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Abstract
Distributed diagnosis is important for on-board
systems as a way to reduce computational costs
or for large geographically distributed systems
that require minimizing data transfer. This pa-
per presents a distributed diagnosis framework
for continuous systems that only requires the
knowledge of local models and limited knowledge
of their neighboring subsystems. We introduce
the notion of Fault-Driven Minimal Structurally
Overdetermined (FMSO) set as the corner stone
of the design of residual generators. We show that
all the FMSO sets of the global system can be
obtained in a distributed manner from so-called
shared FMSO sets and shared CMSO sets that are
computed along a structural approach for every
local site.

1 Introduction
For large complex systems with constraints such as com-
munication bandwidth or large geographic distribution, it is
more appropriate (even mandatory) to use distributed ap-
proaches. In some cases, this is even the only viable solution
given structural, computational and robustness issues.

In large-scale systems, diagnosis algorithms must account
for two real-time requirements [Boem et al., 2011]: 1)
enough computation power for processing all the necessary
measurements and 2) enough communication bandwidth in
order to gather all the measurements to the place where they
are processed. In addition to the economic implications re-
lated to the first requirement, it should be noted that the
second requirement can be even more difficult to achieve if
for example the system covers a large geographic area and
the measurements are distributed, so that they cannot be di-
rectly wired to the processing computer. Moreover, there
are contexts where a centralized architecture, even if feasi-
ble, would be undesirable because of several factors includ-
ing size, robustness and security issues, e.g., aircraft and
other transportation systems, large-scale energy or industrial
plants, power generation, etc.

While distribution is often dictated by physical con-
straints, it has several other appealing properties over a cen-
tralized approach, including fault tolerance, scalability, and
reusability. Fault tolerance stems from the ability of dis-
tributed systems to continue operation when one or more
sensors are faulty. The scalability comes from reduced costs
of system setup and update, communication, and decision

making. Finally, when reconfiguration is required, imply-
ing to change some components or sensors, it can be eas-
ier to modify part of the distributed system impacted by the
changes than to overhaul the centralized system as a whole
[Grbovic, 2012].

In this paper, we use the structural framework that has
shown to be a flexible and efficient tool for fault diagno-
sis and fault-tolerant control design. Fault-Driven Mini-
mal Structurally Overdetermined (FMSO) sets [Pérez et al.,
2015] are used to ensure the minimal redundancy of resid-
ual generators in order to optimize local diagnosers (LD).
In our approach, each subsystem is monitored by a LD us-
ing the information provided by measured local variables
and, when necessary, by a minimal amount of measure-
ments from neighboring subsystems. We assume the non-
availability of a global system model. The algorithm that
we propose achieves the same results as a global diagnoser
by extending local models as least as possible when it is re-
quired.

This paper is structured as follows: section 2 motivates
the use of a distributed approach and presents the related
work. In section 3, some well known concepts of the struc-
tural approach are presented and the notion of Fault-Driven
Minimal Structurally Overdetermined (FMSO) set is intro-
duced. Section 4 presents some new fault distributed diag-
nosis concepts and the properties of FMSO sets are given.
Section 5 explains how to design the set of LDs so that they
achieve the same detectability and diagnosabiilty as a cen-
tralized diagnoser. A four tanks example is then used to il-
lustrate the application of the approach in section 6. Finally,
a conclusion and current work end the paper.

2 Related Work
Typically, centralized diagnosis solutions have been pro-
posed for model-based diagnosis, but these solutions have
several inherent shortcomings. First, if the centralized di-
agnoser fails, the system will have to operate without a di-
agnosis system (this is usually known as a single point of
failure), and second, centralized solutions do not scale well
as the size of the system increases [Gertler, 1998]. These
shortcomings justify the development of techniques of de-
centralized and distributed diagnosis frameworks for com-
plex large systems.

Researchers have developed several decentralized and
distributed diagnosis schemes in the past, mostly in the dis-
crete event framework [Debouk et al., 2000; Pencolé and
Cordier, 2005]. Distributed schemes, e.g., [Su and Wonham,



2005], unlike decentralized schemes, such as [Rami De-
bouk, 2000], do not make use of the global system model;
instead, they use subsystem models for diagnosis, and the
LD for each diagnosis submodel communicate their diag-
nosis results to each other to obtain the global solution.
Decentralized diagnosis approaches, e.g., [Rami Debouk,
2000], typically start with a global system model to gener-
ate the LD among which the diagnosis computations get dis-
tributed. Each local distributed diagnoser makes their diag-
nosis decision based on only a subset of observable events,
and they communicate these decisions to other LDs, or to a
centralized coordinator (in decentralized case), which uses
the global model to generate globally consistent diagnosis
solutions. The level of coordination required between the
LDs depends on how each LD is designed.

