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Understanding the origin of large-scale structures in high-Reynolds-number wall turbulence has been a central issue over a number of years. Recently, Rawat et al. (J. Fluid Mech., vol. 782, 2015, pp. 515-540) have computed invariant solutions for the large-scale structures in turbulent Couette flow at Re τ ≃ 128 using an overdamped large-eddy simulation with the Smagorinsky model to account for the effect of the surrounding small-scale motions. Here, we extend this approach to Reynolds numbers an order of magnitude higher in turbulent channel flow, towards the regime where the large-scale structures in the form of very-large-scale motions (long streaky motions) and large-scale motions (short vortical structures) emerge energetically. We demonstrate that a set of invariant solutions can be computed from simulations of the self-sustaining large-scale structures in the minimal unit (domain of size L x = 3.0h streamwise and L z = 1.5h spanwise) with midplane reflection symmetry at least up to Re τ ≃ 1000. By approximating the surrounding small scales with an artificially elevated Smagorinsky constant, a set of equilibrium states are found, labelled upper-and lower-branch according to their associated drag. It is shown that the upper-branch equilibrium state is a reasonable proxy for the spatial structure and the turbulent statistics of the self-sustaining large-scale structures.

Introduction

The discovery of very-large-scale motions (VLSMs) has attracted significant interest in research into wall-bounded turbulence over the past decade (e.g. [START_REF] Hutchins | Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[END_REF]. The VLSM features as a long streaky motion of streamwise turbulent kinetic energy in the outer region, and it is typically very energetic at sufficiently high Reynolds numbers (Re τ O(10 3 ) where Re τ is the friction Reynolds number). It was initially proposed that this long streaky structure may be formed by the concatenation of the large-scale vortical structures, known as the large-scale motions (LSMs) [START_REF] Kovasznay | Large-scale motion in the intermittent region of a turbulent boundary layer[END_REF], which themselves were speculated to be formed by merger and/or growth of near-wall hairpin vortices via a 'bottom-up' process (for further details, the reader may refer to a recent summary on this proposition by [START_REF] Adrian | Hairpin vortex organization in wall turbulence[END_REF]). However, there has been a growing body of recent evidence that the outer structures are largely independent of the near-wall process: for instance, disruption of the near-wall process with wall roughness affects the outer statistics very little [START_REF] Flores | Vorticity organization in the outer layer of turbulent channels with disturbed walls[END_REF].

We have recently shown that the coherent structures in the outer region sustain themselves, even in the absence of the motions in the near-wall and logarithmic regions (Hwang & Cossu 2010b;[START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF]. The self-sustaining outer structure is composed of two structural elements -a long streak and short quasistreamwise vortices, which respectively correspond to the VLSM and the LSMs [START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF]. The self-sustaining process was also found to be almost identical to that in the near-wall region: (1) the streaky structure (VLSM) is amplified by the vortical structures (LSMs) via the lift-up effect (e.g. Cossu, Pujals & Depardon 2009;[START_REF] Pujals | A note on optimal transient growth in turbulent channel flows[END_REF]Hwang & Cossu 2010a;[START_REF] Willis | Optimally amplified large-scale streaks and drag reduction in the turbulent pipe flow[END_REF]; (2) the amplified streak undergoes a rapid meandering motion via secondary instability or transient growth [START_REF] Park | On the stability of large-scale streaks in the turbulent Couette and Poiseuille flows[END_REF]); (3) the subsequent nonlinear regeneration of the streamwise vortical structures [START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF].

The existence of a self-sustaining process at large scale in the outer region is of particular theoretical importance, because it indicates that the outer structures are probably organised around invariant solutions of the system, often referred to as 'exact coherent structures' (e.g. [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF][START_REF] Waleffe | Exact coherent structures in channel flow[END_REF][START_REF] Faisst | Travelling waves in pipe flow[END_REF][START_REF] Wedin | Exact coherent structures in pipe flow: travelling wave solutions[END_REF][START_REF] Hall | Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures[END_REF]Park & Graham 2016, and many others). The simplest non-trivial exact solutions of the Navier-Stokes equations are typically in the form of a stationary or travelling wave, being equilibria or relative equilibria in phase space. Together with unstable periodic and/or relative periodic orbits (e.g. [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF], these invariant solutions have been shown to form a skeleton for solution trajectories in phase space [START_REF] Gibson | Visualizing the geometry of state space in plane Couette flow[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF], 2016), and their understanding from a dynamical systems viewpoint has been at the heart of recent advancement in the understanding of bypass transition and low-Reynolds-number turbulence.

