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We classify nonabelian extensions of Lie algebroids in the holomorphic category. More-
over we study a spectral sequence associated to any such extension. This spectral 
sequence generalizes the Hochschild–Serre spectral sequence for Lie algebras to the holo-
morphic Lie algebroid setting. As an application, we show that the hypercohomology of 
the Atiyah algebroid of a line bundle has a natural Hodge structure.
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1. Introduction

In this paper we study nonabelian extensions of Lie algebroids in the holomorphic
category. The same theory applies to Lie algebroids over schemes over a field of
characteristic zero. Given a Lie algebroid B and a totally intransitive Lie algebroid

§§On leave from Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
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L on a complex manifold X , we prove the existence of a cohomology class which 
obstructs the extension of B by L . We also show that the set of isomorphism 
classes of extensions is a torsor over a suitable cohomology group.

The space of global sections of a Lie algebroid A over a complex manifold X 
has a natural structure of Lie–Rinehart algebra [20]. If the manifold X is Stein, 
the Lie algebroid A can be reconstructed from the space of its global sections 
with its Lie–Rinehart algebra structure. Thus, locally, the extension problem for 
Lie algebroids reduces to the extension problem for Lie–Rinehart algebras, which, 
albeit in a different language, was studied in [17].

So, our analysis of the extension problem for holomorphic Lie algebroid starts 
in Sec. 3 of this paper by studying in some detail the extension problem for Lie–
Rinehart algebras. As soon as we move to the global problem, we need to use 
hypercohomology and the theory of derived functors. For this reason, and for the 
reader’s convenience, we basically rework the theory from scratch, instead of relying 
too much on the existing literature. Both the definition of the obstruction class, 
and the classification of the extensions, are obtained by constructing explicit Čech 
cocyles.

In some sense, the theory of extensions of Lie algebroids, as we approach it, is one 
more step in the development of the theory of nonabelian extensions, which was 
initiated by Schreier almost a century ago, with the theory of nonabelian group 
extensions [24, 23]. The theory was reworked and recast in a simpler and more 
modern form by Eilenberg and MacLane in the 1940s [8, 9].  The same kind  of  
machinery solves the nonabelian Lie algebra extension problem, see [11, 19, 25, 17]; 
a nice rendering of the theory, with an explicit construction of all the cocycles 
involved, is given in [3]. The theory extends to Lie algebroids along the same lines.

A generalization of our result about the nonabelian extensions of Lie algebroids 
to Courant algebroids was given in [2].

In a second part of the paper, given an exact sequence of Lie algebroids

0 → L → A → B → 0,

we note that the de Rham complex Ω•
A of A has a natural filtration. This induces a 

spectral sequence that converges to the hypercohomology H(X, Ω•
A ). This spectral 

sequence generalizes the one defined by Hochschild and Serre for any pair (g, h), 
where g is a Lie algebra and h is a Lie subalgebra of g. We give a general form for 
the E1 term and, by means of an explicit computation, find a description of the 
d1 differential. Some of these results for the algebraic setting (i.e. for Lie–Rinehart 
algebras) can be found in [22, 21].

In Sec. 5 we study in some detail the spectral sequence in the case of the Atiyah 
algebroid of a line bundle M . We give a very explicit realization of the differential 
d1, and show that when X is compact Kähler, as a consequence of the Hodge 
decomposition, the spectral sequence degenerates at the second step (in particular, 
the differential d2 is zero). This also allows one to equip the hypercohomology of 
the Atiyah algebroid of M with a Hodge structure.
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2. Generalities on Lie Algebroids

Let X be a complex manifold.a We shall denote by OX the sheaf of holomorphic
functions on X and by CX the constant sheaf on X with fiber C; with ΘX we
shall denote the tangent sheaf of X . By “vector bundle” we shall mean a finitely
generated locally free OX -module.

A holomorphic Lie algebroid A on X is a coherent OX -module A equipped
with a Lie algebroid structure, that is, a morphism of OX -modules a : A → ΘX ,
called the anchor of A , and a Lie bracket defined on the sections of A satisfying
the Leibniz rule

[s, ft] = f [s, t] + a(s)(f) t (1)

for all sections s, t of A and f of OX . This condition implies that the anchor is
a morphism of sheaves of CX -Lie algebras, considering ΘX as a sheaf of CX -Lie
algebras with respect to the commutator of vector fields.

A morphism (A , a) → (A ′, a′) of Lie algebroids defined over the same manifold
X is a morphism of OX -modules f : A → A ′, which is compatible with the brackets
defined in A and in A ′, and such that a′ ◦ f = a.

Let us introduce the de Rham complex of A , which is a sheaf of differential
graded algebras. This is Ω•

A = Λ•
OX

A ∗ as a sheaf of OX -modules, with a product
given by the wedge product • ∧ •, and differential dA : Ω•

A → Ω•+1
A defined by the

formula

(dA ξ)(s1, . . . , sp+1) =
p+1∑
i=1

(−1)i−1a(si)(ξ(s1, . . . , ŝi, . . . , sp+1))

+
∑
i<j

(−1)i+jξ([si, sj ], . . . , ŝi, . . . , ŝj , . . . , sp+1)

for s1, . . . , sp+1 sections of A , and ξ a section of Ωp
A . The hypercohomology of the

complex (Ω•
A , dA ) is called the holomorphic Lie algebroid cohomology of A . When

A is locally free as an OX -module, this cohomology is isomorphic to the Lie alge-
broid cohomology of the smooth complex Lie algebroid A obtained by matching (in
the sense of [16, 18, 15]) the holomorphic Lie algebroid A with the anti-holomorphic
tangent bundle T 0,1

X [15, 7]. Since rkA = rkA + dimX , the hypercohomology of
the complex Ω•

A vanishes in degree higher than rkA + dimX .

Example 2.1 (The Atiyah algebroid). A fundamental example of Lie algebroid
is DE , the Atiyah algebroid associated with a coherent OX -module E . This is defined
as the sheaf of first order differential operators on E having scalar symbol. DE sits
inside the exact sequence of sheaves of OX -modules

0 → E ndOX (E ) → DE
σ−→ ΘX , (2)

aLet us stress once more that, while in this paper we work only in the holomorphic category, the 
techniques used here can be also applied to the algebraic one, i.e. when X is a smooth scheme 
over an algebraically closed field of characteristic 0, and A , L and B are algebraic Lie algebroids.
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where σ, called the symbol map, plays the role of the anchor. The bracket is given 
by the commutator of differential operators. Note that, when E is locally free, the 
anchor is surjective and DE is an extension of ΘX by E ndOX (E ).

Definition 2.2. Given M a coherent OX -module, an A -connection on M is a 
morphism of OX -modules α : A → DM which commutes with the anchors of A 
and DM . Moreover, an A -connection α is said to be flat, and  the  pair  (M , α) is  
called a representation of A (also called an A -module), if α is a morphism of Lie 
algebroids.

Given an A -connection (M , α), one can introduce the twisted modules Ω•
A (M ), 

where Ωk
A (M ) = ΛkA ∗ ⊗ M , with a differential

(dαξ)(s1, . . . , sp+1) =
p+1∑
i=1

(−1)i−1α(si)(ξ(s1, . . . , ŝi, . . . , sp+1))

+
∑
i<j

(−1)i+jξ([si, sj ], . . . , ŝi, . . . , ŝj , . . . , sp+1).

We shall call the sections of this twisted module M -valued A -forms.
If the connection is flat, Ω•

A (M ) is a complex of OX -modules, and its hyperco-
homology is called the cohomology of A with values in (M , α). If α is not flat, one
can introduce its curvature Fα as the defect of α to be a representation, i.e.

