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The continuous modeling of charge-stabilized colloidal suspensions in shear flows

Y. Hallez,a) I. Gergianakis, M. Meireles, and P. Bacchin

Laboratoire de G�enie Chimique, Universit�e de Toulouse, CNRS, INPT, UPS, Toulouse, France

Abstract

Flows of concentrated colloidal suspensions may exhibit a rich set of behaviors due to both hydrodynamic and colloidal interactions

between the particles. Colloidal flows are generally modeled with an effective Navier–Stokes equation and a mass balance for the solid

phase involving a diffusion coefficient given by the generalized Stokes–Einstein relation. This picture corresponds to a near equilibrium

regime in which entropic and colloidal forces dominate over hydrodynamic interactions, the latter being totally ignored. On the other hand,

suspension flows far from equilibrium require the modeling of significant hydrodynamic stresses responsible in particular for shear-induced

migration, a phenomenon known to occur in some industrial processes involving colloids, such as ultrafiltration. The choice of the proper

model ingredients requires a knowledge of the domains in parameter space in which colloidal or hydrodynamic effects are dominant. In this

article, such a phase diagram is established for a channel flow of charge-stabilized colloids with a version of the suspension balance model

including both colloidal and hydrodynamic effects at the continuous level. It is shown that the classical P�eclet number is not sufficient to

characterize the flow regime. The phase boundary between the colloidal and hydrodynamic regimes exhibits an original shape explained by

the dependence of electrostatic interactions with the colloidal surface charge, and in particular by the phenomenon of ionic condensation.

We also show that the phase diagram can be predicted based on the knowledge of a rescaled P�eclet number comparing the hydrodynamic

stress scale to the bulk modulus of the suspension. The criterion determined here provides important guidelines for the efficient modeling of

colloidal flows. http://dx.doi.org/10.1122/1.4964895

I. INTRODUCTION

Flows of colloidal suspensions are involved in a number

of everyday life and industrial applications such as the

spreading of paint, slurry transport in pipes, ceramic mold-

ing, coating, filtration, or food and beverage processing. An

ability to predict and control these flows is essential if

colloid-based engineering processes are to be optimized, for

example, with a view to reducing energy loss by viscous dis-

sipation in pipe flows, controlling mixing and segregation in

particle suspensions, or increasing mass or heat transfer phe-

nomena in complex fluids. The characteristics of suspension

flows depend on the hydrodynamic and colloidal interactions

between particles, and also on their Brownian motion.

The behavior of suspension flows of Brownian hard

spheres is often described in two limits, either close to equi-

librium or far from equilibrium. The extent of the departure

from equilibrium is measured with the P�eclet number Pe,

which can be considered either as a ratio of diffusion and

advection time scales, or as a ratio of viscous hydrodynamic

and thermal stress scales. Near-equilibrium systems are char-

acterized by Pe � 1 and the far-from-equilibrium “pure

hydrodynamic” limit corresponds to Pe � 1.

Due to the presence of solid particles in the fluid phase,

suspension flows may differ from single-phase flows both

qualitatively and quantitatively. The effect of the solid dis-

persed phase on the bulk suspension rheology is twofold: the

existence of particles and interactions between them increases

the effective suspension viscosity and can generate potentially

anisotropic normal stresses. For Pe ! 0, the normal stresses

are nearly isotropic and dominated by the contribution of the

classical osmotic pressure of the suspensionP defined at equi-

librium. Being an isotropic stress, the osmotic pressure does

not influence the streamlines of the suspension flow. For large

P�eclet numbers, normal stress differences appear and are com-

mensurate with the average normal stress. The normal stress

differences influence the structure of curvilinear flows [1].

Apart from modifying the flow streamlines, the hydrody-

namic and colloidal interactions determine mass transport phe-

nomena by generating “shear-induced” and “thermodynamic”

mass fluxes, respectively. The thermodynamic flux jth exists in

response to an asymmetry of colloidal interactions around one

point, which is translated into the existence of a gradient of

osmotic pressure P at this point, so that jth / ÿrP. If the

chain rule is employed on this relation, the thermodynamic

flux may be written jth ¼ ÿDð/Þr/, where Dð/Þ is the effec-
tive gradient diffusion coefficient given by the well known

generalized Stokes–Einstein (GSE) relation. Note that this

flux only requires the existence of colloidal interactions and a

concentration gradient. It therefore exists at any shear rate.

Also, Dð/Þ is positive for purely repulsive systems, so that

colloidal interactions only tend to smooth out any volume

fraction fluctuation. The shear-induced mass flux js corre-

sponds to the shear-induced migration (SIM) phenomenon

[2]. Its form can be constructed either from phenomenological

arguments or from the suspension balance model (SBM) but,

in both cases, it can be written as the sum of an antidiffusive

term proportional to the shear rate gradient and a diffusive

term proportional to the shear rate [3–5]. The first term is able
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to create volume fraction gradients and the second one,

together with the thermodynamic flux, tends to restore a uni-

form colloid concentration. This can be responsible for shear

banding due to a flow-concentration coupling instability [6,7].

Moreover, the intensity of js being related to that of the shear

rate _c and of the gradient of shear rate, this flux vanishes

when the shear rate vanishes. From this discussion, we under-

stand that jth � js near equilibrium and that js � jth suffi-

ciently far from equilibrium.

This brief review of possible physical effects in suspen-

sion flows can help to shed some light on the various model-

ing strategies that have been adopted previously. Crossflow

filtration is a process in which all these effects have been

considered at some point. Although the momentum balance

equation of the suspension was generally considered as a

(Navier-)Stokes equation with an effective suspension shear

viscosity, considerable discussion was involved concerning

the modeling of mass transport. It was recognized that con-

sidering only a Fickian mass flux with the Stokes–Einstein

diffusion coefficient was not sufficient to reproduce available

experimental results. Additional phenomena were considered

to solve this problem, among them, SIM and the thermody-

namic flux described above. On the one hand, it was recog-

nized that including the SIM flux js in modeling attempts

was necessary for typical microfiltration conditions, i.e., for

particles larger than, say, 0:5lm and shear rates of the order

of 1000 sÿ1 [8–11]. On the other hand, considering only the

thermodynamic flux jth in the mass transport equation led to

excellent agreement with experimental measurements of

bovine serum albumin (BSA) and lactoferrin transport in

nanofiltration experiments [12,13]. These macromolecules

have a radius of gyration of the order of 3 nm. From a theoret-

ical point of view, nano- and microfiltration are the same flow

of a colloidal suspension, but with a P�eclet number ranging

between �0 in nanofiltration and Oð102Þ or higher in micro-

filtration. The published modeling strategies reported here

thus perfectly illustrate the aforementioned idea that jth domi-

nates other fluxes near equilibrium and that js is the flux deter-

mining mass transport far from equilibrium.