The goal of the present study is to demonstrate that such invariant solutions are also the driving mathematical mechanism of the large-scale outer structures given with the VLSMs and the LSMs in high-Reynolds-number turbulent channel flow. This task, however, has often been understood to be challenging. The principal difficulty lies in the emergence of a huge number of invariant solutions, which significantly hampers identification of which solutions are most relevant to given coherent structures of interest. Furthermore, the computation of the invariant solutions at such a high Reynolds number is often numerically very sensitive and expensive, yielding a substantial technical barrier. To bypass these difficulties, [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF] and [START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF] recently computed a set of coherent invariant solutions at Reynolds numbers up to Re τ = 128 by modelling all the smaller-scale structures around the structure of interest via large-eddy simulations (LESs) with the Smagorinsky model. In these studies, the Smagorinsky constant C s was taken as a continuation parameter to replace the surrounding unsteady smaller-scale motions with an elevated eddy viscosity, as in Hwang & Cossu (2010b, 2011). Here, we extend this approach to a different regime of much higher Reynolds numbers up to Re τ ≃ 1000, at which the VLSMs and the LSMs emerge energetically in the flow domain, and show that the invariant solutions are directly linked with the formation of the large-scale structures.

Numerical method

We consider a turbulent channel, with half-height h, in which x, y and z denote the streamwise, wall-normal and spanwise direction respectively. The two walls are located at y = 0 and y = 2h. We use a Navier-Stokes solver that is well documented in [START_REF] Bewley | Numerical Renaissance: Simulation, Optimization, and Control[END_REF]. In this solver, the streamwise and spanwise directions are discretised using Fourier series with 2/3 dealiasing rule, whereas the wall-normal direction is discretised using second-order central difference. A set of LESs are considered with the static Smagorinsky model, as in previous studies (e.g. Hwang & Cossu 2010b, 2011;[START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF], i.e. τijδ ij /3 τkk = -2ν t Sij with ν t = (C s ∆) 2 SD, where • denotes the filtered quantity, S ij the strain rate tensor, C s the Smagorinsky constant, ∆ = ( ∆1 ∆2 ∆3 ) 1/3 the nominal filter width, S = (2 Sij Sij ) 1/2 the norm of the strain rate tensor, and D = 1 -exp[-(y + /A + ) 3 ] with A + = 25 is the van Driest damping function. The Smagorinsky constant for turbulent channel flow is typically set in the range between C s = 0.05 and C s = 0.10 (e.g. [START_REF] Moin | Numerical investigation of turbulent channel flow[END_REF][START_REF] Härtel | Analysis and modelling of subgrid-scale motions in near-wall turbulence[END_REF]. In particular, C s = 0.05 has been shown to provide the best performance in terms of accurate generation of first-and second-order turbulent velocity statistics (a posteriori test), while C s = 0.10 is known for the model to provide the best turbulent dissipation in comparison to the true value obtained in a direct numerical simulation (DNS) (a priori test) [START_REF] Härtel | Analysis and modelling of subgrid-scale motions in near-wall turbulence[END_REF][START_REF] Meneveau | Scale-invariance and turbulence models for large-eddy simulation[END_REF]. [START_REF] Mason | On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow[END_REF] showed that the Smagorinsky constant C s actually acts as the filter width of the LES. Therefore, artificially increasing C s allows one to damp the small-scale motions without losing actual resolution of the large-scale structures, as also demonstrated in Hwang & Cossu (2010b). It is also important to note that the static Smagorinsky model prevents any energy transfer from the modelled residual stress to the resolved motions, ensuring that the resolved motions sustain themselves at the increased C s . All the simulations in this study are performed by imposing constant volume flux across the channel.

