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Invariant solutions of minimal large-scale
structures in turbulent channel flow for Reτ

up to 1000
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Understanding the origin of large-scale structures in high-Reynolds-number wall
turbulence has been a central issue over a number of years. Recently, Rawat
et al. (J. Fluid Mech., vol. 782, 2015, pp. 515–540) have computed invariant
solutions for the large-scale structures in turbulent Couette flow at Reτ ≃ 128 using
an overdamped large-eddy simulation with the Smagorinsky model to account for
the effect of the surrounding small-scale motions. Here, we extend this approach to
Reynolds numbers an order of magnitude higher in turbulent channel flow, towards
the regime where the large-scale structures in the form of very-large-scale motions
(long streaky motions) and large-scale motions (short vortical structures) emerge
energetically. We demonstrate that a set of invariant solutions can be computed from
simulations of the self-sustaining large-scale structures in the minimal unit (domain of
size Lx = 3.0h streamwise and Lz = 1.5h spanwise) with midplane reflection symmetry
at least up to Reτ ≃ 1000. By approximating the surrounding small scales with
an artificially elevated Smagorinsky constant, a set of equilibrium states are found,
labelled upper- and lower-branch according to their associated drag. It is shown that
the upper-branch equilibrium state is a reasonable proxy for the spatial structure and
the turbulent statistics of the self-sustaining large-scale structures.

Key words: low-dimensional models, nonlinear dynamical systems, turbulent boundary layers

1. Introduction

The discovery of very-large-scale motions (VLSMs) has attracted significant interest
in research into wall-bounded turbulence over the past decade (e.g. Hutchins &
Marusic 2007). The VLSM features as a long streaky motion of streamwise turbulent
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kinetic energy in the outer region, and it is typically very energetic at sufficiently
high Reynolds numbers (Reτ & O(103) where Reτ is the friction Reynolds number).
It was initially proposed that this long streaky structure may be formed by the
concatenation of the large-scale vortical structures, known as the large-scale motions
(LSMs) (Kovasznay, Kibens & Blackwelder 1970), which themselves were speculated
to be formed by merger and/or growth of near-wall hairpin vortices via a ‘bottom-up’
process (for further details, the reader may refer to a recent summary on this
proposition by Adrian (2007)). However, there has been a growing body of recent
evidence that the outer structures are largely independent of the near-wall process:
for instance, disruption of the near-wall process with wall roughness affects the outer
statistics very little (Flores, Jiménez & del Álamo 2007).

We have recently shown that the coherent structures in the outer region sustain
themselves, even in the absence of the motions in the near-wall and logarithmic
regions (Hwang & Cossu 2010b; Rawat et al. 2015). The self-sustaining outer
structure is composed of two structural elements – a long streak and short
quasistreamwise vortices, which respectively correspond to the VLSM and the LSMs
(Hwang 2015). The self-sustaining process was also found to be almost identical
to that in the near-wall region: (1) the streaky structure (VLSM) is amplified by
the vortical structures (LSMs) via the lift-up effect (e.g. Cossu, Pujals & Depardon
2009; Pujals et al. 2009; Hwang & Cossu 2010a; Willis, Hwang & Cossu 2010); (2)
the amplified streak undergoes a rapid meandering motion via secondary instability
or transient growth (Park, Hwang & Cossu 2011); (3) the subsequent nonlinear
regeneration of the streamwise vortical structures (Hwang & Bengana 2016).

The existence of a self-sustaining process at large scale in the outer region is
of particular theoretical importance, because it indicates that the outer structures are
probably organised around invariant solutions of the system, often referred to as ‘exact
coherent structures’ (e.g. Nagata 1990; Waleffe 2001; Faisst & Eckhardt 2003; Wedin
& Kerswell 2004; Hall & Sherwin 2010; Park & Graham 2016, and many others).
The simplest non-trivial exact solutions of the Navier–Stokes equations are typically
in the form of a stationary or travelling wave, being equilibria or relative equilibria
in phase space. Together with unstable periodic and/or relative periodic orbits (e.g.
Kawahara & Kida 2001), these invariant solutions have been shown to form a skeleton
for solution trajectories in phase space (Gibson, Halcrow & Cvitanovic 2008; Willis,
Cvitanovic & Avila 2013, 2016), and their understanding from a dynamical systems
viewpoint has been at the heart of recent advancement in the understanding of bypass
transition and low-Reynolds-number turbulence.