Fα(s1, s2) = [α(s1), α(s2)] − α([s1, s2]).

Observe that Fα is OX -bilinear and satisfies the Bianchi identity dαFα = 0. The
curvature measures also the defect of (Ω•

A (M ), dA ) to be a complex. In fact one
can check that d2

A = Fα � •, where for ξ ∈ Ωp
A (M ):

(Fα � ξ)(s1, . . . , sp+2)=
∑
i<j

(−1)i+j−1Fα(si, sj)(ξ(s1, . . . , ŝi, . . . , ŝj , . . . , sp+2)). (3)

Note that Fα ∈ Ω2
A (E ndOX (M )), and the last equation is given by the cup product

coming from the evaluation morphism E ndOX (M ) ⊗OX M → M .

2.1. Totally intransitive Lie algebroids

In this subsection we shall collect a certain number of definitions that will be used
in what follows.

Definition 2.3. A Lie algebroid L whose anchor is zero is said totally intransitive.

Remark 2.4. The notion of totally intransitive Lie algebroid is equivalent to that
of a sheaf of OX -Lie algebras. The structure of an OX -Lie algebra sheaf induces
a C-Lie algebra structure on L (x), the fiber of L at x ∈ X , which, in general,
may vary from point to point. When this does not happen, i.e. when there exist a
C-Lie algebra g and local trivializations L|U

∼→ OU ⊗ g that are isomorphisms of
Lie algebras, L is called a Lie algebra bundle, cf. [17].
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Let L be a totally intransitive Lie algebroid.

Definition 2.5. DerOX (L ) is the sheaf of the sections φ ∈ E ndOX (L ) such that

φ([l, l′]) = [φ(l), l′] + [l, φ(l′)] (4)

for any l, l′ ∈ L .

Let ad : L → DerOX (L ) be the morphism of OX -modules that with every
l ∈ L associates adl : l′ �→ [l, l′].

Definition 2.6. We define

OutOX (L ) = DerOX (L )/ad(L ).

Note that, since ad(L ) is an ideal in DerOX (L ), the sheaf OutOX (L ) is a
totally intransitive Lie algebroid. Moreover, as L and its Atiyah algebroid DL are
OX -modules, we can define the following.

Definition 2.7. DerD(L ) is the sheaf of the sections of DL that satisfy Eq. (4).

Note that DerD(L ) is a sub-Lie algebroid of DL , and the natural inclusion
DerOX (L ) ↪→ DerD(L ) induces an inclusion ad(L ) ↪→ DerD(L ). Under this map
ad(L ) is an ideal in DerD(L ).

Finally, we define the following.

Definition 2.8. OutD(L ) is the quotient of DerD(L ) by ad(L ).

Note that OutD(L ) has a natural structure of Lie algebroid. In general, for a
Lie algebroid A with a nontrivial anchor, DerOX (A ), DerD(A ), and ad(A ) are
badly behaved. In fact, because of the Leibniz identity, DerOX (A ) and DerD(A )
are not sub-OX -modules of the corresponding vector bundles, and the adjoint map
does not yield a representation of A on itself (cf. [1]).

Remark 2.9. In the next sections we shall be dealing with a Lie algebroid A and
a totally intransitive Lie algebroid L endowed with an A -connection α : A →
DerD(L ). We shall also consider Ω•

A (L ), the sheaf of OX -modules of L -valued
A -forms. The bracket on L induces a bracket [·, ·] : Ωp

A (L )⊗Ωq
A (L ) → Ωp+q

A (L )
by means of a cup-product construction. The explicit formula is

[ξ, η](b1, . . . , bp+q) =
∑

σ∈Σp,q

(−1)σ[ξ(bσ(1), . . . , bσ(p)), η(bσ(p+1), . . . , bσ(p+q))],

where Σp,q denotes the set of (p, q)-shuffles, i.e. the set of permutations σ ∈ Σp+q 
such that σ(1) < σ(2) < · · ·  < σ(p) and σ(p + 1)  < σ(p + 2)  < · · ·  < σ(p + q). This 
bracket is graded skew-symmetric, i.e.

[ξ, η] = (−1)pq+1[η, ξ] for all ξ ∈ Ωp
A (L ) and  η ∈ Ωq

A (L ),

and satisfies a graded Jacobi identity.
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3. Extensions of Lie Algebroids

In this section we compute the obstruction to the existence of an extension of a 
holomorphic Lie algebroid by a totally intransitive Lie algebroid, and classify such 
extensions when the obstruction vanishes. In the smooth category, this problem has 
been extensively treated in the literature. For a comprehensive discussion we refer 
the reader to [17], see also [3, 6, 5]. Moreover, the problem of the abelian extensions 
of holomorphic Lie algebroids was solved in [4] for B = ΘX , and in [27] for a general 
B (with the notation of Eq. (5)).

3.1. The general problem

Let

0 → L → A → B → 0 (5)

be an extension of Lie algebroids, i.e. L ,A and B are holomorphic Lie algebroids
over a complex manifold X , the map L → A is injective, the map A → B

is surjective and their composition is zero. It follows from the definition of Lie
algebroid morphism that the anchor of L is zero, i.e. L is a totally intransitive
Lie algebroid.

Assumption 3.1. In what follows, unless differently stated, B will be a locally
free OX -module.

Let an extension as (5) be given. Then one defines a morphism of Lie algebroids

ᾱ : B → OutD(L )

by letting

ᾱ(s)(�) = [s′, �]A ,

with s′ any pre-image of s in A . The morphism ᾱ : B → OutD(L ) defines a
representation of B on the centre Z(L ) of L , so that one can consider the hyper-
cohomology H(X ; Ω•

B(Z(L )), ᾱ). Note that the action of B on the centre Z(L ) is
defined once a morphism ᾱ has been chosen. Thus both the B-module structure on
Z(L ) and the corresponding (hyper)cohomology groups depend on this choice. In
spite of this, we adopt a notation that does not stress this dependence. For exam-
ple, to denote the hypercohomology groups above mentioned, we shall prefer the
simpler notation H(X ; Ω•

B(Z(L ))) to the more precise H(X ; Ω•
B(Z(L )), ᾱ).

We can reformulate the extension problem more precisely as follows: given two
Lie algebroids B and L on X, with L totally intransitive, and given

ᾱ : B → OutD(L )

as above,

(i) does there exist an extension as in (5) inducing ᾱ?
(ii) if such extensions exist, how are they classified?
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Some notational remarks are now in order.

(i) The pair (L , ᾱ) is sometimes called a coupling of B, see [17].
(ii) Two extensions A , A ′ of B by L are called equivalent if there exists

a Lie algebroid morphism A → A ′ that makes the following diagram
commutative:

0 �� L �� A ��

��

B �� 0

0 �� L �� A ′ �� B �� 0 .

(iii) Given a complex of sheaves F • indexed by Z and given a ∈ Z, we denote by
τ≥aF • the truncated complex, obtained by replacing the sheaves F b by 0 for
b < a, i.e.

τ≥aF = · · · → 0 → 0 → Fa → Fa+1 → · · · .
The main result of this section is contained in the following theorem.

Theorem 3.2. There is a cohomology class ob(ᾱ) ∈ H3(X ; τ≥1Ω•
B(Z(L ))) such

that:

(i) there exists a (holomorphic) Lie algebroid extension of B by L inducing the
map ᾱ if and only if ob(ᾱ) = 0.

(ii) when ob(ᾱ) = 0, the set of isomorphism classes of extensions of B by L

inducing ᾱ is a torsor over H
2(X ; τ≥1Ω•

B(Z(L ))).

To simplify the exposition, we shall split the proof of Theorem 3.2 into two
subsections. In the first we shall assume that X is a Stein manifold, while in the 
second X will be any complex manifold.

