsingðsRÞ ¼ cos γ taken at the right
S electrode determines the phase gain γ along the trajectory.
The boundary conditions at the left electrode read
fsingðsLÞ ¼ 1, ftðsLÞ ¼ 0. Let us emphasize here that
contrary to the standard consideration the Eilenberger-like
equations in our approach are written along a random
trajectory with many sharp turns and therefore they do not
contain the impurity terms.
Summing up over all trajectories Γ we find the current:

I ¼
X
Γ
½jðφþ γÞ þ jðφ − γÞ�ðnF;nLÞ: ð3Þ

Here, jðχÞ ¼ P
n≥1ðjn=2Þ sinðnχÞ is the trajectory contri-

bution at a zero exchange field,
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jn ¼
2eT
πℏ

X∞
m¼0

Z
2π

0

dχ
sin χ sinðnχÞ
μm þ cos χ

; ð4Þ

and μm ¼ 2π2T2ð2mþ 1Þ2=Δ2
0 þ 1. The vectors nL and nF

are the unit vectors normal to the left electrode surface and
parallel to the trajectory direction, respectively. The vector
nF parametrizes the trajectories outcoming from the left
electrode. The random phase γ depends on the whole path
between the electrodes and not just on the distance between
the starting and ending points of the trajectory. Taking for
simplicity the case of a homogeneous exchange field we
find γ ¼ 2hðsR − sLÞ=ℏVF ¼ Ωt, where t is the time of
flight of the electron along the trajectory and Ω ¼ 2h=ℏ.
To average the above current expression over the random

time of flight t we need to introduce the distribution
function describing the probability density wðr2; r1; tÞ to
get the trajectory starting at a certain point r1 at the left
electrode at the time t1 ¼ 0 and touching the right electrode
at an arbitrary point r2 at the time t2 ¼ t. In the diffusion
limit this probability density is almost independent on
the quasiparticle velocity direction at the electrodes and
satisfies the diffusion equation:

∂
∂t w ¼ D

∂2

∂r22 wþ δðr2 − r1ÞδðtÞ: ð5Þ

Here, we assume the elastic mean free path l to be less than
all the relevant length scales so that, in particular, l ≪ ξF.
The boundary condition should be defined from the fact
that the trajectory that touches the S electrodes should be
removed from the game. An obvious reason is that the
corresponding electron moving along the trajectory expe-
riences in this case the full Andreev reflection. Thus, at the
surfaces of both S electrodes we should put w ¼ 0.
Choosing r1;2 at the left and right electrodes, respectively,
we find the probability distribution PðtÞ for the first-
passage time between two electrodes:

PðtÞ ¼ −
Z
SR

D

�
nR

∂
∂rR

�
wðrR; rL; tÞdsR; ð6Þ

where the integral is taken over the surface of the right
electrode and nR is the unit vector normal to this surface.
The value PðtÞ gives the probability of the trajectory
starting at the point rL at t1 ¼ 0 to leave the junction in
the time interval from t to tþ dt. The average current can
be written as follows:

hIi ¼
X
n≥1

Njn sinnφhcos nγi; ð7Þ

where hcosnγi ¼ Re
R∞
0 e inΩtPðtÞdt ¼ RePðnΩÞ. We

assume here the surfaces of the S electrodes are flat and
obtain a one-dimensional problem along the coordinate x
perpendicular to these surfaces. Introducing the function
Wðx; tÞ satisfying the 1D diffusion equation DW00

xx −
inΩW ¼ 0 with the boundary conditions DWðx ¼ 0Þ ¼ l

andWðx¼ dÞ¼ 0 one can findPðnΩÞ ¼ DW0
xðx ¼ d; nΩÞ.

Substituting the solution of the above diffusion equation
into the current we obtain

hIi ¼ Re
X
n≥1

Njn sin nφ
l in
p

ξF

1

sinh ½ in
p

d=ξF�
: ð8Þ

One can see that this expression reproduces the result of the
Usadel theory only for the first harmonic I1 ∝ sinφ in the
current-phase relation [5]. The length Ln of the exponential
decay of higher harmonics In ∝ sin nφ appears to exceed the
appropriate length in the Usadel-type calculation: we obtain
here Ln ¼ ξF= n