The goal of the present study is to demonstrate that such invariant solutions are
also the driving mathematical mechanism of the large-scale outer structures given
with the VLSMs and the LSMs in high-Reynolds-number turbulent channel flow.
This task, however, has often been understood to be challenging. The principal
difficulty lies in the emergence of a huge number of invariant solutions, which
significantly hampers identification of which solutions are most relevant to given
coherent structures of interest. Furthermore, the computation of the invariant solutions
at such a high Reynolds number is often numerically very sensitive and expensive,
yielding a substantial technical barrier. To bypass these difficulties, Rawat et al. (2015)
and Rawat, Cossu & Rincon (2016) recently computed a set of coherent invariant
solutions at Reynolds numbers up to Reτ = 128 by modelling all the smaller-scale
structures around the structure of interest via large-eddy simulations (LESs) with
the Smagorinsky model. In these studies, the Smagorinsky constant Cs was taken as



a continuation parameter to replace the surrounding unsteady smaller-scale motions
with an elevated eddy viscosity, as in Hwang & Cossu (2010b, 2011). Here, we
extend this approach to a different regime of much higher Reynolds numbers up to
Reτ ≃ 1000, at which the VLSMs and the LSMs emerge energetically in the flow
domain, and show that the invariant solutions are directly linked with the formation
of the large-scale structures.

2. Numerical method

We consider a turbulent channel, with half-height h, in which x, y and z denote
the streamwise, wall-normal and spanwise direction respectively. The two walls are
located at y = 0 and y = 2h. We use a Navier–Stokes solver that is well documented in
Bewley (2014). In this solver, the streamwise and spanwise directions are discretised
using Fourier series with 2/3 dealiasing rule, whereas the wall-normal direction is
discretised using second-order central difference. A set of LESs are considered with
the static Smagorinsky model, as in previous studies (e.g. Hwang & Cossu 2010b,
2011; Rawat et al. 2015, 2016), i.e. τ̃ij − δij/3τ̃kk =−2νtS̃ij with νt = (Cs∆̃)2

S̃D , where
·̃ denotes the filtered quantity, Sij the strain rate tensor, Cs the Smagorinsky constant,
∆̃ = (∆̃1∆̃2∆̃3)

1/3 the nominal filter width, S̃ = (2S̃ijS̃ij)
1/2 the norm of the strain

rate tensor, and D = 1 − exp[−(y+/A+)3] with A+ = 25 is the van Driest damping
function. The Smagorinsky constant for turbulent channel flow is typically set in the
range between Cs = 0.05 and Cs = 0.10 (e.g. Moin & Kim 1982; Härtel & Kleiser
1998). In particular, Cs = 0.05 has been shown to provide the best performance in
terms of accurate generation of first- and second-order turbulent velocity statistics
(a posteriori test), while Cs = 0.10 is known for the model to provide the best
turbulent dissipation in comparison to the true value obtained in a direct numerical
simulation (DNS) (a priori test) (Härtel & Kleiser 1998; Meneveau & Katz 2000).
Mason & Cullen (1986) showed that the Smagorinsky constant Cs actually acts as
the filter width of the LES. Therefore, artificially increasing Cs allows one to damp
the small-scale motions without losing actual resolution of the large-scale structures,
as also demonstrated in Hwang & Cossu (2010b). It is also important to note that the
static Smagorinsky model prevents any energy transfer from the modelled residual
stress to the resolved motions, ensuring that the resolved motions sustain themselves
at the increased Cs. All the simulations in this study are performed by imposing
constant volume flux across the channel.