In the present study, computation of the invariant solutions is restricted to the minimal unit for the self-sustaining process of the outer structures in Hwang & Cossu (2010b), i.e. L x = 3.0h and L z = 1.5h where L x and L z are the streamwise and spanwise domain sizes, respectively. An important benefit of the minimal unit is that it realises a low-dimensional dynamical set of coherent structures in the form of a VLSM (long outer streak) and LSMs (short outer vortices) without significant distortion of turbulent statistics (Hwang & Cossu 2010b;[START_REF] Rawat | Coherent dynamics of large-scale turbulent motions[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]. Given the symmetry of turbulent statistics around the channel midplane, we will also focus on seeking invariant solutions with mirror symmetry about y = h. For this purpose, only the bottom half of the channel is solved by imposing the symmetric boundary condition at the channel midplane (i.e. ∂u/∂y = 0, v = 0 and ∂w/∂y = 0 at y = h where u, v and w are the streamwise, wall-normal and spanwise velocities, respectively). Except for this setting, all the simulation parameters, including the number of grid points, at two Reynolds numbers considered, Re m = 20 133 and Re m = 38 133, are the same as those in Hwang & Cossu (2010b, 2011), as summarised in table 1. The artificially increased C s values, by which the small-scale structures are replaced with the eddy viscosity, but not the self-sustaining outer motions, are therefore also the same as those in these works (see the parameters of simulations S550 and S950 in table 1). Finally, it should be noted that the two sets of grid points, respectively for Re m = 20 133 and Re m = 38 133, in the present study are chosen such that the standard LESs of the present study ensure good resolution for the small-scale near-wall motions [START_REF] Zang | Numerical simulation of the dynamics of turbulent boundary layers: perspectives of a transition simulator[END_REF], see also figure 1), as in our previous studies (Hwang & Cossu 2010b, 2011). An examination of the energy spectra reveals that these numbers of grid points are also found to provide good spatial resolution for the computed invariant solutions, at least for the elevated C s . We also note that the resolution of the invariant solution for Re m = 38 133 is finer than that in [START_REF] Waleffe | Exact coherent structures in channel flow[END_REF]. A reference simulation is first performed to check turbulence statistics of the half-channel LES simulation at Re τ ≃ 950, with the value C s = 0.05 (F950) known to provide the best statistical fit to the full DNS result (Hwang & Cossu 2010b).

Simulation Re m Re τ L x /h L y /h L z /h N x × N y × N z U c /U m C s F550 20 
In figure 1, its first-and second-order turbulence statistics are compared with those of full-channel LES with the same streamwise and spanwise computational domain (Hwang & Cossu 2011) as well as those of DNS by del Álamo et al. (2004) at Re τ = 934. Overall, the half-channel simulation generates fairly good turbulence statistics compared with those from the full-channel LES, which itself shows reasonable agreement with the data from full DNS. The only appreciable difference between the half-channel and full-channel simulations appears in the wall-normal velocity fluctuation very near the channel centre, due to the symmetry condition. This indicates that the half-channel simulation does not lose important physical features, except around the very centre of the channel, where mainly dissipation of structures is expected due to the small shear in this region.

The invariant structures

Computation of invariant solutions

Now, we increase C s such that the simulation contains only the large-scale selfsustaining structures in the given computational domain (simulations S550 and S950 in table 1). By doing so, all the structures smaller than the large-scale structures are removed, while their roles are modelled with the artificially elevated eddy viscosity. It is very important to note that the removal with an appropriate increase in C s does not significantly distort the statistics and the self-sustaining dynamics of the large-scale structures themselves, as extensively discussed in the previous studies (Hwang & Cossu 2010b;[START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF][START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]. Therefore, the computed invariant solutions at the artificially elevated C s would conceptually represent the structures in the 'presence of the surrounding small scales', which is modelled by the eddy viscosity, while enabling us to compute the invariant solutions with the relatively low resolutions at the high Reynolds numbers considered. The invariant solutions of the system with the elevated C s are sought in the subspace satisfying the so-called shift-reflect symmetry

