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Introduction

Given a n × n stochastic matrix P with unique invariant law π, and an initial state i ∈ [n], one may consider the total-variation distance to equilibrium after t iterations, P t (i, •) -π tv . The time at which this decreasing function of t falls below a given ε ∈ (0, 1) is known as the mixing time:

t (i) mix (ε) := inf t ≥ 0 : P t (i, •) -π tv ≤ ε .
Estimating this quantity is often a difficult task. The purpose of this paper is to relate it to the following simple information-theoretical statistics, which we call the entropic time:

t ent := log n H where H := - 1 n n i,j=1
P (i, j) log P (i, j).

H is the average row entropy of the matrix P . Our finding is that, in a certain sense, "most" sparse stochastic matrices have mixing time roughly given by t ent , regardless of the choice of the precision ε ∈ (0, 1) and the initial state i ∈ [n].

To give a precise meaning to the previous assertion, we define the following model of Random Stochastic Matrix. For each i ∈ [n], let p i1 ≥ . . . ≥ p in ≥ 0 be given ranked numbers such that n j=1 p ij = 1, and define the n × n random stochastic matrix P by P (i, j) := p i σ -1 i (j) ,

(1 ≤ i, j ≤ n), (2) 
where σ = (σ i ) 1≤i≤n is a collection of n independent, uniform random permutations of [n], which we refer to as the environment. We sometimes write P σ instead of P to emphasize the dependence on the environment. Note that the average row entropy H = -1 n n i,j=1 p ij log p ij of this random matrix is deterministic. To study large-size asymptotics, we let the input parameters (p ij ) 1≤i,j≤n Date: October, 2016.

implicitly depend on n and consider the limit as n → ∞. Our focus is on the sparse and nondegenerate regime defined below. It might help the reader to think of all these parameters as taking values in {0} ∪ [ε, 1 -ε] for some fixed ε ∈ (0, 1), so that the number of non-zero entries in each row is bounded independently of n. However, we will only impose the following weaker conditions:

1. Sparsity (in every row, the mass is essentially concentrated on a few entries):

H = O(1) and max i∈[n] n j=1 p ij (log p ij ) 2 = o(log n). (3) 
2. Non-degeneracy (in most rows, the mass is not concentrated on a single entry):

lim sup n→∞ 1 n n i=1 1 p i1 >1-ε ----→ ε→0 + 0. ( 4 
)
These conditions imply in particular that t ent = Θ(log n) as n → ∞. Our main result states that around the entropic time t ent , the distance to equilibrium undergoes the following sharp transition, henceforth referred to as a uniform cutoff (to emphasize the insensitivity to the initial state). A remark on notation: below we say that an event that depends on n holds with high probability if the probability of this event converges to 1 as n → ∞; we use P -→ to indicate convergence in probability.

Theorem 1 (Uniform cutoff at the entropic time). Under the above assumptions, the Markov chain defined by P has, with high probability, a unique stationary distribution π. Moreover, for t = λt ent + o(t ent ) with λ fixed as n → ∞, 

Equivalently, for any fixed ε ∈ (0, 1), we have

max i∈[n] t (i) mix (ε) t ent -1 P ---→ n→∞ 0.
Remark 1 (Invariant measure). The stationary distribution π appearing in the above theorem is itself a non-trivial random object. To overcome this difficulty, we will in fact prove the statements (5)-( 6) with π replaced by the explicit approximation

π(j) := 1 n i∈[n] P t ent 10 (i, j). ( 7 
)
The uniformity over the initial state then automatically ensures that the true invariant measure π is unique with high probability and satisfies

π -π tv P ---→ n→∞ 0. ( 8 
)
Thus, once (5)- [START_REF] Berestycki | Random walks on the random graph[END_REF] have been obtained for π, the same conclusion extends to π.

Let us illustrate our result with a special case.

Example 1 (Random walk on random digraphs). When p i1 = . . . = p id i = 1 d i and p i,d i +1 = • • • = p in = 0 for some integers d 1 , . . . , d n ≥ 1, the random matrix P may be interpreted as the transition matrix of the random walk on a uniform random directed graph with n vertices and out-degrees d 1 , . . . , d n (loops are allowed). The average row entropy is then simply the average logarithmic degree H = 1 n n i=1 log d i . Assumption [START_REF] Aldous | Reversible Markov chains and random walks on graphs[END_REF] requires that H = O(1) and that the maximum out-degree ∆ satisfies ∆ = e o( √ log n) , while Assumption (4) simply asks for the proportion of degree-one vertices to vanish. Notice that, because of the possibility of vertices with zero in-degree, the random matrix P may, with uniformly positive probability, fail to be irreducible. However, under the above conditions, Theorem 1 ensures that with high probability there is a unique stationary distribution and the walk exhibits uniform cutoff at time (log n)/H.

Interesting applications of Theorem 1 can be obtained by taking the input parameters (p ij ) also random, provided the main assumptions (3)-( 4) are satisfied with high probability. The following theorem is concerned with the case where the rows {(p i1 , . . . , p in ), i = 1, . . . , n} are i.i.d. random vectors in the domain of attraction of a Poisson-Dirichlet law.

Theorem 2. Let ω = (ω ij ) 1≤i,j<∞ be i.i.d. positive random variables whose tail distribution function G(t) = P(ω ij > t) is regularly varying at infinity with index α ∈ (0, 1), i.e., for each λ > 0,

G(λt) G(t) ---→ t→∞ λ -α . ( 9 
)
Then as n → ∞, the n-state Markov chain with transition matrix

P (i, j) := ω ij ω i1 + • • • + ω in , (1 ≤ i, j ≤ n)
has with high probability a unique stationary distribution π, and exhibits uniform cutoff at time log n h(α) in the sense of (5)-( 6), where h(α) is defined in terms of the digamma function ψ = Γ Γ by

h(α) := ψ(1) -ψ(1 -α) = ∞ 0 e αt -1 e t -1 dt. ( 10 
)
Let us briefly sketch the main ideas behind the proof of our results. The essence of the sharp transition described in Theorem 1 lies in a quenched concentration of measure phenomenon in the trajectory space that can be roughly described as follows; we refer to Section 2 for more details. Let i = X 0 , X 1 , X 2 , . . . denote the trajectory of the random walk with transition matrix P and starting point i ∈ [n] and let Q i denote the associated quenched law, that is the law of the trajectory for a fixed realization of the environment σ. Define the trajectory weight

ρ(t) := P (X 0 , X 1 ) • • • P (X t-1 , X t ).
In other words, ρ(t) is the probability of the followed trajectory up to time t. Theorem 4 below establishes that for t = Θ(log n), with high probability with respect to the environment, it is very likely, uniformly in the starting point i, that log ρ(t) ∼ -Ht. More precisely, we prove that for any ε > 0,

max i∈[n] Q i ρ(t) / ∈ e -(1+ε)Ht , e -(1-ε)Ht P ---→ n→∞ 0. ( 11 
)
In particular, at t = t ent one has log ρ(t) ∼ -log n. As we will see in Section 3, the lower bound (5) is a rather direct consequence of the concentration result [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF]. Indeed, we will check that if the invariant probability measure has its atoms π(j), j ∈ [n], roughly of order O(1/n) then we cannot have reached equilibrium by time t if with high probability ρ(t) 1/n. The proof of the upper bound (6) requires a more detailed investigation of the structure of the set of trajectories that the random walker is likely to follow. As explained in Section 4, this allows us to obtain a sharp comparison between the transition probability P t (i, j) and the approximate equilibrium π(j) defined in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]. and α = 0, 3 (red), α = 0, 5 (blue) and α = 0, 7 (green). Note that the function h increases continuously from h(0) = 0 to h(∞) = ∞: the more "spread-out" the transition probabilities are, the faster the chain mixes.