Although it is true that including both fluxes in a model of

colloidal flow should always lead to correct solutions, it

would be, to date, a somewhat uncontrolled model as the clo-

sure relations for both fluxes are still not fully understood.

In particular, the thermodynamic flux given by the GSE

involves a function depending on many-body hydrodynamic

interactions between colloids often in a quite heuristic form,

which has a great influence on the diffusion coefficient [14].

It also requires the knowledge of the equation of state (EOS)

of the suspension depending on many-body colloidal interac-

tions, the precise determination of which is still an active

area of research. On the other hand, the most consistent defi-

nition of the SIM flux, based on the SBM [4], involves the

divergence of a hydrodynamic stress depending on many-

body hydrodynamics, whose form is only known at asymp-

totic limits, even for hard spheres [15]. It is then of practical

importance to determine a priori if a prescribed colloidal

flow is “near” or “far” from equilibrium, so that modeling

efforts can be concentrated on the one and only relevant flux,

if possible. This is the aim of the present work.

For Brownian hard spheres, these “colloidal” (near equilib-

rium) and “hydrodynamic” (far from equilibrium) regimes are

usually characterized by Pe< 1 and Pe> 1, respectively,

since the suspension microstructure (determining the rheol-

ogy) is the result of a balance between the distorting hydrody-

namic stress and the restoring thermal stress, the ratio of

which precisely defines the P�eclet number. It has already been

shown that the thermal stresses keep the microstructure of a

suspension of hard spheres almost isotropic up to Pe¼ 10

[16]. In suspensions of “soft” particles (nonhard spheres), the

forces helping to restore the microstructure against the flow

deformation are of both thermal and colloidal (here electro-

static) origins. The pertinent thermodynamic stress scale is

therefore not the thermal scale, especially in concentrated sus-

pensions, and the classical P�eclet number thus no longer a rel-

evant dimensionless group, as will be shown in this article. In

this work, we will introduce a “dressed” P�eclet number Pe� as
a ratio comparing the hydrodynamic and thermodynamic

stress scales, the latter being provided by the EOS of the sus-

pension including both thermal and interaction-induced

stresses. The aim of this article is to demonstrate that this

number can be computed a priori and used to predict the tran-

sition from a colloidal near-equilibrium regime to a hydrody-

namic far-from-equilibrium regime in a suspension flow

containing charge-stabilized colloids.

To highlight how the flow regime can be anticipated, we

will consider the flow of a charge-stabilized colloidal sus-

pension between parallel plates. The model solved in order

to predict the concentration and velocity profiles across the

channel, accounting for both electrostatic and hydrodynamic

effects, is presented in Sec. II. The numerical and analytical

computation of a phase diagram identifying the colloidal and

hydrodynamic domains in the parameter space will be pre-

sented in Sec. III. From these results, we will show that the

colloidal and hydrodynamic regimes are determined by

Pe� � 1 and Pe� � 1, respectively. A discussion on the

main hypotheses of this work and on the conclusions that

can be drawn is presented in Sec. IV.

II. MODEL

A. The SBM

Let us consider the fully developed isothermal flow

between two flat plates.1 The direction of the flow is along

the x axis and the direction orthogonal to the plates is the y

axis. The volume-averaged momentum and mass conserva-

tion equations are written in the SBM formalism [1,4] and,

more specifically, an adaptation of the one developed by

Frank et al. [15] for Brownian hard spheres. In the fully

developed flow, the suspension velocity u is perpendicular to

the scalar gradient so the governing equations are

1The occurrence of shear-induced migration in colloidal suspensions may

require high shear rates, especially for small or strongly stabilized colloids,

while the viscous dissipation scales as _c2. The isothermal hypothesis might

therefore break down in this case. Further comments on this point can be

found in the discussion Sec. IV.



r � R ¼ 0; (1)

r � j ¼ 0; (2)

where R is the total bulk stress in the suspension,

j ¼ /ðup ÿ uÞ (3)

is the particle migration flux relative to the bulk velocity and

up is the particle phase average velocity. The suspension

stress can be decomposed into

R ¼ ÿPI þ ggsð/Þeþ R
s; (4)

where P is a pressure which can contain contributions from

the fluid and solid phases but is, in any case, fully determined

by the suspension incompressibility condition r � u ¼ 0. gs is

the suspension relative shear viscosity modeled here as

gsð/Þ ¼ 1þ 2:5/ð1ÿ �/Þÿ1 þ 0:1�/
2ð1ÿ �/Þÿ2

(5)

and depends on the particle volume fraction / and the maxi-

mum volume fraction /m through �/ ¼ /=/m. e is the aver-

age rate of strain tensor and R
s is the contribution of the

solid phase to the bulk stress [17]. In the unidirectional flow

considered here, only the projection of Eq. (1) in the x direc-

tion is necessary and there is no contribution from the parti-

cle stress to the suspension momentum balance. It reads

ÿ@xPþ @yðggsð/Þ@yuÞ ¼ 0: (6)

This equation can be integrated once to yield, with _c � @yu
and @yujy¼0 ¼ 0,

ggsð/Þ_c ¼ y@xP: (7)

The solid phase flux j is determined with the SBM. The par-

ticle phase momentum conservation equation reads

qhf di þ r � Rp ¼ 0; (8)

where q is the number density of particles, qhf di is the aver-
age drag experienced by the particles, and R

p is the particle

phase stress [18]. The drag force is given as a function of the

slip velocity between the solid and bulk phases as

qhf di ¼ ÿ 9g

2a2
fÿ1 /ð Þ/ up ÿ uð Þ; (9)

where f ð/Þ is the sedimentation hindrance function. Combining

Eqs. (3), (8), and (9) leads to

j ¼ 2a2

9g
f /ð Þr � Rp: (10)

In the present unidirectional flow, the mass conservation

equation (2) then reduces to

@y
2a2

9g
f /ð Þ@yRp

yy

" #

¼ 0: (11)

The term in brackets is constant and equal to zero due to the

symmetry around the y¼ 0 plane. The mass conservation

equation is then simply @yR
p
yy ¼ 0, or Rp

yy ¼ R
p
yyjy¼0. A clo-

sure relation for the particle phase stress is required to make

further progress. We can write this stress as the sum of a

thermodynamic part corresponding to the suspension stress

at equilibrium, i.e., the osmotic pressure P, and a hydrody-

namic part designed by Frank et al. to reproduce the correct

asymptotic regimes for a suspension of Brownian hard

spheres at Pe � 1 and Pe � 1 [15]

R
p
yy ¼ ÿPÿ g _c½bÿ1ð/;PeÞ þ cÿ1ð/Þ�ÿ1; (12)

where

bð/;PeÞ ¼ AkB2Pe/ð1ÿ �/Þÿ3; (13)

cð/Þ ¼ kH2 gnð/Þ; (14)

and here we choose A¼ 0.4, kH2 ¼ 0:75; kB2 ¼ 1:8;
/m ¼ 0:64, and

gnð/Þ ¼ 0:75�/
2ð1ÿ �/Þÿ2; (15)

in line with the modeling proposed by Frank et al. [15],

based on the rheology determined analytically and numeri-

cally by Brady and Vicic [19], Phung et al. [20], and Morris

and Katyal [21]. In Eq. (12), the term multiplied by g _c is

dominated by b at low Pe and by c as soon as Pe> 1. When

Eq. (12) is used in Eq. (10), the first and second terms lead to

the thermodynamic and shear-induced fluxes mentioned in

the Introduction, jth and js, respectively.

