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Abstract

In this paper, we derive the theoretical performance of a Tensor MUSIC algo-
rithm based on the Higher Order Singular Value Decomposition (HOSVD), that
was previously developed to estimate the Direction Of Arrival (DOA) and the po-
larization parameters of polarized sources. The derivation of this result is done
via a perturbation analysis and allows to obtain the theoretical Mean Square Er-
ror (MSE) on the DOA and the polarization parameters. The proposed result is
also shown to be valid for the Long Vector MUSIC algorithm, i.e. when the mul-
tidimensional samples are unfolded into a long vector. The agreement between
theoretical and empirical MSE:s is illustrated through Monte Carlo simulations.

Keywords: Tensor MUSIC, HOSVD, DOA, polarization sources, Theoretical
Mean Square Error, Perturbation Analysis

1. Introduction

An increasing number of signal processing applications deal with multidi-
mensional data. One can cite for example array processing [1], channel egali-
sation [2], polarimetric STAP [3], polarized seismic sources localization [4], mul-
tidimensional harmonic retrieval [5][6] or MIMO coding [7]. Multilinear alge-
bra [8][9][10][11] provides an appropriate framework to exploit these data since
it preserves the multidimensional information structure. Nevertheless, generaliz-
ing matrix-based algorithms to the multilinear algebra framework is not a trivial
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task. In particular, there is no multilinear counterpart of the Singular Value De-
composition (SVD) that shares exactly the same properties. Notably, two main de-
compositions exist: CANDECOMP/PARAFAC (CP) [12] which allows to define
arank like for SVD (and which is especially used for its remarkable identifiability
property under some conditions) and the Higher Order Singular Value Decompo-
sition (HOSVD) [8], derived from the Tucker decomposition [13], which keeps
the orthogonality properties of the SVD.

This paper focuses on the problem of polarized source parameters estima-
tion (Direction Of Arrival (DOA) and polarization parameters) by using the well-
known MUItiple Slgnal Classification (MUSIC) algorithm [14] for multidimen-
sional configurations. Classically the received data correspond to a vector whose
dimension is the number of sensors. If an additional dimension is available, e.g.
polarization, Doppler frequency, or multiple emitters/sensors for a MIMO config-
uration, the data turn out to be multidimensional. In this case, it remains possible,
as proposed in [4] to apply the classical MUSIC algorithm by unfolding the data
into vectors. This approach will be denoted Long Vector MUSIC (LV-MUSIC)
in this paper. However this algorithm does not fully exploit the multidimensional
structure of the covariance tensor of the observations. Moreover, since this ap-
proach increases the size of the data, the number of samples needed to reach ac-
ceptable performances is increased likewise (typically around twice the size of
the unfolded vector to accurately estimate the covariance matrix [15]). Therefore,
the development of new estimation algorithms, accounting for multidimensionally
structured data, is needed. In this framework, several possibilities, depending on
the considered tensor decomposition, have been explored.

Initially, several approaches based on the CP decomposition were proposed,
as in [16] where the localization system is composed of multiple electromagnetic
sensors. In [17], the authors have considered the same model with correlated
sources and have shown that the joint use of space and polarimetric smoothing
solves the correlation issue. Noteworthy, treatments based on CP decomposition
always require to study the identifiability properties of the problem, in order to
ensure the unicity of the solution.

In a former work [18], we have developed a Tensor MUSIC algorithm based
on the HOSVD, denoted T-MUSIC. This algorithm is adapted from [6], which
considers a multidimensional Vandermonde-type decomposition in order to per-
form multidimensional harmonic retrieval. The T-MUSIC algorithm is based on
the best reduced rank approximation of a higher order tensor [19]. Recently, the
T-MUSIC algorithm has been used for nested vector-sensor array [20]. In this
paper, we consider the electromagnetic model of [4][18].
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As for the vector case, an important issue is to determine the performance of
newly proposed tensor algorithms. In order to avoid relying on extensive Monte-
Carlo simulations prior to system designing, one ideally wants access to the the-
oretical performance, with closed-form expressions. Therefore, we propose in
this paper to derive the theoretical performance of the T-MUSIC algorithm de-
veloped in [18]. We will additionally show that the obtained result encompasses
the LV-MUSIC [4] approach. Several recent works, relying on singular vector
perturbation [21], have studied the performance of Tensor ESPRIT approaches in
the domain of multi-dimensional harmonic retrieval [22][23]. In this paper, our
derivation is based on the perturbation method proposed in [24], already used in
the vector case to determine the theoretical signal to noise ratio loss of adaptive
low rank filters in [25][26].