3.2. The local case

If X is a Stein manifold, instead of studying the extensions of B by L (two coherent 
OX -modules), we can study the problem of the extensions of B by L (the spaces 
of global sections of B and L ). Indeed, on a Stein manifold any coherent OX -
module is generated by its global sections, and thus the problem of the extensions 
of coherent OX -modules reduces to a purely algebraic one. Since in this context the 
terminology of the Lie–Rinehart algebras is commonly used, we shall start recalling 
the relevant definitions for this class of algebras; see also [13] for some history 
about this subject. The results presented in this subsection are an adaptation to 
the Lie–Rinehart terminology of the results about the extensions of smooth real Lie 
algebroids, for which we refer the reader to [17, Chap. 7].

Definition 3.3. Let R be a unital commutative algebra over a field k. A  (k, R)-Lie–
Rinehart algebra is a pair (B, b), where B is a k-Lie algebra and b : B → Derk(R) 
a representation of B in Derk(R) that satisfies the Leibniz identity (1).
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Remark 3.4. (i) Let M be a smooth real manifold, and E a Lie algebroid on it.
The space of global sections Γ(E) of E is a (R, C∞(M))-Lie–Rinehart alge-
bra. Viceversa, any (R, C∞(M))-Lie–Rinehart algebra, which is projective as a
C∞(M)-module, is the space of sections of a smooth Lie algebroid.

(ii) Given a holomorphic Lie algebroid A over X and an open subset U ⊆ X ,
the vector space A (U) of sections of A over U has a natural structure of
(C,OX(U))-Lie–Rinehart algebra.

As for Lie algebroids, for Lie–Rinehart algebras it is possible to define a coho-
mology theory, which reduces to the Lie algebra Chevalley–Eilenberg cohomology
when b = 0. In the same vein, all notions introduced in Sec. 2 have an analogue in
the theory of the Lie–Rinehart algebras. For example, given an R-module M , it is
possible to define the corresponding notion of Atiyah algebra DM , of B-connection,
and of representation of B. Moreover, given a B-connection (M,α), one can intro-
duce the twisted modules Ωp

B(M) and the corresponding differential dα. Finally, if
M is a representation of B, we shall denote by Hk(B;M) the kth cohomology of
the complex Ω•

B(M).
Before stating the main result of this subsection we introduce the following

notion.

Definition 3.5. A lifting pair of the coupling (L, ᾱ) is the data of a pair (α, ρ),
where:

(i) α : B → DerD(L) is a lifting of ᾱ and
(ii) ρ ∈ Ω2

B(L) satisfies adρ = Fα.

Note that lifting pairs always exist: any lifting α : B → DerD L of ᾱ is a B-
connection on L, and since ᾱ is a morphism of Lie algebroids, there exists ρ ∈ Ω2

B(L)
such that Fα(b1, b2) = adρ(b1,b2).

Theorem 3.6. Let R be a unital commutative k-algebra, and (B, b) a (k,R)-Lie–
Rinehart algebra, where B is a projective R-module. Let (ᾱ, L) be a coupling of B,
where L is a R-Lie-algebra, and ᾱ : B → OutD L a morphism of Lie–Rinehart
algebras.

(i) There exists a class ob(ᾱ) ∈ H3(B;Z(L)) such that ob(ᾱ) = 0 if and only if
there exists an extension of B by L inducing ᾱ;

(ii) When the class ob(ᾱ) is zero, the set of extensions of B by L has the structure
of a torsor over H2(B;Z(L)).

Proof. We begin by constructing the obstruction class. Let (α, ρ) be a lifting pair 
of ᾱ and define λ(α,ρ) = dαρ. One  checks that  λ(α,ρ) takes values in  Z(L), so that it 
defines an element in Ω3

B(Z(L)). Since dᾱλ = d2
αρ, from Eq.  (3) and Remark 2.9 we 

obtain that dᾱλ = [ρ, ρ] vanishes, as the bracket is skew-symmetric on two forms. 
The obstruction class ob(ᾱ) is then the cohomology class [λ(α,ρ)] ∈ H3(B; Z(L)). 
We need to show that the definition of this class does not depend on the choice
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of the lifting pair, i.e. we need to prove that if (α′, ρ′) is another lifting pair, then
the corresponding λ(α′,ρ′) is cohomologous to λ(α,ρ). To this end, first assume that
α′ = α. In this case adρ′−ρ = Fα − Fα = 0, so that ρ′ − ρ takes values in Z(L),
which implies

λ(α,ρ′) − λ(α,ρ) = dᾱ(ρ′ − ρ),

proving that λ(α,ρ) and λ(α,ρ′) are cohomologous. Let now (α′, ρ′) be any other
lifting pair of ᾱ. Then there exists φ ∈ Ω1

B(L) such that α′−α = adφ. The following
lemma proves that the class ob(ᾱ) is independent of the choice of the lifting pair.

Lemma 3.7. Let (α, ρ) be a lifting pair of ᾱ, and φ ∈ Ω1
B(L). Then(

α+ adφ, ρ+ dαφ+
1
2
[φ, φ]

)

is another lifting pair of ᾱ, and we have

λ(α+adφ,ρ+dαφ+ 1
2 [φ,φ]) = λ(α,ρ).

This lemma is proved by direct computation, using the fact that dα is a graded
derivation of the bracket [·, ·] defined on Ω•

B(L), together with the result established
by the following lemma.

Lemma 3.8. Let α, α′ be two liftings of ᾱ such that α′−α = adφ for some φ : B →
L. For every η ∈ Ωp

B(L), the corresponding differentials dα, dα′ satisfy the formula

dα′η − dαη = [φ, η].

Now, given a lifting pair (α, ρ) of (L, ᾱ), and after defining

[(b, l), (b′, l′)]α,ρ = ([b, b′], [l, l′] + α(b)(l′) − α(b′)(l) + ρ(b, b′)),

∀ b, b′ ∈ B, l, l′ ∈ L,

we can state the following lemma, whose proof is a straightforward computation.

Lemma 3.9. Given a lifting pair (α, ρ):

(1) the bracket [·, ·]α,ρ equips B ⊕ L with a skew-symmetric bracket which is com-
patible with ᾱ, with the canonical maps L→ B ⊕ L and B ⊕ L → B, and with
the brackets defined on L and B;

(2) the bracket [·, ·]α,ρ defined in (3.2) satisfies the Jacobi identity if and only if
λ(α,ρ) = 0. When this happens, (B⊕L, [·, ·]α,ρ) is a Lie–Rinehart algebra exten-
sion of B by L, inducing the coupling ᾱ;

(3) two lifting pairs (α, ρ) and (α′, ρ′) define equivalent extensions if and only if
there exists η ∈ Ω1

B(L) such that α′ − α = adη, and

ρ′ − ρ− dαη +
1
2
[η, η] = dᾱβ

for some β ∈ Ω1
B(Z(L)).
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We can now conclude the proof of Theorem 3.6.
(i) Assume that an extension as (5) is given. Choose a splitting s : B → A, which

exists as B is assumed to be a projective R-module. Define αs : B → DerD L via the
formula α(b)(l) = [s(b), l], and ρs ∈ Ω2

B(L) via ρs(b1, b2) = [s(b1), s(b2)]−s([b1, b2]).
Then (αs, ρs) is a lifting pair of ᾱ, so that λs = λ(αs,ρs) is a representative of ob(ᾱ).
The splitting s induces also an isomorphism A

s→ B ⊕ L. Under this isomorphism,
one obtains a bracket on B⊕L from the bracket on A. This bracket coincides with
[·, ·]αs,ρs . Then ob(ᾱ) = [λs] = 0 by Lemma 3.9.

