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2Linné Flow Centre, Department of Mechanics, Royal Institute of Technology (KTH),
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First, we review analytical and observational studies on third-order structure functions
including velocity and buoyancy increments in rotating and stratified turbulence and
discuss how these functions can be used in order to estimate the flux of energy
through different scales in a turbulent cascade. In particular, we suggest that the
negative third-order velocity–temperature–temperature structure function that was
measured by Lindborg & Cho (Phys. Rev. Lett., vol. 85, 2000, p. 5663) using
stratospheric aircraft data may be used in order to estimate the downscale flux
of available potential energy (APE) through the mesoscales. Then, we calculate
third-order structure functions from idealized simulations of forced stratified and
rotating turbulence and compare with mesoscale results from the lower stratosphere.
In the range of scales with a downscale energy cascade of kinetic energy (KE)
and APE we find that the third-order structure functions display a negative linear
dependence on separation distance r, in agreement with observation and supporting
the interpretation of the stratospheric data as evidence of a downscale energy cascade.
The spectral flux of APE can be estimated from the relevant third-order structure
function. However, while the sign of the spectral flux of KE is correctly predicted by
using the longitudinal third-order structure functions, its magnitude is overestimated
by a factor of two. We also evaluate the third-order velocity structure functions that
are not parity invariant and therefore display a cyclonic–anticyclonic asymmetry. In
agreement with the results from the stratosphere, we find that these functions have
an approximate r2-dependence, with strong dominance of cyclonic motions.

Key words: atmospheric flows, turbulent flows, turbulence theory

1. Introduction
Statistical analysis of atmospheric measurements show that horizontal spectra of

both wind and temperature in the upper troposphere and lower stratosphere follow
a k−5/3 power law over more than two decades, at wavenumbers corresponding to

† Email address for correspondence: deusebio@mech.kth.se
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wavelengths between 2 and 500 km (Nastrom & Gage 1985). Such a power law
is a strong indication that there is an energy cascade, that is a systematic transfer
of energy between different scales by nonlinear interactions. Either there is positive
spectral kinetic energy (KE) flux, ΠK , which means that energy flows from small
to large wavenumbers, as in the downscale energy cascade of three-dimensional
isotropic turbulence (Kolmogorov 1941b), or there is a negative spectral energy flux,
which means that energy flows in the opposite direction, as in the upscale energy
cascade of two-dimensional turbulence (Kraichnan 1967) or quasi-geostrophic (QG)
turbulence (Charney 1971). A measurement of the energy spectrum is not sufficient
to discriminate between these two types of cascades since they both exhibit an
energy spectrum of the form E(k) ∼ |ΠK|2/3k−5/3. Dewan (1979) hypothesized that
the dynamics producing the mesoscale k−5/3 power law in the upper troposphere
and lower stratosphere is a downscale energy cascade of interacting gravity waves,
while Lilly (1983) hypothesized that the dynamics is an upscale energy cascade of
layerwise two-dimensional turbulence. Lindborg (1999) suggested that measurements
of third-order velocity structure functions could give an answer to the question
regarding the direction of the energy cascade. To obtain such an answer one should
use a relation which is of similar form to the so-called ‘four-fifths law’ of isotropic
three-dimensional turbulence (Kolmogorov 1941a)

〈δvLδvLδvL〉 =− 4
5ΠKr, (1.1)

where 〈 · 〉 denotes averaging and δvL(r) = v′L − vL is the difference between the
longitudinal velocity component at two points separated by a vector r, where
the longitudinal component is the projection onto the unit vector n = r/r. The
mean energy dissipation per unit mass, ε, may be substituted for ΠK in (1.1), since
they are equal when the cascade is downscale.

The four-fifths law is the three-dimensional incompressible and isotropic solution to
a more general flux relation which can be written as

∇ · JK =−4ΠK, (1.2)

where JK = 〈δvδv · δv〉. The two-dimensional isotropic solution to this relation can be
written as (Lindborg 1999)

〈δvLδvLδvL〉 + 〈δvLδvTδvT〉 =−2ΠKr, (1.3)

where δvT is the transverse velocity increment, that is an increment of a velocity
component which is perpendicular to n. By incompressibility one can also derive the
relation

〈δvLδvLδvL〉 =− 3
2ΠKr, (1.4)

for two-dimensional turbulence. Comparing the three-dimensional relation (1.1) with
the two-dimensional relations (1.3) and (1.4) we see that they have the same form.
The third-order structure function is proportional to the spectral energy flux and is
linear in the separation distance. However, there is a very important difference. In
three-dimensional turbulence the spectral energy flux is positive while it is negative
in two-dimensional turbulence. Therefore, an upscale energy cascade in the mesoscales
would mean that the third-order structure function should display a positive linear
dependence on r. On the other hand, a negative linear dependence on r would be
an indication of a downscale energy cascade. Cho & Lindborg (2001) measured the
third-order structure function in the lower stratosphere, with r lying in the horizontal
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FIGURE 1. Sum of the diagonal third-order structure functions. Straight lines indicate
the power laws −r and r3. Circles and crosses indicate negative and positive values,
respectively. (Reproduced from Cho & Lindborg 2001.)