1.1. Related work. Theorem 1 describes a sharp transition in the approach to equilibrium, visible on Figure 1: the total variation distance drops from the maximal value 1 to the minimal value 0 on a time scale that is asymptotically negligible with respect to the mixing time. This is an instance of the so-called cutoff phenomenon, a remarkable property shared by several models of finite Markov chains. Since its original discovery by Diaconis, Shashahani, and Aldous in the context of card shuffling around 30 years ago [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF][START_REF] Aldous | Random walks on finite groups and rapidly mixing Markov chains[END_REF][START_REF] Aldous | Shuffling cards and stopping times[END_REF], the problem of characterizing the Markov chains exhibiting cutoff has attracted much attention. We refer to [START_REF] Diaconis | The cutoff phenomenon in finite Markov chains[END_REF][START_REF] Aldous | Reversible Markov chains and random walks on graphs[END_REF][START_REF] Levin | Markov chains and mixing times[END_REF] for an introduction. While the phenomenon is now rather well understood in various specific settings, see e.g. [START_REF] Diaconis | Separation cut-offs for birth and death chains[END_REF][START_REF] Ding | Total variation cutoff in birth-and-death chains[END_REF] for the case of birth and death chains, a general characterization is still unknown and its nature remains somewhat elusive (but see [START_REF] Basu | Characterization of cutoff for reversible Markov chains[END_REF] for an interesting interpretation in the reversible case).

Recently, some attention has shifted from "specific" to "generic" instances: instead of being fixed, the sequence of transition matrices itself is drawn at random from a certain distribution, and the cutoff phenomenon is shown to occur for almost every realization. An important example is that of random walks on random graphs: in their influential paper [START_REF] Lubetzky | Cutoff phenomena for random walks on random regular graphs[END_REF], Lubetzky and Sly established cutoff in random d-regular graphs, for both the simple random walk and the nonbacktracking random walk. We refer also to [START_REF] Ben-Hamou | Cutoff for non-backtracking random walks on sparse random graphs[END_REF] and [START_REF] Berestycki | Random walks on the random graph[END_REF] for important breakthroughs regarding graphs with given degree sequences and the giant component of an Erdös-Renyi random graph.

The above mentioned references are all concerned with the reversible case of undirected graphs, where the associated simple random walk and non-backtracking random walk have explicitly known stationary distributions. In our recent work [START_REF] Bordenave | Random walk on sparse random digraphs[END_REF], we investigated the non-reversible case of random walk on sparse directed graphs with given bounded degree sequences. Despite the lack of direct information on the stationary distribution, we obtained a detailed description of the cutoff behavior in such cases. The present paper considerably extends these results by establishing cutoff for a large class of non-reversible sparse stochastic matrices, not necessarily arising as the transition matrix of the random walk on a graph. The proof of our main results here follows a strategy that is closely related to the one we introduced in [START_REF] Bordenave | Random walk on sparse random digraphs[END_REF]. However, due to the general assumptions on the transition probabilities, the same combinatorial arguments do not always apply and a finer analysis of the trajectory weights is required.

The eigenvalues and singular values of the random stochastic matrix appearing in Theorem 2 were analyzed very recently in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]: under a slightly stronger assumption than [START_REF] Boucheron | Concentration inequalities[END_REF], the associated empirical distributions are shown to converge to some deterministic limits, characterized by a certain recursive distributional equation. The numerical simulations given therein seem to indicate that the spectral gap should also converge to a non-zero limit, and the authors formulate an explicit conjecture (see [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]Remark 1.3]). However, the results in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF] do not allow one to infer something quantitative about the distance to equilibrium. Indeed, the relation between spectrum and mixing for non-reversible chains is rather loose, and one would certainly need more precise information on the structure of the eigenvectors -as done in, e.g., [START_REF] Lubetzky | Cutoff on all Ramanujan graphs[END_REF]. The proof of Theorem 2 relies entirely on the the general result of Theorem 1 and makes no use of spectral theory. As detailed in Lemma 16 below, the expression [START_REF] Diaconis | The cutoff phenomenon in finite Markov chains[END_REF] for h(α) coincides with the expected value of -log ξ where ξ has law Beta(1 -α, α). That should be expected in light of the fact that a size-biased pick from the Poisson Dirichlet law is Beta-distributed [START_REF] Pitman | The two-parameter poisson-dirichlet distribution derived from a stable subordinator[END_REF].

Quenched law of large numbers for path weights

The main result of this section can be interpreted as a quenched law of large numbers for the logarithm of the total weight of the path followed by the random walk; see Theorem 4 below.

2.1. Uniform unlikeliness. Consider a collection σ = (σ i ) 1≤i≤n of n independent random permutations, referred to as the environment, and a [n]-valued process X = (X t ) t≥0 whose conditional law, given the environment, is that of a Markov chain with transition matrix [START_REF] Aldous | Shuffling cards and stopping times[END_REF] and initial law uniform on [n]. Our main object of interest will be the sequence of weights W = (W t ) t≥1 seen along the trajectory, and the associated total weight up to time t:

W t :=P (X t-1 , X t ) , ρ(t) := t s=1 W s . (12) 
Write Q for the conditional law of the pair (X, W ) given the environment. Note that it is a random probability measure on the trajectory space E = [n] {0,1,... } × [0, 1] {1,2,... } equipped with the natural product σ-algebra of events. A generic point of E will be denoted (x, w), where x = (x 0 , x 1 , x 2 , . . .) and w = (w 1 , w 2 , . . .). For example, the trajectorial event "a transition with weight less than n -γ occurs within the first t steps" will be denoted

A = (x, w) ∈ E : min(w 1 , . . . , w t ) < n -γ , (13) 
and

Q(A) = 1 n i 0 ∈[n] • • • it∈[n] t s=1 P (i s-1 , i s ) 1 - t u=1 1 {P (i u-1 ,iu)≥n -γ } .
We let also

Q i (•) := Q(•|X 0 = i) be the law starting at i ∈ [n].
Recall that all objects are implicitly indexed by the size-parameter n, and asymptotic statements are understood in the n → ∞ limit. We call a trajectorial event A uniformly unlikely if

max i∈[n] Q i (A) P ---→ n→∞ 0. ( 14 
)
Lemma 3. For t = O(log n) and γ = Θ(1), the event A from (13) is uniformly unlikely.

Proof. A union bound implies the deterministic estimate

max i∈[n] Q i (A) ≤ t max i∈[n] n j=1 p ij 1 (p ij <n -γ ) .
Since u → (log u) 2 is decreasing on (0, 1),

max i∈[n] Q i (A) ≤ t (γ log n) 2 max i∈[n] n j=1 p ij (log p ij ) 2 .

The conclusion follows from the assumption (3).

Our main task in the rest of this section will be to establish: Theorem 4 (Trajectories of length t have weight roughly e -Ht ). For t = Θ(log n) and fixed ε > 0, the event ρ(t) / ∈ e -(1+ε) H t , e -(1-ε) H t is uniformly unlikely.

Let us observe here, for future reference, that if θ : E → E is the operator that shifts x = (x 0 , x 1 , . . .) and w = (w 1 , w 2 , . . .) to x = (x 1 , x 2 , . . .) and w = (w 2 , w 3 , . . .) respectively, then, for any i ∈ [n], t ∈ N and any event A ⊂ E

Q i (θ -t A) = j∈[n] P t (i, j)Q j (A) ≤ max j∈[n] Q j (A), (15) 
where θ -t A = {(x, w) ∈ E : θ t (x, w) ∈ A}. Thus, uniform unlikeliness propagates through time.

Sequential generation.