[u, v, w, p](x, y, z) = [u, v, -w, p](x -L x /2, y, -z), (3.1)
where p is the pressure, together with the mirror symmetry about y = 0. It should be mentioned that this specific symmetry is intentionally posed to find the invariant solutions containing the 'sinuous' mode of streak instability (i.e. streak meandering motions along the streamwise direction). The sinuous mode of streak instability has been consistently found to be the dominant mechanism of the streak breakdown in our previous theoretical analysis [START_REF] Park | On the stability of large-scale streaks in the turbulent Couette and Poiseuille flows[END_REF] as well as the minimal channel simulation for the outer structures [START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]. Indeed, in this study, we have also found that imposing the symmetry (3.1) in the present half-channel simulation with the increased C s (S550 and S950) does not engender any significant difference from the simulation without this symmetry (see figure 4). It is worth mentioning that Waleffe (2001) also imposed this symmetry for computation of his invariant solutions for the same reason.

To compute the invariant solutions, we have implemented a Newton-Krylov-Hookstep method and applied it to the present LES solver. Details of the method are given in [START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF], and it is similar to that proposed by [START_REF] Viswanath | Recurrent motions within plane Couette turbulence[END_REF]. This method computes an invariant solution by minimising the relative error between an initial guess for an initial flow field and the same field time-stepped by an interval T and shifted in the streamwise direction by a distance -l x . For an equilibrium state the choice of T is arbitrary, and the phase speed of the equilibrium is c = l x /T. Throughout this study, the computation of the invariant solutions is carried out with T = 16.7h/U m . All the solutions are computed to a relative-error tolerance of 10 -7 -10 -8 between the initial and shifted end states. Since some of the invariant solutions are expected to sit on the so-called 'edge' state, which refers to the phase-space boundary manifold between the basic and the chaotic states (e.g. [START_REF] Skufca | Edge of chaos in a parallel shear flow[END_REF], we start by computing the edge state for the S550 simulation in the given subspace, using the standard bisection technique to obtain a good initial guess for the Newton iteration (e.g. [START_REF] Duguet | Transition in pipe flow: the saddle structure on the boundary of turbulence[END_REF][START_REF] Avila | Streamwise-localized solutions at the onset of turbulence in pipe flow[END_REF]. Several instantaneous flow fields on the edge state are given for initial guess of the Newton solver, and we found an invariant solution propagating downstream with a constant speed (i.e. a travelling wave) from S550. Numerical continuation in C s is subsequently performed, as in [START_REF] Rawat | Coherent dynamics of large-scale turbulent motions[END_REF] and [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF].

Figure 2(a) shows the bifurcation of the invariant solutions with C s by plotting Re τ of each of the solutions. Here, we note that Re τ in this case is given as a measure of the friction of each solution, revealing its relevance to high-Reynolds-number flows, i.e. Re τ = 2u τ /U m Re m . Therefore, Re τ given here is different for each invariant solution and represents its friction. Continuation reveals that the invariant solutions experience a saddle-node bifurcation as C s is gradually lowered from a large value. Two invariant solutions are found to emerge at the critical C s (≃ 0.335), as often observed in transitional Reynolds numbers: one has a low drag (lower-branch solution) and the other has a high drag (upper-branch solution). The solutions obtained at Re m = 20 133 are further continued to a higher Reynolds number, Re m = 38 133. Essentially, the same behaviour with C s is obtained at this Reynolds number, as shown in figure 2(b).