Distributed diagnosis methods have been proposed re-
cently for continuous systems. [Bregon et al., 2014] present
a distributed diagnosis framework for physical systems with
continuous behavior using structural model decomposition,
using Possible Conflicts approach. They decompose the
global system model into submodels that contain sufficient
analytical redundancy to perform fault detection. However
this is done ignoring pre-existing constraints that may be
functional, geographical or privacy-based. We consider pre-
existing constraints mandatory and therefore, possible pre-
defined subsystems. [Khorasgani et al., 2015] presents a
distributed structural approach to the problem of fault de-
tection and isolation using an algorithm that accepts a just
determined subsystem and a set of measurement candidates.
It provides a set of diagnosers that are as local as possible by
extending local models with their neighboring subsystem’s
models until maximal isolability is achieved.

Our approach is designed in a distributed framework. It
does not require a coordinator online, and there is no ex-
change of diagnosis information among the LDs, only the
exchange of measurements. Besides, this method introduces
important properties of Fault-Driven Minimal Structurally
Overdetermined (FMSO) sets that allow us to establish the
relation between FMSO sets for the subsystems and FMSO
sets for the global system. This properties are key to demon-
strate that all global FMSO sets can be generated from com-
putations only at the level of the subsystems, hence achiev-
ing a truly distributed architecture.

3 Background theory
In this section some definitions associated with structural
analysis of dynamic systems and focused residual genera-
tion are introduced.

3.1 Analytical Redundancy via Structural
Analysis

Let the system description consist of a set of ne equations
involving a set of variables partitioned into a set Z of nZ
known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known
variables as z and the vector of unknown variables as x.
The system may be impacted by the presence of nf faults
that appear as parameters in the equations. The set of faults
is denoted by F and we refer to the vector of faults as f.
Definition 1 (System). A system, denoted Σ(z, x,f) or Σ
for short, is any set of equations relating z, x and f. The
equations ei(z, x) ⊆ Σ(z, x,f), i = 1, . . . , ne, are as-
sumed to be differential or algebraic in z and x.

We use a four tank system, illustrated in Figure 1, to il-
lustrate the concepts throughout this paper. It is composed
of twenty equations. Later, we assume each tank with out-
let pipe as a subsystem so this system has four subsystems.
Tanks 1 and 3 have inflows. There are a set of 6 measure-
ments y1 to y6.

Figure 1: Four Tank System.

The model Σ(z, x,f) for this system is composed of
twenty equations e1 to e20 relating the known variables
Z = {u1, u2, y1, y2, y3, y4, y5, y6}, the unknown variables
X = {ṗ1, p1, ṗ2, p2, ṗ3, p3, ṗ4, p4, qin1, qin2, q1, q2, q3, q4}
and the set of system faults F = {f1, f2, f3, f4, f5, f6} as
given in Table 1.

Table 1: Equations for the four tank system.

e1 : ṗ1 =
1

CT1 + f1
(qin1 − q1) e4 : qin1 = u1

e2 : q1 =
p1 − p2

RP1 + f2
e5 : p1 = y1

e3 : p1 =
∫
ṗ1dt e6 : q1 = y2

e7 : ṗ2 =
1

CT2 + f3
(q1 − q2) e10: p2 = y3

e8 : q2 =
p2 − p3

RP2
+ f4

e11: q2 = y4

e9 : p2 =
∫
ṗ2dt

e12: ṗ3 =
1

CT3

(qin2 + q2 − q3) e15: qin2 = u2

e13: q3 =
p3 − p4

RP3
+ f5

e16: q3 = y5

e14: p3 =
∫
ṗ3dt

e17: ṗ4 =
1

CT4
+ f6

(q3 − q4) e19: p4 =
∫
ṗ4dt

e18: q4 =
p4

RP4

e20: p4 = y6

Definition 2 (ARR for Σ(z, x,f)). Let Σ(z, x,f) be a sys-
tem. Then, a relation r(z, ż, z̈, ...) = 0 is an Analytical
Redundancy Relation (ARR) for Σ(z, x,f) if for each z con-
sistent with Σ(z, x,f) the relation is fulfilled.

Definition 3 (Residual Generator for Σ(z, x,f)). A system
taking a subset of the variables z as input, and generating
a scalar signal r as output, is a residual generator for the
model Σ(z, x,f) if, for all z consistent with Σ(z, x,f), it
holds that lim

t→∞
r(t) = 0.

ARRs can be used to check if the measured variables z are
consistent with the system model and as the basis of residual
generators used for diagnosis purposes.



The structural model of the system Σ(z, x,f), also de-
noted with some abuse by Σ(z, x,f) or Σ in the following,
can be obtained abstracting the functional relations. It only
retains a representation of which variables are involved in
the equations. This abstraction leads to a bipartite graph
G(Σ ∪X ∪ Z,A), or equivalently to G(Σ ∪X,A), where
A ⊆ A andA is a set of edges such that a(i, j) ∈ A iff vari-
able xi is involved in equation ej . The bipartite graph (on
the right) may be equivalently represented as a biadjacency
matrix (on the left) as in Figure 2.