In the present study, computation of the invariant solutions is restricted to the
minimal unit for the self-sustaining process of the outer structures in Hwang & Cossu
(2010b), i.e. Lx = 3.0h and Lz = 1.5h where Lx and Lz are the streamwise and spanwise
domain sizes, respectively. An important benefit of the minimal unit is that it realises
a low-dimensional dynamical set of coherent structures in the form of a VLSM (long
outer streak) and LSMs (short outer vortices) without significant distortion of turbulent
statistics (Hwang & Cossu 2010b; Rawat 2014; Hwang & Bengana 2016). Given the
symmetry of turbulent statistics around the channel midplane, we will also focus
on seeking invariant solutions with mirror symmetry about y = h. For this purpose,
only the bottom half of the channel is solved by imposing the symmetric boundary
condition at the channel midplane (i.e. ∂u/∂y = 0, v = 0 and ∂w/∂y = 0 at y = h where
u, v and w are the streamwise, wall-normal and spanwise velocities, respectively).
Except for this setting, all the simulation parameters, including the number of grid
points, at two Reynolds numbers considered, Rem = 20 133 and Rem = 38 133, are
the same as those in Hwang & Cossu (2010b, 2011), as summarised in table 1.



Simulation Rem Reτ Lx/h Ly/h Lz/h Nx × Ny × Nz Uc/Um Cs

F550 20 133 539 3.0 1.0 1.5 32 × 33 × 32 1.15 0.05
S550 20 133 584 3.0 1.0 1.5 32 × 33 × 32 1.13 0.20

F950 38 133 958 3.0 1.0 1.5 48 × 41 × 48 1.13 0.05
S950 38 133 1189 3.0 1.0 1.5 48 × 41 × 48 1.13 0.30

TABLE 1. Simulation parameters in the present study (before dealiasing). Here, Rem =
2Umh/ν where Um is the bulk velocity. Note that Um = (2/3)Ul where Ul is the centreline
velocity of the corresponding laminar flow with the same volume flux. The simulations
tagged with ‘F’ indicate full simulations resolving near-wall motions, while those tagged
with ‘S’ are simulations with only self-sustaining outer motions made by increasing the
Smagorinsky constant Cs.

The artificially increased Cs values, by which the small-scale structures are replaced
with the eddy viscosity, but not the self-sustaining outer motions, are therefore also
the same as those in these works (see the parameters of simulations S550 and S950
in table 1). Finally, it should be noted that the two sets of grid points, respectively for
Rem = 20 133 and Rem = 38 133, in the present study are chosen such that the standard
LESs of the present study ensure good resolution for the small-scale near-wall motions
(Zang 1991, see also figure 1), as in our previous studies (Hwang & Cossu 2010b,
2011). An examination of the energy spectra reveals that these numbers of grid points
are also found to provide good spatial resolution for the computed invariant solutions,
at least for the elevated Cs. We also note that the resolution of the invariant solution
for Rem = 38 133 is finer than that in Waleffe (2001).

A reference simulation is first performed to check turbulence statistics of the
half-channel LES simulation at Reτ ≃ 950, with the value Cs = 0.05 (F950) known
to provide the best statistical fit to the full DNS result (Hwang & Cossu 2010b).
In figure 1, its first- and second-order turbulence statistics are compared with those
of full-channel LES with the same streamwise and spanwise computational domain
(Hwang & Cossu 2011) as well as those of DNS by del Álamo et al. (2004) at
Reτ = 934. Overall, the half-channel simulation generates fairly good turbulence
statistics compared with those from the full-channel LES, which itself shows
reasonable agreement with the data from full DNS. The only appreciable difference
between the half-channel and full-channel simulations appears in the wall-normal
velocity fluctuation very near the channel centre, due to the symmetry condition. This
indicates that the half-channel simulation does not lose important physical features,
except around the very centre of the channel, where mainly dissipation of structures
is expected due to the small shear in this region.