Let us note immediately that the form of the shear viscosity

(5) and of the hydrodynamic contribution in Eq. (12) was

explicitly designed for hard spheres, neglecting shear-thinning

since volume fractions will remain moderate [15,22].

However, in this work we use it even for charge-stabilized sus-

pensions. This modeling is therefore expected to be satisfac-

tory for low surface charges but may be inaccurate for high

ones. It is known that the shear viscosity depends strongly on

electrostatic interactions, in particular through the secondary

electroviscous effect [23]. Increasing the interaction range

tends to increase the shear viscosity and the shear-thinning

behavior of charge stabilized suspensions at moderate Pe num-

bers (see, e.g., [24] for recent computations). Although many

rheological measurements of the shear viscosity of charge-

stabilized suspensions have been published, and although it is

possible to fit these measurements with phenomenological

models [25], a general analytical viscosity model depending

on the physicochemical parameters (surface charge, interac-

tion range) of the suspension is still elusive even if some

results have been obtained in certain asymptotic limits and for

electrostatic pair interactions with specific forms [23]. As far

as we know, to date, there are no analytical models of the

hydrodynamic normal stresses in the presence of colloidal

interactions. For the sake of simplicity, we therefore use the

original modeling of hydrodynamic effects of Frank et al. for

Brownian hard spheres. However, as will become clear at the



end of this article, the main conclusions drawn are actually

linked to the specific behavior of the osmotic pressure in Eq.

(12) and are therefore not believed to depend strongly on the

precise form of the hydrodynamic stresses.

In using the form (12) for R
p
yy, we make one additional

assumption that is worth underlining. We assume that the

anisotropic microstructure generated by the flow does not

induce a significant perturbation to the thermodynamic part of

the stress. This hypothesis is certainly true for low shear rates

but its validity for larger shear rates depends on the type,

range, and strength of the physicochemical interactions con-

sidered. Comments will be made on this issue in Sec. IV in

the light of the results of this work, but in short, it is a justified

hypothesis here.

B. The EOS

The function P in Eq. (12) is the equilibrium EOS of the

colloidal suspension. It was computed with different

approaches that are briefly summarized here. For uncharged

hard spheres, the EOS is very well modeled by [26–29]

PHS ¼
qkT

1þ /þ /2 ÿ /3

1ÿ /ð Þ3
for / � 0:5

qkT
1:85

/m ÿ /
for / > 0:5:

8

>

>

>

<

>

>

>

:

(16)

When the colloids are charged, they attract counter-ions near

their surfaces, leading to electrostatic interactions due to both

the electric field and the pressure exerted by the ions on the

surfaces of the colloids. The full, precise computation of these

interactions from first principles is still difficult in a general

case (nonadditivity of pair-potentials, ion specificity, electro-

static coupling effects, etc.) but satisfactory approaches have

been developed especially for the case of 1:1 electrolytes. In

this context, the electrostatic coupling between ions and the

surfaces is weak, so they can be treated as uncorrelated. If the

ions are not too concentrated (say below 0:1M), their finite

size can also be neglected. This picture corresponds to the

Poisson–Boltzmann (PB) theory. It is still a nonlinear theory

in general. A further simplification is to consider the colloids

to be weakly charged and diluted so that the electrostatic

potential is lower than kT/e (e is the electron charge) every-

where. This is the Debye–H€uckel theory. In this context, a

pair of spherical colloids in an infinite empty medium experi-

ences an interaction potential following the Yukawa form

bu ¼ Z2lB
eja

1þ ja

� �2
eÿjr

r
; (17)

where b ¼ 1=kT, Z is the net number of charges on one col-

loid, lB ¼ e2=4p�kT is the Bjerrum length, � is the liquid

dielectric permittivity, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8plBn0
p

is the inverse of the

Debye length, and n0 is the ion number density in a very

large ion reservoir that would be in thermodynamic equilib-

rium with the suspension. If the interaction potentials are

considered additive, the classical integral equation theories

can be employed to compute the radial distribution function

g(r) of a dispersion, and from it the EOS P ¼ qkT

þPcontact þPES, where Pcontact ¼ qkT4/gð2aÞ is the pres-

sure contribution due to contacts and

PES ¼ ÿq2

6

ð

rg rð Þu0 rð Þdr (18)

is the pressure contribution due to electrostatic interactions.

In this article, the Ornstein–Zernike (OZ) equation will be

used with a Rogers–Young (RY) closure known to provide

accurate results for hard-sphere-Yukawa potentials. If the col-

loidal surface charge is too high for the Debye–H€uckel theory

to be valid, the interaction potential can still be written in the

form (17) but with effective parameters Zeff and jeff . When

this renormalization procedure is necessary, we employ the

method detailed by Trizac et al. [30]. The integral equations

theory used with a renormalization approach is valid if the

typical surface to surface distance between colloids d is larger

than the Debye length, jd > Oð1Þ [31]. This method is used

for the simulations of systems with short-ranged interactions,

ja ¼ 10 in this work [see Figs. 1 and 3(a)].

If the double layers overlap significantly (at low salt con-

tents or high volume fraction), the electrostatic forces are no

longer pairwise additive. Hopefully, this is the condition in

which the cell model is quite precise [32], when the colloids in

the suspension feel strong interactions from several neighbors

that tend to create a solid-like structure in the dispersion with

every colloid in an electro-neutral cell. For simplicity, we sup-

pose that these cells are spherical with the colloid at their

center. The one-dimensional nonlinear Poisson–Boltzmann

equation can be solved numerically in such a cell to obtain the

electrostatic potential field and the ion distribution around one

colloid. The electrostatic contribution to the osmotic pressure

PES is simply related to the total ion density at the boundary

of the cell n(R) by

PES ¼ nðRÞkT ÿ 2n0kT: (19)

More details on the cell model can be found in [30] and

[33–35]. For intermediate and long-range interactions, i.e.,

FIG. 1. Calculation of the osmotic pressureP for a volume fraction / ¼ 0:2
and for ja ¼ 10. Thick continuous line: full pressure P; dashed line: elec-

trostatic contribution PES; dotted line: entropic and contact contributions

qkT þPcontact. Both contributions stem from the equilibrium microstructure

predicted with the OZ-RY theory.



ja ¼ 2 and ja ¼ 0:5 in the present work, PES will be com-

puted with the cell model. The entropic and contact contribu-

tions will be approximated by PHS, which is not true in

general since the electrostatic interactions may perturb the

radial distribution at contact from its value for hard spheres,

as evidenced in Fig. 1 for ja ¼ 10. The osmotic pressure

boils down to PHS for vanishing surface charges, however,

and is dominated by PES for large surface charges and long-

range interactions, as illustrated in Fig. 2. The approximation

qkT þPcontact ’ PHS is thus only expected to perturb the

pressure value slightly in the intermediate charge regime.