By averaging the quenched probability Q(•) with respect to the environment, one obtains the so-called annealed probability, which we denote by P. In symbols, letting E denote the associated expectation, for any event A in the trajectory space:

E[Q(A)] = 1 n n i=1 E[Q i (A)] = P ((X, W ) ∈ A) .
Markov's inequality offers a way to reduce the problem of estimating the worst-case quenched probability max i∈[n] Q i (A) of a trajectorial event A ⊂ E to that of controlling the corresponding annealed quantity, at the cost of an extra factor of n: for any δ > 0,

P max i∈[n] Q i (A) > δ ≤ 1 δ E n i=1 Q i (A) = n δ P ((X, W ) ∈ A) . ( 16 
)
The analysis of the right-hand side may often be simplified by the observation that the pair (X, W ) can be constructed sequentially, together with the underlying environment σ, as follows:

initially, Dom(σ i ) = Ran(σ i ) = ∅ for all i ∈ [n]
, and X 0 is drawn uniformly from [n]; then for each t ≥ 1, #1. Set i = X t-1 and draw an index j ∈ [n] at random with probability

p ij . #2. If j / ∈ Dom(σ i ), then extend σ i by setting σ i (j) = k, where k is uniform in [n] \ Ran(σ i ). #3. In either case, σ i (j) is now well defined: set X t = σ i (j) and W t = p ij .
Let us illustrate the strength of this sequential construction on an important trajectorial feature. A path (x 0 , . . . , x t ) ∈ [n] t+1 naturally induces a directed graph with vertex set V = {x 0 , . . . , x t } ⊂ [n] and edge set E = {(x 0 , x 1 ), . . . ,

(x t-1 , x t )} ⊂ [n] × [n].
As a rule, below we neglect possible multiplicities in the edge set E, that is every repeated edge from the path appears only once in E. We define the tree-excess of the path (x 0 , . . . , x t ) as

tx(x 0 , . . . , x t ) = 1 + |E| -|V |.
Here |V | and |E| denote the cardinalities of V and E. In particular, tx(x 0 , . . . , x t ) = 0 if and only if (x 0 , . . . , x t ) is a simple path in the usual graph-theoretical sense, while tx(x 0 , . . . , x t ) = 1 if and only if the edge set of (x 0 , . . . , x t ) has a single cycle (the path may turn around it more than once).

Lemma 5 (Tree-excess). For t = o(n 1/4 ), {tx(X 0 , . . . , X t ) ≥ 2} is uniformly unlikely.

Proof. In the sequential generation process, we have tx(X 0 , . . . , X t ) = ξ 1 + • • • + ξ t , where ξ t ∈ {0, 1} indicates whether or not, during the t th iteration, the random index k appearing at line #2 is actually drawn and satisfies k ∈ {X 0 , . . . , X t-1 }. The conditional chance of this, given the past, is at most

|{X 0 , . . . , X t-1 }| -|Ran(σ i )| n -|Ran(σ i )| ≤ t n .
Thus, tx(X 0 , . . . , X t ) is stochastically dominated by a Binomial (t, t n ). In particular, for r ∈ N,

P (tx(X 0 , . . . , X t ) ≥ r) ≤ t r t n r ≤ 1 r! t 2 n r . (17) 
Now, let n → ∞: since t = o(n 1/4 ), the right-hand side is o( 1 n ) already for r = 2, and ( 16) concludes.

2.3.

Approximation by i.i.d. samples. Consider the modified process (X , W ) obtained by resetting Dom(σ i ) = Ran(σ i ) = ∅ before every execution of line #2, thereby suppressing any time dependency: the environment is locally regenerated afresh at each step. In particular, the pairs (X t-1 , W t ) t≥1 are i.i.d. with law

P (X 0 = i, W 1 ≥ t) = n j=1 p ij n 1 p ij ≥t (1 ≤ i ≤ n, t ≥ 0). ( 18 
)
By construction, the modified process and the original one can be coupled in such a way that they coincide until the time

T := inf{t ≥ 0 : tx(X 0 , . . . , X t ) = 1}, (19) 
that is the first time a state gets visited for the second time. Thus, on the event {T ≥ t},

(X 0 , . . . , X t ) = (X 0 , . . . , X t ) and (W 1 , . . . , W t ) = (W 1 , . . . , W t ). ( 20 
)
We exploit this observation to establish a preliminary step towards Theorem 4. Notice that the estimate below becomes trivial if the parameters p ij are such that p ij ≤ 1 -ε for some fixed ε > 0. In the general case it relies on the non-degeneracy assumption (4).

Lemma 6. If t = Θ(log n) and δ = o(1), then ρ(t) > e -δt is uniformly unlikely.

Proof. Call (x 0 , . . . , x t ) a cycle if (x 0 , . . . , x t-1 ) is simple and x t = x 0 . We will show:

(i) for t and δ as above, B := {ρ(t) > e -δt , tx(X 0 , . . . , X t ) = 0} is uniformly unlikely;

(ii) for δ = o(1), C δ := ∃s ≥ 1 : (X 0 , . . . , X s ) is a cycle, ρ(s) > e -δs is uniformly unlikely.

Let us first show that this is sufficient to conclude the proof. Indeed, the event

A := {ρ(t) > e -δt } = {(x, w) ∈ E : w 1 • • • w t > e -δt },
can be partitioned according to the size of tx(x 0 , . . . , x t ). Therefore

A ⊂ B ∪ {tx(x 0 , . . . , x t ) = 1, w 1 • • • w t > e -δt } ∪ {tx(x 0 , . . . , x t ) ≥ 2} .
The event {tx(x 0 , . . . , x t ) ≥ 2} is uniformly unlikely, thanks to Lemma 5. The event B is uniformly unlikely, by (i) above. The event {tx(x 0 , . . . , x t ) = 1, w 1 • • • w t > e -δt } on the other hand is contained in the union of the following three events:

• tx x 0 , . . . , x t/3 = 0, w 1 • • • w t/3 > e -δt • tx x 2t/3 , . . . , x t = 0, w 2t/3 • • • w t > e -δt • tx (x 0 , . . . , x t ) = tx(x 0 , . . . , x t/3 ) = tx(x 2t/3 , . . . , x t ) = 1, w 1 • • • w t > e -δt
The first two cases are uniformly unlikely by (i) and by the observation [START_REF] Freedman | On tail probabilities for martingales[END_REF]. To handle the third case, observe that if tx(x 0 , . . . , x t ) = 1, then the path (x 0 , . . . , x t ) can be rewritten as (x 0 , . . . , x a , . . . , x a+r , . . . , x t ), where (x 0 , . . . , x a ) and (x a+r , . . . , x t ) are simple paths, while the path (x a , . . . , x a+r ) consists of r complete turns around a cycle of length . Here a ≥ 0, r, ≥ 1 and a + r ≤ t. If tx(x 0 , . . . , x t/3 ) = tx(x 2t/3 , . . . , x t ) = 1, then the two simple paths must have lengths less than t/3 and therefore r > t/3. If ρ = w a+1 • • • w a+ is the weight associated to one turn around the cycle, then w 1 • • • w t > e -δt implies ρ r > e -δt and therefore ρ > e -3δ . It follows that the shifted trajectory θ t/3 (x, w) must belong to C 3δ . Using ( 15) and (ii) above, this is uniformly unlikely. It remains to prove (i) and (ii). By (20), we have

{(X, W ) ∈ B} ⊂ W 1 • • • W t > e -δt ⊂ t s=1 1 (W s <e -2δ ) < t 2 . Now t s=1 1 (W s <e -2δ
) is Binomial(t, q) with q = P W 1 < e -2δ . Thus, Bennett's inequality yields

P ((X, W ) ∈ B) ≤ e -tφ(q) , (21) 
for some universal function φ : [0, 1] → R + that diverges at 1 -(more precisely, [9, Theorem 2.9] gives φ(q) = σ 2 h((q -1/2)/σ 2 ) with σ 2 = q(1 -q), h(x) = (x + 1) log(x + 1) -x for x ≥ 0 and 0 otherwise). From (18),

1 -q = P W 1 ≥ e -2δ = 1 n n i,j=1 p ij 1 p ij ≥e -2δ .
Now, let n → ∞. Since δ → 0, the assumption (4) ensures that q → 1, so that (21) implies

P ((X, W ) ∈ B) = o( 1 n ).
From the first moment argument (16) one obtains part (i).