Spatial structure of the invariant solutions

The computed invariant solutions are visualised in figure 3. Both of the upperand lower-branch solutions are characterised by a 'wavy' streak (blue isosurfaces) and streamwise vortices on the flank (red isosurfaces), clearly reflecting their tight physical link to the self-sustaining process of the outer coherent structures, i.e. streak generation via the lift-up effect with the vortices, and sinuous-mode streak instability with nonlinear feeding of the vortices. The upper-branch solution exhibits a strongly wavy streak and intense streamwise vortices, while the lower-branch solution is composed of a relatively straight streak and weak streamwise vortices (see the levels of the red isosurfaces in figure 3). This feature is consistent with that of the invariant solutions in, e.g., [START_REF] Waleffe | Exact coherent structures in channel flow[END_REF]. The invariant solutions here, however, are obtained 
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by modelling the surrounding small-scale structures with an eddy viscosity. The eddy viscosity is typically found to be quite strong around the streak, where high local shear is expected (the green isosurfaces in figure 3), as also found by [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF]. However, here the related turbulent dissipation is found to dominate over the kinematic viscosity because of the high Reynolds numbers considered -the maximum eddy viscosities of the upper-and the lower-branch solutions are respectively found as ν t = 8.48ν and ν t = 7.6ν, the values being an order of magnitude larger than those in [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF]. This follows from the higher values of C s and, in particular, the much higher Reynolds numbers considered here. Table 2 summarises the propagating speed of the computed invariant solutions with their friction velocity and centreline velocity at Re m = 20 133 and Re m = 38 133. The propagating speeds of the upper-and the lower-branch solutions are respectively found to be c ≃ 0.66U c and c ≃ 0.62U c , and they scale more closely with their centreline velocity U c than with their friction velocity u τ . Although the centreline velocity U c of each of the invariant solutions is not the same as that from full turbulent statistics given in figure 1, this finding supports the observation by del [START_REF] Del Álamo | Estimation of turbulent convection velocities and corrections to Taylor's approximation[END_REF] and [START_REF] Song | Speed and structure of turbulent fronts in pipe flow[END_REF], who showed that the advection velocity of the outer structures scales with the centreline velocity. This behaviour is quite intriguing, because the single turnover time scale of self-sustaining process of outer coherent structures has been found to scale well with the friction velocity u τ [START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]. It is currently too early to draw any firm conclusion, but this indicates that the velocity scale of propagation of an outer structure might not be the same as the turnover time scale of the self-sustaining process.

The first-and second-order statistics of the two computed invariant solutions are compared with those of simulation S950 in figure 4. Here, the data of S950 with the shift-reflect symmetry (3.1) are plotted together. The good agreement of the statistics of simulations S950 and S950 with (3.1) suggests that the present minimal unit for the large-scale structures in the shift-reflect subspace does not greatly limit the generation of good statistics. The statistics of the upper-branch solution U950 are found to show reasonably good agreement with those of S950 roughly below y ≃ 0.4h-0.5h, despite the fact that the solution itself is a relative equilibrium, not able to fully describe the chaotic, quasiperiodic dynamics of simulation S950 (i.e. bursting [START_REF] Flores | Hierarchy of minimal flow units in the logarithmic layer[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]). We also note that the difference in statistics between an upper-branch solution and full simulation is expected. This level of difference also appears in other works that make the analogous comparison at low Reynolds numbers (e.g. [START_REF] Kerswell | Recurrence of travelling waves in transitional pipe flow[END_REF][START_REF] Schneider | Turbulence transition and the edge of chaos in pipe flow[END_REF][START_REF] Park | Exact coherent states and connections to turbulent dynamics in minimal channel flow[END_REF]. As these authors indicate, this observation suggests that computation of unstable time-periodic orbits would be a more promising way to represent the dynamics of coherent structures in simulation S950 [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF][START_REF] Gibson | Visualizing the geometry of state space in plane Couette flow[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF]. Also as expected, the statistics of the lower-branch solution L950 do not show such a level of agreement -the lower-branch solution sits on the edge state of simulation S950. These results indicate that only the upper-branch solution is statistically similar to simulation S950. Finally, the invariant solutions and the solution trajectories of simulations S950 and the symmetry-constrained S950 are projected onto the planes E streak -E vor and I-D, reported in figure 5. Here, E streak and E vor respectively represent energy of the streak and that of the streamwise vortices, and are defined by

E streak = [1/(2V)] V (u ′ /U m ) 2 dV and E vor = [1/(2V)] V (v/U m ) 2 + (w/U m ) 2 dy
, where u ′ is the streamwise velocity fluctuation. I and D are respectively the energy input and dissipation of the system, defined by