Conversely, assume that ob(ᾱ) = 0. Choose any lifting pair (α, ρ) of ᾱ. Since the
cohomology class of λ(α,ρ) is zero, there exists w ∈ Ω2

B(Z(L)) such that dαρ = dᾱw.
Now, since w takes values in the centre of L, also (α, ρ−w) is a lifting pair. On the
other hand, from the definition of w we have dα(ρ− w) = 0, so by Lemma 3.9 the
bracket [·, ·]α,ρ−w on B ⊕ L is an extension of B by L.

(ii) To conclude the proof one needs to define an action ofH2(B;Z(L)) on the set
of equivalence classes of the extensions. Let an extension be given, choose a splitting
s : B → A, and construct a lifting pair (αs, ρs) as before. Let γ ∈ Ω2

B(Z(L)),
with dᾱγ = 0, be a representative of a class in H2(B;Z(L)). Then [·, ·]αs,ρs+γ

defines a new extension, which by Lemma 3.9 is equivalent to [·, ·]αs,ρs if and only if
γ = dᾱβ.

This action defines a torsor structure because if one is given two extensions
A and A′, by choosing two splittings s : B → A and s′ : B → A′, one obtains
two lifting pairs (αs, ρs) and (αs′ , ρs′). One checks that, for φ ∈ Ω1

B(L) such that
α′ − α = adφ, the formula

γ = ρ′ − ρ− dαφ− 1
2
[φ, φ] (6)

defines a dᾱ-closed element γ ∈ Ω2
B(Z(L)), which singles out a class in

H2(B;Z(L)).

3.3. The case of holomorphic Lie algebroids

With the local case in mind, we can now deal with the global situation. Let B be a
holomorphic Lie algebroid and let (L , ᾱ) be a coupling of B, where L is a totally
intransitive holomorphic Lie algebroid. We proceed first to the construction of the
obstruction class ob(ᾱ) ∈ H

3(X ; τ≥1Ω•
B(Z(L ))). Let U = {Ui} be a good open

cover of X (where by “good” we mean that each Ui is a connected Stein manifold
and that for each i0, . . . , ip the intersection Ui0···ip =

⋂
a Uia , when nonvoid, is a

connected Stein manifold). We compute the hypercohomology using Čech resolu-
tions. More precisely, H

3(X ; τ≥1Ω•
B(Z(L ))) is the degree 3 cohomology of the total

complex T • associated to the double complex Kq
p = Čp(U; Ωq

B(Z(L ))) for p ≥ 0
and q ≥ 1, with differentials d1 = δ, the Čech differential, and d2 = dᾱ. In this way,
a representative of a cohomology class in H3(X ; τ≥1Ω•

B(Z(L ))) will consist of an
element of T 3 = K3

0 ⊕K2
1 ⊕K1

2 .
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Over each Ui we get a coupling for the Lie–Rinehart algebra B(Ui), i.e. a pair
(L (Ui), ᾱ(Ui)), where ᾱ(Ui) : B(Ui) → OutD(L )(Ui). For each i we can choose a
lifting pair (αi, ρi) of ᾱ(Ui), and on the double intersections we can choose φij ∈
Ω1

B(L )(Uij) such that αj − αi = adφij . This motivates the following.

Definition 3.10. A lifting triple of (L , ᾱ) is a triple

({αi}, {ρi}, {φij})

with {αi} ∈ Č0(U; Ω1
B(DerD(L ))), {ρi} ∈ Č0(U; Ω2

B(L )), and {φij} ∈ Č1(U;
Ω1

B(L )), such that:

(i) for each i the pair (αi, ρi) is a lifting pair for ᾱ|Ui
,

(ii) for each i, j on the double intersections Uij we have αj − αi = adφij .

Now let ({αi}, {ρi}, {φij}) be a lifting triple of (L , ᾱ). For each i we can con-
struct λi = λ(αi,ρi) ∈ Ω3

B(Z(L ))(Ui) as in the previous section. The collection {λi}
defines a Čech cochain in K3

0 . On the double intersections let

tij = ρj − ρi −
(
dαiφij +

1
2
[φij , φij ]

)
.

These tij are elements of Ω2
B(Z(L ))(Uij) (cf. Eq. (6)), and their collection defines

the Čech cochain {tij} ∈ K2
1 . Finally, on the triple intersections Uijk let

qijk = (δφ)ijk = −φjk + φik − φij .

By the definition of the φij , it follows that adqijk
= 0, so that one obtains a Čech

cochain {qijk} ∈ K1
2 .

Definition 3.11. The triple ({λi}, {tij}, {qijk}) defines an element in T 3, which
will be called the cochain associated to the lifting triple ({αi}, {ρi}, {φij}).

We can prove the following statement.

Proposition 3.12. The triple ({λi}, {tij}, {qijk}) ∈ T 3 is closed under the total
differential of T, and therefore defines a cohomology class in H3(X ; τ≥1Ω•

B(Z(L ))).

Proof. The claim is equivalent to the four equations:

(i) dᾱλi = 0;
(ii) dᾱtij = (δλ)ij ;
(iii) dᾱqijk = (δt)ijk;
(iv) δq = 0.

The first equation follows from the analogous proposition which holds true in
the local case, while the fourth follows from the definition of q, as δ2 = 0.
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The other two equations require a little more effort. Let us begin with the third. 
Since δ2ρ = 0,  we  have

(δt)ijk = −dαiφij + dαiφik − dαjφjk − 1
2
[φij , φij ] +

1
2
[φik, φik]

1
2
[φjk, φjk].

On the other hand, since the left-hand side of (iii) is

dᾱqijk = dαiqijk = −dαiφij + dαiφik − dαiφjk,

we just need to show that

−dαjφjk − 1
2
[φij , φij ] +

1
2
[φik, φik] − 1

2
[φjk, φjk] = −dαiφjk.

By Lemma 3.8, this is equivalent to

1
2
[φij , φij ] − 1

2
[φik, φik] +

1
2
[φjk , φjk] = −[φij , φjk],

which holds true since ad(δφ)ijk
= 0 implies the identity

[φij , φij ] = [φij , φik] − [φij , φjk].

Finally, we prove that also the second equation holds true. Expanding it we
obtain:

dαi

(
ρj − ρi − dαiφij − 1

2
[φij , φij ]

)
= dαjρj − dαiρi,

which is equivalent to

dαiρj − dαjρj = d2
αi
φij +

1
2
dαi([φij , φij ]).

Using again Lemma 3.8 and Eq. (3), we have

−[φij , ρj ] = [ρi, φij ] +
1
2
dαi [φij , φij ].

Since dαi is a derivation for the bracket, 1
2dαi [φij , φij ] = [dαiφij , φij ], and the thesis

now follows since ρj − ρi − dαiφij takes values in the center of L .

We can eventually introduce the following cohomology class.

Definition 3.13. ob(ᾱ) is the cohomology class of the triple ({λi}, {tij}, {qijk}) 
in H3(X ; τ≥1Ω•

B(Z(L ))).

The definition of the triple ({λi}, {tij}, {qijk}) depends on the choice of a lift-
ing triple, so we should check that two different lifting triples yield cohomologous 
cochains. To this end, at first we consider the case of two lifting triples having the 
same αi. Let ({αi}, {ρi}, {φij }) and ({αi}, {ρ′i}, {φ′ij }) be two such lifting triples, 
and ({λi}, {tij}, {qijk}) and ({λ′i}, {t′ij}, {q′ijk}) the corresponding cocycles. Since
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the αi are the same, the differences ρ′i −ρi and φ′ij −φij take values in Z(L ). Then
we have:

λ′i − λi = dᾱ(ρ′i − ρi),

t′ij − tij = δ(ρ′ − ρ)ij − dᾱ(φ′ij − φij),

q′ijk − qijk = δ(φ′ − φ)ijk ,

and the cocycles are cohomologous.
The proof for two general lifting triples follows from the next result.