3. The invariant structures

3.1. Computation of invariant solutions

Now, we increase Cs such that the simulation contains only the large-scale self-
sustaining structures in the given computational domain (simulations S550 and S950
in table 1). By doing so, all the structures smaller than the large-scale structures are
removed, while their roles are modelled with the artificially elevated eddy viscosity. It
is very important to note that the removal with an appropriate increase in Cs does not
significantly distort the statistics and the self-sustaining dynamics of the large-scale
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FIGURE 1. (a) Mean velocity and (b) turbulent velocity fluctuations: ——, half-channel
simulation with Cs = 0.05 (F950); - - - -, full-channel simulation with Cs = 0.05 (Hwang &
Cossu 2011); – · – · –, DNS at Reτ = 934 by del Álamo et al. (2004).

structures themselves, as extensively discussed in the previous studies (Hwang &
Cossu 2010b; Hwang 2015; Rawat et al. 2015; Hwang & Bengana 2016). Therefore,
the computed invariant solutions at the artificially elevated Cs would conceptually
represent the structures in the ‘presence of the surrounding small scales’, which is
modelled by the eddy viscosity, while enabling us to compute the invariant solutions
with the relatively low resolutions at the high Reynolds numbers considered. The
invariant solutions of the system with the elevated Cs are sought in the subspace
satisfying the so-called shift-reflect symmetry

[u, v, w, p](x, y, z) = [u, v, −w, p](x − Lx/2, y, −z), (3.1)

where p is the pressure, together with the mirror symmetry about y = 0. It should
be mentioned that this specific symmetry is intentionally posed to find the invariant
solutions containing the ‘sinuous’ mode of streak instability (i.e. streak meandering
motions along the streamwise direction). The sinuous mode of streak instability has
been consistently found to be the dominant mechanism of the streak breakdown in
our previous theoretical analysis (Park et al. 2011) as well as the minimal channel
simulation for the outer structures (Hwang & Bengana 2016). Indeed, in this study,
we have also found that imposing the symmetry (3.1) in the present half-channel
simulation with the increased Cs (S550 and S950) does not engender any significant
difference from the simulation without this symmetry (see figure 4). It is worth
mentioning that Waleffe (2001) also imposed this symmetry for computation of his
invariant solutions for the same reason.

To compute the invariant solutions, we have implemented a Newton–Krylov–
Hookstep method and applied it to the present LES solver. Details of the method
are given in Willis et al. (2013), and it is similar to that proposed by Viswanath
(2007). This method computes an invariant solution by minimising the relative error
between an initial guess for an initial flow field and the same field time-stepped
by an interval T and shifted in the streamwise direction by a distance −lx. For an
equilibrium state the choice of T is arbitrary, and the phase speed of the equilibrium
is c = lx/T . Throughout this study, the computation of the invariant solutions is
carried out with T = 16.7h/Um. All the solutions are computed to a relative-error
tolerance of 10−7–10−8 between the initial and shifted end states. Since some of the
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FIGURE 2. Bifurcation of invariant solutions with Cs: (a) Rem = 20 133; (b) Rem = 38 133.
Here, the simulations S550 and S950 respectively correspond to Cs = 0.2 in (a) and
Cs = 0.3 in (b).

invariant solutions are expected to sit on the so-called ‘edge’ state, which refers to
the phase-space boundary manifold between the basic and the chaotic states (e.g.
Skufca, Yorke & Eckhardt 2006), we start by computing the edge state for the S550
simulation in the given subspace, using the standard bisection technique to obtain a
good initial guess for the Newton iteration (e.g. Duguet, Willis & Kerswell 2008;
Avila et al. 2013). Several instantaneous flow fields on the edge state are given for
initial guess of the Newton solver, and we found an invariant solution propagating
downstream with a constant speed (i.e. a travelling wave) from S550. Numerical
continuation in Cs is subsequently performed, as in Rawat (2014) and Rawat et al.

(2015).
Figure 2(a) shows the bifurcation of the invariant solutions with Cs by plotting Reτ

of each of the solutions. Here, we note that Reτ in this case is given as a measure of
the friction of each solution, revealing its relevance to high-Reynolds-number flows,
i.e. Reτ =2uτ/UmRem. Therefore, Reτ given here is different for each invariant solution
and represents its friction. Continuation reveals that the invariant solutions experience
a saddle-node bifurcation as Cs is gradually lowered from a large value. Two invariant
solutions are found to emerge at the critical Cs (≃ 0.335), as often observed in
transitional Reynolds numbers: one has a low drag (lower-branch solution) and the
other has a high drag (upper-branch solution). The solutions obtained at Rem = 20 133
are further continued to a higher Reynolds number, Rem = 38 133. Essentially, the
same behaviour with Cs is obtained at this Reynolds number, as shown in figure 2(b).