To prove part (ii), observe that the coupling (20) implies

{(X, W ) ∈ C δ } ⊂ s≥1 {W 1 • • • W s > e -δs , X s = X 0 }.
Since X s is independent of the other variables and uniform, the argument for (21) shows that

P ((X, W ) ∈ C δ ) ≤ 1 n s≥1 e -s φ(q) = 1 n(e φ(q) -1) . ( 22 
)
Letting n → ∞, the conclusion follows as above.

2.4. Proof of Theorem 4. The event A = ρ(t) / ∈ e -(1+ε) H t , e -(1-ε) H t can be written as

A = 1 - 1 H t t s=1 log 1 W s > ε .
We are going to prove the uniform unlikeliness of A for any fixed ε > 0 and t = Θ(log n). First note that, by [START_REF] Lubetzky | Cutoff on all Ramanujan graphs[END_REF], the random time T defined in [START_REF] Pitman | The two-parameter poisson-dirichlet distribution derived from a stable subordinator[END_REF] satisfies

P(T ≤ t) ≤ t 2 n = o(1).
Combining this with (20), we see that

P ((X, W ) ∈ A) = P 1 - 1 H t t s=1 log 1 W s > ε + o(1), (23) 
where (W 1 , . . . , W t ) are i.i.d. with law determined by [START_REF] Lubetzky | Cutoff phenomena for random walks on random regular graphs[END_REF]. Now, the variable

Y := 1 H log 1 W 1
has mean 1 by definition of H. From ( 18) and the assumption (3), one has

E[Y 2 ] = o(log n). In particular, the variance of Y satisfies Var(Y ) = o(log n). Therefore, E   1 - 1 H t t s=1 log 1 W s 2   = 1 t Var(Y ) ---→ n→∞ 0. ( 24 
)
By Chebychev's inequality, (24) and (23) already show that P ((X, W ) ∈ A) → 0. However, this is not enough to guarantee the uniform unlikeliness of A, due to the extra factor n appearing on the rhs of ( 16). To overcome this difficulty, we will use a more elaborate approach, based on the following higher-order version of [START_REF] Levin | Markov chains and mixing times[END_REF]. For any event B in the trajectory space, for any δ > 0 and k ∈ N,

P max i∈[n] Q i (B) > δ ≤ 1 δ k E n i=1 (Q i (B)) k = n δ k P k =1 (X , W ) ∈ B , (25) 
where the processes (X 1 , W 1 ), . . . , (X k , W k ) are formed by generating a random environment σ and a uniform state I ∈ [n], and conditionally on that, by running k independent P σ -Markov chains in the same environment σ, with the same starting node I. We will fix δ > 0 and prove that for suitable choices of the event B, the right-hand side of (25) is o(1) for

k := log n 2 log(1/δ) . ( 26 
)
First observe that the variables (X 1 s , W 1 s ) 0≤s≤t , . . . , (X k s , W k s ) 0≤s≤t can again be constructed sequentially, together with σ: pick I uniformly in [n], set X 1 0 = I, and construct (X 1 s , W 1 s ) 1≤s≤t by repeating t times the instructions #1, #2 and #3 of subsection 2.2. Then set X 2 0 = I, construct (X 2 s , W 2 s ) 1≤s≤t similarly (without re-initializing the environment), and so on. Note that kt iterations are performed in total. The union of the graphs induced by the first j paths (X 1 , . . . , X t ), = 1, . . . , j, forms a certain graph G j = (V j , E j ), and the argument used for Lemma 5 shows that tx(G j ) :

= 1 + |E j | -|V j | satisfies P(tx(G j ) ≥ 2) ≤ (kt) 4 2n 2 = o δ k n ,
where we use the fact that by (26) one has δ k = Θ(n -1/2 ). In view of (25), this reduces our task to showing that P(B k ) = o δ k n , where, for any j = 1, . . . , k, we define the event

B j := {tx(G j ) ≤ 1} ∩ (X 1 , W 1 ) ∈ B ∩ . . . ∩ (X j , W j ) ∈ B . ( 27 
) Note that B k ⊂ B k-1 • • • ⊂ B 1 .
We will actually show that P (B j |B j-1 ) = o(1) uniformly in 2 ≤ j ≤ k and that P(B 1 ) = o(1). This will be enough to conclude, since for k = Θ(log n) one has

P(B k ) = P(B 1 ) k j=2 P (B j |B j-1 ) = o δ k n .
To prove Thorem 4 we now apply the above strategy with two choices of the event B.

Uniform unlikeliness of ρ(t) < e -(1+ε) H t . Define the event

B := W 1 • • • W t < e -(1+ε)H t ∩ min(W 1 , . . . , W t ) > n -γ , γ := εt 4t ent .
We use the method described above, i.e., we prove that P(B 1 ) = o(1) and

P (B |B -1 ) = o(1), (28) 
uniformly in 2 ≤ ≤ k, with k given by ( 26) and B k defined as in (27). Notice that once (28) has been proved, the previous observations together with Lemma 3 imply that the event ρ(t) < e -(1+ε)H t is uniformly unlikely, thus establishing one half of Theorem 4.

To prove (28), first observe that P(B 1 ) is bounded from above by (23), so that P(B 1 ) = o(1) follows from (24). Next, fix 2 ≤ ≤ k, assume that the first -1 walks have already been sequentially generated and that B -1 holds, and let us evaluate the conditional probability that (X , W ) ∈ A. We distinguish between two scenarios, depending on the random times

τ := inf s ≥ 1 : (X s-1 , X s ) / ∈ E -1 and τ := inf s ≥ 0 : W 1 • • • W s ≤ n -γ .
Since n -γ = e -ε H t/4 , we may clearly restrict to the case t ≥ τ , otherwise the event ρ(t) < e -(1+ε)H t is trivially false.

Case I: τ < τ and t ≥ τ . Let F denote the event {τ < τ } ∩ {t ≥ τ }. We show that

P(F |B -1 ) = o(1)
. For any 1 ≤ s ≤ t, let G s denote the set of directed paths in the graph G -1 , with length s and starting node I. The condition tx(G -1 ) ≤ 1 ensures that G -1 is a directed tree with at most one extra edge. Thus, for every vertex v ∈ V -1 there are at most 2 directed paths of length s from the given vertex

I to v. It follows that |G s | ≤ 2|V -1 | ≤ 2kt.
If F holds, and τ = s, then (X 0 , . . . , X s ) is one of the paths in G s with weight at most n -γ . By definition, each such path has conditional probability at most n -γ to be actually followed by the th walk. Summing over the possible values of τ , we find that the conditional probability of F is less than 2kt 2 n -γ = o(1).

Case II: τ ≤ τ ≤ t. Let F denote the event {τ ≤ τ ≤ t}. We show that P(B ∩ F |B -1 ) = o(1). On the event F one has W 1 • • • W τ -1 > n -γ . Since B includes the condition min(W 1 , . . . , W t ) > n -γ , and therefore W τ > n -γ , for (X , W ) to fall in B we must have

W τ +1 • • • W t < n 2γ e -H(1+ε)t = e -H(1+ ε 2 )t . (29) 
Now, the condition j / ∈ Dom(σ i ) in line #2 of the sequential generation process is actually satisfied when the th walk exits G -1 , so X τ is constructed by sampling σ i (j) uniformly in [n] \ Ran(σ i ). Since i |Ran(σ i )| ≤ kt, this random choice and the subsequent ones can be coupled with i.i.d. samples from the uniform law on [n] at a total-variation cost less than kt 2 n = o(1). This induces a coupling between W τ +1 • • • W t and a product of (less than t) i.i.d. variables with law [START_REF] Lubetzky | Cutoff phenomena for random walks on random regular graphs[END_REF], and it follows from (23)-( 24) that (29) occurs with probability o(1).

