
Goal-Driven Unfolding of Petri Nets —
Appendices
Thomas Chatain1 and Loïc Paulevé2

1 LSV, ENS Cachan – INRIA – CNRS, France
2 CNRS, LRI UMR 8623, Univ. Paris-Sud – CNRS, France

A Proof of Theorem 11

Let E be a minimal configuration of N to the goal. We want to prove that E ⊆ Egd. Given
the definition of Egd and given that E is causally closed, this is equivalent to proving that
E ∩EIgnored = ∅}: trivially, if some e ∈ E is also in EIgnored , then dee ∩EIgnored contains at
least e, so it is nonempty, and by definition e /∈ Egd; conversely, if some e ∈ E is not in Egd,
this is because dee ∩EIgnored 6= ∅, and since E is causally closed, dee ⊆ E, which implies that
E ∩ EIgnored 6= ∅.

Then, it remains to show that E ∩ EIgnored = ∅. Let e = 〈C, t〉 ∈ E; we have to show
that, for every e′ ∈ bec, t /∈ Useless(e′). If e′ /∈ E′, then, by definition, Useless(e′) def=⋃
e′′∈be′cUseless(e′′), which means that e′ has a causal predecessor e′′ which also satisfies

t /∈ Useless(e′′).
Select now an e′ which is minimal w.r.t. causality. This eliminates the

previous case, so we have e′ ∈ E′ and t ∈
⋃
e′′∈be′cUseless(e′′) and t /∈

useless-trs
(
N , g,Mark(de′e),

⋃
e′′∈be′cUseless(e′′)

)
. Assuming that useless-trs is a re-

duction procedure satisfying Definition 9, this implies that no minimal firing sequence from
Mark(de′e) to the goal uses t, which contradicts the fact that E is a minimal configuration
to the goal: Indeed, since e′ ∈ bec, there exists a linearization1 e1, . . . , e|E| of E in which
the events in de′e occur before the others, i.e. {e1, . . . , e|de′e|−1} = be′c, e|de′e| = e′ and
{e|de′e|+1, . . . , e|E|} = E \ de′e; then t|de′e|+1 . . . t|E| (with ti

def= h(ei) the transition corre-
sponding to ei) is a firing sequence from Mark(dee′) to the goal and it uses t. If it is not
minimal, then because it has a feasible cycling permutation σ, then t1, . . . , t|de′e| · σ is a
feasible cycling permutation from M0 to the goal, which contradicts the fact that E is a
minimal configuration to the goal. J

B Proof of Lemma 12

Because the set of markings is finite and because Alt(E) is also finite (computed on a
finite prefix), procedure Putative-GD-Prefix(N ,∆) always terminates; moreover all the
iterations in procedure Post-∆(∆,P) are over finite sets. Finally, we prove that procedure
GD-Prefix(N) terminates, i.e., after a finite number of iterations, Post-∆(∆,P) = ∆.
First, by construction, ∀c ∈ ∆, c ∈ ∆′ and ∆′(c) ⊆ ∆(c), with ∆′ = Post-∆(∆,P). Then,
remark that, due to the cut-off treatment, any event of any putative prefix has a bounded
number of event ancestors (causal past): the number of reachable markings. Finally, because
the branching up to a given depth is finite, only a finite number of events can be considered
in any iteration of the putative prefix; hence the number of events registered in ∆ is finite.

1 A linearization of E is a total ordering of e1, . . . , e|E| of the events in E such that for ei < ej =⇒ i < j.

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Goal-Driven Unfolding of Petri Nets — Appendices

Therefore, due to the monotonicity of ∆ modifications, the iterative procedure necessarily
converges towards a unique finite prefix in a finite number of steps. J

C Proof of Theorem 13

We first show that for every configuration E that can be extended to a minimal configuration
to the goal, there exists a configuration in the goal-driven prefix which contains no cut-off
event and reaches Mark(E). The principle is the one used for completeness of classical finite
prefixes defined using adequate orders: if E contains no cut-off event, it is in the goal-driven
prefix, since the construction of the Useless is more permissive in the goal-driven prefix (with
the use of Alt()) than in the goal-driven unfolding. Now, if E contains a cut-off event e (w.r.t.
an event e′ such that de′eC dee and Mark(de′e) = Mark(dee)), then E can be decomposed as
dee]D and e′ has an extension D′ isomorphic to D. Then de′e]D′ is smaller than E w.r.t.
C and reaches the same marking. This operation can be iterated if needed; it terminates
because C is well founded, and gives a configuration E ′ without cut-offs which reaches the
same marking as E . If E can be extended with an event f , then so can E ′ with an event f ′
corresponding to the same transition h(f ′) = h(f). The event f ′ is in the prefix but may be
a cut-off.