Lemma 3.14. Let ({αi}, {ρi}, {φij}) be a lifting triple of ᾱ, ({λi}, {tij}, {qijk}) the
associated cocycle and {ηi} ∈ C0(U; Ω1

B(L )). Then ({α′
i}, {ρ′i}, {φ′ij}) is another

lifting triple of ᾱ, where:

α′
i = αi + adηi ,

ρ′i = ρi + dαiηi +
1
2
[ηi, ηi],

φ′ij = φij + ηj − ηi.

Its associated cocycle ({λ′i}, {t′ij}, {q′ijk}) is equal to ({λi}, {tij}, {qijk}).
We can now prove the first part of Theorem 3.2.

Proposition 3.15. The class ob(ᾱ) vanishes if and only if there exists a holomor-
phic Lie algebroid extension of B by L .

Proof. Let an extension as in (5) be given. Consider a collection {si} of splittings
si : B|Ui

→ A|Ui
. Out of it we construct αsi and ρsi as in Sec. 3.2, and, moreover,

we define φsij = sj − si ∈ Ω1
B(L )(Uij). The triple ({αsi}, {ρsi}, {φsij}) is a lifting

triple for (L , ᾱ). The results of Sec. 3.2, together with some straightforward com-
putations, allow us to conclude that the corresponding cocycle ({λi}, {tij}, {qijk})
is zero.

Conversely, assume that ob(ᾱ) = 0, and let ({αi}, {ρi}, {φij}) be any lifting
triple, with corresponding cocycle ({λi}, {tij}, {qijk}). As this is a coboundary,
there exist

{ai} ∈ Č0(U; Ω2
B(Z(L ))) and {mij} ∈ Č1(U; Ω1

B(Z(L )))

such that

λi = dᾱai, tij = (δa)ij − dᾱmij , qijk = (δm)ijk . (7)

Since ai and bij take values in the center Z(L ), the triple ({αi}, {ρi − ai}, {φij − 
mij }) is again a lifting triple for (L , ᾱ). Using again the results of Sec. 3.2, on each  
open set Ui we can define a bracket [·, ·]αi,ρi−ai on (B ⊕L )|Ui . By Lemma 3.9, this  
defines a Lie algebroid extension of B|Ui by L|Ui . On the double intersections Uij , 
the endomorphism of (B ⊕ L )|Uij

φij − mij : (b, l) �→ (b, l + φij (b) − mij (b))
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is defined. The second equation in (7) ensures that φij − mij is a morphism of 
algebras

(B|Uij ⊕ L|Uij , [·, ·]αj ,ρj−aj ) → (B|Uij ⊕ L|Uij , [·, ·]αi,ρi−ai ),

while the third equation in (7) guarantees that the maps φij − mij can be used to 
glue the local extensions just defined to obtain a Lie algebroid over X , which is  an  
extension of B by L . This ends the proof.

We finally come to the proof of the second part of Theorem 3.2.

Proposition 3.16. When the obstruction ob(ᾱ) vanishes, the set of isomorphism 
classes of extensions of B by L inducing the coupling (L , ᾱ) is a torsor over 
H

2(X ; τ≥1Ω•
B(Z(L ))).

Proof. Let an extension A be given, choose a collection of local splittings si : 
BUi → A|Ui , and construct the corresponding lifting triple ({αsi }, {ρsi }, {φsij }) 
as in the proof of the previous proposition. Let ({γi}, {ψij }) be a representative

of a class in H2(X ; τ≥1Ω•
B(Z(L ))), with {γi} ∈ K2

0 and {ψij} ∈ K1
1 . Then, since

both γi and ψij take values in Z(L ), also (αsi , ρsi + γi, φsij + ψij) is a lifting
triple of ᾱ, and as ({γi}, {ψij}) is closed in T 2, the brackets [·, ·]αsi,ρsi

+γi
define Lie

algebroid extensions of B|Ui
by L|Ui

that glue with the φsij +ψij to yield a global
Lie algebroid extension of B by L .

Conversely, given two extensions A and A ′, construct lifting triples
({αsi}, {ρsi}, {φsij}) and ({α′

s′
i
}, {ρ′s′

i
}, {φ′s′

ij
}) out of a collection of local split-

tings as before. Choosing ηi ∈ Ω1
B(Z(L )) such that α′

s′
i
− αsi = adηi , we obtain

that

γi = ρ′s′
i
− ρsi − dαsi

ηi − 1
2
[ηi, ηi],

ψij = φ′s′
ij
− φsij

take values in Z(L ) and satisfy the necessary conditions to define a class in the 
hypercohomology group H2(X ; τ≥1Ω•

B(Z(L ))).

4. A Spectral Sequence

Let X be a complex manifold. Given an extension of Lie algebroids on X as in 
Eq. (5), one can construct a spectral sequence which converges to the hypercoho-
mology H•(X ; Ω•

A ). This is a generalization of the spectral sequence associated to 
an inclusion of Lie algebras h ⊆ g as given in [12]. This result was generalized to 
the case of Lie–Rinehart algebras in [21], while the case of smooth Lie algebroids 
was treated in [17, Chap. 7.4]. We explicitly compute the first and second terms of 
this spectral sequence.

We consider an exact sequence of holomorphic Lie algebroids as in Eq. (5). We 
shall assume that both B and L are locally free OX -modules.
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Definition 4.1. For p = 0, . . . , q, we define F pΩq
A as the subsheaf of Ωq

A whose
sections are annihilated by the inner product with q − p+ 1 sections of L .

Note that F 0Ωq
A = Ωq

A , F qΩq
A = Ωq

B, F q+1Ωq
A = 0.

In this way a decreasing filtration of the complex Ω•
A is defined, which, according

to [10, Chap. 0, 13.6.4], induces a filtration on the complex that computes the
hypercohomology of the complex Ω•

A . For the sake of clarity we give here the
details of this construction.

Lemma 4.2. grp Ωp+q
A := F pΩp+q

A /F p+1Ωp+q
A � Ωp

B ⊗ Ωq
L .

Proof. We define a morphism:

j : F pΩp+q
A → Ωp

B ⊗ Ωq
L

by letting

j(ω)(b1, . . . , bp; l1, . . . , lq) = ω(b̄1, . . . , b̄p, l1, . . . , lq),

where ω is a section of F pΩp+q
A , b1, . . . , bp are sections of B, l1, . . . lq are sections

of L , and b̄i is any section of A whose image in B is bi. Since ω ∈ F pΩp+q
A ,

this definition does not depend on the choice of b̄i. The kernel of j coincides with
F p+1Ωp+q

A , and this map is surjective. In fact, since both B and L are locally
free, for all k, p, locally we can always find an isomorphism F pΩk

A � ⊕
p′≥p

Ωp′
B ⊗ Ωk−p′

L .

Theorem 4.3. The filtration F •Ω•
A induces a spectral sequence which converges

to the hypercohomology H(X ; Ω•
A ). The first term of this spectral sequence is

Ep,q
1 � H

q(X,Ωp
B ⊗ Ω•

L ). (8)

The differential of the complex in the right-hand side of this equation is the
differential dL induced by the trivial action of L on Ωp

B.
We make some preparations for the proof of Theorem 4.3. By standard homo-

logical constructions (see e.g. [26]), one can introduce injective resolutions C q,•

of Ωq
A , and F pC q,• of F pΩq

A , such that F pC q,• is a filtration of C q,•, and
grp C q,• := F pC q,•/F p+1C q,• is an injective resolution of grp Ωq

A . We consider
the total complex

T k =
⊕

p+q=k

Γ(X,C p,q)

whose cohomology is the hypercohomology of Ω•
A . Its descending filtration is

defined by

F �T k =
⊕

p+q=k

Γ(X,F �C p,q).