plane (constant-pressure surfaces), using a huge amount of aircraft data. In figure 1 we
show the function 〈δvLδvLδvL〉 + 〈δvLδvTδvT〉 plotted versus separation distance r. In
the interval 10 km< r< 150 km the third-order structure function exhibits a negative
linear range. At r ≈ 400 km there is a switch of sign and the third-order structure
function is clearly positive at scales of the order of 1000 km. Cho & Lindborg
(2001) interpreted the negative linear dependence on r as a sign of a downscale
energy cascade and used the two-dimensional isotropic relation (1.3) to estimate the
positive KE flux as ΠK ≈ 6 × 10−5 m2 s−3. It can be questioned if it is correct to
use the two-dimensional relation to estimate ΠK , since a strictly two-dimensional
dynamics would, rather, give a negative ΠK .

Another complication is that in general there can be a double cascade of available
potential energy (APE, Lorenz 1955) and KE. In a linearly-stratified flow, there are
in fact two flux relations (Augier, Galtier & Billant 2012)

∇ · JK = −4ΠK + 2〈δbδw〉, (1.5)
∇ · JP = −4ΠP − 2〈δbδw〉. (1.6)

Here, b = θ ′g/θ0 is the buoyancy, θ ′ and θ0 are the fluctuating and mean potential
temperature respectively, g is the acceleration due to gravity, w is the vertical velocity,
ΠP is the spectral flux of APE and JP = 〈δvδbδb〉/N2, where N is the Brunt–Väisälä
frequency. The last term in (1.5), which appears with opposite sign in (1.6), represents
energy exchange between KE and APE. In a range of scales where there is a self-
similar energy cascade of universal character the ratio between KE and APE should
be scale independent and this term should therefore be negligible. Neglecting this term
and introducing the assumption of axisymmetry the relations (1.5) and (1.6) can be
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FIGURE 2. Plot of 〈δuTδTδT〉/(2r) versus r. Solid line: best linear fit, 20 km < r
< 400 km. Circles and crosses indicate negative and positive values, respectively.
(Reproduced from Lindborg & Cho 2000.)

written as

1
rh

∂

∂rh
(rh〈δuLδv · δv〉)+ ∂

∂rz
〈δwδv · δv〉 =−4ΠK, (1.7)

1
rh

∂

∂rh
(rh〈δuLδbδb〉/N2)+ ∂

∂rz
〈δwδbδb〉/N2 =−4ΠP, (1.8)

where rh is the radial coordinate, that is the projection of r on the horizontal plane,
rz is the axial coordinate and the velocity is decomposed as v = u + we, with
u= uLn+ uT t the horizontal velocity. Here, t and e are the azimuthal and axial unit
vectors, respectively. Taking r to be in the horizontal plane and assuming that all
terms including the vertical velocity can be neglected these relations can be integrated
to give

〈δuLδuLδuL〉 + 〈δuLδuTδuT〉 =−2ΠKr, (1.9)
〈δuLδbδb〉/N2 =−2ΠPr, (1.10)

where we have changed the name of the radial coordinate from rh to r, which is
natural when r lies in the horizontal plane. The relation (1.9) is identical to the two-
dimensional relation (1.3) which was used by Cho & Lindborg (2001).

Lindborg & Cho (2000) also calculated the third-order velocity–temperature–
temperature structure function, 〈δuLδTδT〉. In figure 2 we show this function divided
by 2r, plotted versus separation distance. In the interval 20 km < r < 400 km there
is a range where 〈δuLδTδT〉/(2r) is negative and constant. In fact, this result is
much cleaner than the corresponding result for the velocity structure function seen
in figure 1, and the range with a negative linear dependence is much wider. We will
now interpret this result in the light of relation (1.10), an interpretation that was not
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given by Lindborg & Cho (2000). The aircraft data are taken at constant-pressure
surfaces. Therefore, changes in the potential temperature θ are only due to changes
in absolute temperature T . On a such surface we therefore have

〈δuLδbδb〉 = 〈δuLδTδT〉g2

T2
0

, (1.11)

where T0 is the mean temperature. Using relations (1.10) and (1.11), the typical lower
stratospheric values N2 = 4× 104 s−2 and T0 = 220 K (Charney & Drazin 1961), and
the constant value 3.9× 10−6 K2 s−1 from figure 2, we can estimate the spectral flux
of APE as

ΠP ≈ 2× 10−5 m2 s−3. (1.12)