3.2. Spatial structure of the invariant solutions

The computed invariant solutions are visualised in figure 3. Both of the upper-
and lower-branch solutions are characterised by a ‘wavy’ streak (blue isosurfaces)
and streamwise vortices on the flank (red isosurfaces), clearly reflecting their tight
physical link to the self-sustaining process of the outer coherent structures, i.e. streak
generation via the lift-up effect with the vortices, and sinuous-mode streak instability
with nonlinear feeding of the vortices. The upper-branch solution exhibits a strongly
wavy streak and intense streamwise vortices, while the lower-branch solution is
composed of a relatively straight streak and weak streamwise vortices (see the levels
of the red isosurfaces in figure 3). This feature is consistent with that of the invariant
solutions in, e.g., Waleffe (2001). The invariant solutions here, however, are obtained
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FIGURE 3. Visualisation of the invariant solutions: (a) U950; (b) L950. In both (a) and
(b), the blue isosurfaces indicate u+ = −2.96 and the green ones νt = 7.2ν. The red
isosurfaces in (a) and (b) are Q+ = 3.6 × 10−5 and Q+ = 2.0 × 10−5, respectively.
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FIGURE 4. The wall-normal profile of (a) mean velocity, and (b) streamwise, (c) wall-
normal and (d) spanwise velocity fluctuations: ——, S950; - - - -, the symmetry-constrained
S950; – ·· – ·· –, U950; – · – · –, L950.

by modelling the surrounding small-scale structures with an eddy viscosity. The eddy
viscosity is typically found to be quite strong around the streak, where high local shear
is expected (the green isosurfaces in figure 3), as also found by Rawat et al. (2015,
2016). However, here the related turbulent dissipation is found to dominate over the



Case Rem Reτ Uc/Um c/Um c/Uc c+ Cs

U550 20 133 597 1.29 0.86 0.66 14.5 0.20
U950 38 133 1229 1.29 0.86 0.67 13.4 0.30

L550 20 133 420 1.34 0.84 0.63 20.2 0.20
L950 38 133 878 1.32 0.82 0.62 18.0 0.30

TABLE 2. Scaling of the speed of the invariant solutions. Here, c and Uc are the
propagating speed and the centreline velocity of each travelling wave solution, respectively.
In the first column, U and L respectively indicate the upper- and lower-branch solutions.

kinematic viscosity because of the high Reynolds numbers considered – the maximum
eddy viscosities of the upper- and the lower-branch solutions are respectively found
as νt = 8.48ν and νt = 7.6ν, the values being an order of magnitude larger than those
in Rawat et al. (2015, 2016). This follows from the higher values of Cs and, in
particular, the much higher Reynolds numbers considered here.

Table 2 summarises the propagating speed of the computed invariant solutions with
their friction velocity and centreline velocity at Rem = 20 133 and Rem = 38 133. The
propagating speeds of the upper- and the lower-branch solutions are respectively found
to be c ≃ 0.66Uc and c ≃ 0.62Uc, and they scale more closely with their centreline
velocity Uc than with their friction velocity uτ . Although the centreline velocity Uc

of each of the invariant solutions is not the same as that from full turbulent statistics
given in figure 1, this finding supports the observation by del Álamo & Jiménez (2009)
and Song et al. (2016), who showed that the advection velocity of the outer structures
scales with the centreline velocity. This behaviour is quite intriguing, because the
single turnover time scale of self-sustaining process of outer coherent structures has
been found to scale well with the friction velocity uτ (Hwang & Bengana 2016). It
is currently too early to draw any firm conclusion, but this indicates that the velocity
scale of propagation of an outer structure might not be the same as the turnover time
scale of the self-sustaining process.