Uniform unlikeliness of ρ(t) > e -(1-ε) H t . Let us define the event

B := W 1 • • • W t > e -(1-ε)H t W 1 • • • W s ≤ (log n) -4 , s := εt 2 -ε .
We use the same method as above, with this new definition of B. Notice that if we prove that B is uniformly unlikely, then it follows from Lemma 6 that ρ(t) > e -(1-ε)H t is also uniformly unlikely, thus completing the proof Theorem 4. We need to prove (28) with the current definition of the sets B j ; see (27). First observe that P(B 1 ) = o(1) follows again as in ( 23)-( 24). Next, fix 2 ≤ ≤ k, assume that the first -1 walks have already been sequentially generated and that B -1 holds, and let us evaluate the conditional probability that (X , W ) ∈ B. As before, we let τ be the first exit from G -1 . We distinguish two cases.

Case I: τ > s. We proceed as in case I above. If B ∩ {τ > s} holds, then (X 0 , . . . , X s ) must be one of the paths in the set G s , with weight at most (log n) -4 . As before, there are less than 2kt possible paths, each having conditional probability at most (log n) -4 to be actually followed. Therefore, P(B ∩ {τ > s}|B -1 ) ≤ 2kt(log n) -4 = o(1).

Case II: τ ≤ s. On this event, reasoning as in case II above, one sees that (W s+1 , . . . , W t ) can be coupled with (t -s) i.i.d. variables with law [START_REF] Lubetzky | Cutoff phenomena for random walks on random regular graphs[END_REF] with an error o(1) in total variation, and (23)-( 24) then implies that their product will be below e -( 1-ε 2 )H(t-s) with probability 1 -o(1). But e -( 1-ε 2 )H(t-s) ≤ e -(1-ε)H t by our choice of s.

Proof of the lower bound in Theorem 1

In this section we prove the simpler half of Theorem 1, namely the lower bound [START_REF] Ben-Hamou | Cutoff for non-backtracking random walks on sparse random graphs[END_REF]. We shall actually prove [START_REF] Ben-Hamou | Cutoff for non-backtracking random walks on sparse random graphs[END_REF] with π replaced by the probability π given in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]; see Remark 1.

Fix the environment σ, an arbitrary probability measure ν on [n], t ∈ N, θ ∈ (0, 1) and i, j ∈ [n]. Since P t (i, j) = Q i (X t = j), we have

P t (i, j) ≥ Q i (X t = j, ρ(t) ≤ θ). (30) 
If equality holds in this inequality, then clearly

ν(j) -Q i (X t = j, ρ(t) ≤ θ) ≤ ν(j) -P t (i, j) + ,
where [x] + := max(x, 0). On the other-hand, if the inequality (30) is strict, then there must exist a path of length t from i to j with weight > θ, implying that P t (i, j) > θ and hence that ν(j) -Q i (X t = j, ρ(t) ≤ θ) ≤ ν(j)1 P t (i,j)>θ .

In either case, we have

ν(j) -Q i (X t = j, ρ(t) ≤ θ) ≤ ν(j) -P t (i, j) + + ν(j)1 P t (i,j)>θ .
Summing over all j ∈ [n], the left hand side above yields the probability Q i (ρ(t) > θ), while the first term in the right hand side gives the total variation norm ν -P t (i, •) tv . On the other hand, the Cauchy-Schwarz and Markov inequalities imply

  j∈[n] ν(j)1 P t (i,j)>θ   2 ≤ j∈[n] ν(j) 2 ∈[n] 1 P t (i, )>θ ≤ 1 θ j∈[n] ν(j) 2 .
Summarizing,

Q i (ρ(t) > θ) ≤ ν -P t (i, •) tv + 1 θ j∈[n] ν(j) 2 . ( 31 
)
We now specialize to θ = log 3 n n and ν = π as in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]. If t = (λ + o(1))t ent with 0 < λ < 1 fixed, then for some ε > 0 one has e -(1+ε)H t > θ for all n large enough. Therefore, from Theorem 4, we have

min i∈[n] Q i (ρ(t) > θ) P ---→ n→∞ 1.
To conclude the proof, it remains to verify that the square-root term in (31) converges to zero in probability. Below, we prove the stronger estimate

E   j∈[n] π(j) 2   = o(θ). (32) 
Fix h := tent 10 . The left-hand-side of (32) may be rewritten as P (X h = Y h ), where conditionally on the environment σ, X and Y denote two independent P σ -Markov chains, each starting from the uniform distribution on [n]. To evaluate this annealed probability, we generate the chains sequentially, together with the environment, as follows: we pick X 0 uniformly in [n], and construct (X 1 , . . . , X h ) by repeating t times the instructions #1, #2 and #3 of subsection 2.2. We then pick Y 0 uniformly at random in [n], and construct (Y 1 , . . . , Y h ) similarly, without re-initializing the environment. Now, observe that {X h = Y h } ⊂ {S ≤ h}, where

S = inf {s ≥ 0 : Y s ∈ {X 0 , . . . , X h , Y 0 , . . . , Y s-1 }} .
By uniformity of the random choices made at each execution of the instruction #2, we have for 0 ≤ s ≤ h,

P (S = s) ≤ |{X 0 , . . . , X h , Y 0 , . . . , Y s-1 }| n ≤ 2h + 1 n .
By a union bound, we see that

P(S ≤ h) ≤ 2(h+1) 2 n
, which is o(θ) thanks to our choice of θ.

Proof of the upper bound in Theorem 1

The overall strategy of the proof is similar to that introduced in [START_REF] Bordenave | Random walk on sparse random digraphs[END_REF]. Before entering the details of the proof, let us give a brief overview of the main steps involved.

Fix the environment and, for every i, j ∈ [n], define a suitable set of nice paths N t (i, j) that go from i to j in t steps, where t = (λ + o(1))t ent , with λ > 1. Call P t 0 (i, j) the probability that the walk started at i arrives in j after t steps by following one of the paths in N t (i, j). Clearly, P t 0 (i, j) ≤ P t (i, j), and therefore, for any probability ν on [n], any δ > 0, one has

ν -P t (i, •) tv = j∈[n] ν(j) -P t (i, j) + ≤ j∈[n] ν(j)(1 + δ) + δ n -P t 0 (i, j) + . ( 33 
)
Suppose now that, for some δ > 0, and some ν, for all i, j ∈ [n], one has

P t 0 (i, j) ≤ (1 + δ)ν(j) + δ n . (34) 
In this case we can compute the sum in (33) to obtain, for all i ∈ [n],

ν -P t (i, •) tv ≤ q(i) + 2δ, ( 35 
)
where q(i) is the probability that a walk of length t started at i does not follow one of the nice paths in N t (i) = ∪ j N t (i, j), i.e.

q(i) = j∈[n]
(P t (i, j) -P t 0 (i, j)).

We want to prove that ν -P t (i, •) tv P -→ 0 when ν = π; see Remark 1. Thus, roughly speaking, the key to the proof is to define the set of nice paths N t (i, j) in such a way that:

(1) q(i) vanishes in probability, and (2) for any δ > 0 the bound (34) holds with high probability if we choose ν = π.

The definition of nice paths will be given in Subsection 4.2. Below, we start with some preliminary facts. Throughout this section we will use the following notation.