p
instead of Ln ¼ ξF=n. This result indi-

cates an obvious increase of the range of superconducting
correlations due to mesoscopic fluctuations and originates
from the incorrect calculation of the ensemble averages of the
product of the anomalousGreen functions in the ferromagnet
within the Usadel theory. This failure of the Usadel-type
consideration is caused by the appearance of the random
interference phase γ and occurs only in the nonlinear
regime of rather strong superconducting correlations.
Indeed, considering, e.g., the value hcos 2γi in the above
derivation we calculate the average hjfsingj2 − jftj2i,
which definitely differs from the product of averages
hfsingihf�singi − hftihf�t i. The mesoscopic fluctuations affect
the validity of the nonlinear Usadel equations also for
S-N-S junctions [29], providing an exponentially small
contribution to the density of states (DOS) below theminigap.
Note that the above approach describes the fluctuation
contributions that do not vanish in the limit λF → 0 and
can, thus, exceed the subminigap DOS corrections found
previously in Ref. [22] on the basis of the nonlinear sigma
model. Our contributions are caused by the quantum inter-
ference effects associated with a much larger wavelength of
the quasiparticle wave function envelope: ℏVF=E or ℏVF=h
for S-N-S and S-F-S systems, respectively.

To find the rms value of the supercurrent we evaluate
now the expression

hI2i ¼
X

Γ; ~Γ;n;m

jnjmAnmðnF;nLÞð ~nF; ~nLÞ sin nφ sin mφ;

ð9Þ
where Anm ¼ hcos nΩt cos mΩ~ti. The calculation of the
above double sum can be done similarly to the calculation
of the conductance R 1 ¼ Gðd;lÞ in a dirty wire above Tc.
Assuming the normal layer thickness to be rather large
(d ≫ ξF) and omitting the averages of the fast oscillating
phase factors (which should give the short-range terms
decaying at the length ξF) we get

hI2i≃ ½Gð ~d; ~lÞ=4G0�
X
n≥1

j2n sin2 nφ; ð10Þ

where G0 ¼ e2=πℏ, ~d ¼ Ωd=kFVF, and ~l ¼ Ωl=kFVF.
Taking the Drude-type conductance G=G0 ¼ Nl=d for a
disordered wire of the length d we find the estimate
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hI2i − hIi2
q

∼
Nl
d

r X
n≥1

j2nsin2 nφ
r

: ð11Þ

The deviations from the Drude result arise naturally from
the so-called interference or localization corrections to the
conductance [28]. Perturbatively, they can be estimated as
terms arising from the paths with self-crossings in the
above double sum over the trajectories. According to the
Thouless criterion [34], the localization effects in a dis-
ordered wire are small provided the effective numberNl=d
of conducting modes is large. Thus, one can expect our
Drude-type estimate to hold in the case Nl=d ≫ 1. In the
opposite limit. the wire conductance in Eq. (10) and, thus,
the rms value of the critical current decay exponentially at
the length Nl.
Comparing the rms value with the average current taken

in the same limit d ≫ ξF we find

δI=hIi ∼ ξ2F
Nld

r
exp

�
d

ξF 2
p

�
: ð12Þ

This expression for the current fluctuations definitely
cannot be obtained within the averaged Usadel theory
and results from the partial cancelation of the interference
contributions in the product of the anomalous Green
functions. Note that turning to the limit d ≪ ξF, i.e., to
the case of the S-N-S junction, our consideration should
give a vanishing δI value since we disregarded the quantum
interference of random semiclassical trajectories respon-
sible for standard mesoscopic fluctuations [24]. Despite the
small factor N 1=2 in Eq. (12) the current fluctuations for
d ≫ ξF appear to be giant compared to the current average
value, which decays exponentially at the small distance ξF.
The rms value can well exceed the Josephson current
quantum eΔ=ℏ in S-N-S junctions [24]. It is also important
to note that contrary to the average current the fluctuating
contributions to higher harmonics of the current-phase
relation are not suppressed exponentially compared to
the first harmonic. This strong anharmonicity probably
relates to the experimental data on the large second
harmonics in S-F-S junctions [35,36]. Certainly, in realistic
junctions the above assumption of the full Andreev
reflection at the S-F boundaries can be broken due to
the effect of the interface potential barriers, which certainly
suppress the higher current harmonics. Still the main effect,
namely, the partial compensation of the phases γ in the rms
values should exist even in the presence of the barriers.
One can easily see that the above long-range behavior

of the critical current fluctuations holds also beyond the
short junction approximation (i.e., for d > ξS) at least
for the first harmonic I1ðφÞ. Indeed, the critical current
in this limit is determined by the singlet component of
the anomalous Green function