The first- and second-order statistics of the two computed invariant solutions are
compared with those of simulation S950 in figure 4. Here, the data of S950 with the
shift-reflect symmetry (3.1) are plotted together. The good agreement of the statistics
of simulations S950 and S950 with (3.1) suggests that the present minimal unit for the
large-scale structures in the shift-reflect subspace does not greatly limit the generation
of good statistics. The statistics of the upper-branch solution U950 are found to
show reasonably good agreement with those of S950 roughly below y ≃ 0.4h–0.5h,
despite the fact that the solution itself is a relative equilibrium, not able to fully
describe the chaotic, quasiperiodic dynamics of simulation S950 (i.e. bursting (Flores
& Jiménez 2010; Hwang & Bengana 2016)). We also note that the difference in
statistics between an upper-branch solution and full simulation is expected. This level
of difference also appears in other works that make the analogous comparison at
low Reynolds numbers (e.g. Kerswell & Tutty 2007; Schneider, Eckhardt & Yorke
2007; Park & Graham 2016). As these authors indicate, this observation suggests
that computation of unstable time-periodic orbits would be a more promising way to
represent the dynamics of coherent structures in simulation S950 (Kawahara & Kida
2001; Gibson et al. 2008; Willis et al. 2013). Also as expected, the statistics of the
lower-branch solution L950 do not show such a level of agreement – the lower-branch
solution sits on the edge state of simulation S950. These results indicate that only
the upper-branch solution is statistically similar to simulation S950.
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FIGURE 5. Phase portrait in the planes (a) Estreak–Evor and (b) I–D at Rem = 38 133, where
Il and Dl indicate the corresponding production and dissipation of laminar flow at the same
Reynolds number. Colours: red, S950; dashed green, the symmetry-constrained S950; blue,
U950; orange, L950.

Finally, the invariant solutions and the solution trajectories of simulations S950 and
the symmetry-constrained S950 are projected onto the planes Estreak–Evor and I–D,
reported in figure 5. Here, Estreak and Evor respectively represent energy of the streak
and that of the streamwise vortices, and are defined by Estreak =[1/(2V)]

∫
V
(u′/Um)2 dV

and Evor = [1/(2V)]
∫

V
(v/Um)2 + (w/Um)2 dy, where u′ is the streamwise velocity

fluctuation. I and D are respectively the energy input and dissipation of the system,
defined by I =−(1/V)

∫
V

u ·∇p dV and D=−(1/V)
∫

V
u · (∇ · ((νT/2)(∇u+∇u

T))) dV

with u = (u, v, w) and νT = ν + νt. We note that if E ≡ [1/(2V)]
∫

V
u · u dV , then

dE/dt = I − D. In the plane Estreak–Evor (figure 5a), solution trajectories for both
simulations S950 and the symmetry-constrained S950 reveal that their Estreak and
Evor are found to be slightly negatively correlated, indicating the presence of the
self-sustaining process given by the interaction between the streak and the streamwise
vortices. The solution trajectories of these simulations are maintained roughly around
20Il and 20Dl in the I–D plane (figure 5b); these values are an order of magnitude
larger than those at low Reynolds numbers (e.g. Kawahara & Kida 2001; Gibson
et al. 2008; Willis et al. 2013, 2016). This is essentially due to the high Reynolds
number considered in the present study, which leads to the energy input to the system
being substantially larger than that at low Reynolds numbers. This indicates that the
role of the eddy viscosity introduced here differs from that of the molecular one,
because it enables us to maintain the large energy input to the system occurring
in a high-Reynolds-number flow unlike the molecular viscosity. In both the planes
Estreak–Evor and I–D, the upper-branch solution U950 is found to be placed in the
middle of the turbulent trajectories of simulations S950 and the symmetry-constrained
S950. The lower-branch solution L950 is almost completely separated from the
trajectories, consistent with the observation on the first- and second-order statistics
made with figure 4.

3.3. Bifurcation with the Reynolds number

Finally, to understand the connection between the invariant states of the Navier–Stokes
equation at transitional Reynolds number and those of this study at fairly high
Reynolds numbers, numerical continuation is further performed by gradually lowering
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E, Cs = 0.0;u, Cs = 0.30.