This paper is organized as follows. Section II presents the multilinear algebra
tools used in the paper. Then, the data model and the associated T-MUSIC algo-
rithms are described in section III. The main contribution about theoretical perfor-
mance is contained in section IV. In section V, the proposed theoretical result is
validated through Monte-Carlo simulations. Section VI draws some conclusions
of this study.

The following convention is adopted: scalars are denoted by italic letters, vec-
tors by lower-case bold-face letters, matrices by bold-face capitals, and tensors
are written by bold-face calligraphic letters. We use the superscripts ©, for the
transpose operator, I, for Hermitian transposition, * for complex conjugation and
||.||, the euclidean norm. The mathematical expectation is denoted by E[.] and
the Kronecker product is denoted by ®. CA(a,R) is a complex Gaussian vector
of mean a and of covariance matrix R. N.(a, c?) is complex Gaussian random
variable of mean a and variance o2,

2. Some multilinear algebra tools

This section contains the main multilinear algebra tools used in this paper. Let
A, B € Chxl2xIsxls pe two 4-dimensional tensors and let a;,iyii,» Diyigisia DE
their elements. The following operators are used for this paper. For more details,
especially the case of n-order tensors, we refer the reader to [10, 8, 11].

2.1. Unfolding
In this paper, we consider the following three unfoldings:

e vector: vec transforms a tensor A into a vector, vec(A) € Chilzlsls e
denote vec™?, the inverse vector operator.



e matrix: Let us denote [A|,, n = 1,...,4, the operator which transforms
the tensor A into a matrix by concatenating the different slices of the tensor
along the nth mode. For example, [A], € C/1*22/3%4 The inverse operator
always exists if the way the tensor has been unfolded is known.

e square matrix: this operator transforms the square tensor R € Cl1*/2xl1xI2

into a square matrix, SqgMat(R) € C'2xI1l2 SgMat~" denotes the in-
verse square martrix operator.

2.2. Products
e Scalar product of two tensors:

<A, B>= Zh Ziz Zis Zm b;‘1i2i3i4ai1i2i3i4'
e From the scalar product, we define the Frobenius-norm: [|A|| = /< A, A >

e The n-mode product (n = 1,...,4) consists of multiplying an [; X I5 X
I3 x I -tensor A by an J,, x I, matrix E (I,, could be equal to Iy, I5, I3 or
14)1
(A X E)iyjuisis = D, iriniziaCjnin- The previous equation is given for
n=2.

e Outer product of two tensors: € = Ao B
€ ChixlaxIsxlaxixIzxIsxIs with €ivinisisjijajaja — ai1i2i3i4.bj1j2j3j4 . For example,
for two vectors, a, b, their outer product a o b is a rank-1 matrix.

2.3. Higher Order Singular Value Decomposition

The Higher Order Singular Value Decomposition (HOSVD) decomposes a 4-
order tensor A as follows

A=K X1 U(l) X9 U(2) X3 U(3) ><4U(4) (1)

where Vn = 1...4, U™ e C*» is an orthonormal matrix and where K €
ClixI2xIsxIs1 ig the core tensor, which satisfies the all-orthogonality conditions [8].
The matrix U™ is given by the SVD of the n-dimension unfolding tensor, [A],, =
192D OAVADLS

Furthermore, if A is an Hermitian tensor, i.e. Iy = I3, Iy = Iy and a;, i, i, =
al Viy, i, 13, 14, the HOSVD of A is written [5]:

13,14,11,12°

A=%Kx; UD x, U x, UD* x, U=, )



2.4. Covariance Tensor and Sample Covariance Tensor

Definition. Let X € C'*!2 be a random matrix, the covariance tensor, R €
Chxlxhixlz jg defined as [4]:

R =E [XoX"] 3)

If we denote x = wvec(X), then the covariance matrix R € CH2xIlz of x s
linked to the covariance tensor by the following relation:

R = SgMat(R). 4)

In many applications, the covariance tensor is unknown and has to be esti-
mated from so-called secondary data, that are assumed to be independent and
identically distributed. Let X(n) € C**2 be N, observations of X. By anal-
ogy with the Sample Covariance Matrix (SCM), R € Chxlxlixh the Sample
Covariance Tensor (SCT) is defined as [5]:

. 1 &
R = A ; X(n) o X(n) (5)