The EOS obtained for ja ¼ 2 and ja ¼ 0:5 are displayed in

Figs. 3(b) and 3(c), respectively.

C. Numerical implementation

Once the EOS is known for a prescribed set of physico-

chemical conditions, the final set of equations to be solved

for given hydrodynamic conditions is

ggsð/Þ_c ¼ y@xP; (20)

g _c½bÿ1 þ cÿ1�ÿ1 ¼ Pjy¼0 ÿPð/Þ: (21)

The group g _c can be expressed as a function of / only,

thanks to relation (20). When its occurrences in Eq. (21)

have all been replaced, the latter equation reduces to a non-

linear algebraic equation for the volume fraction profile

/ðyÞ. This equation is resolved numerically on a 1D grid

with standard root finding algorithms available in Python-

SciPy. Once the volume fraction profile is known, the shear

rate profile is given in Eq. (20) and the velocity profile is

obtained by integrating numerically _c ¼ @yu. During the

numerical resolution, we also impose the constraint

1

H

ðH=2

ÿH=2

/dy ¼ /b; (22)

where /b is a prescribed bulk volume fraction set to 0.2

throughout this article.

In Sec. III, an example of such a computation is presented

to highlight the main features of charge-stabilized colloidal

flows. Results of many such simulations are then presented

and discussed to show how the flow regime can be predicted.

III. RESULTS

A. The channel flow of charge-stabilized colloids

Typical volume fraction and velocity profiles obtained in

the fully developed channel flow are reported in Fig. 4 for

PeB¼ 50 and ja ¼ 2, and for increasing surface charge den-

sities r ¼ Ze=4pa2. The most spiked curve (r¼ 0) corre-

sponds to the classical flow of a suspension of Brownian

hard spheres. The volume fraction profile is fully established

when SIM is balanced by Brownian motion and collisions at

any point [15,36]. The suspension velocity profile is slightly

more blunted than the classical channel flow profile due to

the shear rheology imposed by relation (5).

When the surface charge density increases, the interparti-

cle repulsions increase and add their contribution to the

transverse thermodynamic flux already containing the effects

of Brownian motion and collisions. SIM is therefore bal-

anced by a thermodynamic flux of particles that increases

with the surface charge density. This is the reason for the

flattening of the volume fraction profile observed in Fig. 4(a)

with increasing surface charge. Naturally, since a high sur-

face charge tends to restore a uniform concentration profile,

it also tends to restore a uniform viscosity and a parabolic

flow profile as depicted in Fig. 4(b).

As shown in the example of Fig. 4, it is possible to suppress

SIM by increasing the strength of thermodynamic repulsive

interactions. The SIM flux scales as _ca2 [2], while colloidal

interactions are independent of the shear rate at first order. The

appearance of nonhomogeneous concentration profiles due to

SIM is thus only—but always—expected for high shear rates.

Nonetheless, the shear rate values required to observe SIM in

strongly stabilized suspensions, or even for dispersions of

small uncharged colloids, might be impossible to attain in

practice. The concentration inhomogeneity observed in Fig.

4(a) for the highest surface charge density is quite weak

despite a shear rate of the order of 107 sÿ1. On the other hand,

the physicochemical parameters employed are quite realistic

and could correspond to moderately charged Ludox HS40

spheres. This certainly explains why part of the literature on

the continuous modeling of colloidal flows only considers the

effective shear viscosity with the (Navier-) Stokes equation

and an effective diffusion coefficient given by the GSE to

account for colloidal interactions, neglecting any transverse

migration of hydrodynamic origin [12–14]. SIM is however

known to occur in some processes involving colloidal suspen-

sions such as crossflow ultrafiltration [8,9,11,37]. One impor-

tant question for colloidal engineering is then: What are the

physicochemical and hydrodynamic conditions required to

observe significant effects of either colloidal interactions or

SIM? The answer to this question dictates whether efforts

need to be made concerning the design of a closure relation

for jth or for js (or both). For Brownian suspensions without

interactions, the scale of the stress restoring the equilibrium

FIG. 2. Same as Fig. 1 but for ja ¼ 0:5 and 2, and here the electrostatic

contribution is given by the cell model and the entropic and contact contri-

butions are taken as PHS, given in Eq. (16). Thin lines: analytical approxi-

mationPES ¼ aðZlB=aÞ2 with a given in (29).



microstructure is of entropic origin, leading to a critical shear

rate for observing SIM given by a P�eclet number of order

unity. For colloidal suspensions dominated by strong hydro-

dynamics and electrostatics, the restoring stress scale rather

depends on the strength and range of electrostatic interactions.

The boundary between flows exhibiting SIM and simpler

flows therefore lies in a phase space with axes, e.g.,

ðPe; ZlB=a; jaÞ. The first and second axes can be seen as the

dimensionless shear rate and colloidal charge, respectively.

The reference scale is given by entropy in both cases. The last

axis is relative to the range of interactions. Equivalent axes

can be defined by combining the above.

FIG. 3. Scaled osmotic pressure Pa3=kT and bulk modulus Ka3=kT ¼ /ð@P=@/Þa3=kT used in this article for different interaction ranges and surface charge

densities r. In each figure, r ¼ 0:001, 0.01, 0.025, 0.050, 0.1, 0.2, 0.5, and 5 e=nm2 from bottom curves to top curves.



B. The phase diagram

We now turn to the determination of the phase diagram

discriminating the colloidal and hydrodynamic regions in the

ðPe; ZlB=a; jaÞ space. This diagram will be obtained first

numerically by solving the model described in Sec. II for

various hydrodynamic and physicochemical parameters. It

will then be obtained theoretically from arguments devel-

oped in this section. This will enable us to shed some light

on the peculiar asymptotic behavior of the curve separating

the colloidal and hydrodynamic regimes for charge-

stabilized suspensions.