Lemma 4.4. One has an isomorphism

Γ(X,F �C p,q)/Γ(X,F �+1C p,q) � Γ(X, gr� C p,q).
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Proof. As F pC q,•/F p+1C q,• � gr� C p,q one has the exact sequence 

0 → Γ(X, F �+1C p,q) → Γ(X, F �C p,q) → Γ(X, gr� C p,q)

→ H1(X,F �+1C p,q) = 0.

Proof of Theorem 4.3. As a consequence of Lemma 4.4, the zeroth term of the
spectral sequence given by the filtration F �T k is

E�,k
0 =

⊕
p+q=k+�

Γ(X, gr� C p,q).

Recalling that the differential d0 : E�,k
0 → E�,k+1

0 is induced by the differential of
the complex Ω•

A , we obtain

E�,k
1 � H

k(X,F �Ω•
A /F

�+1Ω•
A ).

By plugging in the isomorphism proved in Lemma 4.2, we get Eq. (8).

Remark 4.5. (i) One can also consider the spectral sequence associated with the
filtration of the complex of sheaves F •Ω•

A . In this case the first terms of the spectral
sequence are the sheaves

E p,q
0 = Ωp

B ⊗ Ωq
L , E p,q

1 = Ωp
B ⊗ G q,

where G q are the cohomology sheaves of the complex Ω•
L .

Note that the E p,q
1 are the sheaves associated with the presheaves

U � H
q(U,Ωp

B ⊗ Ω•
L ),

but Ep,q
1 is not the vector space of global sections of E p,q

1 .
(ii) Note that given the extension (5), we have the coupling ᾱ : B → OutD(L ).

This induces a representation of B on the sheaves G q, so that we can consider the
B-forms with values in G q. These sheaves form a complex (Ω•

B(G q), dB) and by the
previous item, E p,q

1 = Ωp
B(G q). One checks that the differential d1 of the spectral

sequence coincides with dB (cf. [12, 17] for details). It follows that the second term
of the spectral sequence is formed by the cohomology sheaves

E p,q
2 = H p(Ω•

B(G q), dB).

However, a description of the differential d1 of term Ep,q
1 will need a finer study, as

it cannot be recovered directly from d1 of E p,q
1 . The next section will be devoted to

this goal.

Example 4.6. Given a Lie algebroid A , denote by  I the image of the anchor a 
and by N the kernel of a. One gets an extension

0 → N → A → I → 0

of the type (5). Then a spectral sequence is intrinsically associated to the Lie 
algebroid A . Note that in general I and N are not locally free OX -modules, but
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the definition of the filtration on A makes sense also in this case, so that we have
indeed a spectral sequence associated to any Lie algebroid.

Consider now the sheaves G q, the cohomology sheaves of the complex of sheaves
Ω•

N (cf. Remark 4.5). The differential d1 of the local spectral sequence E p,q
1 is a

differential

d1 : Ωp
I ⊗ G q → Ωp+1

I ⊗ G q,

which, motivated by the next example, can be interpreted as a Gauss–Manin con-
nection on the sheaves G q.

Example 4.7. Let X,Y be complex manifolds and p : X → Y a submersion. Then
we have the exact sequence

0 → Tp → TX → p∗TY → 0

of vector bundles over X . Here Tp is the sub-Lie algebroid of TX whose sections are
the vector fields tangent to the fibers of p. One introduces the sheaves H q

DR(X/Y ) =
Rqp∗Ω•

X/Y . The Gauss–Manin connection associated to the morphism p is a flat
connection

∇GM : H q
DR(X/Y ) ⊗ Ωp

Y → H q
DR(X/Y ) ⊗ Ωp+1

Y .

In [14] it is shown that this connection is the d1 differential of the spectral sequence
defined as follows. Consider the filtration defined in Definition 4.1 with A = TX

and L = Tp. Note that Tp is not an ideal in TX , however, Definition 4.1 makes
sense for any L sub-Lie algebroid of A . Applying the derived functor Rp∗ to the
filtered complex of sheaves F •Ω•

X , by the construction of [10, Chap. 0, 13.6.4], we
obtain a spectral sequence converging to R•p∗(Ω•

X). The Ep,q
1 term of this spectral

sequence is isomorphic to H q
DR(X/Y )⊗ Ωp

Y , and the d1 differential coincides with
the Gauss–Manin connection.

The rest of this section is devoted to the explicit computation of the differential
dT when a collection of local splittings s is given. This will allow us to compute the
d1 differential of the spectral sequence, and to understand how the other differentials
behave.

Remark 4.8. Let Ξ ∈ Ωk
B⊗∧j L and η ∈ Ωp

B⊗Ωq
L . The duality pairing between

L and Ω1
L induces a cup-product Ξ � η ∈ Ωp+k

B ⊗ Ωq−j
L , defined explicitly by the

formula

(Ξ � η)(b1, . . . , bp+k; l1, . . . , lq−j)

=
∑

σ∈Σp,k

(−1)ση(bσ(1), . . . , bσ(p); Ξ(bσ(p+1), . . . , bσ(p+k)), l1, . . . , lq−j).

Let an extension as (5) be given and let s : B|U → A|U be a local section 
defined over some open subset U ⊆ X . The splitting s induces an isomorphism
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A|U
∼→ B|U ⊕ L|U , which, in turn, defines an isomorphism

Ωk
A |U

s→
k⊕

m=0

Ωm
B|U ⊗ Ωk−m

L |U .

Given ξ ∈ Ωk
A |U , we shall denote by s(ξ) the corresponding element on the right-

hand side of (4). In particular, we shall write s(ξ) = (s(ξ)0,k, . . . , s(ξ)k,0), with
s(ξ)m,k−m ∈ Ωm

B|U ⊗ Ωk−m
L |U .

Remark 4.9. Observe that s(ξ)m,k−m is defined by the formula

s(ξ)m,k−m(b1, . . . , bm; l1, . . . , lk−m) = ξ(s(b1), . . . , s(bk−m), l1, . . . , lm). (9)

Moreover, the splitting s induces a B|U -connection αs on L|U (cf. Sec. 3). By a
standard argument, αs induces a B|U -connection on L ∗

|U and on all exterior powers
Ωp

L |U . Explicitly, this action is given as

(αs(b) · η)(l1, . . . lp) = αs(b)(η(l1, . . . , lp)) +
∑

a

(−1)aη(αs(b)(la), l1, . . . , l̂a, . . . , lp)

for η ∈ Ωp
L |U and b ∈ B|U . From this we obtain the differential

dαs : Ωm
B|U ⊗ Ωk−m

L |U → Ωm+1
B|U ⊗ Ωk−m

B|U ,

which satisfies d2
αs

= Fαs � •, where Fαs is the curvature of αs acting on Ωk−m
L .

On the other hand, since L is totally intransitive, we can consider the trivial
L -action on Ωm

B. In this way we obtain a differential

dL : Ωm
B|U ⊗ Ωk−m

L |U → Ωm
B|U ⊗ Ωk−m+1

L |U ,

which satisfies d2
L = 0.

Now we have the following.

Lemma 4.10. For ξ ∈ Ωk
A |U one has

s(dA ξ)m+1,k−m = dL (s(ξ)m,k−m) + (−1)m+1dαs(s(ξ)
m+1,k−m−1)

− ρs � s(ξ)m−1,k−m+1.

We check now how this decomposition depends on the splitting. Let s′ be another
splitting defined over an open set U ′ ⊆ X , so that s′ − s = φ : BU∩U ′ → LU∩U ′ .