I = -(1/V) V u • ∇p dV and D = -(1/V) V u • (∇ • ((ν T /2)(∇u + ∇u T )))
dV with u = (u, v, w) and ν T = ν + ν t . We note that if E ≡ [1/(2V)] V u • u dV, then dE/dt = I -D. In the plane E streak -E vor (figure 5a), solution trajectories for both simulations S950 and the symmetry-constrained S950 reveal that their E streak and E vor are found to be slightly negatively correlated, indicating the presence of the self-sustaining process given by the interaction between the streak and the streamwise vortices. The solution trajectories of these simulations are maintained roughly around 20I l and 20D l in the I-D plane (figure 5b); these values are an order of magnitude larger than those at low Reynolds numbers (e.g. [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF][START_REF] Gibson | Visualizing the geometry of state space in plane Couette flow[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF][START_REF] Willis | Symmetry reduction in high dimensions, illustrated in a turbulent pipe[END_REF]. This is essentially due to the high Reynolds number considered in the present study, which leads to the energy input to the system being substantially larger than that at low Reynolds numbers. This indicates that the role of the eddy viscosity introduced here differs from that of the molecular one, because it enables us to maintain the large energy input to the system occurring in a high-Reynolds-number flow unlike the molecular viscosity. In both the planes E streak -E vor and I-D, the upper-branch solution U950 is found to be placed in the middle of the turbulent trajectories of simulations S950 and the symmetry-constrained S950. The lower-branch solution L950 is almost completely separated from the trajectories, consistent with the observation on the first-and second-order statistics made with figure 4.

Bifurcation with the Reynolds number

Finally, to understand the connection between the invariant states of the Navier-Stokes equation at transitional Reynolds number and those of this study at fairly high Reynolds numbers, numerical continuation is further performed by gradually lowering The exact solutions of the Navier-Stokes equations (C s = 0.0) are finally continued by increasing the Reynolds number. While the upper-branch solution could not be continued for Re m 2223, the lower-branch solution is obtained up to Re m = 8889. Interestingly, the lower-branch solution of the Navier-Stokes equation is found to generate smaller skin friction than those solutions with elevated eddy viscosity (C s = 0.30) on increasing the Reynolds number. However, it should be noted that the eddy viscosity used here is designed to model all the surrounding smaller-scale structures, including the near-wall motions generating an appreciable amount of turbulent skin friction. The difference between the solutions with C s = 0.0 and C s = 0.30 probably originates from this nature of the eddy viscosity.

Concluding remarks

Invariant solutions corresponding to large-scale turbulent motions at high Reynolds numbers have been obtained following the approach of Rawat (2014) and [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF], where surrounding small-scale structures are modelled with an eddy viscosity (i.e. Smagorinsky model with the artificially elevated C s as a continuation parameter). Here, we show that these solutions, and in particular the upper-branch solution, can be obtained at much higher Reynolds numbers (up to Re τ ≃ 1000), a different regime where the large-scale structures in the form of long streaks (VLSMs) and quasistreamwise vortical structures (LSMs) emerge energetically in turbulent channel flow. This finding suggests that the large-scale structures are probably organised around these invariant solutions, providing direct evidence of their significance at sufficiently high Reynolds numbers. This finding also tightly establishes their relation to the self-sustaining process of the large-scale structures (Hwang & Cossu 2010b;[START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF], while implying that the dynamical systems approach, plus visualisation of the relevant phase space, could be used to enlighten at least some aspects of the given coherent structures at fairly high Reynolds numbers. However, the invariant solutions found here do not fully represent the dynamics occurring in real flows (i.e. bursting [START_REF] Flores | Hierarchy of minimal flow units in the logarithmic layer[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF]). In this respect, extending the present approach to computation of the relative periodic orbits would be a fruitful path to follow towards more accurate modelling of the large-scale dynamics [START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF][START_REF] Willis | Symmetry reduction in high dimensions, illustrated in a turbulent pipe[END_REF]. Finally, it should be mentioned that the self-sustaining energy-containing motions in wall-bounded turbulent flows at high Reynolds numbers appear in a self-similar form throughout the entire logarithmic region (Hwang & Cossu 2011;[START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF], as originally hypothesised by [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF] (i.e. attached eddy hypothesis). Each of the energy-containing motions is typically characterised by its spanwise length scale (Hwang & Cossu 2011;[START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustaining process of minimal attached eddies in turbulent channel flow[END_REF], suggesting that the invariant solutions with different spanwise length scales may be linked to these self-similar motions. This also implies that a thorough investigation of the invariant solutions with different sets of the length scales needs to be carried out in order to clarify the relation between the 'real' and 'exact' coherent structures using a numerical experiment given in the present study. Exploring such a link between the invariant solutions and the concept of the attached eddies might unveil the nature of the self-sustaining coherent structures. This would be an important step towards a consistent theoretical description of wall-bounded shear flows in a wide range of Reynolds numbers, because the attached eddy hypothesis has provided an important theoretical basis for a consistent statistical description of high-Reynolds-number wall turbulence (e.g. [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF][START_REF] Perry | On the mechanism of turbulence[END_REF].
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 2 FIGURE 2. Bifurcation of invariant solutions with C s : (a) Re m = 20 133; (b) Re m = 38 133. Here, the simulations S550 and S950 respectively correspond to C s = 0.2 in (a) and C s = 0.3 in (b).
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 34 FIGURE 3. Visualisation of the invariant solutions: (a) U950; (b) L950. In both (a) and (b), the blue isosurfaces indicate u + = -2.96 and the green ones ν t = 7.2ν. The red isosurfaces in (a) and (b) are Q + = 3.6 × 10 -5 and Q + = 2.0 × 10 -5 , respectively.
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 5 FIGURE 5. Phase portrait in the planes (a) E streak -E vor and (b) I-D at Re m = 38 133, where I l and D l indicate the corresponding production and dissipation of laminar flow at the same Reynolds number. Colours: red, S950; dashed green, the symmetry-constrained S950; blue, U950; orange, L950.