The colloidal radius was set to a ¼ 7:5 nm. For each cou-

ple ðZlB=a; jaÞ determining colloidal interactions, the system

(20) and (21) is solved recursively for various Pe numbers in

order to determine the critical P�eclet number Pec such that

maxð/Þ=/b ¼ 1:1. This is an arbitrary condition separating

the “colloidal” regime with negligible SIM and an almost

uniform volume fraction profile (maxð/Þ=/b < 1:1) from

the hydrodynamic regime characterized by significant vol-

ume fraction gradients (maxð/Þ=/b > 1:1) due to SIM. The

resulting critical points are represented as symbols in the

ðPe; ZlB=aÞ plane shown in Fig. 5 for ja ¼ 0:5, 2, and 10. In

aqueous systems, the lower ja value is typical of long-range

interactions in semideionized water and the intermediate and

large values are quite standard for colloids with a size rang-

ing from 10 nm to 1 lm, depending on the salt concentration.

The range of surface charge density explored corresponds to

what would be observable for silica particles, depending on

the pH. The lowest surface charge density does not affect the

dynamics of the colloids, and is representative of a suspen-

sion near the isoelectric point. The highest charge considered

corresponds to a surface charge density of 5 e=nm2, which is

somewhat unrealistically high, but is reported to highlight an

asymptotic limit to be described later. The second to last sur-

face charge corresponds to a surface charge density of

0:5 e=nm2, which is classically observed for fully charged

silica particles in water [38,39].

The diagram of Fig. 5 shows common features for the

three interaction ranges investigated. For all interaction

ranges, an S-shaped boundary delimits a colloidal regime at

low shear rates and/or high surface charges and a hydrody-

namic regime at high shear rates and/or low surface charges.

Moreover, all the S-shaped boundaries also exhibit vertical

asymptotes in the low charge and high charge regimes. The

asymptote in the low charge regime is unique but the loca-

tion of the asymptote in the high charge regime depends on

the interaction range ja. Interestingly, the existence of a col-

loidal regime with no significant evidence of SIM can be

observed up to Pe � Oð100Þ for high surface charges and

long-range interactions. It provides support, if it was still

required, to the idea that, for charge-stabilized suspensions,

the P�eclet number is no longer relevant to assess whether

mass transport is dominated by hydrodynamic or thermody-

namic effects.

Since the boundary in the phase diagram separates regions

with dominant thermodynamic effects and dominant hydrody-

namic effects, it is tempting to try to define it as the location in

the parameter space where some thermodynamic and hydrody-

namic stress scales are equal. The local hydrodynamic stress is

FIG. 4. Volume fraction and suspension velocity profiles for increasing sur-

face charge densities r¼ 0, 0.010, 0.025, 0.050, 0:100 e=nm2 at PeB¼ 50,

ja ¼ 2, and a ¼ 7:5 nm.

FIG. 5. Phase diagram identifying the colloidal and hydrodynamic domains

in the parameter space ðPe;ZlB=a; jaÞ. The colloidal domain is character-

ized by strong colloidal repulsions preventing SIM. In the hydrodynamic

domain, flows exhibit noticeable SIM despite the diffusive effect of colloidal

interaction. Symbols: boundary computed numerically with the SBM

described in Sec. II. Continuous lines: boundary given by relation (26);

dashed lines: boundary given by relation (28); black symbols and lines:

ja ¼ 0:5; gray symbols and lines: ja ¼ 2; and light gray symbols and lines:

ja ¼ 10.



given by the second term in Eq. (12). Since the focus is on

flows switching from a hydrodynamic regime to a colloidal

regime due to the onset of thermodynamic interactions, we con-

sider flows with Pe> 1, so that the hydrodynamic stress scale

is given by the c contribution only and is therefore equal to

ggnð/bÞh _cikH2 , where h _ci ¼ U=H is the shear rate scale and U

is the velocity scale. The thermodynamic stress scale can take

different forms. From Eq. (12), it is tempting to use simply the

osmotic pressure P but a more precise model can be devised

from Eq. (21). Considering this relation at y ¼ H=2, we have

Pjy¼0 ÿPjy¼H=2 ¼ ggn _ck
H
2

ÿ �

jy¼H=2: (23)

The boundary between the hydrodynamic and the colloidal

regimes is determined by

maxð/Þ ¼ /ðy ¼ 0Þ ¼ 1:1/b:

Since the perturbation from the uniform volume fraction pro-

file is weak, the latter is close to linear [see Fig. 4(a)] so that

on the boundary between the flow regimes /ðy ¼ H=2Þ
’ 0:9/b. Taylor expansions of P around /b yield

P 1:1/bð Þ ÿP 0:9/bð Þ ¼ 0:2/b

@P

@/

�

�

�

�

/b

þ Oð 0:1/bð Þ3Þ;

(24)

where /b@P=@/j/b
is the bulk modulus K, or the inverse

of the osmotic compressibility v, taken at the bulk volume

fraction /b. Equation (23) then suggests that the boundary

between colloidal and hydrodynamic regimes is given by a

stress balance reading

0:2Kð/bÞ ’ ggnð/bÞh _cikH2 : (25)

Multiplication of this relation by the entropic stress scale

6pa3=kT leads to

Pe ¼ c
0:2 ~K /bð Þ
kH2 gn /bð Þ

: (26)

where c should be an O(1) constant and where ~K

¼ K6pa3=kT is a dimensionless bulk modulus. Using relation

(15) for gn and the EOS determined as described in Sec. II,

we predict from Eq. (26) the boundaries represented as con-

tinuous lines in Fig. 5. By matching the curves with the

numerical results at Z¼ 0, the constant c was found to be 0.6

for the bulk volume fraction used in this work. More com-

ments about this value will be made later. As shown in Fig. 5,

relation (26) provides very good estimate of the S-shaped

boundary for all the interaction ranges and charges investi-

gated. Interestingly, this relation only requires the normal vis-

cosity and the EOS of the colloidal suspension to be known.

The latter can be determined numerically as in the present

work or experimentally from osmotic compression, or light or

neutron scattering measurements. One of the main practical

conclusions of this work is therefore that obtaining a diagram

like the one of Fig. 5 is easily possible using relation (26)

with classical measurements or numerical models of EOSs for

a given colloidal suspension, and that it can be done in order

to design a flow model as well-suited as possible to antici-

pated flow conditions.

Regardless of the practical point of building diagrams like

the one presented in Fig. 5, the form of the S-shaped bound-

aries is of interest and may seem counter-intuitive at first

glance. In order to understand this form, it is convenient to

recall that the osmotic pressure can be decomposed as

P ¼ qkT þPcontact þPES, where Pcontact arises from colli-

sions between colloids and is related to the pair distribution

function at contact, while PES is the contribution of electro-

static interactions here, and more generally to any type of

interaction at a distance.