It remains to make sure that the transitions of E (plus h(f)) are not considered useless.
For this, focus on dee] D mapped to de′e] D′. For every event d ∈ D, let d′ be the
corresponding event in D′. We have dde ∪ dee ∈ Alt(dd′e) because the causal past of d′ uses
at least one condition from the cut of de′e. This ensures that the transitions fired in D after
dde ∪ dee are taken into account in the computation of the transitions allowed after d′ (if d′
is itself in the prefix, otherwise apply this inductively), ensuring that in the end E ′ ∪ {f ′} is
in the goal-driven prefix. J

D Goal-oriented reduction of automata networks

This appendix reproduces the main definitions of the goal-oriented reduction of automata
networks introduced in [1]. The interested reader should refer to this later reference for
further details.

The reduction is defined on asynchronous automata networks and all minimal traces
from the initial state to a state where an automaton g is in state >, specifying the goal.
The reduction relies on the static analysis of dependencies of local paths within individual
automata, in order to gather the necessary conditions related to the other automata.

We first give the formal definition of asynchronous automata networks, where any
transition modifies the state of one and only one automaton.

D.1 Automata networks
An Automata Network (AN) is a set of finite state machines where the local transitions can
be conditioned with the state of other automata in the network.

I Definition 1 (Automata Network (Σ, S, T)). An Automata Network (AN) is defined by a
tuple (Σ, S, T) where

Σ is the finite set of automata identifiers;
For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set of local states of automaton a;
S

∆=
∏
a∈Σ S(a) is the finite set of global states;

LS ∆=
⋃
a∈Σ S(a) denotes the set of all the local states.

Thomas Chatain and Loïc Paulevé 3

T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊆ S(a)× 2LS\S(a)×S(a) with (ai, `, aj) ∈ Ta ⇒
ai 6= aj and ∀b ∈ Σ, |` ∩ S(b)| ≤ 1, is the mapping from automata to their finite set of
local transitions.

We note ai
`−→ aj ∈ T

∆⇔ (ai, `, aj) ∈ T (a). Given t = ai
`−→ aj ∈ T , orig(t) ∆= ai, dest(t) ∆= aj ,

enab(t) ∆= `, •t ∆= {ai} ∪ `, and t•
∆= {aj} ∪ `.

At any time, each automaton is in one and only one local state, forming the global state of
the network. Assuming an arbitrary ordering between automata identifiers, the set of global
states of the network is referred to as S as a shortcut for

∏
a∈Σ S(a). Given a global state

s ∈ S, s(a) is the local state of automaton a in s, i.e., the a-th coordinate of s. Moreover we
write ai ∈ s

∆⇔ s(a) = ai; and for any ls ∈ 2LS, ls ⊆ s ∆⇔ ∀ai ∈ ls, s(a) = ai.
For this appendix, we consider the asynchronous application of local transitions. Given a

state s ∈ S, a transition t = ai
`−→ aj ∈ T can be applied only if •t ⊆ s. The application of it

results in the state s · t where the local state of a has been replaced from ai to aj . Note that
[1] allows more general semantics.

I Definition 2 (Trace). Given an AN (Σ, S, T) and a state s ∈ S, a trace π is a sequence of
transitions T such that ∀i ∈ [1; |π|], •πi ⊆ (s · π1 · · · ·πi−1).
The pre-condition •π and the post-condition π• are defined as follows: for all n ∈ [1; |π|], for
all ai ∈ •πn, ai ∈ •π

∆⇔ ∀m ∈ [1;n− 1], S(a) ∩ •πm = ∅; similarly, for all n ∈ [1; |π|], for all
aj ∈ πn•, aj ∈ π•

∆⇔ ∀m ∈ [n+ 1;m], S(a) ∩ πm• = ∅. If π is empty, •π = π• = ∅.
The set of transitions composing a trace π is noted tr(π) ∆= {πn | 1 ≤ n ≤ |π|}.

Given an automata network (Σ, S, T) and a state s ∈ S, the local state g> ∈ LS is
reachable from s if and only if either g> ∈ s or there exists a trace π with •π ⊆ s and g> ∈ π•.
We consider a trace π for g> reachability from s is minimal if and only if there exists no
sub-trace reaching g>.

I Definition 3 (Minimal trace for local state reachability). A trace π is minimal w.r.t. g>
reachability from s if and only if there is no trace $ from s, $ 6= π, |$| < |π|, g> ∈ $•, such
that there exists an injection φ : [1; |$|]→ [1; |π|] with ∀i, j ∈ [1; |$|], i < j ⇔ φ(i) < φ(j)
and $i = πφ(i).

An automata network (Σ, S, T) can be straightforwardly encoded as a safe Petri net
having groups of mutually exclusive places acting as the automata, and where each transition
t ∈ T of the AN is encoded as a Petri net transition with incoming arcs from orig(t) and
enab(t), out-going arcs to dest(t) and enab(t).

D.2 Local Causality
Locally reasoning within one automaton a, the reachability of one of its local state aj from
some global state s with s(a) = ai can be described by a (local) objective, that we note
ai aj (Def. 4).

I Definition 4 (Objective). Given an automata network (Σ, S, T), an objective is a pair of
local states ai, aj ∈ S(a) of a same automaton a ∈ Σ and is denoted ai aj . The set of all
objectives is referred to as Obj ∆= {ai aj | (ai, aj) ∈ S(a)× S(a), a ∈ Σ}.