Obtaining ARRs for a system Σ(z, x,f) involves the
elimination of unknown variables, which can be inferred
from structural analysis [Travé-Massuyès et al., 2006].
ARRs are indeed known as the causal interpretation of min-
imal structurally overdetermined (MSO) sets [Krysander et
al., 2010]. One should notice that results obtained in a struc-
tural framework are a best case scenario: causality consid-
erations, algebraic and differential loops, etc. ultimately de-
fine which structural redundancies can be used for the de-
sign of actual residual generators [Armengol et al., 2009].

3.2 Focused Residual Generation
A key tool for analyzing a structural model is the Dulmage-
Mendelson (DM) canonical decomposition. It results in a
partition of the system model Σ into three parts: the struc-
turally overdetermined (SO) part Σ+ that has more equa-
tions than unknown variables; the structurally just deter-
mined part Σ0 that has as many equations as unknown vari-
ables, and the structurally underdetermined part Σ− that has
more unknown variables than equations.

Definition 4 (Structural redundancy). The structural redun-
dancy ρ

Σ′ of a set of equations Σ′ ⊆ Σ is defined as the
difference between the number of equations and the number
of unknown variables.

The structural redundancy of an SO set is positive. Let us
notice that the structural redundancy of an arbitrary set of
equations Σ′ ⊆ Σ may be positive, zero, or negative.

Proposition 3.1. Consider two sets of equations Σ′ ⊆ Σ
and Σ′′ ⊆ Σ, then ρ

Σ′∪Σ′′ = ρ
Σ′ + ρ

Σ′′ + |X
Σ′ ∩XΣ′′ |.

Definition 5 (PSO and MSO sets). A set of equations Σ is
proper structurally overdetermined (PSO) if Σ = Σ+ and
minimally structurally overdetermined (MSO) if no proper
subset of Σ is overdetermined [Krysander et al., 2010].

Since PSO and MSO sets have more equations than vari-
ables, they can be used to generate ARRs and residuals.
MSO sets are of special interest since they are just overde-
termined, i.e. they have structural redundancy 1. However,
not all MSO sets are interesting to construct residual gen-
erators, in particular those that are not impacted by faults.
Hence it is desirable to consider a fault-focused concept.
The concept of test equation support (TES) has been intro-
duced in [Krysander et al., 2010]. A TES is a set of equa-
tions expressing redundancy specific to a set of considered
faults, known as the test support (TS) or as the fault support,
term that we use in this paper. A minimal TES (MTES) is
such that no proper subset is a TES.

It is necessary to notice that, whereas an MSO set is just
overdeterminated and hence has redundancy 1, an MTES
may have higher redundancy. This may be an advantage
to develop more powerful tests; however, for the distribu-
tion problem, the aim is to minimize the information shared
by subsystems, hence the concept of Fault-Driven Minimal

Structurally Overdetermined set defined below is preferable
[Pérez et al., 2015].

A Fault-Driven Minimal Structurally Overdetermined
(FMSO) set ϕ is an MTES of structural redundancy 1.
Equivalently, it can be defined as an MSO set of Σ(z, x,f)
whose fault support is not empty.

Let us define Zϕ ⊆ Z, Xϕ ⊆ X , and Fϕ ⊆ F as the
set of known variables, unknown variables involved in the
FMSO set ϕ, and the set of faults in its fault support, re-
spectively. We then have the following formal definition.

Definition 6 (FMSO set). A subset of equations ϕ ⊆
Σ(z, x,f) is an FMSO set of Σ(z, x,f) if Fϕ 6= ∅ and
ρϕ = 1 that means |ϕ| = |Xϕ|+ 1.

We also define the concept of Clear Minimal Structurally
Overdetermined (CMSO) set as an MSO set of Σ(z, x,f)
whose fault support is empty.

Definition 7 (CMSO set). A subset of equations Λ ⊆
Σ(z, x,f) is a CMSO set of Σ(z, x,f) if FΛ = ∅ and
ρΛ = 1 that means |Λ| = |XΛ|+ 1.

To illustrate these concepts, we consider an academic
example with: Σ = {e1, e2, e3, e4, e5, e6}, X =
{x1, x2, x3, x4} and F = {f1, f2} as shown in Figure 2.

Eq Unknown Faults
x1 x2 x3 x4 f1 f2

e1 X
e2 X X X
e3 X
e4 X
e5 X
e6 X X X X

(a) Biadjency matrix (b) Bip. graph

Figure 2: Academic example.

If we consider the fault f1 and use the algorithm proposed
in [Krysander et al., 2010], there exists an MTES focused in
fault f1, Σ1 = {e1, e2, e3, e4} with redundancy ρΣ1

= 2.
In the other hand, using our approach we can find minimal
redundancy by two FMSO sets: ϕ1 = {e1, e2, e3} and ϕ2 =
{e1, e2, e4} both focused on fault f1 which is more efficient
for distribution.