P
ΓfsingΓ ¼ P

Γ cos γΓ. The

average current, therefore, decays exponentially as hIi ∝
ðlN=ξFÞe d=ξF 2

p
while the rms average becomes long

ranged because of the partial phase compensation
at close trajectories: hðδIÞ2i ∝ hf2singi ∝ Nl=d. Thus, the
above calculations confirm the estimate (1) both for short
and long junctions. Certainly, a further increase in the
distance d will give us the exponential decay of the
supercurrent but at the distances ≳ξN .
The mesoscopic fluctuations considered in our work

should be most easily observed in ferromagnetic wires
because their relative contribution decays with the increase
of the N number. Let us perform the quantitative compari-
son of our theory with the experimental data of Ref. [13],
which has reported on the observation of the critical current
Ic ∼ 10 μA for a Co nanowire with length d ¼ 0.6 μm
and diameter 2r ¼ 40 nm at the temperature T ¼ 1.8 K.
This temperature is much smaller than the critical temper-
ature of W electrodes Tc ∼ 5 K so we may use the low
temperature limit for jn and Eq. (10) transforms into the
estimate δI ∼ Δ0=2 πℏR

p
. We take the resistivity ρ ¼

10 μΩ cm obtained in Ref. [13] for a Co nanowire with
the same diameter and the length d ¼ 1.5 μm and find
R ∼ 4 Ω. Taking the gap Δ0 ∼ 1.74Tc ∼ 8 K we finally get
the value δI ∼ 1 μA, which is only an order of magnitude
less that the critical current observed in Ref. [13]. The
remaining discrepancy is probably caused by the overesti-
mating of the wire resistance R due to the presence of
contact resistances due to the interdiffusion of W at the
distance ∼200 nm. It is also useful to compare the
fluctuation contribution with the possible effect of spin-
triplet correlations, which can still appear, e.g., due to some
noncollinearity of the magnetic moments at the interfaces.
Introducing such thin noncollinear domains of thickness
di ≪ ξF at the left and right ends of the ferromagnetic wire
one obtains the long-range current contribution in
the form [37] Itr ∼ ðdi=ξFÞ4Δ0=eR. One can see that for
the wires with rather large resistances R > G 1

0 ðdi=ξFÞ4 the
fluctuation contribution dominates.
We now briefly comment on the effect of mesoscopic

fluctuations on the local DOS (LDOS) at the Fermi level. In
the ballistic system for straight linear trajectories one can
easily obtain an Eilenberger-type expression for this quantity
as a sum of contributions from different quasiclassical paths.
This expression can be simplified applying the normalization
condition for quasiclassical Green functions and taking the
perturbation expansion in powers of the f function (see, e.g.,
Ref. [38] for convenient notations). Generalizing this expres-
sion for the trajectories experiencing many sharp turns one
can get δν=νF ∝ −N 1

P
Γðjfsingj2 − jftj2Þ, where νF is the

normal-metal LDOS. The ensemble average of this value
certainly decays exponentially, hδν=νFi ∝ −hcos 2γi ∝
−ðl=ξFÞe d=ξF cosðd=ξF þ π=4Þ, with the increase in the
distance d from the S electrode. The fluctuating LDOS
contains a long-range contribution similar to the one calcu-
lated above for the critical current: hðδν=νFÞ2i

p
∝ l=dN
p

.
This nonexponential behavior of the fluctuating
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superconducting contribution to the LDOS could be mea-
sured by a local conductance probe at different points of a
ferromagnetic nanowire placed in contact to a superconduc-
tor providing, thus, a possible explanation of the long-range
proximity effect observed in Refs. [6–8].
The direct observation of the giant sample-to-sample

fluctuations assumes the measurements of the critical
current or LDOS on different junctions. It would be much
more convenient to find the way to change the interference
phases γ in a given sample and measure the junction
“fingerprints ” in analogy to the observation of universal
conductance fluctuations versus an applied magnetic field
[39]. Indeed, such a type of experiment in the S-F-S
junctions may become possible provided we apply a
magnetic field that can affect the domain structure in the
F layer without producing noncollinear magnetic regions to
avoid the admixture of the long-range triplet correlations.
To sum up, we suggest a theoretical model describing the

mesoscopic fluctuations in S-F and S-N systems. This
model allows us to obtain a huge fluctuation contribution in
the supercurrent in S-F-S junctions and the LDOS, which
survives the destructive effect of the exchange field and
could, thus, provide an explanation of the experimental data
on the long-range proximity phenomena in ferromagnetic
wires even in the absence of the exchange field inhomo-
geneity. The resulting fluctuating supercurrent is a sign-
changing quantity and, thus, the ensemble fluctuations
cause the appearance of both zero and π junctions. Our
analysis reveals also that fluctuations can be responsible for
anomalously large values of the second and higher har-
monics in the current-phase relation.