Notation. We fix 0 < ε < 1/20, and

t := (1 + ε + o(1)) t ent , (36) 
Moreover, we set

h := t ent 10 , H = H(1 -ε 2 ) and H = H(1 + ε). (37) 
For any path p := (x 0 , . . . , x s ) ∈ [n] s+1 , s ∈ N, the weight of p is defined by

w(p) = P (x 0 , x 1 ) • • • P (x s-1 , x s ). ( 38 
)
4.1. The forward graph G x (s) and the spanning tree T x (s). For integer s ≥ 1 and x ∈ [n] we call G x (s) the weighted directed graph spanned by the set of directed paths p with at most s edges, starting at x, and with weight w(p) ≥ e -H s . We can construct G x (s), together with a spanning tree T x (s), as follows. We start at G 0 = T 0 = x and define a process (G 0 , T 0 ), (G 1 , T 1 ), . . . , which stops at some random time κ, and we define G x (s) = G κ and T x (s) = T κ . As in Subsection 2.2, we will add oriented edges one by one, using sequential generation. Initially, Dom(σ y ) = Ran(σ y ) = ∅ for all y ∈ [n]. When j / ∈ Dom(σ y ), we interpret (y, j) as a free halfedge exiting y to be matched with a free half-edge z to be chosen uniformly among the vertices z ∈ [n] \ Ran(σ y ). If we are at (G , T ), to obtain (G +1 , T +1 ) the iterative step is as follows:

1) Consider all nodes y of G together with their available half-edges (y, j), j / ∈ Dom(σ y ). The weight of such half-edge is defined as w(y, j) := w(p) p y,j , where p is the unique path in T from x to y. Pick (y, j) with maximal weight w(y, j), among all available half-edges such that: (i) y is at graph distance at most s -1 from x, and (ii) the weight satisfies w(y, j) ≥ e -H s . If this set is empty, then the process stops and we set κ = .

2) Extend σ y by setting σ y (j) = z, where z is uniform in [n] \ Ran(σ y ).

3) Add the weighted directed edge (y, z), with weight p yj , to the graph G ; add it also to T if z was not already a vertex of G . This defines T +1 and G +1 .

Notice that T x (s) is a spanning tree of G x (s), and that G x (s) is indeed the union of all directed paths p with at most s edges, starting at x, and such that w(p) ≥ e -H s . We start our analysis of G x (s) and T x (s) with a deterministic lemma. Lemma 7. Fix x ∈ [n] and s ∈ N, and consider the generation process defined above. The weight w of the half-edge picked at the -th iteration of step 1 satisfies w ≤ s .

In particular, the random time κ satisfies

κ ≤ s e H s .
Proof. Consider the following new tree, say T , obtained as T in the above process except that at step 3 if z has already been seen, we create anyway a new fictitious leaf node. Then both G and T have exactly edges. Let F denote the set of all leaf nodes T . Thus F consists of all leaf nodes of T plus all the fictitious leaf nodes introduced above. By construction:

p: x →F w(p) ≤ 1, ( 39 
)
where the sum runs over all directed paths in T from the root x to a leaf node in F . Note also that the chosen weights at step 1 for = 1, 2, . . . are non-increasing: w -1 ≥ w . Hence, any p from the sum in (39) satisfies w(p) ≥ w . Since there is a unique path p for each leaf node in F , it follows from (39) that |F | w ≤ 1. Each path p has length at most s, and their union spans T . Since there are a total of edges one must have ≤ s|F |. Therefore ≤ s/ w as desired.

For the second statement, we use that for = κ, w ≥ e -H s .

Let as usual tx(G x (s)) := 1+|E|-|V | denote the tree excess of the directed graph G x (s), where E is the set of edges and V is the set of vertices of G x (s). Note that |E| = κ, that tx(G x (s)) = 0 iff G x (s) = T x (s), and that tx(G x (s)) ≤ 1 iff G x (s) is a directed tree except for at most one extra edge. Remark also that if s ≤ (1-ε)t ent , then the number of vertices in G x (s) satisfies |V | = o(n). Indeed, there are at most κ + 1 vertices, and by Lemma 7, 

κ ≤ t ent e H(1-ε)tent = O(n 1-ε 2 log n). Lemma 8. Denote by S 0 the set of all x ∈ [n] such that tx(G x (2h)) ≤ 1, where h is defined in (37). Then with high probability S 0 = [n], that is P(S 0 = [n]) = 1 -o(1).
Proof. We can use the same argument is in the proof of Lemma 5. Consider the stage (G , T ) → (G +1 , T +1 ) of the above sequential generation process. The conditional chance, given the past stages, that the vertex z in step 3 is already a vertex of G is at most ( + 1)/n. Hence, if m = se H s , from Lemma 7, the tree excess of G x (s) is stochastically upper bounded by Binomial(m, (m + 1)/n). As in [START_REF] Lubetzky | Cutoff on all Ramanujan graphs[END_REF], the probability that the tree excess is larger than 1 is bounded by

1 2 m(m + 1) n 2 .
For s = 2h, the later is o(1/n) since m 4 = o(n) which follows from 4H2h < (84/100) log n (since ε < 1/20).

4.2. Nice trajectories. We will first show that for most starting states x ∈ [n], it is likely that the walker spends its first (1 -ε)t ent steps in T x (s) (Lemma 11) and does not come back to it for a long time (Lemma 12). We start by identifying these good starting points x.

Lemma 9 (Good states). Let S be the set of all x ∈ [n] such that tx(G x (h)) = 0. For any s = Θ(log n), the event {X s / ∈ S } is uniformly unlikely.

Proof. From the Markov property, it is sufficient to prove the claim for s ≤ h and s = Θ(log n).

By Lemma 8, we may further assume that S 0 = [n]. Consider the trajectory (X 0 , . . . , X s ) started at X 0 = x. The event that X s / ∈ S is contained in the union of the events A = {ρ(s) / ∈ [e -H s , e -H s ]} and A c ∩B where B = {(X 0 , . . . X s ) ∈ P} and P is the set of paths starting from x of length s in G x (2h), whose end point is not in S . Since G x (2h) is a tree except for at most one directed edge, and s ≤ h, then P has cardinality at most 2. Hence,

Q x (A c ∩ B) ≤ 2e -H s = o(1).
Finally, Theorem 4 asserts that A is uniformly unlikely.

The next corollary implies that it is enough to check that the upper bound (6) holds uniformly over S rather than over all of [n].

Corollary 10. For all integers u ≥ s = Θ(log n), for any probability ν on [n]:

max x∈[n] P u (x, •) -ν tv ≤ max x∈S P u-s (x, •) -ν tv + o P (1),
where o P (1) denotes a random variable that converges to zero in probability, as n → ∞.

Proof. Notice that

P u (x, •) -ν tv ≤ Q x (X s / ∈ S ) + max y∈S P u-s (y, •) -ν tv .
Taking maximum over x ∈ [n] and using Lemma 9 concludes the proof.

Theorem 4 implies that the trajectory started at x is likely to remain in G x (s) for a long time. We now prove that it is also likely that the trajectory stays in T x (s) if x ∈ S and s is not too large.