With the estimated value of ΠK we would have ΠK/ΠP ≈ 3.
The interpretation of the negative linear range of the third-order structure functions

from the lower stratosphere, seen in figures 1 and 2, as evidence of a downscale
energy cascade has gained considerable support from theoretical and numerical
advances in strongly stably stratified dynamics, although recent experiments on
electromagnetically forced turbulence in rotating thick layers have also revived
the hypothesis of an upscale energy transfer (Xia et al. 2011). Both scaling analysis
(Billant & Chomaz 2001; Lindborg 2006; Brethouwer et al. 2007), idealized numerical
simulations (Laval, McWilliams & Dubrulle 2003; Riley & deBruynKops 2003; Waite
& Bartello 2004; Lindborg 2006; Brethouwer et al. 2007) and experiments (Augier,
Billant & Chomaz 2013; Augier et al. 2014) show that there exists a strongly
stratified turbulent regime at horizontal scales which are considerably larger than the
Ozmidov length scale, l0 = ε1/2/N3/2. The conditions for such a regime to exist are
that the horizontal Froude number Fh=U/(LN), where U is a characteristic horizontal
velocity and L a characteristic horizontal length scale, is small and that the buoyancy
Reynolds number Re = ε/(νN2), where ν is the kinematic viscosity, is large. Due
to the strong intermittency of stratified turbulence, there is a strong variation of the
Ozmidov length scale in the lower stratosphere. A typical value can be estimated to
be around 10 m (Lindborg 2006). Classical isotropic turbulence, where horizontal and
vertical velocity fluctuations are of the same order of magnitude, can be observed at
scales below the Ozmidov length scale. At larger scales, vertical velocity fluctuations
are strongly damped by buoyancy forces.

Yet, in this regime there exists a turbulent energy cascade which is not strictly two-
dimensional, as initially suggested by Lilly (1983), since the nonlinear advection terms
in the momentum equation including the vertical velocity are of the same order of
magnitude as the corresponding horizontal advection terms, that is

|w∂zu| ∼ |u∂xu|, (1.13)

where x is a horizontal coordinate and u the corresponding horizontal velocity
component. The reason why this can be true is that the vertical length scale of
the turbulent motions decreases with increased degree of stratification, so that |∂zu|
increases at the same rate as |w| decreases when the stratification becomes strong. In
this regime, there is a downscale energy cascade of KE, which is totally dominated
by the horizontal velocity component, as well as APE. The estimate ΠK/ΠP ≈ 3
which we have made on the basis of (1.9), (1.10) and the stratospheric data presented
in figures 1 and 2 is consistent with results from numerical simulations of stratified
turbulence (Lindborg 2006). It has also been demonstrated that the strongly stratified
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turbulence regime can be obtained in the presence of system rotation (Lindborg 2005;
Waite & Bartello 2006), provided that the rotation is not too strong.

Recently, Vallgren, Deusebio & Lindborg (2011) and Deusebio, Vallgren &
Lindborg (2013) carried out numerical simulations of strongly stratified turbulence
at strong system rotation, that is at small Rossby number Ro = U/f L, where f is
the Coriolis parameter. They showed that even for very small Ro a substantial part
of the injected energy cascades towards small scales. The amount of energy going
downscale increases with Ro, i.e. as the rotation rate decreases. This leakage of
energy from the large-scale QG flow leads at smaller scales to a strongly stratified
turbulent regime with a downscale cascade of KE and APE, displaying k−5/3 energy
spectra. At large scales, however, there is a QG regime displaying a k−3 energy
spectrum. The superposition of the k−5/3 energy spectrum of stratified turbulence with
the k−3 spectrum of QG turbulence gives a compound spectrum which is similar to
that measured by Nastrom & Gage (1985) in the atmosphere.

An issue which is still debated is what role gravity waves have in the downscale
energy cascade, producing the Nastrom–Gage spectrum. As stated previously, it
was hypothesized by Dewan (1979) that the downscale cascade is a process in
which gravity waves are successively transferring their energy to modes with shorter
wavelengths, by nonlinear interaction. Bartello (1995) argued that the most important
triad interaction transferring energy downscale is the type where two wave modes
interact with a vortical mode, with the last one acting as catalyst. This picture has
recently been advanced by Waite & Snyder (2009) and Waite & Snyder (2013) who
carried out simulations of an idealized baroclinic wave cycle, showing the spontaneous
development of gravity waves which caused the shallowing of the spectrum. On the
other hand, it has also been argued that waves play a minor role in the downscale
energy cascade. Lindborg (2007) used structure functions calculated from aircraft
data to make a rotational–divergent decomposition of the energy spectrum and found
that rotational energy is somewhat larger than divergent energy, from which it can be
argued that gravity waves cannot be the only source of energy in the k−5/3-spectrum.
Moreover, Deusebio et al. (2013) found some evidence suggesting that resonant
wave interactions cannot explain the downscale cascade of energy of their turbulent
simulations in systems close to geostrophy. In this study, however, we will not
investigate this issue further.