4 Distributed Diagnosis
This section defines the notion of subsystems and reconsid-
ers the concept of FMSO set in the distributed case. Impor-
tant properties of FMSO sets are provided that allow us to
establish the relation between FMSO sets for the subsystems
and FMSO sets for the global system. This properties are
key to demonstrate that all global FMSO sets can be gener-
ated from computations only at the level of the subsystems,
hence achieving a truly distributed architecture.

4.1 Distribution and Related Notions
Let us consider the system Σ and define the following:

Definition 8 (Global FMSO set). A global FMSO set is an
FMSO set of Σ(z, x,f). The set of global FMSO sets is
denoted by Φ.



A decomposition of the system Σ, into several subsys-
tems Σi is defined as a partition of its equations. Let

Σ = {Σ1,Σ2, ...,Σn} with Σi ⊆ Σ,
n⋃

i=1

Σi = Σ, Σi 6= ∅

and Σi ∩ Σj = ∅ if i 6= j.
This decomposition leads to n subsystems denoted

Σi(zi, xi,fi), with i = 1, ..., n, where zi is the vector of
known variables in Σi, xi the vector of unknown variables
in Σi and fi refers to the vector of faults in Σi. The set of
variables and faults of the ith subsystem Σi, denoted as Xi,
Zi, and Fi respectively, are defined as the subset of vari-
ables of X , Z, and F respectively, that are involved in the
subsystem Σi.

For the four tanks system example, we consider (as [Kho-
rasgani et al., 2015]) that each tank and the outlet pipe to its
right, constitute a subsystem (Table 2).

Table 2: Model decomposition of the four tanks system into
subsystems Σi(zi, xi,fi), i = 1, 2, 3, 4.

Σ1 = {e1, e2, e3, e4, e5, e6} F1 = {f1, f2}
X1 = {ṗ1, p1, p2, qin1, q1} Z1 = {u1, y1, y2}
Σ2 = {e7, e8, e9, e10, e11} F2 = {f3, f4}
X2 = {ṗ2, p2, p3, q1, q2} Z2 = {y3, y4}
Σ3 = {e12, e13, e14, e15, e16} F3 = {f5}
X3 = {ṗ3, p3, p4, qin2, q2, q3} Z3 = {u2, y5}
Σ4 = {e17, e18, e19, e20} F4 = {f6}
X4 = {ṗ4, p4, q3, q4} Z4 = {y6}

Definition 9 (Local variables). The set of local variables of
the ith subsystem, denoted X l

i , is defined as the subset of
variables of Xi that are only involved in the subsystem Σi:

X l
i = Xi�(

n⋃
j=1,j 6=i

(Xi ∩Xj)) (1)

Definition 10 (Shared Variables). The set of shared vari-
ables of the ith subsystem, denoted as Xs

i , is defined as:

Xs
i =

n⋃
j=1,j 6=i

(Xi ∩Xj) = Xi�X l
i (2)

The set of shared variables of the whole system Σ is denoted
by Xs.

For instance, consider the subsystem Σ3 of Table 2,X l
3 =

{ṗ3, qin2}, which means that the variables of this subset are
only involved in equations of Σ3. Xs

3 = {p3, p4, q2, q3},
which means that the variables of this subset link the behav-
ior of Σ3 with other subsystems, namely Σ2 and Σ4.

Without loss of generality, we consider that all known
variables of Zi are local to the subsystem Σi, for i =
1, . . . , n. If the same input was applied to several subsys-
tems, it could be artificially replicated.

4.2 Distributed FMSO sets
Definition 11 (Local FMSO set). ϕ is a local FMSO set
of Σi(zi, xi,fi) if ϕ is an MFSO set of Σ(z, x,f) and if
ϕ ⊆ Σi, Xϕ ⊆ Xi and Zϕ ⊆ Zl

i . The set of local FMSO

sets of Σi is denoted by Φl
i. The set of all local FMSO sets

is denoted by Φl =
n⋃

i=1

Φl
i.

Obviously, a local FMSO set for any subsystem Σi is also
an FMSO set of Σ, hence a global FMSO set.

For the four tanks example, a local FMSO set ϕ1 =
{e1, e3, e4, e5, e6} is obtained for Σ1. These equations in-
clude local and shared variables of Σ1 and only involve the
fault f1. It can be deduced that to achieve detectability of
fault f1, only the equations included in ϕ1 are required.