3. MUSIC Algorithms for polarized source

3.1. Polarized source model

Let us consider an uniform linear array of M sensors which can receive N,
polarimetric channels and a polarized source impinging on the array. The one-
dimensional DOA of the source is denoted by 6. The signal propagation along the
spatial dimension of a polarimetric channel is modeled as follows:

d(9) = (1, 6—2m§sm(9)’ o ’6—2i7r(M—1)%sin(9))T ecHM, (6)

where d is the distance between two sensors and ) the wavelength. On one sensor,
we model the signal received in channel n, by multiplying its amplitude by p.
and shifting its phase by . relative to the first channel (channel 0) as in many
polarimetry applications!. Thus, for a single sensor, the signal behaviour along
the polarization dimension can be modeled as [4]:

p(p, @) = (1, 1€, ..., pn,—1e#Ne-1)T € CNe, (7

!For example in polarimetric RADAR, 2 different polarized signals are emitted in HH and V'V.
These signals are received in 4 polarizations: HH, VV, HV, VH.



where p = (p1,...,pn.—1) and ¢ = (¢1,...,pnN.1) are the gain and the phase
shift between channels. Combining equations (6) and (7), we define the steering
vector a(f, p, ) € CMNe modeling the signal propagation along the whole array:

a(0,p,p) =d(0) @p(p,p). ®)

This steering vector is used in this given form for the vector approach. However,
equations (6) and (7) can also be combined in order to obtain a steering matrix,
A0, p,p) € CM*Ne defined as

A(0,p,) =d(0) op(p, ) =d(0)p" (p, ). 9)

This model keeps the two-dimensional structure of the source and will be used to
derive the proposed tensor MUSIC algorithm.

3.2. Long Vector MUSIC

Let us now consider P independent zero-mean Gaussian sources with unit
variance. We assume that N, snapshots of the sources impinging the array are
available. The n-th snapshot, denoted x(n) € CM¥e is written

ZSP a(0y, pp, pp) +n(n) (10)

where a(f,, pp, ) is the steering vector of the p-th source and s,(n) ~ N.(0, )

the zero-mean complex Gaussian-distributed random amplitude of the p-th source.

n(n) ~ CN(0,0I,y,) is a zero-mean complex white Gaussian noise vector.
Let R = E[xx!] € CMNexMNe ‘pe the covariance matrix of the data. Since R

is unknown in practice, it has to be estimated by the SCM, R = N Zn L x(n)xH(n).
The Long Vector MUSIC (LV-MUSIC) algorithm is performed as the classical

MUSIC algorithm in 3 steps. First the SVD of R is computed

R =UXU". (1)
Then, U is truncated into Uy, keeping the (M N, — P) last columns of U cor-
responding to the M N, — P eigenvalues. Thus, the columns of U, represent an

orthonormal basis of the estimated noise subspace. Finally, the parameters of the
sources are obtained by minimizing the following criterion:

{éﬁV—MUS[C’ijI[;V MUSIC,QOLV MUSIC} = arg (g})lg)([:]LV(Q’p7 SO)) (12)

where . .
Hiv(0.p.¢) = |[Ufa(0,p, o) (13)

= tr(Ia(9, p, )a(d, p, p)")
where IT = ﬁoﬂéq-



3.3. Tensor MUSIC
As in the previous subsection, let us now consider P independent zero-mean
Gaussian sources with unit variance and /Ng snapshots of the sources impinging

the array. For the matrix observation model, the n-th snapshot, denoted X(n) €
CM>*Ne is modeled by

P
X(n) =Y 5p(n)A(0p, pp, ) + N(n) (14)
p=1

where A (6, p,, p) is the steering matrix (9) of the p-th source, s, (n) ~ N(0, 07)
the zero-mean complex Gaussian-distributed random amplitude of the p-th source.
N(n) is a complex Gaussian matrix and vec(N(n)) ~ CN(0,0%In.). Let
R = E[X o X*| € CMxNexMxNe pe the covariance tensor. Similarly with the
vector approach R is unknown in practice, it has to be estimated by the SCT,
R = 25 X(n) o X(n)"

By analogy with the vector case, the Tensor MUSIC (T-MUSIC) algorithm is
derived as follows. First R is decomposed using the HOSVD procedure as:

j{ = jC X1 ﬂ(l) X9 ﬂ(2) X3 ﬂ(l)* X4 fj(z)* (15)

Then UM (respectively U®) s truncated into fJél) (respectively ﬂgz)) by keeping
the (M — P) last columns of UM (respectively the (N, — P) last columns of
U®). It is well known that this solution for estimating the noise subspace is
not optimal in the least squares sense. However, it is a correct approximation in
most cases [5][19] and it is easy to implement, which is why the use of iterative
algorithms will not be considered in this paper. Finally the sources parameters are
obtained by minimizing the following criterion:

{ég“—MUS[C’pAZ‘—MUSIC’7Sa;.l;—MUSIC =arg (HH;HC;)(IA{T(QP7 So)) (16)
where ) oo .
Hr(0, p, ) = ||A(0, p,p) x1 O™ 5 GEH |2, (17)

This criterion can be re-expressed in a different form according to the following
lemma.