Given an objective ai aj ∈ Obj, local-paths(ai aj) is the set of local acyclic paths of
transitions T (a) within automaton a from ai to aj (Def. 5).

4 Goal-Driven Unfolding of Petri Nets — Appendices

I Definition 5 (local-paths). Given ai aj ∈ Obj, if i = j, local-paths(ai ai)
∆= {ε};

if i 6= j, a sequence η of transitions in T (a) is in local-paths(ai aj) if and only if
|η| ≥ 1, orig(η1) = ai, dest(η|η|) = aj , ∀n ∈ [1; |η| − 1], dest(ηn) = orig(ηn+1), and
∀n,m ∈ [1; |η|], n > m⇒ dest(ηn) 6= orig(ηm).

As stated by Property 1, any trace reaching aj from a state containing ai uses all the
transitions of at least one local acyclic path in local-paths(ai aj).

I Property 1. For any trace π, for any a ∈ Σ, ai, aj ∈ S(a), 1 ≤ n ≤ m ≤ |π| where ai ∈ •πn
and aj ∈ πm•, there exists a local acyclic path η ∈ local-paths(ai aj) that is a sub-sequence
of πn..m, i.e., there is an injection φ : [1; |η|]→ [n;m] with ∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v)
and ηu ∈ πφ(u).

A local path is not necessarily a trace, as transitions may be conditioned by the state
of other automata that may need to be reached beforehand. A local acyclic path being of
length at most |S(a)| with unique transitions, the number of local acyclic paths is polynomial
in the number of transitions T (a) and exponential in the number of local states in a.

D.3 Necessary condition for local reachability
Given an objective ai aj ∈ Obj, we give in Proposition 1 a definition of a predicate
valids(ai aj) which is true if there exists a trace π from s such that ∃m,n ∈ [1; |π|] with
m ≤ n, ai ∈ •πm, and aj ∈ πn•.

It is a simplified version of a necessary condition for reachability demonstrated in [2].
Essentially, the set of valid objectives Ω is built as follows: initially, it contains all the
objectives of the form ai ai (that are always valid); then an objective ai aj is added to
Ω only if there exists a local acyclic path η ∈ local-paths(ai aj) where all the objectives
from the initial state s to the enabling conditions of the transitions are already in Ω: if
bk ∈ enab(ηn) for some n ∈ [1; |η|], then the objective b0 bk is already in the set, assuming
s(b) = b0.

I Proposition 1. For all objective P ∈ Obj, valids(P) ∆⇔ P ∈ Ω where Ω is the least fixed
point of the monotonic function F : 2Obj → 2Obj with

F(Ω) ∆= {ai aj ∈ Obj | ∃η ∈ local-paths(ai aj) :
∀n ∈ [1; |η|],∀bk ∈ enab(ηn), s(b) bk ∈ Ω} .

D.4 Goal-oriented reduction procedure
The reduction procedure (Def. 6) consists in the set B of objectives whose local acyclic paths
may contribute to a minimal trace for the goal reachability. Given an objective, only the local
paths where all the enabling conditions lead to valid objectives are considered (local-pathss).
The local transitions corresponding to the objectives in B are noted tr(B).

I Definition 6 (Goal-oriented reduction). Given an AN (Σ, S, T), an initial state s where,
without loss of generality, ∀a ∈ Σ, s(a) = a0, and a local state g> with g ∈ Σ and g> ∈ S(g),
B ⊆ Obj is the smallest set which satisfies the following conditions:
1. g0 g> ∈ B
2. bj

`−→ bk ∈ tr(B)⇒ ∀ai ∈ `, a0 ai ∈ B
3. bj

`−→ bk ∈ tr(B) ∧ b? bi ∈ B ⇒ bk bi ∈ B

Thomas Chatain and Loïc Paulevé 5

with tr(B) ∆=
⋃
P∈B

tr(local-pathss(P)) , where, ∀P ∈ Obj,

local-pathss(P) ∆= {η ∈ local-paths(P) | ∀n ∈ [1; |η|],∀bk ∈ enab(ηn),valids(b0 bk)} .

I Theorem 7. For each minimal trace π reaching g> from s, tr(π) ⊆ tr(B).

One can then define useless-trs(N , g>) ∆= T \ tr(B) where N is the Petri net corre-
sponding to the AN (Σ, S, T) with initial state s.

References
1 Loïc Paulevé. Goal-Oriented Reduction of Automata Networks. In CMSB 2016 - 14th

conference on Computational Methods for Systems Biology, volume 9859 of Lecture Notes
in Bioinformatics. Springer, 2016. doi:10.1007/978-3-319-45177-0_16.

2 Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory
networks dynamics using abstract interpretation. Mathematical Structures in Computer
Science, 22(04):651–685, 2012. doi:10.1017/S0960129511000739.

http://dx.doi.org/10.1007/978-3-319-45177-0_16
http://dx.doi.org/10.1017/S0960129511000739

	Proof of Theorem 11
	Proof of Lemma 12
	Proof of Theorem 13
	Goal-oriented reduction of automata networks
	Automata networks
	Local Causality
	Necessary condition for local reachability
	Goal-oriented reduction procedure