We now define shared FMSO sets for a subsystem Σi by
considering shared variables as known variables and com-
puting FMSO sets. FMSO sets including equations with
shared variables are called shared FMSO sets.
Definition 12 (Shared FMSO set). ϕ is a shared FMSO
set of subsystem Σi(zi, xi,fi) if ϕ is an FMSO set of
Σ̃i(z̃i, x̃i, f̃i), where z̃i is the vector of variables in Z̃i =

Zi ∪ Xs
i , x̃i is the vector of variables in X̃i = X l

i , and
f̃i = fi). The set of shared FMSO sets for Σi is de-
noted by Φs

i . The set of all shared FMSO sets is denoted

by Φs =
n⋃

i=1

Φs
i .

From the above definition, a shared FMSO set ϕ for sub-
system Σi(zi, xi,fi) is such that ϕ ⊆ Σi, Xϕ ⊆ X l

i ,
Zϕ ∩Xs

i 6= ∅, and Zϕ ⊆ (Zi ∪Xs
i ).

Let us take the example of the subsystem Σ1 of Table 2,
then the set of shared FMSO sets is Φs

1 is {ϕ1, ϕ2, ϕ3}:
ϕ1 = {e2, e5}, where :

Xϕ1 = {p1}, Zϕ1 = {q1, p2, y1, y2}, Fϕ1 = {f2}
ϕ2 = {e1, e2, e3, e4}, where :

Xϕ2 = {ṗ1, p1, qin1}, Zϕ2 = {q1, p2, u1}, Fϕ2 = {f1, f2}
ϕ3 = {e1, e3, e4, e5}, where :

Xϕ3 = {ṗ1, p1, qin1}, Zϕ3 = {q1, u1, y1}, Fϕ3 = {f1}
Definitions 11 and 12 can also be applied to CMSO sets to

define local CMSO sets Λl
i and shared CMSO sets Λs

i . The
set of all shared CMSO sets is denoted by Λs.
Definition 13 (Compound FMSO set). A global FMSO set
ϕ that includes at least one shared FMSO set ϕ′ ∈ Φs

i is
called a compound FMSO set. The set of compound FMSO
sets of Σi is denoted by Φc

i . The set of all compound FMSO

sets is denoted by Φc =
n⋃

i=1

Φc
i .

Definition 14 (Root FMSO set). If a compound FMSO set
ϕ ∈ Φc includes a shared FMSO set ϕ′ ∈ Φs, then ϕ′ is a
root FMSO set of ϕ.
Definition 15 (Locally detectable fault). f ∈ Fi is lo-
cally detectable in the subsystem Σi(zi, xi,fi) if there is
an FMSO set ϕ ∈ Φl

i such that f ∈ Fϕ.
Definition 16 (Locally isolable fault). Given two locally de-
tectable faults fj and fk of Fi, j 6= k, fj is locally isolable
from fk if there exists an FMSO set ϕ ∈ Φl

i such that
fj ∈ Fϕ and fk 6∈ Fϕ.

4.3 Properties of FMSO sets
This section aims at stating the properties of locally com-
puted FMSO sets, i.e. local FMSO sets and shared FMSO
sets, with regards to the generation of global FMSO sets. In-
terestingly, these properties allow us to prove that the whole
set of global FMSO sets Φ can be obtained from the set of
locally computed FMSO sets.



Property 1. A compound FMSO set ϕ contains equations
from at least two subsystems.
Property 2. A local FMSO set ϕ ∈ Φl is also a global
FMSO set.
Property 3. A global FMSO set ϕ ∈ Φ for which ∃!i ∈
1, . . . , n such that Xϕ ⊆ X l

i is also a local FMSO set of Σi.
In the following, we show that global FMSO sets can

be obtained from locally computed FMSO sets only, by
forming compound FMSO sets with shared FMSO sets and
shared CMSO sets.

Begin with a simple reasoning. Consider a shared FMSO
set ϕ ∈ Φs

i . The particularity of shared FMSO sets is that
they are computed hypothesizing that the shared variables
they include are known (cf. Definition 12). Actually, this
hypothesis is just a trick that allows us to account locally
for the FMSO sets that can possibly be generated if equa-
tions of other subsystems, indicated by the shared variables,
are introduced. However, shared variables are actually un-
known so we can define Xs

ϕ = Zϕ ∩Xs.
The shared FMSO set ϕ can give rise to an actual FMSO

set if it can be completed with sets of equations of subsys-
tems other than Σi (more precisely shared FMSO or CMSO
sets) to balance the number of shared variables Xs

ϕ of ϕ and
achieve structural redundancy 1.