In this study we calculate third-order structure functions from simulations of forced
stratified rotating turbulence and compare the results from the simulations with the
stratospheric data and the different analytical relations which we have reviewed in
this introduction. In particular, we will focus on whether it is correct to make the
approximation that are needed in order to derive (1.9) and (1.10). In addition to this,
we will also investigate if our simulations are in agreement with another interesting
observation made by Cho & Lindborg (2001) regarding the third-order horizontal
velocity structure functions that are not parity invariant, that are the functions
〈δuTδuTδuT〉 and 〈δuTδuLδuL〉, where δuT is the azimuthal velocity increment in
the cyclonic direction. In the absence of system rotation parity invariance should hold
and in this case these functions must be zero. In the presence of system rotation
parity invariance is broken and there may be a cyclonic–anticyclonic asymmetry. Cho
& Lindborg (2001) and Lindborg & Cho (2001) found that both these functions
are positive in the lower stratosphere and display a clean r2-dependence in the
interval 10 km< r< 1000 km. That these functions are positive means that cyclonic
motions are dominant. However, no theoretical explanation can yet be offered for the
r2-dependence.
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The paper is organized as follows. In § 2, we briefly present the simulations. In § 3,
we present the results for the third-order structure functions. Second-order statistics,
such as energy spectra, have already been presented in Deusebio et al. (2013). In this
paper, we therefore focus on the third-order structure functions. In § 4, we end the
paper with conclusions.

2. Simulations

The simulations are standard box simulations of the Boussinesq equations, using
triply periodic boundary conditions and white noise (in time) forcing in a limited
wavenumber band (Deusebio et al. 2013). The equations are formulated and solved
for the three variables, q, a1 and a2, where

q=−∂u
∂y
+ ∂v
∂x
+ f

N2

∂b
∂z
, (2.1)

is the Charney potential vorticity (Charney 1971), and

a1 =− f
N
∂v

∂z
+ 1

N
∂b
∂x
, (2.2a)

a2 = f
N
∂u
∂z
+ 1

N
∂b
∂y

(2.2b)

are two ‘ageostrophic components’ that measure the departure from thermal wind
balance (Vallis 2006). The formulation using q, a1 and a2 is similar to the normal
modes decomposition (see e.g. Bartello 1995; Embid & Majda 1998; Smith & Waleffe
2002). Here u, v and w are the velocity components in the x, y and z directions,
respectively, where x, y are the horizontal coordinates, z the vertical coordinate
and b is the buoyancy. For the explicit form of the equations that are solved, the
reader is referred to Deusebio et al. (2013). The equations contain two dimensionless
parameters, the Froude number and the Rossby number, which are defined as

Fr= U
NL
, Ro= U

f L
, (2.3a,b)

where U is a characteristic horizontal velocity, N the Brunt–Väisalä frequency, f the
Coriolis parameter and L a characteristic horizontal length scale.

The system of equations is discretized in a triply periodic domain (Lx, Ly, Lz) =
(2π, 2π, 2π), using QG scaling (Charney 1971), which means that the vertical
coordinate has been stretched by a factor of N/f . The periodicity in all the three
directions allows a Fourier representation along x, y and z; Nx=Ny=Nz= 1024 modes
were used in each direction. Pseudo-spectral methods are employed and the equations
are advanced in time in spectral space. The nonlinear terms are evaluated in physical
space and are discretized in time using a low-storage fourth-order Runge–Kutta
scheme. In order to prevent aliasing errors, the 2/3-dealiasing rule was applied to the
nonlinear terms. Linear terms are instead separately solved using an exact implicit
procedure (Canuto et al. 1988).

Two different forcing schemes are adopted. In the first, which we call Q-forcing, the
forcing is restricted to the q-equation. This is the same scheme as used in Vallgren
et al. (2011) and Deusebio et al. (2013). In the second scheme, which we call mixed
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Run Ro kf ε/P

Q2 0.2 4 0.27
Q1 0.1 4 0.08
Q05 0.05 4 5.9× 10−3

Q1-SS 0.1 54 0.08

M2 0.2 4 0.88
M1 0.1 4 0.78
M05 0.05 4 0.69

TABLE 1. Summary of the simulations. The last column shows the ratio between
small-scale dissipation, ε, and energy injection, P, in the quasi-stationary state.

forcing or M-forcing, the forcing is applied to all three equations, with about two-
thirds of the energy injection into the ageostrophic modes, a1 and a2. This scheme is
similar to that used in a number of studies in stratified turbulence (Brethouwer et al.
2007; Lindborg & Brethouwer 2007). In both cases energy is injected in a limited
wavenumber band in the vertically stretched wavenumber space, k ∈ [kf −1k/2, kf +
1k/2], where 1k= 2. The characteristic length scale of the forcing is therefore Lf =
2π/kf . As summarized in table 1 we have carried out three simulations at different Ro
with large-scale (kf = 4) Q-forcing, three simulations at different Ro with large-scale
M-forcing and one simulation with Q-forcing at an intermediate wavenumber (kf = 54).
In all simulations the Froude number is equal to 0.01.

Energy is transferred both upscale and downscale, as compared to the forcing
scale, with the ratio of energy cascading upscale and downscale mainly controlled by
Ro (Deusebio et al. 2013). It is worth noting that the ratio between the amount of
energy cascading downscale and upscale is not a universal function and considerable
differences are found between the Q- and the M-runs. Nevertheless, the same trend
is observed, i.e. the ratio decreases with decreasing Ro. That M-runs have larger
small-scale dissipation is also consistent with the analysis of Bartello (1995) and the
fact that ageostrophic energy (directly forced in the M-runs), by not being constrained
by potential vorticity conservation, cascades directly to small scales. A large-scale
linear drag as well as hyperviscosity (using a Laplacian to the power of four in a
stretched grid) are introduced in the flow in order to allow for energy dissipation
at large and small scales, respectively. After an initial transient, an approximate
statistically stationary state develops from which statistics are collected.