FIGURE 6 .

 6 FIGURE 6. Bifurcation diagram of the invariant solutions in the plane Re m -Re τ : E , C s = 0.0; u , C s = 0.30.

  Figure 6 reports bifurcation of the invariant solutions with the Reynolds number. The solutions for C s = 0.30 reveal a saddle-node bifurcation at a fairly low critical Reynolds number around Re m,c ≃ 1693-1707 (Re τ ,c ≃ 71). The Smagorinsky constant C s is subsequently lowered around this low Re m , such that invariant solutions of the Navier-Stokes equation are retrieved. The exact solutions, directly linked to the large-scale structures in the minimal unit, are found to emerge approximately at Re m,c ≃ 1120 (Re τ ,c ≃ 52) via saddle-node bifurcation. We note that this Re m,c is much lower than Re m,c ≃ 1867 (Re τ ,c ≃ 68.2) of the invariant solutions found by Park & Graham (2016) with a similar box size, due to the different symmetry imposed in the present study (their solution P4 with L x × L z = πh × π/2h).

TABLE 1 .

 1 Simulation parameters in the present study (before dealiasing). Here, Re m = 2U m h/ν where U m is the bulk velocity. Note that U m = (2/3)U l where U l is the centreline velocity of the corresponding laminar flow with the same volume flux. The simulations tagged with 'F' indicate full simulations resolving near-wall motions, while those tagged with 'S' are simulations with only self-sustaining outer motions made by increasing the Smagorinsky constant C s .

		133	539	3.0	1.0	1.5	32 × 33 × 32	1.15	0.05
	S550	20 133	584	3.0	1.0	1.5	32 × 33 × 32	1.13	0.20
	F950	38 133	958	3.0	1.0	1.5	48 × 41 × 48	1.13	0.05
	S950	38 133 1189	3.0	1.0	1.5	48 × 41 × 48	1.13	0.30

TABLE 2 .

 2 Scaling of the speed of the invariant solutions. Here, c and U c are the propagating speed and the centreline velocity of each travelling wave solution, respectively. In the first column, U and L respectively indicate the upper-and lower-branch solutions.

	Case	Re m	Re τ	U c /U m c/U m c/U c	c +	C s
	U550 20 133	597	1.29	0.86	0.66 14.5 0.20
	U950 38 133 1229	1.29	0.86	0.67 13.4 0.30
	L550 20 133	420	1.34	0.84	0.63 20.2 0.20
	L950 38 133	878	1.32	0.82	0.62 18.0 0.30
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