Lemma 11. If ε t ent ≤ s ≤ (1 -ε) t ent , then max x∈S Q x ((X 0 , . . . , X s ) / ∈ T x (s)) P ---→ n→∞ 0. (40) 
Proof. By construction, there are only two ways that the trajectory exits T x (s): either (i) the weight of the trajectory ρ(s) is below e -H s or (ii

) (X 0 , • • • , X s ) has used an edge in G x (s)\T x (s), that is, there exists 1 ≤ u ≤ s such that (x u-1 , x u ) ∈ G x (s)\T x (s)
. The event depicted in (i) is uniformly unlikely by Theorem 4. We should thus treat the event (ii). We may follow the argument of [8, Proposition 12]. Fix x ∈ [n], and consider the sequential generation process (G 0 , T 0 ), (G 1 , T 1 ), . . . defined above. Define a new process (M ) ≥0 by M 0 = 0 and

M +1 = M + 1 I( < κ)1 I(z ∈ G ) w ,
where w = w(y , j ) is the weight of the half-edge (y , j ) picked in step 1 and z = σ y (j ) is the vertex picked in step 2. In words: M is the cumulative weight of all half-edges that are matched in G \T . In particular the probability of the scenario described in point (ii) above is bounded above by M κ . Thus, to conclude the proof of Lemma 11, it is sufficient to prove that for any fixed δ > 0, M κ ≥ δ is unlikely, uniformly over x ∈ S . By construction, M h = 0 for x ∈ S , hence it is sufficient to prove that M κ -M h ≥ δ is uniformly unlikely. Note that we may further assume that

≥ h =⇒ w ≤ δ 2 , (41) 
since the complementary event entails the existence of a path of length h = Θ(log n) and weight at least δ 2 = Ω(1) starting at x, which is uniformly unlikely by Lemma 6. In other words, we may safely replace w with w ∧ δ 2 in the definition of M , for all ≥ h. For this modified definition of M , this ensures that

0 ≤ M +1 -M ≤ δ 2 .
for all ≥ h. We then claim that for h as in (37) and any fixed δ > 0, uniformly in x ∈ [n],

P(M κ ≥ M h + δ) = o 1 n . ( 42 
)
To prove (42), let F be the natural filtration associated to the process (G 0 , T 0 ), (G 1 , T 1 ), . . . . If |G | is the number of nodes in G , then

E M +1 -M F = 1 I( < κ) w |G | n -|Ran(σ y )| , E (M +1 -M ) 2 F = 1 I( < κ) w 2 |G | n -|Ran(σ y )| .
We now use that |Ran(σ y )| ≤ , |G | ≤ + 1. Moreover, by Lemma 7, ≤ s/ , and κ ≤ se H s ≤ t ent n 1-ε 2 . Therefore,

≥0 E M +1 -M F = O (log n) 2 n -ε 2 =: a. ≥0 E (M +1 -M ) 2 F = O (log n) 3 n -1 =: b.
The martingale version of Bennett's inequality [START_REF] Freedman | On tail probabilities for martingales[END_REF]Theorem 1.6] gives

P (M κ -M h ≥ a + δ) ≤ (2eb) 2 .
Since a = o(1) and b = n -1+o (1) , this concludes the proof of (42).

Lemma 12. Suppose u, s = Θ(log n) are such that s ≤ u ∧ (1 -ε)t ent . Then

max x∈[n] Q x ({(X 0 , . . . , X s ) ∈ T x (s)} ∩ {(X s+1 , . . . , X u ) ∩ T x (s) = ∅}) P ---→ n→∞ 0.
Proof. We use a version of the method explained in (25), with k = O(log n) as in (26) and

B = {(X 0 , . . . , X s ) ∈ T x (s)} ∩ {(X s+1 , . . . , X u ) ∩ T x (s) = ∅} ∩ {ρ(s) ≤ e -H s },
Thanks to Theorem 4, the intersection with {ρ(s) ≤ e -H s } is not restrictive. Consider k trajectories (X 1 , W 1 ), . . . , (X k , W k ) all started from X 0 = I for any 1 ≤ ≤ k where I is picked uniformly in [n]. For 1 ≤ ≤ k, consider the sequence of non-increasing events,

B := {(X 1 , W 1 ) ∈ B} ∩ • • • ∩ {(X , W ) ∈ B}.
As explained below (27), it is sufficient to prove that P(B |B -1 ) = o(1), uniformly in 1 ≤ ≤ k.

We will show the stronger uniform bounds: P F (B 1 ) = o(1) and, uniformly in 2 ≤ ≤ k,

P F (B |B -1 ) = o(1), (43) 
where P F (•) = P(•|F) and F is the σ-algebra generated by the random variables I, G I (s), and T I (s). If B holds, then two disjoint cases may occur:

(i) either (X 0 , . . . , X s ) is one of the trajectories (X i 0 , . . . , X i s ), 1 ≤ i ≤ -1, in T I (s), (ii) or, (X 0 , . . . , X s ) is a new trajectory in T I (s) and (X s+1 , . . . , X t ) ∩ T I (s) is not empty.

In the case = 1 of course only the second scenario occurs. If (i) holds, then on the event B -1 , (X 0 , . . . , X s ) is one of the at most -1 distinct trajectories in T I (s) each of weight at most e -H s . Hence, the probability of this case is upper bounded by ke -H s = o(1). If (ii) holds, then the node X s has never been visited before and we may couple (X s+1 , . . . , X u ) with u -s i.i.d. samples from the uniform law on [n] at a total-variation cost less than ku We turn to the definition of nice trajectories. Let ε, h, and t be fixed as in (36)-(37). Set also

s := t -h. Since 0 < ε < 1/20, for n large enough, s ≤ (1 -ε)t ent .
For a given x ∈ [n] and y / ∈ G x (s), call G x y (h) the graph spanned by trajectories in G y (h) which do not intersect nodes in G x (s). We denote by S x the set of y / ∈ G x (s) such that tx(G x y (h)) = 0. The set N t (x) of nice paths is defined as the subset of all paths p = (x 0 , x 1 , . . . , x t ) ∈ [n] t+1 , such that: 1) w(p) ≤ n -1-ε/4 ; 2) x 0 = x and (x 0 , . . . , x s ) ∈ T x (s); 3) P (x s , x s+1 ) ≥ n -ε/8 . 4) x s+1 ∈ S x and (x s+1 , . . . , x t ) ∈ G x x s+1 (h).

Combining Lemma 3, Lemma 9, Lemma 11, Lemma 12 and (15), we have proved:

Proposition 13. For ε, h, s, t as above, we have 

max x∈S Q x ((X 0 , . . . , X t ) / ∈ N t (x)) P ---→ n→∞ 0. ( 44 
w(p), (45) 
where N t (x, y) ⊂ N t (x) is the subset of nice paths such that x t = y.

Proposition 14. Let 0 < ε, t be as in (36), and π as in [START_REF] Bordenave | Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph[END_REF]. For any δ > 0, with high probability

P t 0 (x, y) ≤ (1 + δ) π(y) + δ n ∀x, y ∈ [n]. ( 46 
)
Notice that if Proposition 14 is available, then the argument in (34)-(35) allows us to estimate, with high probability,

π -P t (x, •) tv ≤ q(x) + 2δ, (47) 
where q(x) = Q x ((X 0 , . . . , X t ) / ∈ N t (x)). From Proposition 13, uniformly in x ∈ S , one has q(x) P -→ 0. This proves that (6) holds uniformly in x ∈ S . Using Corollary 10, this concludes the proof of the upper bound in Theorem 1.