3. Results

In figure 3 we plot the total spectral energy flux for the two runs Q2 and Q1. The
curves are normalized with the total energy injection rate P. Part of the energy which
is injected is going into an upscale energy cascade, which is seen as a negative flux at
smaller wavenumbers than the forcing wavenumber. The remaining part is going into a
downscale energy cascade which is seen as a positive flux at larger wavenumbers than
the forcing wavenumber. As shown by Vallgren et al. (2011), the fraction of energy
which is going downscale increases with Ro which is also illustrated in figure 1. The
total spectral flux can be divided into the flux of KE, ΠK , and the flux of APE, ΠP.
There is a range where the fluxes are almost constant. We determine the spectral
fluxes, ΠK and ΠP, by taking an average over k ∈ [15, 50].
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FIGURE 3. (Colour online) Total energy flux normalized with the total energy input P for
——, Q1 (Ro= 0.1) and – · –, Q2 (Ro= 0.2). The forcing scale is at kf = 4.

In figure 4 we plot the function

− 〈δuLδu · δu〉
2ΠK r

=−〈δuLδuLδuL〉 + 〈δuLδuTδuT〉
2ΠK r

(3.1)

for the six simulations with large-scale forcing. This function should be positive and
equal to unity in a range where ΠK is positive and where the relation (1.9) is satisfied.
Indeed, all curves are positive in the relevant range of separation distances. If we used
the curves in order to determine the sign of ΠK we would therefore obtain the correct
answer in all the cases. However, the curves generally overshoot unity. In all cases we
would overestimate the magnitude of ΠK by a factor of approximately 2 if we used
relation (1.9) in a similar way as done by Cho & Lindborg (2001) for the third-order
structure functions seen in figure 1.

In figure 5 we plot the function

− 〈δuLδbδb〉
2N2ΠP r

(3.2)

for the same runs as in figure 4. For all curves there is a range where this function
is reasonably close to unity, in agreement with the relation (1.10). For the simulation
with Q-forcing at the lowest Rossby number, Ro = 0.05, this range is very narrow.
However, at small separation distances the curve from this simulation collapses
fairly well on the other curves. Thus, the results from the simulations support the
interpretation of figure 2 as giving evidence of a positive or downscale energy flux
of APE through the mesoscales, whose magnitude can be estimated by using the
relation (1.10).

In figure 6 we plot ∇ · JK and ∇ · JP from run Q1. We also show the separate
contributions from the horizontal divergence and the vertical divergence corresponding
to the terms on the left-hand sides of (1.7) and (1.8). In addition, we show the energy
exchange term 2〈δwδb〉 which appear with different signs on the right-hand sides of
(1.5) and (1.6). In figure 6(a) we plot the terms from the KE flux relation normalized
by ΠK and in figure 6(b) we plot the terms in the potential energy flux relation
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FIGURE 5. Plot of −〈δuLδbδb〉/2N2ΠPr for the different runs. Lines as in figure 4.

normalized by ΠP. The energy exchange term is small at small separations and in
both figures there is a narrow range where the total normalized flux is equal to −4,
confirming the theoretical relations (1.7) and (1.8). For the KE flux, the contribution
from the vertical part of the divergence is half that from the horizontal divergence,
but with opposite sign. This is the reason why the curves in figure 4 overshoot
unity. On the other hand, for the APE flux, the contribution from the vertical part of
the divergence is small and the total divergence can therefore be approximated by the
horizontal part. This is the reason why the curves in figure 5 are all close to unity.

We find it somewhat unexpected that the vertical divergence makes such a
significant contribution to the total divergence and has opposite sign to the horizontal
divergence. Figure 7 shows the ratio (in absolute value) of the vertical and horizontal
contributions to the total divergence for both Q- and M-runs. We have also carried
out two additional simulations in order to check the convergence of the results with
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FIGURE 6. (Colour online) Decomposition of the divergence of (a) JK = 〈δvδu · δu〉
and (b) JP = 〈δvδbδb〉/N2 into the horizontal contribution (– – – –) and the vertical
contribution (– · –) for run Q1. Also shown are the sum of the horizontal and vertical
contributions (——) and the conversion from APE to KE 2〈δbδw〉 (· · · · · · · ·). Grey lines
indicate the theoretical prediction −4.

respect to the vertical resolution by decreasing the number of vertical points from
1024 to 512 and 256. In all cases, a plateau with values between 0.25 and 0.6
is found. The low-resolution runs show an increase of the ratio of only few percent.
On the other hand, the forcing scheme displays a stronger effect. The Q-runs
shows a slightly larger dependence on Ro and diverge as the horizontal divergence
vanishes. After this point, the ratio monotonically decreases and become small at
large separation distance, indicating that the two-dimensional approximation would
apply to a greater extent in this range of scales.