This work was supported by the French ANR
SUPERTRONICS, NanoSC COST Action MP1201, and
the Russian Science Foundation under Grant No. 15-12-
10020 (A. S. M.).

[1] J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
[2] M. Eschrig, Phys. Today 64, No. 1, 43 (2011).
[3] M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).
[4] A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld,

S. Poletto, V. V. Ryazanov, A. N. Rossolenko, M. Khabipov,
D. Balashov, A. B. Zorin, P. N. Dmitriev, V. P. Koshelets, and
A. V. Ustinov, Nat. Phys. 6, 593 (2010).

[5] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[6] M. Giroud, H. Courtois, K. Hasselbach, D. Mailly, and

B. Pannetier, Phys. Rev. B 58, R11872 (1998).
[7] V. T. Petrashov, V. N. Antonov, S. V. Maksimov, and R. S.

Shaikhaidarov, Pis’ma Zh. Eksp. Teor. Fiz. 59, 523 (1994)
[JETP Lett. 59, 551 (1994)].

[8] P. Nugent, I. Sosnin, and V. T. Petrashov, J. Phys. Condens.
Matter 16, L509 (2004).

[9] I. Sosnin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys.
Rev. Lett. 96, 157002 (2006).

[10] R. S.Keizer, S. T. B.Goennenwein, T. M.Klapwijk,G.Miao,
G. Xiao, and A. Gupta, Nature (London) 439, 825 (2006).

[11] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science
329, 59 (2010).

[12] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, Jr., and N. O.
Birge, Phys. Rev. Lett. 104, 137002 (2010).

[13] J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K.
Jain, N. Samarth, T. E. Mallouk, and M. H.W. Chan, Nat.
Phys. 6, 389 (2010).

[14] M. Kompaniiets, O. V. Dobrovolskiy, C. Neetzel, F. Porrati,
J. Brotz, W. Ensinger, and M. Huth, Appl. Phys. Lett. 104,
052603 (2014).

[15] M. Kompaniiets, O. V. Dobrovolskiy, C. Neetzel, W.
Ensinger, and M. Huth, J. Supercond. Novel Magn. 28,
431 (2015).

[16] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod.
Phys. 77, 1321 (2005).

[17] A. S. Mel’nikov, A. V. Samokhvalov, S. M. Kuznetsova, and
A. I. Buzdin, Phys. Rev. Lett. 109, 237006 (2012).

[18] F. S. Bergeret and I. V. Tokatly, Phys. Rev. Lett. 110,
117003 (2013).

[19] F. S. Bergeret and I. V. Tokatly, Phys. Rev. B 89, 134517
(2014).

[20] S. H. Jacobsen and J. Linder, Phys. Rev. B 92, 024501
(2015).

[21] A. Altland, B. D. Simons, and D. Taras Semchuk, Adv.
Phys. 49, 321 (2000).

[22] P. M. Ostrovsky, M. A. Skvortsov, and M. V. Feigelman,
Phys. Rev. Lett. 87, 027002 (2001).

[23] A. Yu. Zyuzin, B. Spivak, and M. Hruska, Europhys. Lett.
62, 97 (2003).

[24] C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
[25] B. L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985)

[JETP Lett. 41, 648 (1985)].
[26] P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
[27] B. L. Al’tshuler and B. Z. Spivak, Zh. Eksp. Teor. Fiz. 92,

609 (1987) [Sov. Phys. JETP 65, 343 (1987)].
[28] S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).
[29] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.117.077001, which in
cludes Refs. [30 33], for calculation of DOS in the SNS
junction.

[30] A. A. Golubov and M. Yu. Kupriyanov, Zh. Eksp. Teor. Fiz.,
96, 1420 (1989).

[31] W. Belzig, C. Bruder, and G. Schon, Phys. Rev. B 54, 9443
(1996).

[32] F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low
Temp. Phys. 110, 841 (1998).

[33] S. Pilgram, W. Belzig, and C. Bruder, Phys. Rev. B 62,
12462 (2000).

[34] D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
[35] V. A. Oboznov, V. V. Bolginov, A. K. Feofanov, V. V.

Ryazanov, and A. I. Buzdin, Phys. Rev. Lett. 96, 197003
(2006).

[36] J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G.
Blamire, Phys. Rev. B 76, 094522 (2007).

[37] M. Houzet and A. I. Buzdin, Phys. Rev. B 76, 060504
(2007).

[38] T. Champel andM. Eschrig, Phys. Rev. B 72, 054523 (2005).
[39] E. Akkermans and G. Montambaux, Mesoscopic Physics

of Electrons and Phonons (Cambridge University Press,
New York, 2007).

 5