Proof of Proposition 14. Consider the set V x (s) of all nodes at distance s from x in the tree T x (s). Any such node must be a leaf by construction. We define the set L x (s) as the collection of pairs (u, k), where u ∈ V x (s) and k ∈ [n]. An element of L x (s) is regarded as an half-edge (u, k), with weight w(u, k). Given v ∈ S x , by definition there is at most one path of length h from v to y in G x v (h). If such path exists, we call it p (v; y). Then, any p ∈ N t (x, y) must be of the form (x, . . . , u) • (u, v) • p (v; y), where (x, . . . , u) is the unique path connecting x to u in T x (s), for some u ∈ V x (s) and some v ∈ S x . Here • denotes the natural concatenation of paths. Therefore,

P t 0 (x, y) = (u,k)∈Lx(s) w(u, k) v∈S x w(p (v; y))1 w(u,k)w(p (v;y))≤n -1-ε/4 1 p u,k ≥n -ε/8 1 σu(k)=v . ( 48 
)
Let F denote the σ-algebra generated by all the random permutations {σ z , z / ∈ V x (s)}. A crucial observation is that the quantities w(u, k), w(p (y; z)), and the sets L x (s), S x are all Fmeasurable. Notice also that by construction one has

1 n v∈S x w(p (v; y)) ≤ π(y) , (49) 
and

(u,k)∈Lx(s) w(u, k) ≤ 1 . (50) 
Moreover, conditioned on F the remaining permutations σ u , u ∈ V x (s), are independent and satisfy σ u (k) = y with probability 1/n for all k, y. It follows from ( 49)-( 50) that

E F P t 0 (x, y) ≤ π(y), (51) 
where E F is the conditional expectation associated to F. Notice also that we may write (48) as

P t 0 (x, y) = u∈Vx(s) f (u, σ u ),
where

f (u, σ u ) := n k=1 w(u, k)w(p (σ u (k); y))1 w(u,k)w(p (σu(k);y))≤n -1-ε/4 1 p u,k ≥n -ε/8 1 σu(k)∈S x .
Since there are at most n ε/8 indices k such that p u,k ≥ n -ε/8 , we have

0 ≤ f (u, σ u ) ≤ M = n ε/8 n -1-ε/4 = n -1-ε/8 .
Thus using Bernstein's inequality (see e.g. [9, Corollary 2.11]), for a > 0

P F P t 0 (x, y) -E F P t 0 (x, y) ≥ a ≤ exp - a 2 2M (E F P t 0 (x, y) + a) .
Applying the above to a = δ π(y) + δ n and using (51), writing r = n π(y) one finds

P F P t 0 (x, y) ≥ (1 + δ) π(y) + δ n ≤ exp - δ 2 n ε/8 (r + 1) 2 2(r(1 + δ) + δ) .
Optimizing over r ≥ 0 one has that for some constant c(δ) > 0:

P F P t 0 (x, y) ≥ (1 + δ) π(y) + δ n ≤ exp -c(δ)n ε/8 .
This ends the proof of Proposition 14.

Proof of Theorem 2

Let ω = (ω ij ) 1≤i,j<∞ be i.i.d. positive random variables whose tail distribution function G(t) = P(ω ij > t) satisfies (9) for some α ∈ (0, 1), and consider the random transition matrix

P n (i, j) := ω ij ω i1 + • • • + ω in (1 ≤ i, j ≤ n). (52) 
Permuting entries within a row clearly leaves the distribution of P n unchanged. Therefore, P n is of the form (2), but with the parameters (p ij ) 1≤i,j≤n now being random. In order to apply our Theorem 1 and obtain Theorem 2, we only have to establish that almost-surely,

1 n n i,j=1 P n (i, j) log P n (i, j) ---→ n→∞ h(α); (53) max i∈[n] n j=1 P n (i, j) (log P n (i, j)) 2 = o (log n) ; (54) lim sup n→∞    1 n n i,j=1 1 
Pn(i,j)>1-ε    ----→ ε→0 + 0. ( 55 
)
The proof will rely on the following estimates on the random probability vector (P n (1, 1), . . . , P n (1, n)) .

Lemma 15 (Uniform sparsity). For each β ∈ (α, 1), there exists λ > 0 such that

sup n≥1 E   exp    λ n j=1 (P n (1, j)) β      < ∞. (56) 
Lemma 16 (Beta asymptotics). Let ξ n be distributed as a size-biased pick from the random sequence (P n (1, 1), . . . , P n (1, n)), i.e., for any measurable g :

[0, 1] → [0, ∞], E [g(ξ n )] = E   n j=1 P n (1, j)g (P n (1, j))   = nE [P n (1, 1)g (P n (1, 1))] . Then ξ n d ---→ n→∞ ξ
, where ξ has the Beta(1 -α, α)-density:

f α (u) = (1 -u) α-1 u -α Γ(α)Γ(1 -α) , (0 < u < 1).
Before we establish those Lemmas, let us quickly see how they imply the three almost-sure conditions stated above. For any 0 < ε, β < 1, we have

n j=1 P n (i, j) (log P n (i, j)) 2 ≤ (log ε) 2 + sup p∈[0,ε] p 1-β (log p) 2 n j=1 (P n (i, j)) β , (57) 
where we have simply split the summands according to whether P n (i, j) ≤ ε or not. Note that the supremum on the right-hand side can be made arbitrarily small by choosing ε small enough. Claim (54) follows, since for β > α, Lemma 15 ensures that almost-surely as n → ∞,

max i∈[n]    n j=1 (P n (i, j)) β    = O(log n). (58) 
We now turn to (53). The row entropies -n j=1 P n (i, j) log P n (i, j) P n (i, j) log P n (i, j) = E[log ξ n ] + o(1).

In view of (57), Lemma 15 is more than enough to ensure the uniform integrability of (log ξ n ) n≥1 . Together with the weak convergence ξ n → ξ stated in Lemma 16, this implies

E [log ξ n ] ---→ n→∞ E [log ξ] .
It is classical that the expected logarithm of a Beta(1 -α, α) is ψ(α) -ψ(1) = -h(α), and (53) follows.

The proof of (55) is similar: for each ε < 1 2 , the random variables n j=1 1 Pn(i,j)≥1-ε 1≤i≤n are independent, [0, 1]-valued and with mean E[ξ -1 n 1 ξn≥1-ε ]. Therefore, Azuma-Hoeffding's inequality ensures that almost-surely as n → ∞,

1 n n i,j=1 1 Pn(i,j)≥1-ε = E[ξ -1 n 1 ξn≥1-ε ] + o(1) = E[ξ -1 1 ξ≥1-ε ] + o(1),
where the second line follows from Lemma 16 and the fact that the Beta distribution is atomfree. It remains to note that E[ξ -1 1 ξ≥1-ε ] → 0 as ε → 0, since P (ξ ∈ (0, 1)) = 1. We now turn to the proof of Lemmas 15 and 16. This formula holds for any t > 0, and we may choose t = max j∈[n]\J ω 1j , since the latter is independent of (ω 1j ) j∈J . With this choice of t, we clearly have P n (1, j) ≤ This is not quite (62), as it is not yet clear that nP P n (1, 1) > 1 2 → κ. However, one may still insert this into (60) and invoke the domination (63) to obtain that

E [ξ p n ] - n κ P P n (1, 1) > 1 2 E[ξ p ] ---→ n→∞ 0.
But now the special case p = 0 shows that nP P n (1, 1) > 1 2 → κ, which completes the proof.
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 1 Figure 1. Distance to equilibrium along time for the n × n random matrix in Theorem 2, with Pareto(α) entry distribution, i.e. P(w ij > t) = (t ∨ 1) -α . Here, n = 10 4 and α = 0, 3 (red), α = 0, 5 (blue) and α = 0, 7 (green). Note that the function h increases continuously from h(0) = 0 to h(∞) = ∞: the more "spread-out" the transition probabilities are, the faster the chain mixes.
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 2 = o(1); see the proof of Theorem 4. If this coupling occurs, then the chance of intersecting T I (s) is at most (u -s)|T I (s)|/n. The latter is o(1) since |T I (s)| ≤ se H s ≤ sn 1-ε 2 by Lemma 7. This concludes the proof of (43).
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	1	n
	n	i,j=1

1≤i≤n are independent, [0, log n]-valued random variables with mean -E[log ξ n ], where ξ n is as in Lemma 16. Therefore,

  In particular, there exists a constant c β < ∞ such that for all t > 0, Since (ω 11 , . . . , ω 1n ) are i.i.d., we immediately obtain that for any J ⊂ [n],
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5.1. Proof of Lemma 15. Our starting point is a classical result on regularly varying functions (see, e.g., [14, Theorem VIII.9.1]), which asserts that as t → ∞,

E (ω 11 ∧ t) β ∼ β β -α t β P (ω 11 > t) . β ≤ c β P (ω 11 > t) .

j∈J ω 1j > t .