The third-order structure functions showed in figures 1 and 2 both display a switch
of sign at a particular separation distance, rs. It is interesting to note that rs≈ 400 km
for the velocity structure function, in figure 1, as compared to rs ≈ 1000 km for
the velocity–temperature–temperature structure function, displayed in figure 2. In
figures 4 and 5 we can see that there is a corresponding switch of sign of the
structure functions calculated from the simulations. However, for the third-order
structure function including buoyancy in figure 5, rs is close to the forcing scale in
all simulations, while for the velocity structure function in figure 4, rs moves towards
smaller scales with decreasing Ro. This is particularly true for the simulations with
Q-forcing.

In order to investigate this further we have decomposed the structure functions
from the simulation into geostrophic and ageostrophic components, where the
geostrophic component is the projection onto the subspace carrying only potential
vorticity q and the ageostrophic component is the projection onto the complementary
subspace (Babin et al. 1997; Deusebio et al. 2013). In figure 8 we have plotted the
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(1/rh)(∂/∂rh)〈rhδuδu · δu〉 to the total divergence as a function of separation distance r.
Coloured lines as in figure 4. Black lines refer to simulations in which the vertical
resolution has been decreased to 512 (– · –) and 256 (· · · · · · · ·).
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FIGURE 8. Decomposition of 〈δuLδu · δu〉 (blue) into its geostrophic component (red) and
ageostrophic component (green). (a) Q1 and (b) M1. Solid lines: positive values; dashed
lines: negative values. Grey lines are shown to aid the reader: solid, 2ΠKr; dashed, ∼ r3.

velocity third-order structure function from runs Q1 (figure 8a) and M1 (figure 8b)
including the separate contributions from the geostrophic and the ageostrophic
components. In both cases, the contribution from the geostrophic component is
positive and has an almost cubic dependence on r, while the contribution from
the ageostrophic part is negative all the way up to the forcing scale and shows
a linear dependence on r. This is particularly true for the Q1 run where the two
components have comparable magnitude. In the M1 run on the other hand, the
geostrophic part is much smaller and the ageostrophic part dominates throughout
the whole range of scales. In figure 9 we see the corresponding curves for the
buoyancy structure function. In run Q1, both the geostrophic contribution and
the ageostrophic contribution are negative up to the forcing scale, where there is a
switch of sign. The geostrophic contribution shows an approximate cubic dependence
while the ageostrophic contribution shows a linear dependence on r. In the M1
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FIGURE 9. Decomposition of 〈δuLδbδb〉 (blue) into its geostrophic component (red) and
ageostrophic component (green). (a) Q1 and (b) M1. Solid lines: positive values; Dashed
lines: negative values. Grey lines as in figure 8: solid, 2ΠPr; dashed, ∼ r3.

run, on the other hand, the geostrophic part switches sign at intermediate scales,
although its magnitude is several order of magnitude smaller than the ageostrophic
part. In general, the Q-runs are characterized by a competition between geostrophic
and ageostrophic dynamics whereas the M-runs are dominated by the dynamics of
ageostrophic modes, the latter being due to wave dynamics and/or turbulent dynamics.

In the light of these results, we may interpret the switch of sign, at rs ≈ 400 km,
of the velocity structure function in figure 1 as the transition scale between a regime
which is dominated by geostrophic motions and a regime which is dominated by
ageostrophic motions, while the corresponding switch of sign, at rs ≈ 1000 km, of
the third-order structure function in figure 2, as a signature of the forcing scale in
the stratosphere. As demonstrated in the recent analysis of GCM (general circulation
model) data by Augier & Lindborg (2013), the stratosphere is mainly forced by
upwards travelling planetary waves carrying energy from the troposphere, where the
main forcing mechanism is baroclinic instability.

Figure 4 shows that the scale at which 〈δuLδu · δu〉 switches sign varies significantly,
depending on the forcing scheme and on Ro. Following the concept of a ‘shadow’
cascade (Tung & Orlando 2003), Vallgren et al. (2011) suggested that the transitional
wavenumber ks can be identified as the scale at which the QG spectrum, EQG∼η2/3k−3,
with η being the potential enstrophy dissipation, and a stratified turbulence spectrum,
EST ∼ ε2/3k−5/3, attain comparable magnitude, ks ∼ √η/ε, corresponding to a
transitional scale rs = 2π/ks = 2π

√
ε/η. In figure 10(a) the transitional scale rs

together with this prediction is shown for the Q-runs for which coexistence of a
downscale enstrophy cascade and a downscale energy cascade is found (figure 10b).
As figure 10(a) shows, the estimate of rs provides a fair agreement. In the Q-runs,
the decrease of the small-scale dissipation with decreasing Ro leads to the observed
reduction of rs.