the Reynolds number using the computed invariant solutions with high resolution
at Reτ ≃ 950 (i.e. U950 and L950). Figure 6 reports bifurcation of the invariant
solutions with the Reynolds number. The solutions for Cs = 0.30 reveal a saddle-node
bifurcation at a fairly low critical Reynolds number around Rem,c ≃ 1693–1707
(Reτ ,c ≃ 71). The Smagorinsky constant Cs is subsequently lowered around this low
Rem, such that invariant solutions of the Navier–Stokes equation are retrieved. The
exact solutions, directly linked to the large-scale structures in the minimal unit,
are found to emerge approximately at Rem,c ≃ 1120 (Reτ ,c ≃ 52) via saddle-node
bifurcation. We note that this Rem,c is much lower than Rem,c ≃ 1867 (Reτ ,c ≃ 68.2)
of the invariant solutions found by Park & Graham (2016) with a similar box size,
due to the different symmetry imposed in the present study (their solution P4 with
Lx × Lz = πh × π/2h).

The exact solutions of the Navier–Stokes equations (Cs = 0.0) are finally continued
by increasing the Reynolds number. While the upper-branch solution could not be
continued for Rem & 2223, the lower-branch solution is obtained up to Rem = 8889.
Interestingly, the lower-branch solution of the Navier–Stokes equation is found to
generate smaller skin friction than those solutions with elevated eddy viscosity
(Cs = 0.30) on increasing the Reynolds number. However, it should be noted that
the eddy viscosity used here is designed to model all the surrounding smaller-scale
structures, including the near-wall motions generating an appreciable amount of
turbulent skin friction. The difference between the solutions with Cs = 0.0 and
Cs = 0.30 probably originates from this nature of the eddy viscosity.

4. Concluding remarks

Invariant solutions corresponding to large-scale turbulent motions at high Reynolds
numbers have been obtained following the approach of Rawat (2014) and Rawat
et al. (2015, 2016), where surrounding small-scale structures are modelled with
an eddy viscosity (i.e. Smagorinsky model with the artificially elevated Cs as a
continuation parameter). Here, we show that these solutions, and in particular the
upper-branch solution, can be obtained at much higher Reynolds numbers (up to
Reτ ≃ 1000), a different regime where the large-scale structures in the form of long
streaks (VLSMs) and quasistreamwise vortical structures (LSMs) emerge energetically
in turbulent channel flow. This finding suggests that the large-scale structures are
probably organised around these invariant solutions, providing direct evidence of their



significance at sufficiently high Reynolds numbers. This finding also tightly establishes
their relation to the self-sustaining process of the large-scale structures (Hwang &
Cossu 2010b; Rawat et al. 2015; Hwang & Bengana 2016), while implying that the
dynamical systems approach, plus visualisation of the relevant phase space, could be
used to enlighten at least some aspects of the given coherent structures at fairly high
Reynolds numbers. However, the invariant solutions found here do not fully represent
the dynamics occurring in real flows (i.e. bursting (Flores & Jiménez 2010; Hwang
& Bengana 2016)). In this respect, extending the present approach to computation of
the relative periodic orbits would be a fruitful path to follow towards more accurate
modelling of the large-scale dynamics (Kawahara & Kida 2001; Willis et al. 2013,
2016). Finally, it should be mentioned that the self-sustaining energy-containing
motions in wall-bounded turbulent flows at high Reynolds numbers appear in a
self-similar form throughout the entire logarithmic region (Hwang & Cossu 2011;
Hwang 2015), as originally hypothesised by Townsend (1976) (i.e. attached eddy
hypothesis). Each of the energy-containing motions is typically characterised by its
spanwise length scale (Hwang & Cossu 2011; Hwang 2015; Hwang & Bengana 2016),
suggesting that the invariant solutions with different spanwise length scales may be
linked to these self-similar motions. This also implies that a thorough investigation of
the invariant solutions with different sets of the length scales needs to be carried out
in order to clarify the relation between the ‘real’ and ‘exact’ coherent structures using
a numerical experiment given in the present study. Exploring such a link between
the invariant solutions and the concept of the attached eddies might unveil the nature
of the self-sustaining coherent structures. This would be an important step towards
a consistent theoretical description of wall-bounded shear flows in a wide range of
Reynolds numbers, because the attached eddy hypothesis has provided an important
theoretical basis for a consistent statistical description of high-Reynolds-number wall
turbulence (e.g. Townsend 1976; Perry & Chong 1982).
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