At vanishing surface charge density, Pcontact � PES and

the osmotic pressure is Pð/Þ ¼ PHSð/Þ þ �ð/; ja; ZlB=aÞ
where � is small compared to the other terms and vanishes

with Z. The boundary equation (26) thus becomes indepen-

dent of Z and ja at this limit, leading to the vertical asymp-

tote observed in Fig. 5 and determined by

Pe ¼ c
0:2 ~KHS /bð Þ
kH2 gn /bð Þ

; (27)

where KHS ¼ /@PHS=@/.
For nonzero but still moderate surface charges, the colloidal

interactions may be strong enough to alter the osmotic pressure

significantly. For the purely repulsive system considered here,

the osmotic pressure increases monotonically with the surface

charge. The critical shear rate or P�eclet number necessary to

observe hydrodynamic effects must therefore also increase

monotonically with Z. This explains the positive and finite

slope of the S-shaped boundaries in the intermediate charge

regime. A crude attempt at predicting the boundary is possible

in the weak charge regime. Both the form of the pair potential

(17) and the analytical solution of the cell model in the

Debye–H€uckel limit suggest an electrostatic contribution to

the osmotic pressure PES scaling as Z2, and this is verified in

Figs. 1 and 2. The thermodynamic stress K then derives from a

pressurePcol þ aðZlB=aÞ2, wherePcol ¼ qkT þPcontact and a

is a constant that will be commented later. The location of the

separation between the colloidal and hydrodynamic regimes is

then expected to be given by

Pe ¼ c

0:2 ~Kcol /bð Þ þ /b

@~a

@/

�

�

�

�

/b

ZlB

a

� �2
" #

kH2 gn /bð Þ
; (28)

where ~a ¼ a6pa3=kT and Kcol ¼ /@Pcol=@/. This equation is
represented with dotted lines in Fig. 5, assuming Pcol ’ PHS.

At vanishing surface charge Z, we recover relation (27) valid

for hard spheres. For ja ¼ 0:5 and 2, the theoretical prediction

from the linearized cell model was employed for a

a

2n0kT
¼ 2 jað Þ2

h

jRþ 1ð Þ 1ÿ jað Þej aÿRð Þ

þ jRÿ 1ð Þ 1þ jað Þeÿj aÿRð Þ
iÿ2

; (29)



where R ¼ a/ÿ1=3 is the radius of the cell. For ja ¼ 10, the

value of a was measured on the numerical data presented in

Fig. 1 in the low charge regime. Note that the model (28)

and (29) requires a linearized PB equation, which is valid at

high ja and low charges, and a solid-like structure to employ

the cell model, which is valid at low ja and high charges.

This is why it works best at intermediate ja and ZlB=a values
in Fig. 5, and this is also why it is rather useless in practice.

The deficiency of model (28) and (29) does, however,

have the merit of showing that, even when it gives satisfac-

tory results as in the ja ¼ 2 case for intermediate charges, it

can definitely not capture the vertical asymptote at high sur-

face charge. Any modeling of the electrostatic contribution

to the osmotic pressure as a power law of Z would generate

inclined asymptotes like the dashed curves of Fig. 5. The

vertical asymptotes obtained numerically are signatures of

the thermodynamic stress becoming independent of Z at high

surface charge. The analytical model (26) contains this fea-

ture, thanks to the modeling of the osmotic pressure detailed

in Sec. II B. The reason for the saturation of the pressure at

high surface charge is the phenomenon of ionic condensation

[31]: when the surface charge is increased toward very high

values (ZlB=a > Oð10ÿ 100Þ), counter-ions are increasingly
attracted into a small region near the surface of the colloids in

a manner such that any new charge added to the surface of the

colloid is neutralized by a new “condensed” counter-ion.

Consequently, we can define an effective colloid encompass-

ing the real colloid and the condensed ionic region, and attri-

bute an effective charge Zeff to it. At low surface charges,

there is no condensation and Zeff ’ Z. At high surface charges

the effective charge saturates and reaches a finite value

Zsat
effð/; jaÞ [40]. In consequence, the electrostatic contribution

to the osmotic pressure also saturates at an asymptotic value

P
sat
ES which depends only on / and ja as illustrated in Figs. 1

and 2. Since electrostatic interactions become independent of

the bare charge Z, so does the radial distribution function and

the collision contribution also saturates at a valuePsat
HSð/; jaÞ.

The thermodynamic stress scale K then derives from the

osmotic pressure P
satð/; jaÞ ¼ P

sat
col þP

sat
ES. The equation of

the boundary in the phase diagram (26) then becomes

Pe ¼ c
0:2 ~K

sat
/b; jað Þ

kH2 gn /bð Þ
; (30)

where Ksat ¼ /@Psat=@/. It is a vertical asymptote in the

ðPe; ZlB=aÞ plane since it no longer depends on Z, but its

position still depends on the interaction range ja, as

observed in Fig. 5. It is important to emphasize at this point

that a modeling of the EOS based on pair potentials with a

classical DLVO or Yukawa form ignoring ion condensation

effects would not permit the S-shaped boundary to be recov-

ered on the flow diagram 5. It would only yield boundaries

similar to the dashed lines.

Instead of defining a complex boundary in the ðPe; ZlB=aÞ
plane, relation (25) also suggests the definition of a dressed

P�eclet number,

Pe� ¼ ggnh _ci
K

¼ ggnh _civ; (31)

equal to an O(1) constant at the transition between the colloi-

dal and hydrodynamic regimes, independently of the sepa-

rate values of the shear rate, colloidal interaction range, and

surface charge. The location of the flow regime boundaries

determined numerically with the SBM and represented in the

ðPe; ZlB=aÞ plane in Fig. 5 are recast in the ðPe�; ZlB=aÞ
plane in Fig. 6. As expected, they collapse to a single line

with equation Pe� ¼ Pe�c , where Pe
�
c is the (constant) critical

dressed P�eclet number at the transition between the colloidal

and hydrodynamic regimes. At the hard sphere limit, we

determined previously that Pe�c � 0:2c=kH2 ¼ 0:16 for the

bulk volume fraction /b ¼ 0:2 used in this work. The numer-

ical determination of Pe�c for any surface charge and from

the SBM results presented in Fig. 6 leads to Pe�c ¼ 0:155 on

average, in perfect agreement with the value determined in

the hard-sphere regime. All the values of Pe�c are found

between 0.147 and 0.161 for the full extent of interaction

ranges and surface charge investigated in this article while,

as mentioned before, they correspond to the full range of

realistic values in aqueous suspensions. The idea that the

transition between colloidal and hydrodynamic regimes

occurs at a constant Pe� is therefore quite robust.
To conclude, besides plotting a flow diagram with relation

(26) it is also possible to compute the value of the rescaled

P�eclet number Pe� with relation (31) for prescribed hydrody-

namic and physicochemical conditions and compare it to

unity to determine a priori if the flow is in the colloidal or

hydrodynamic regime.