Let us notice that the shared FMSO set ϕ has an actual
structural redundancy of 1 − |Xs

ϕ|. As a matter of fact,
every shared variable xs ∈ Xs

ϕ decreases the actual struc-
tural redundancy of ϕ by 1. Consider a shared FMSO set
ϕ′ ∈ Φs

j , j 6= i for which xs is also a shared variable, i.e.
xs ∈ Xs

ϕ′ .
By Proposition 3.1, unioning ϕ′ to ϕ potentially balances

the structural redundancy deficiency for one shared variable,
say xs, in ϕ. However, if ϕ′ introduces new shared vari-
ables, these also need to be balanced, each by an additional
shared FMSO set. In addition, if xs is not the only shared
variable of ϕ, the other shared variables each require union-
ing a different shared FMSO set. The same reasoning also
holds if ϕ′ is a shared CMSO set. This leads to the following
proposition.
Proposition 4.1. LetG(X,Γ) be a bipartite graph such that
X = X1 ∪ X2 where:

• X1 = Φs ∪ Λs is the set of shared FMSO sets and
shared CMSO sets of the system,
• X2 = Xs is the set of shared variables of the system,
• Γ : X1 −→ 2X2 is a function that gives the set of suc-

cessors of each ϕ ∈ X1.

Let ϕ ∈ X1 and x ∈ X2 then (ϕ, x) belongs to the edges
of G if x ∈ Xϕ.

A compound FMSO set X′1 is built by a subgraph
Gs(X′,Γ′) of G(X,Γ), where X′ = X′1 ∪ X′2, X′1 ⊂ X1,
X′2 ⊂ X2 if:

(i) Gs(X′,Γ′) contains no cycles.
(ii) ∀ϕ ∈ X′1,Γ(ϕ) ⊂ X′2 and ∀x ∈ X′2 ∃ϕ ∈ X′1 such that

Γ′(ϕ) = x.
(iii) The terminal nodes of the graph belong to X′1.

The Proposition 4.1 states that a union of shared
FMSO/CMOS sets originating from different subsystems
forms a compound FMSO set if there are no cycles in the
corresponding subgraph. Condition (ii) guarantees that if an

FMSO set belongs to the subgraph, then all shared variables
are in this subgraph and for all shared variables there exists
one shared FMSO/CMSO set that belongs to a subsystem
different from any subsystem at the above level. Condition
(iii) guarantees that the structural redundancy of X′1 is equal
to one and that X′1 = ϕc is a compound FMSO set.
Lemma 1. The subgraph Gs(X′,Γ′) corresponding to a
compound FMSO set has the specific AND/OR tree struc-
ture shown in Figure 3.

Figure 3: AND/OR tree structure of a compound FMSO set.

The FMSO set at the top of Figure 3 can be considered
as the root FMSO set. The set of shared variables that
belongs to the root FMSO set is included in the structure.
For each of them, only one FMSO set is chosen among
the FMSO/CMSO sets that include the shared variable. For
each chosen FMSO/CMSO set, the shared variables are in-
cluded in the structure. This property repeats down the
graph levels until there is no additional shared variable to
include in the structure. We talk of an iterative matching
procedure.

It can be proved that all the global FMSO sets can be
obtained from locally computed FMSO sets.
Proposition 4.2. The set of global FMSO sets Φ is given
by the union of the set of local FMSO sets Φl and the set of
compound FMSO sets Φc.

Φ = Φl ∪ Φc (3)

5 Operational procedure for distributed
diagnosis

5.1 Distributed generation of all global FMSO
sets

Like [Khorasgani et al., 2015], our approach assumes the
non-availability of a global system model. The differ-
ence comes from the results of section 4.3 that prove
that it is possible to obtain the set of global FMSO sets
without recomputing FMSO sets for the local models ex-
tended by neighboring subsystem’s models. Instead, our
approach uses a search algorithm that identifies the sets
of shared FMSO/CMSO sets computed locally that form
global FMSO sets. Algorithm 1 implements the procedure



for computing the set of global FMSO sets following the
proposed distributed approach. Like [Khorasgani et al.,
2015], our approach guaranties maximal diagnosability, i.e.
the same diagnosability as a centralized approach.

Φ = ∅;
for i=1...n do

Φl
i ← Calculate local FMSO sets of Σi;

Φs
i ←Calculate shared FMSO sets of Σi;

Λs
i ← Calculate shared CMSO sets of Σi;

for each shared FMSO set ϕ ∈ Φs
i do

Label ϕ as root FMSO: ϕr ← ϕ;
Let Xs

ϕr
be the set of shared variables of ϕr;

while it is possible to find a set ϕc ⊇ ϕr that
can be a set X′1 in Proposition 4.1 and such
that ϕc is not included in Φ do

Store the global FMSO set ϕc:
Φ← Φ ∪ ϕc;

end
end
Φ← Φ ∪ Φl

i
end
Return Φ;

Algorithm 1: Generation of the set of global FMSO sets

In Algorithm 1 the procedure to compute a global FMSO
set ϕc that can be a set X′1 in Proposition 4.1 starts by
searching in the bipartite graph G(X,Γ) for a matching that
covers each shared variable of Xs

ϕr
(ϕr is the root FMSO

set). This procedure is repeated for the new sets of shared
variables that come with newly introduced shared FMSO
sets. Iterations stop when no new shared variables are intro-
duced. The computational complexity of the search prob-
lem increases with the number of shared variables. How-
ever, in practice, subsystems are generally designed so that
their links are quite weak, hence sharing few variables. This
makes the proposed approach applicable to complex dy-
namic systems made up of several subsystems.