Lemma 4.11. Given ξ ∈ Ωk
A , and two local splittings s, s′ as above, we have

s′(ξ)m,k−m = s(ξ)m,m−k +
∑

a

∧aφ � s(ξ)m+a,k−m−a,

where φ = s′ − s, and ∧aφ ∈ Ωa
B ⊗ ∧a L is defined by (∧aφ)(b1, . . . ba) = φ(b1) ∧

· · · ∧ φ(ba).
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Let now U = {Ui}i∈I be an open cover of X , and let s = {si} be a collection
of splittings of (5), with each si defined over Ui. We can construct a lifting triple
({αsi}, {ρsi}, {φsij}) as described in Sec. 3.3. The groups of Čech cochains Kp

q =
Čq(U,Ωp

A ) form a double complex with differentials δ1 = dA and δ2 = δ the Čech
differential. If U is good in the sense previously introduced, the cohomology of the
total complex T k =

⊕
p+q=k K

p
q is isomorphic to the holomorphic Lie algebroid

cohomology of A .
Now, the choice of the local splittings s induces an isomorphism

Čq(U,Ωp
A ) s→

⊕
p′+r=p

Čq(U,Ωp′
B ⊗ Ωr

L ). (10)

This isomorphism is explicitly given by s{ci0···ia} = {si0(ci0···ia)}. We use the nota-
tion Kp,r

q := Čq(U,Ωp
B ⊗Ωr

L ). Under the isomorphism (10), the filtration takes the
form

F pT p+q =
k⊕

a=0

q−a⊕
m=0

Kp+m,q−a−m
a . (11)

Now, for any element h ∈ T k, write h = (h0, . . . , hk) with ha = {(ha)i0··· is} ∈
Čs(U,Ωk−a

A ). Define (sh)a to be the image of ha under the isomorphism (10),
namely, ((sh)a)i0··· ia = si0((ha)i0··· ia). Moreover, we shall write (sh)a =
((sh)k−a,0

a , . . . , (sh)0,k−a
a ), with the Čech cochains (sh)m,k−a−m

a ∈ Km,k−a−m
a

defined by

((sh)m,k−m−a
a )i0···ia = si0((ha)i0···ia)m,k−m−a, (12)

where the right-hand side of the equation is defined in Eq. (9).
We want to understand how the differential dT of the total complex T behaves

under the isomorphisms (10). To this end, we introduce some operators which will
provide a decomposition of this differential. Now, dT = dA +δ, and by Lemma 4.10
we see that dA = dL + (−1)pdαs − ρs � •, where:

dL : Kp,q
a → Kp,q+1

a , dαs : Kp,q
a → Kp+1,q

a , ρs � • : Kp,q
a → Kp+2,q−1

a

for {ηi0···ia} ∈ Kp,q
a are defined by

dL {ηi0···ia} = {dL ηi0···ia};
dαs{ηi0···ia} = {dαsi0

ηi0···ia};
ρs � {ηi0···ia} = {ρsi0

� ηi0···ia}.
Moreover, for every positive integer t, using the cochain {φsij} of the lifting

triple associated to s, we define the operators

∧tφs � • : Kp,q
a → Kp+t,q−t

a+1

via the formula

(∧tφs � {ηi0···ia})j0···ja+1 = ∧tφj0j1 � ηj1···ja+1

for η ∈ Kp,q
a , see the Lemma 4.11 for the right-hand side of the equation.
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Finally, we have the Čech coboundary operator δ : Kp,q
a → Kp,q

a+1.
Now we can state the following.

Lemma 4.12. Let h ∈ T k. According to the decomposition (12), one has

(s(dTh))m,k+1−a−m
a = dL ((sh)m,k−a−m

a ) + (−1)mdαs((sh)m−1,k+1−a−m
a )

− ρs � ((sh)m−2,k+2−a−m
a ) + (−1)k+aδ((sh)m,k+1−a−m

a−1 )

+
k−s−m∑

t=1

(−1)k+a+t+1 ∧t φs � ((sh)m−t,k+1−a−m+t
a−1 ).

Proof. After Lemma 4.10, it suffices to understand how the Čech differential δ
behaves under the decomposition (12). We have:

((sδh)m,n
a )i0··· ia = si0((δha−1)i0··· ia)m,n

= −si0((ha−1)i1,··· ia) +
a∑

ν=1

(−1)νsi0((ha−1)i0··· îν ··· ia
)m,n.

On the other hand we have:

δ((sh)m,n
a−1)i0··· ia = −si1((ha−1)i1,··· ia)

+
a∑

ν=1

(−1)νsi0((ha−1)i0··· îν ··· ia
)m,n.

Using Lemma 4.11 we conclude.

Let us rewrite this as follows. Denote by ∆m
s the composition of the isomorphism

T k
s∼→ ⊕

a,bK
b,k−a−b
a with the projection onto the subspace

⊕
aK

m,k−a−m
a =

grm T k. Then the equation of Lemma 4.12 becomes

∆m
s (dTh) = dL (∆m

s (h)) + (−1)mdαs(∆m−1
s (h)) − ρs � ∆m−2

s (h)

+ (−1)kδ(∆m
s (h)) +

∑
t

(−1)k+t+1 ∧t φs � ∆m−t
s (h).

Moreover, for each positive integer a, we can introduce the operators Da
s :

grm T k → grm+a T k+1 such that for h = ∆p
sh one has ∆p+a

s (dT (∆p
s(h))) =

Da
s (∆p

sh). Explicitly, we have

D0
s = dL + (−1)kδ, D1

s = (−1)mdαs + (−1)kφs � •,
D2

s = −ρs � • + (−1)k+1 ∧2 φs � •, Da
s = (−1)k+a ∧a φs � •.

Using these operators, we can write the total differential in the compact form

∆m
s (dTh) =

∑
a

Da
s (∆m−a

s (h)). (13)
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Note that, according to (11), h ∈ F pT p+q if and only if

(sh)m,p+q−a−m
a = 0 for m < p.

Then using the ∆m
s operators, this becomes:

h ∈ F pT p+q if and only if ∆m
s (h) = 0 for m < p. (14)

Now, recall that the terms of the spectral sequence Ep,q
r may be defined (cf. [28])

as the quotient Ep,q
r = Zp,q

r /Bp,q
r , where

Zp,q
r = {x ∈ F pT p+q | dTx ∈ F p+rT p+q+1}

and

Bp,q
r = Zp+1,q−1

r−1 + dTZ
p−r+1,q+r−2
r−1 ⊆ Zp,q

r ,

while the differentials dr : Ep,q
r → Ep+r,q+1−r

r are induced by dT . By this definition
and (14), we see that h ∈ Zp,q

r is a representative of a class [h] ∈ Ep,q
r if and only

if ∆m
s (h) = 0 for m < p and ∆m

s (dTh) = 0 for m < p+ r.
For r = 0 we obtain

Zp,q
0 = F pT p+q, Bp,q

0 = F p+1T p+q,

so that Ep,q
0 = grp T p+q

s∼→ ⊕
Kp,q−a

a . To compute the differential d0, let h ∈
F pT p+q; then Eq. (14) is satisfied, and from Lemma 4.12 we obtain that d0[h] is
the class in Ep,q

0 of

∆p
s(dTh) = D0

s(∆p
s(h)).

Now note thatD0
s = dL +(−1)p+qδ does not depend on the choice of s and coincides

with the total complex associated to the double complex Kp,•
• = Č•(U,Ωp

B ⊗Ω•
L ).