In addition to the six simulation with forcing at kf = 4 we have also carried out a
simulation with forcing at kf = 54. We have done this for two reasons. First, we would
like to verify that our results are not critically dependent on the forcing wavenumber.
Second, we would like to investigate to what extent the upscale cascade relation (3.3)
(given below) for QG turbulence is valid. Quasi-geostrophic turbulence (Charney
1971) is, in fact, very similar to two-dimensional turbulence. There are two quadratic
invariants: total energy, which is the sum of KE and APE, and potential enstrophy,
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FIGURE 10. (Colour online) (a) Transition scale rs at which 〈δuLδu · δu〉 changes sign.
©, Q-runs; ×, prediction of the transitional scale rs = 2π

√
ε/η (Vallgren et al. 2011).

(b) Flux of energy (——) and enstrophy (– – – –) for the Q05 run. Vertical dotted line
represents the transitional wavenumber ks = 2π/rs ≈ 50, i.e. ks ≈ 10kf .

which is half the square of potential vorticity. Just as in two-dimensional turbulence,
there are two possible cascades, a downscale cascade of potential enstrophy and an
upscale cascade of energy. For the upscale energy cascade range of QG turbulence
one can derive the relation (Lindborg 2007)

〈δuLδuLδuL〉 + 〈δuLδuTδuT〉 + 〈δuLδbδb〉/N2 =−2Πr, (3.3)

where Π is the total energy flux, which is negative since there is an upscale energy
cascade. In the potential enstrophy cascade range there is no known exact third-order
velocity structure function relation. However, for the enstrophy cascade range of two-
dimensional turbulence one can derive the exact relation (Lindborg 1999)

〈δuLδuLδuL〉 = 〈δuLδuTδuT〉 = 1
8Πωr3, (3.4)

where Πω is the enstrophy flux, which is positive. Cho & Lindborg (2001) fitted the
measured third-order structure function in figure 1 to a positive cubic power law in
a narrow range at separation distances of the order of 1000 km and interpreted this
range as a possible enstrophy cascade range of two-dimensional turbulence. Using
the relation (3.4) and the measured third-order structure function, Cho & Lindborg
(2001) estimated the enstrophy flux as Πω ≈ 2× 10−15 s−3. This interpretation seems
to be far more speculative than the interpretation of the linear negative range at
mesoscales as evidence of downscale energy cascade. The range with a possible
cubic dependence is clearly very narrow. At 1000 km scales, the assumptions that
such an interpretation rest on also become questionable. One such assumption is the
use of Taylor’s hypothesis in the analysis of the aircraft data, that is that data taken
at the two different points separated by distances of a 1000 km may be treated as
simultaneous data. Another assumption is statistical homogeneity and isotropy in the
horizontal plane. However, it is worth mentioning that the value which was estimated
for Πω is in close agreement with values estimated from GCMs (Burgess, Erler &
Shepherd 2013).

In figure 11 we plot the spectral energy flux from two simulations with the
same Ro but with the widely different forcing wavenumbers kf = 4 and kf = 54,
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FIGURE 11. (Colour online) Total energy flux normalized with the total energy input P
for Ro= 0.1. ——, Run Q1 (kf = 4); – · –, run Q1-SS (kf = 54).

respectively. In both simulations, roughly one tenth of the total energy injection
goes into a downscale energy cascade while the remaining part goes into an upscale
energy cascade. The reason why both the upscale and downscale energy fluxes are
somewhat smaller in the kf = 4 simulation is that there is some direct action of
the large-scale drag at the forcing scale in this simulation. In figure 12 we show
the third-order structure functions for the kf = 54 simulation. The buoyancy structure
function displays a change of sign at the forcing scale, with a negative range at
smaller separations and a positive range at larger separation, while the velocity
structure function displays a change of sign at a smaller scale than the forcing scale.
This is consistent with the results of the simulations with kf = 4. As seen in figure 12,
the QG relation (3.3) is quite well satisfied in the inverse cascade range.

Cho & Lindborg (2001) and Lindborg & Cho (2001) calculated the transvere
third-order velocity structure functions 〈δuTδuTδuT〉 and 〈δuTδuLδuL〉. In these studies
the transverse component was taken as positive in the anticyclonic direction, that is
the clockwise azimuthal component on the northern hemisphere and the anti-clockwise
component on the southern hemisphere. In the following we will do it the other way
around and take the transverse component as positive when it is in the cyclonic
direction. With this convection, Cho & Lindborg (2001) found that both these
functions are positive and show a quadratic dependence on separation distance in
the lower stratosphere. Thus, there is a preference for cyclonic motions in the lower
stratosphere.

In figure 13 we have plotted the sum of the two functions, 〈δuTδuTδuT〉 +
〈δuTδuLδuL〉, normalized by E3/2

K , where EK is the mean KE. In all simulations
this function is positive and shows an approximate quadratic dependence on r,
in agreement with the results from the stratosphere. There is no clear trend with
regard to Ro and there is no significant difference between the simulations with
Q-forcing and M-forcing. The magnitude of the curves from the simulations
with Q-forcing is smaller, but this is due to the normalization, since EK is larger
in these simulations. In figure 14 we have plotted the skewness 〈δu3

T〉/〈δu2
T〉3/2 from

the simulations and also inserted a curve which is calculated based on the results
given by Lindborg & Cho (2001). For the atmospheric data, we have normalized
r using Lf = 1000 km. As seen in figure 14, the skewness corresponding to the
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FIGURE 13. Plot of 〈δuTδuL
2 + δuT

3〉 for all of the simulations. Lines as in figure 4.
Line to aid the reader, ∼ r2.

stratospheric measurements is a little bit larger than unity, indicating that there is a
strong dominance of cyclonic motions, while it is lower, ∼0.1–0.5, in the simulations.
We can offer no theoretical explanation of these results, but only point out that there
is both an interesting similarity between the observations and the simulations, in
that there is a preference for cyclonic motions and that the curves show a quadratic
dependence on r, and a striking dissimilarity, in that the magnitude of the skewness
is considerably larger for the stratospheric data compared to the simulations.