IV. DISCUSSION

In this article, we have presented a modeling strategy

aimed at simulating flows of charge-stabilized colloidal sus-

pensions. The main conclusions are that (i) the P�eclet num-

ber is not a relevant dimensionless group to characterize the

departure from equilibrium in a suspension stabilized by sig-

nificant electrostatic interactions; (ii) it is possible to define a

more relevant rescaled P�eclet number as the ratio of viscous

and thermodynamic stress scales; (iii) the thermodynamic

stress scale, considered here as the bulk modulus at equilib-

rium, has to be modeled carefully to account for subtle

FIG. 6. Phase diagram identifying the colloidal and hydrodynamic domains

in the parameter space ðPe�; ZlB=a;jaÞ. Symbols and lines: same as Fig. 5.



physicochemical effects that can influence the flow regime,

such as ion condensation. In this section, we propose a few

comments to discuss the general validity of these conclu-

sions and the limits of the numerical modeling approach.

A. Comments on the model

The first critical point concerning the computation of the

channel flow with the SBM is probably related to the form of

Eq. (12). One of the main assumptions here is that the ther-

modynamic component of the total stress is isotropic and

equal to the osmotic pressure at equilibrium. It is a quite rea-

sonable premise near-equilibrium but it may be wrong at

high shear rates. Even though simulations have been con-

ducted at Pe numbers as high as O(100), it should now be

clear that only Pe� is relevant to measure the distance to

equilibrium in charge-stabilized suspensions and that, by

design, the present simulations are all at Pe� � 1 (0.155 on

average to be more precise). It would be tempting to use the

SBM as formulated in this article for higher shear rates.

However, in this case, the flow would make the microstruc-

ture of the suspension significantly anisotropic. Since the

osmotic pressure of the suspension derives from its micro-

structure, we could expect deviations between the nonequi-

librium thermodynamic component of the suspension stress

and the equilibrium osmotic pressure. Additionally, the

anisotropy would suggest the use of a thermodynamic stress

tensor instead of a single pressure. To date, we know of no

analytical model of the thermodynamic stress tensor in a

flow of charged stabilized colloids at Pe� > 1, and as a func-

tion of /, Pe, ja, and ZlB=a. This issue is a cornerstone for

the improvement of the continuous modeling of colloidal

flows, and it ought to receive attention in future rheological

studies. For example, in a very dilute suspension with a typi-

cal interparticle distance jd� ja� 1, the SIM flux would

scale as jÿ2
_c instead of a2 _c. This effect cannot be obtained

with the present equilibrium modeling of the thermodynamic

stress tensor, which is more adapted to electrostatically con-

centrated suspensions.

The second issue with the model also concerns the form

of the thermodynamic stress in Eq. (12). Assuming that a

flow is considered at Pe� < 1, as in the present work, so that

a “simple” equilibrium osmotic pressure can represent the

thermodynamic stress tensor reliably, the EOS calculated

here are only approximations of the real ones although we

took care to use renormalization, the OZ theory, and the cell

model in the range of parameters in which they should work

best. The most detailed computations of the osmotic pressure

at equilibrium require both colloids and ions to be included

in a molecular dynamics (MD) or Monte Carlo (MC) simula-

tion box and imply a wait of a few hours or days for statistics

to converge. Generating such data with a view to using it for

flow modeling is currently unimaginable. Indeed, even sim-

ple flows might involve variations of colloid concentration,

ion concentration, and even pH making the parameters /,

ja, and ZlB=a nonuniform in space and time. Establishing

the full dependence of the EOSs in this parameter space

would require thousands of such simulations. This illustrates

the need for fast, efficient ways of computing EOS of

charge-stabilized suspensions with simple models like the

ones employed in this article. The development of fast mod-

els going beyond the PB theory, like the modified PB theory,

density functional theory, or self-consistent field theory, is

still a subject of research. Despite the above-mentioned

reserves about the precise form of the EOS employed here,

we insist on the fact that the EOSs used during the simula-

tions and for the analysis of Sec. III were the same, so the

simulations and the conclusions drawn in this work are self-

consistent. In particular, the important idea that ionic con-

densation and effective charge saturation has to be accounted

for is robust and would be obtained with any fully detailed

thermodynamic model.

One last limitation of the present modeling strategy is the

assumption of isothermal flow. Indeed, reaching Pe� ¼ 1 for

small or strongly interacting colloids requires very large

shear rates. Since the viscous dissipations scales as g _c2, the

temperature might increase significantly on experimental

time scales. An order of magnitude analysis shows that sus-

pensions of very small colloids with a radius of the order of

10 nm or less would boil in a few seconds if the shear rate

were high enough to observe SIM. The physics described in

this article are clearly not relevant in this case. Such shear

rates are however so high that they are actually unlikely to

be encountered in real applications and these suspensions are

in practice simply bound to remain in the Pe� < 1 regime.

At the other limit of the colloidal domain, suspensions of

particles approaching the micron size do not undergo any

significant heating on very long time scales when Pe� � 1,

independently of their potential colloidal interactions, so that

the isothermal approach is clearly valid. Finally, we consider

a suspension of charged-stabilized silica spheres (effective

surface charge �0:05 e=nm2) in the intermediate size range.

SIM is obtained at higher shear rates for higher values of the

osmotic pressure, the latter depending in particular on / and

the added salt concentration I. If we consider somewhat arbi-

trarily that a temperature elevation of 1 K in 100 s is the

limit for an isothermal description of the physics, we find

that colloids should be larger than a few tenths of nanometers

to allow for an isothermal modeling if I ¼ 10ÿ2 M. For par-

tially deionized suspensions with I ¼ 10ÿ3 M, the radius of

colloids should be at least of the order of 100ÿ 200 nm for

the isothermal modeling to be valid. The present work is

therefore strictly speaking restricted to suspensions of rather

large colloids, with a radius of at least, say, 100 nm, keeping

in mind this scale depends on colloidal interactions.

Modeling SIM for smaller colloids, or colloids with stronger

interactions, would require a nonisothermal approach. This

can be achieved by supplementing the momentum and mass

conservation equations (1) and (2) with an energy conserva-

tion equation and by accounting for the temperature depen-

dence of viscosities.

B. Comments on the main results

The definition of a new P�eclet number as Pe� ¼ ggn _c=K
for colloidal suspensions is one of the main conclusions of

this work. Although other rescalings have been proposed in



the literature for more or less similar purposes, the present

definition has some specificities that are worth underlining.

Brady and Vicic [19] proposed a P�eclet number defined

as Pe ¼ _ca2=Ds
0ð/Þ in a scaling theory aimed at modeling

the stresses in Brownian, homogeneous, concentrated hard

sphere suspensions at low Pe. Their technique consists of

replacing the Stokes–Einstein diffusivity D0 (valid in the

dilute limit) in the classical Pe by the short-time self-diffu-

sivity Ds
0 in concentrated suspensions. The Pe� defined here

is obtained by replacing the thermodynamic stress kT=a3

(valid in the dilute limit) by the bulk modulus deriving from

the full osmotic pressure relevant for “electrostatically con-

centrated” suspensions. The parallel stops here, however,

since the Pe of Brady and Vicic is a microscopic P�eclet num-

ber used for comparing time scales driving the microstruc-

ture distortion in a sheared homogeneous suspension, while

Pe� is macroscopic in the sense that it is intended to compare

the macroscopic thermodynamic and shear-induced mass

fluxes in nonhomogeneous suspensions. Moreover, the short-

time self-diffusion coefficient reduces to D0 without hydro-

dynamic interactions so that Pe reduces to Pe in this case,

while on the other hand Pe� involves the thermodynamic

contribution K so that Pe� is different from Pe as soon as

nonhydrodynamic forces are involved.