5.2 Distributed generation of an optimized set of
global FMSO sets

If the residuals corresponding to all the global FMSO sets
were generated and used on-line to monitor the system, they
would obviously achieve maximal detectability and isolabil-
ity. However, all of them are not necessary and it is more ef-
ficient to minimize their number while maintaining the same
property.

The aim of this section is to obtain a set of distributed
local diagnosers (LD) that together make the entire system
completely diagnosable through local and compound FMSO
sets. These LDs are designed to achieve maximal diagnos-
ability with minimal communication between subsystems.
First, local FMSO sets are determined for every subsystem
Σi. If these are not sufficient to detect and isolate all of
the faults in Fi, then a set of compound FMSO sets is de-
termined to achieve full diagnosability for all the faults in
Fi, considering constraints of distance and amount of com-
munication between subsystems. This set is computed as
explained in Section 5.1.

The diagnosers design is done off-line and consists of the
steps given in Algorithm 2, performed for each subsystem
Σi, i = 1...n. The procedure to compute ’good’ compound

FMSO sets starting with ϕ∗ as a root FMSO set makes use
of an optimization heuristic based on the number of shared
variables. In Algorithm 2, the term ’best’ is hence used in
the sense of this heuristic.

for i=1...n do
Φi = ∅;
Φl

i ← Calculate local FMSO sets of Σi;
if there is any fault f ∈ Fi not locally detectable or

not locally isolable with the set of local FMSO
sets Φl

i then
Φs

i ← Calculate shared FMSO sets of Σi;
Λs
i ← Calculate shared CMSO sets of Σi;

end
while it exists f ∈ Fi that is not detectable or

isolable do
Let ϕ∗ ∈ Φs

i such that f ∈ Fϕ∗ be the ’best’
(not already selected) shared FMSO set of Φs

i ;
Label ϕ∗ as root FMSO set: ϕr ← ϕ∗;
Let Xs

ϕr
be the set of shared variables of ϕr;

Φc∗
i ← Find a ’good’ compound FMSO set
including ϕ∗ by always selecting the ’best’
shared FMSO sets to cover newly introduced
shared variables;

Φi ← Φi ∪ Φc∗
i ;

Φl∗
i ← Find a minimal cardinality set of local
FMSO sets achieving the same diagnosability
as all local FMSO sets;

Φi ← Φi ∪ Φl∗
i ;

end
end

Algorithm 2: Generation of LDs.

Algorithm 2 is intended to produce a minimal cardinality
set of global FMSO sets while minimizing subsystems in-
teractions. It is based on a heuristic and further work must
be performed to assess its properties in terms of optimality.

6 Application to the four tanks system
6.1 Finding of Global FMSO sets
According to operational procedure of section 5, by algo-
rithm 1 it is possible to get the set of global FMSO sets Φ
from the set of local FMSO sets Φl, shared FMSO sets Φs

and shared CMSO sets Λs.
Running the algorithm 1, first we calculate local FMSO

sets Φl
i, shared FMSO sets Φs

i and shared CMSO sets Λs
i

of each subsystem (i = 1..4) as shown in Table 3. Then
with each shared FMSO set as root FMSO set, we found all
compound FMSO sets ϕ ∈ Φc for the four tank system as if
a global model is not available.

As illustration, in the subsystem Σ1, considering the
shared FMSO set ϕ1 as a root FMSO set with the set of
Xs

ϕ1
= {q1, p2}, a compound FMSO set is computed itera-

tively by the set ϕc = ∪ck=1ϕk = ϕ1 ∪ ϕ5 ∪ ϕ6 ∪ λ3 ∪
ϕ7 ∪ λ4 ∪ λ6, with ∪ck=1X

s
ϕk

= {q1, p2, q2, p3, q3, p4},
where each shared variable xs is covered by two shared
FMSO/CMSO sets as it is shown in the corresponding sub-
graph of Figure 4. As a result, the compound FMSO set ϕ′
obtained is {e2, e5, e7, e8, e9, e11, e13, e16, e20}. Consider-
ing all possible ϕc that can be a set X′1 in Proposition 4.1,
164 compound FMSO sets are computed for this system.



Table 3: local FMSO sets Φl
i, shared FMSO sets Φs

i and
shared CMSO sets: Λs

i , (i = 1..4).