4. Conclusions
Cho & Lindborg (2001) measured the third-order velocity structure functions using

aircraft data in the lower stratosphere. They found that 〈δvLδvLδvL〉 + 〈δvLδvTδvT〉
has a negative linear dependence on r in the mesoscale range and interpreted this
as a sign of a downscale cascade of KE. They used the two-dimensional relation
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lines as in figure 4; black line: measurements in the atmosphere (evaluated from Cho &
Lindborg 2001). The separation distance for the atmospheric data has been normalized
using Lf = 1000 km.

(1.9) to estimate the spectral KE flux, ΠK , through the scales. In this paper we
have suggested that the negative linear third-order velocity–temperature–temperature
structure function measured by Lindborg & Cho (2000) may be interpreted as a
sign of a downscale cascade of APE. Using the two-dimensional flux relation (1.10),
the spectral energy flux of APE, ΠP, may be estimated. In order to investigate to
what extent the interpretation of the measurements can be valid we have carried out
idealized simulations of rotating and stratified turbulence at different Rossby numbers,
using two different forcing schemes. In all simulations, the method used by Cho &
Lindborg (2001) gives a correct prediction of the sign of ΠK . However, the magnitude
is overestimated by a factor of two. The reason for this is that the term including the
vertical derivative in (1.7) cannot be neglected. For the interpretation of the third-order
structure function including buoyancy, the use of the two-dimensional flux relation
(1.10) provides a much more accurate estimate of the downscale energy flux.

We have also calculated the third-order structure functions which are not parity
invariant and found that these scale as r2, similar to what was found in the
stratosphere, with a strong preference for cyclonic motions. However, the skewness
of the cyclonic velocity increment, δuT , is lower in the simulations than in the
stratosphere. There are a number of studies of homogeneous rotating turbulence
showing a preference for cyclonic motions (e.g. Hopfinger & van Heijst 1993;
Bartello, Metais & Lesieur 1994). In these studies, the skewness of vertical vorticity,
ωz, is generally used as a measure of the degree of symmetry breaking. In a field
with an energy spectrum which is more shallow that k−3, vorticity is a small-scale
quantity. Therefore, the skewness of ωz may be influenced by the small scales and
may thus be Reynolds-number dependent (Moisy et al. 2011). On the other hand, the
skewness of δuT is a measure of the symmetry breaking as a function of scale and
is therefore more informative. We suggest that this measure should be used in order
to study cyclonic/anticyclonic symmetry breaking.

The most important conclusion of our study is that it seems justified to interpret the
measured third-order structure functions in the lower stratosphere as giving evidence
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of a downscale energy cascade of KE and APE, which is similar to what is seen in
the simulations. In particular, we think that the very clean observational result for
the velocity–temperature–temperature structure function, in figure 2, together with the
corresponding result from the simulations, in figure 5, provides support for interpreting
this as a result of the downscale APE flux, allowing us to find the estimate of
ΠP ≈ 2× 10−5 m2 s−3. Had the same third-order structure functions as measured by
Cho & Lindborg (2001) displayed a positive sign or a dependence on r far from
linear in our simulations, then there would be no justification for interpreting the
measurements of Cho & Lindborg (2001) as evidence of a downscale energy cascade.

Cho & Lindborg (2001) also measured the third-order structure functions in the
upper troposphere. However, in this case it was difficult to obtain any consistent
and well-converged results to be interpreted in the light of turbulence theory. There
are probably two reasons why the results from the upper troposphere were less
clean. First, the Brunt–Väisälä frequency shows a rather significant variation with
height in the upper troposphere (Charney & Drazin 1961), which may invalidate the
assumption of statistical homogeneity in the vertical direction. Second, the release
of latent heat plays a more important role in the upper tropospheric dynamics than
in the stratospheric dynamics. In addition to this, one may also speculate that the
difference of the forcing mechanism leads to some difference in the cascade dynamics.
The troposphere is mainly forced by baroclinic instability, while the stratosphere is
forced by upwards propagating planetary waves. The lower stratosphere seems to be
an almost ideal test bed for theories on rotating and stratified turbulence. Generally,
the Brunt–Väisälä frequency shows a small variation with height, so that statistical
homogeneity is fairly well satisfied in the vertical direction and the release of latent
heat is of minor importance. It is our hope that the present study will inspire more
observational work on rotating and stratified turbulence in the lower stratosphere.
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