So the term Ep,q
1 of the spectral sequence is isomorphic to Hp(X ; Ωp

B ⊗ Ω•
L ); this

yields a hands-on proof of Theorem 4.3.
We can now compute the differential d1 : Ep,q

1 → Ep+1,q
1 . Let h ∈ Zp,q

1 . Since
Bp+1,q

1 = Zp+2,q−1
0 + dTZ

p+1,q−1
0 = F p+2T p+q+1 + dTF

p+1T p+q, we have

dTh = ∆p+1
s (dTh) modBp+1,q

1 .

So from Eq. (13) we obtain:

d1[h] = [D1
s(∆p

s(h)) +D0(∆p+1
s (h))]

and, since D0(∆p+1
s (h)) is a coboundary for the d0 differential, we have

d1[h] = [D1
s(∆

p
s(h))].

So, we can identify the E2 term of the spectral sequence with the cohomology

of the complex Hq(X ; Ωp
B ⊗Ω•

L )
D1

s→ Hq(X ; Ωp+1
B ⊗Ω•

L ). One should check that the
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differential D1
s is well defined, i.e. it does not depend on the choice of the collection

of splittings s. In fact, we have the following.

Lemma 4.13. Let s and s′ be two collections of splittings over the same open cover
U. Let ψi : B|Ui

→ L|Ui
be the differences ψi = s′i − si. Then, for any ξ ∈ grp T p+q

with D0(ξ) = 0, we have

D1
s′ξ −D1

sξ = D0(η),

for η ∈ grp+1 T p+q defined as η = ψ � ξ.

The further terms of the spectral sequence become quite complicated, so that
we just give a hint of how one can describe the d2 differential. Let h ∈ F pT p+q be
a cochain defining an element [h] ∈ Ep,q

2 . This means that h ∈ Zp,q
2 , and by (14)

we have

D0
s(∆

p
s(h)) = 0, D1

s(∆
p
s(h)) = (−1)pD0

s(∆
p+1
s (h)).

Then

dTh = D2
s(∆

p
s(h)) +D1

s(∆
p+1
s (h)) +D3

s(∆p
s(h)) +D2

s(∆
p+1
s (h) modBp+2,q−1

2

and the terms on the right-hand side of the equation yield a representative of d2[h].

5. Example: Cohomology of the Atiyah Algebroid of a Line Bundle

We apply the results of the previous sections to study the cohomology of the Atiyah
algebroid DM of a line bundle M . In this case the sequence (2) takes the form

0 → OX → DM → ΘX → 0, (15)

where OX is regarded as a bundle of abelian Lie algebras. Since OX has rank one,
the filtration has only one nontrivial term, i.e.:

F kΩk
DM

� Ωk
X ,

and the only nontrivial graded objects are

grk−1 Ωk
DM

� Ωk−1
X , grk Ωk

DM
� Ωk

X . (16)

One can compute the cohomology of DM directly. To this end observe that,
denoting by T k

DM
the complex computing the hypercohomology Hq(X ; Ω•

DM
), and

by T •
ΘX

the complex computing the hypercohomology Hq(X ; Ω•
X) = Hq(X ; C),

from (16) we can deduce that F kT k
DM

= T k
ΘX

and grk T
k
DM

= T k−1
ΘX

. From this we
obtain the exact sequence of complexes

0 → T •
ΘX

→ T •
DM

→ T •−1
ΘX

→ 0. (17)
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Proposition 5.1. The short exact sequence (17) induces a long exact sequence in
cohomology

· · · → Hq(X ; C) → H
q(X ; Ω•

DM
) → Hq−1(X ; C) → Hq+1(X ; C) → · · ·

whose connecting morphism is given by the cup product with the first Chern class
of M . In particular, we obtain

H
q(DM ; C) � Hq(X ; C)

Im γM ,q−2
⊕ ker γM ,q−1,

where

γM ,q : Hq(X,C) → Hq+2(X,C),

γM ,q(x) = c1(M ) � x.

Proof. Let ({αsi}, {ρsi}, {φsij}) be a lifting triple associated with a collection s =
{si} of splittings of the exact sequence (15). Note that giving a splitting of this
sequence is equivalent to giving a connection on M . Since we can always locally
define flat connections on a line bundle, we can assume that ρsi = 0. Moreover, the
extension is abelian, and the action of ΘX on OX coincides with the standard one,
so that the αsi are the restriction to Ui of αstd, the standard action of ΘX on OX .
Finally, the cocycle {φsij} is δ-closed, and its cohomology class in H1(X ; Ω1

X) is
the first Chern class of M .

Let c ∈ T q−1
ΘX

be a representative of a class in Hq−1(X ; C), and denote by σ

the connecting morphism. Then σ([c]) = [dDMx], for x any lifting of c to T q
DM

. In
particular we can choose x = (0, c), where we are using s to identify T q

DM
with

T q
ΘX

⊕ T q−1
ΘX

. So we have

dDMx = δc+ dαstdc+ φs � c.

As dαstd coincides with dX , the de Rham differential of X , and c is closed in T q−1
ΘX

,
we have δc+dαstdc = 0, and we obtain dDMx = φs � c. Since φs is a representative
of the Chern class of M , the proposition is proved.

As in this case Ω•
L is the two term complex 0 → OX

0→ OX → 0, we have the
isomorphisms

Ep,q
1 � H

q(X ; Ω•
L ⊗ Ωp

B) � Hq(X ; Ωp
X) ⊕Hq−1(X ; Ωp

X).

Using the computations made in the previous section, we obtain the following.

Proposition 5.2. (i) For (ξq, ξq−1) ∈ Hq(X ; Ωp
X)⊕Hq−1(X ; Ωp

X) � Ep,q
1 , one has

d1(ξq, ξq−1) = (dXξq + c1(M ) � ξq−1, dXξq−1).

(ii) If X is a compact Kähler manifold, the spectral sequence degenerates at the
second step.

Moreover, the cohomology Hk(X ; Ω•
DM

) inherits a Hodge structure of weight (k −
1, k).
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Č

Proof. Part (i) is clear.
To prove (ii), observe that if X is a compact Kähler manifold, one has the Hodge 

decomposition for X . This implies that the spectral sequence associated with the 
bête filtration of Ω•

X degenerates at the first step. This entails that for any Čech 
cocycle ξq ∈ Čq(U, Ωp

X ), the ech cochain dXξq is actually a δ-coboundary.
This in turn implies that the differential d1 of the spectral sequence satisfies

d1[(ξq , ξq−1)] = [(c1(M ) � ξq−1, 0)].

We then have

Ep,q
2 =

Hq(X ; Ωp
X)

Im γM ,q−1,p−1
⊕ Ker γM ,q−1,p,

where by γM ,q,p we denote the cup product

γM ,q,p = c1(M ) � • : Hq(X ; Ωp
X) → Hq+1(X ; Ωq+1

X ).

On the other hand, we know that the spectral sequence converges to

H
k(X ; Ω•

DM
) =

Hk(X ; C)
Im γM ,q−2

⊕ Ker γM ,q−1.

Now, the Hodge decomposition for X induces the decompositions

Hk(X ; Ω•
X)

Im γM ,k−2
=

⊕
p+q=k

Hq(X ; Ωp
X)

Im γM ,q−1,p−1
, Ker γM ,k−1 =

⊕
p+q=k−1

Ker γM ,q,p, (18)

from which we obtain H
k(X ; Ω•

DM
) =

⊕
p+q=k E

p,q
2 . Thus the spectral sequence

degenerates at the second term.
Moreover, since c1(M ) belongs to H2(X ; Z), we have the isomorphisms

Ker γM ,q,p = Ker γM ,p,q, Im γM ,q,p = Im γM ,p,q,

so the decompositions (18) define Hodge structures of weight k and k − 1, 
respectively.
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[23] O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg
4 (1925) 321–346.
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