Φs
1 = {ϕ1, ϕ2, ϕ3}, Φl

1 = {ϕ4}, Λs
1 = {λ1},

Φs
2 = {ϕ5, ϕ6}, Φl

2 = ∅, Λs
2 = {λ2, λ3},

Φs
3 = {ϕ7}, Φl

3 = ∅, Λs
3 = {λ4, λ5},

Φs
4 = {ϕ8}, Φl

4 = ∅, Λs
4 = {λ6},

Φi Xs Fi

Σ1 q1 p2 q2 p3 q3 p4 F1

ϕ1 = {e2, e5} X X {f2}
ϕ2 = {e1, e3, e4, e5} X {f1}
ϕ3 = {e1, e2, e3, e4} X X {f1, f2}
ϕ4 = {e1, e3, ..., e6} X X {f1}
λ1 = {e6} X

Σ2 q1 p2 q2 p3 q3 p4 F2

ϕ5 = {e8} X X X {f4}
ϕ6 = {e7, e9} X X X {f3}
λ2 = {e10} X
λ3 = {e11} X

Σ3 q1 p2 q2 p3 q3 p4 F3

ϕ7 = {e13} X X X {f5}
λ4 = {e16} X
λ5 = {e12, e14, e15} X X X

Σ4 q1 p2 q2 p3 q3 p4 F4

ϕ8 = {e17, e18, e19} X X {f6}
λ6 = {e20} X

Added to ϕ4 = {e1, e3, e4, e5, e6} ∈ Φl
1, we found 165

global FMSO sets in Φ.

Figure 4: Subgraph of ϕ′.

6.2 Distributed Diagnosis
Given a set of faults, measurements and local models for ev-
ery subsystem, we construct diagnosers that together make
the entire system completely diagnosable. Using the Algo-
rithm 2 and definitions of Section 4, we can develop a local
full diagnosis for every subsystem. Computing the set of lo-
cal FMSO sets Φl

i , i = 1..4 and adding subsets of shared

variables to found the set of shared FMSO sets Φs
i for each

subsystem i = 1..4 in the model in Table 2, we found FMSO
sets for all faults as it is shown in in Table 4.

Table 4: Optimal compound FMSO sets Φc
i , (i = 1..4) for

distributed diagnosis.

Φc
1 = {ϕ9} FΦ1

ϕ9 = {e2, e5, e6, e10} Fϕ9 = {f2}
Φc

2 = {ϕ10, ϕ11} FΦ2

ϕ10 = {e6, e7, e9, e10, e11} Fϕ10 = {f3}
ϕ11 = {e8, e10, e11, e13, e16, e20} Fϕ11

= {f4}
Φc

3 = {ϕ12} FΦ3

ϕ12 = {e11, e12, e13, e14, e15, e16, e20} Fϕ12
= {f5}

Φc
4 = {ϕ13} FΦ4

ϕ13 = {e16, e17, e18, e19, e20} Fϕ13 = {f6}

These results demonstrate that all considered faults can be
detected and isolated, e.g. in Σ1: detectability is achieved
for f1 using ϕ4 ∈ Φl

i of Table 3 (not additional measure-
ment is needed). For f2, detectability is achieved obtaining
a compound FMSO set ϕ9 ∈ Φc

i lumping ϕ1 ∈ Φs
1 (as root

FMSO set) with λ1 ∈ Λs
1 and λ2 ∈ Λs

2. Figure 5 shows
a scheme of the proposed model based diagnosis for this
system: the four subsystems with their physical interactions
are represented on the left. On the right, each local diag-
noser LDi is rendered as a rectangle with selected FMSO
sets. The arrows from the corresponding subsystem sym-
bolize the direct measurement of local variables by the LD,
while the arrows between the local diagnosers account for
shared information necessary to complete local diagnosis.

Figure 5: Scheme of the decentralized diagnosis designed.

7 Conclusion
In this paper, a distributed fault diagnosis method is pre-
sented. Distributed diagnosis is of interest for on-board sys-
tems as a way to reduce computational costs or for large
geographically distributed systems that require to minimize
data transfer. First, we introduce the Fault-Driven Minimal
Structurally-Overdetermined (FMSO) set concept, which
can be directly used to construct one ARR or residual gen-
erator, as compared to MTES that lead to several. We be-
lieve that FMSO sets represent a more practical solution in



distributed contexts in which communication must be min-
imized. The paper then provides the results that show that
all the global FMSO sets, i.e. those that would be obtained
along a centralized approach, can be obtained from com-
putations performed at the level of local subsystems plus a
search procedure. This is possible thanks to the concept of
local FMSO set and shared FMSO/CMSO sets. The oper-
ational procedures for deriving in a distributed way all the
global FMSO sets and a ’good’ set of global FMSO sets are
presented. These are illustrated with the four tanks bench-
mark.

We are currently pursuing our work on the optimization
problem of generating a minimal cardinality set of com-
pound FMSO sets that minimize subsystems interactions.
The properties of the algorithm proposed in this paper, that
is based on a heuristic, also need to be assessed. Thereby,
we aim at obtaining optimal local diagnosers that guarantee
the same properties as the global diagnosis.
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