To compare macroscopic fluxes, it might be tempting to

define an effective Pe by comparing the thermodynamic dif-

fusive time scale a2=Dr, where the diffusion coefficient is

given by the GSE, and some hydrodynamic time scale asso-

ciated with SIM, typically _cÿ1. The rescaled P�eclet number

would be _ca2=Dr, by analogy with the usual P�eclet number
_ca2=D0. However, this is inappropriate from a simple prag-

matic point of view since Dr contains the hydrodynamic

function f ð/Þ while, in the present steady-state channel flow,

there is no need to introduce it in the final model (20) and

(21). The explanation of this apparent paradox is as follows.

The P�eclet number is indeed a ratio comparing the strength

of hydrodynamic and diffusion phenomena. However, it usu-

ally compares an advection flux ja ¼ u/ and a diffusion flux

in a mass transport equation, or advection and diffusion

probability fluxes in the Smoluchowski equation for homo-

geneous sheared suspensions [41]. In the present flow, the

mass flux of hydrodynamic origin is not the advection flux. It

is the SIM flux js stemming from many-body hydrodynamic

interactions and not from simple advection. This flux con-

tains the same hydrodynamic function f ð/Þ as the thermody-

namic flux as shown in Eqs. (10) and (12), so that comparing

their scales leads to Pe�, independently of the hydrodynamic

hindrance function. For completely general flows, the num-

bers Pe� and _ca2=Dr are thus independent of each other, and

both are necessary. The first one compares thermodynamic

diffusion and SIM fluxes while the second one compares

thermodynamic diffusion and advection fluxes.

Some works on charge-stabilized colloidal flows also

introduce the number A ¼ Fa=kT comparing the interparticle

(here electrostatic) force scale F to the Brownian force scale

kT/a [23,42]. The ratio Pe/A compares hydrodynamic forces

to thermodynamic forces in a manner similar to our Pe�

comparing hydrodynamic and thermodynamic stresses.

There is, however, a difficulty in computing the force scale F

since it varies between 0 and 1 depending on the distance

between two colloids, if we assume it derives from a

Yukawa potential (17). The correct force scale depends on

some typical interaction distance L, which is, a priori,

unknown unless the microstructure is computed. On the

other hand, we have direct access, with a good precision, to

the osmotic pressure in electrostatically concentrated suspen-

sions with the cell model, independently of the knowledge of

the microstructure of the suspension. Therefore, even if Pe�

and Pe/A are theoretically equivalent, it is often much easier

to compute Pe� than to compute Pe/A.

Finally, let us note the similarity between the present

Pe� ¼ ggn _c=K and the dimensionless shear rate introduced

by Fagan and Zukoski, g _c=G, where G is the elastic modulus

of the suspension [43]. These authors noted the collapse of

flow curves obtained for charged silica particles in water

when they were plotted as a function of this ratio. As an

explanation, they invoked the strong role of electrostatic

forces and of the microstructure in determining G. This argu-

ment is similar to the one developed here, with the distinc-

tion that K is a normal stress response to the normal

compression due to SIM, while G is a response to a tangen-

tial strain.

V. CONCLUSION

Different approaches exist concerning the continuous

modeling of colloidal flows. They differ in the treatment of

the mass conservation equation. Some researchers interested

by suspensions of macromolecules or small colloids only

considered a thermodynamic mass flux given as a Fickian

flux with a diffusion coefficient obtained from the GSE rela-

tion to account for interparticle colloidal interactions. Other

researchers concerned by the modeling of large colloids in

flows with large shear rates considered only a shear-induced

mass flux due to hydrodynamic interactions between par-

ticles. In a general flow, both ingredients are a priori neces-

sary, but it can be anticipated that the thermodynamic and

shear-induced fluxes will dominate at low and high shear

rates, respectively. It is therefore of practical interest to

determine a priori if both types of fluxes have to be imple-

mented in a flow solver. The central question driving the

developments of this article was: Can we predict, with sim-

ple tools, whether colloidal and hydrodynamic effects are to

be expected for prescribed physicochemical and hydrody-

namic conditions?

To answer this question, we considered the fully devel-

oped channel flow problem for charge-stabilized colloidal

suspensions by adapting the SBM of Frank et al. [15]. In this

approach, both thermodynamic and hydrodynamic fluxes are

modeled. Simulations at various interaction ranges, interac-

tion strengths, and hydrodynamic conditions enabled a phase

diagram to be drawn in the ðPe; ZlB=a; jaÞ space showing

regions dominated by colloidal or hydrodynamic effects. The

boundary between these domains was found to have a nonin-

tuitive shape, which we could model successfully with a sim-

ple stress balance. The main conclusions of this work were

deduced from this diagram: (i) the P�eclet number alone is



not sufficient to characterize the flow regime; (ii) a more rel-

evant rescaled P�eclet number Pe� can be defined as the ratio

of a viscous stress scale ggnh _ci to a thermodynamic stress

scale K in order to identify the phase boundary as Pe� � 1;

(iii) the thermodynamic stress scale involved in this number

is the bulk modulus K ¼ /@P=@/ deriving from the osmotic

pressure at equilibrium here, which has to be modeled care-

fully to account for subtle physicochemical effects that can

influence the flow regime, such as ion condensation.

Although the thermodynamics considered in this article

were related to electrostatic interactions, it is worth underlin-

ing that the rescaled P�eclet number used here can be

extended to other types of colloidal interactions. The only

requirement is to compute the osmotic pressure, which is

often done with the integral equation theory and pair poten-

tials adapted to the type of interaction under consideration.

The SBM strategy employed here is believed to be robust

in the present simulations with Pe� � 1. It would, however,

require significant improvements to model colloidal flows at

Pe� > 1. In these conditions, the thermodynamic stress

might not be isotropic anymore and should depend on the

microstructure imposed by the shear flow, while the hydro-

dynamic stresses would also depend on colloidal interac-

tions. Determining the suspension stress tensor as a function

of the volume fraction, shear rate, and range and strength of

interactions is a key to further progress in the modeling of

concentrated charge-stabilized suspension flows, in particu-

lar for nonpairwise additive colloidal interactions. This

should now be possible with detailed simulations coupling

hydrodynamics and electrostatics at the particle scale.
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