Lemma 3.1. The criterion Hy(0, p, @) can be rewritten as follows:
Hy (6, p, ) = tr(ILid(0)d" (0))tr(Top(p, #)P" (p, ¢)) (18)

where TI, = ﬂél)fjél)H and TI, = IAJEQ)IAJEJQ)H. The criterion is therefore sep-
arable and estimation of DOAs and polarization parameters can be performed
independently.



PROOF.

Hr(f.p.¢) = IIA(.p.0) x: UM PP

A0, p, )02

U “AT(0,p, ) UM TPTA®W, p, o) UL

tr(UPTAT (0, p, ) ILA(0, p, ) UL

(LA, p. @)U UL A (0, p, )

I:IlA(eap7 Qo)ﬂgéH(e,p, (P))
Hld(e)pT(p,cp)Hsz*( ©)d"(0))

1d(0))(p" (p, )T P (p, ¢)))

H 9) (0))tr(TI5p* (p, @)P" (P, #))

0)d" (0))tr(TLp(p, )" (p, 0)

i

H— —
C:>
=

i
~+~ & o+
3 303
=
L
—~
>
A\—/

4. Theoretical performance of LV-MUSIC and T-MUSIC

This section is dedicated to the derivation of the theoretical performance of
LV-MUSIC and T-MUSIC. These derivations are based on a perturbation analysis
as the one proposed in [24] for the theoretical performance analysis of the classical
vector MUSIC algorithm.

First, notice in Eqs (13) and (18) that both LV-MUSIC and T-MUSIC involve
terms of the form R X

h(p) = tr(ITF (1) (19)

where g = [y, ..., pus]7 € R’ is an appropriate unknown parameter vector and
matrix F is either equal to aa’?, dd*’ or pp” (d, p and a are defined in (6), (7)
and (8)).

For T-MUSIC, the criterion is the product of two different criteria hy (pq) and
ﬁg (p2) which follow from Lemma 3.1. For the P sources, the estimated parameter
vectors fi,, p € {1,..., P} satisfy

fp = argmin h(ps,). (20)

When projector onto the noise subspace I1 is substituted for I in (19), the result-
ing criterion h is minimized for the exact values of the parameter vector.

In the following subsection, we derive the theoretical Mean Square Error (MSE)
of f1, (estimation of p,) for this general form and the following subsections are
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devoted to the particular theoretical MSEs of the DOA and the polarization pa-
rameters p and ¢ for both LV-MUSIC and T-MUSIC.

4.1. General Result

Let L be the common dimension of II, F(u) and R € CX*L. The estimation
error on the covariance matrix or the covariance tensor acts as a perturbation, de-
noted by AR and defined as AR = R — R. This perturbation leads to another
perturbation AIT defined by II = II — AIL The resulting error on the estimated
parameters is denoted by Ap, = 1, — p, where p, is the exact value of the
parameter vector. We propose in this paper to compute the second-order statistics
of Ap,. This derivation is decomposed into several propositions. Proposition 4.1
gives the link between the perturbations A, and AIL Then, proposition 4.2 de-
rives a closed form expression for the covariance matrix of Ay, as a function of
AR. Finally, the next subsection provides the final results by giving the expres-
sions of the second-order statistics of AR for both LV-MUSIC and T-MUSIC.

Proposition 4.1. Under the previous assumptions, the first order expression of
Apy, in terms of ALl is given by:

Ap, =B lg 1)

where g € C’ and B € C’*’ have elements g(i) = tr <Aﬂg—i(up)> and

Bli, j) = tr (1,28 (1) ).

PROOF. The vectors fi, are the minima of the function h, hence they satisfy:
Vh(@,) =0 (22)

which means that forall: =1... J:

tr (H oF (pp)> = 0. (23)

Opi

The above equation is satisfied by p,, when I is substituted for II:

OF
tr (Haui (,u,p)) = 0. (24)




The term ( f,) in (23) can be approximated up to the first order with respect
to Apy, as follows

T 9F

— OpiOp;

OF (i) = OF
aILLZ Hp a”z

= (pp) + (1p) Apap(5) (25)

Combining equations (23) with (25) and using M=1II- ATI, we obtain

J 2
r ((H — am) (Si;(up) > %(w)@ﬂj)) ) —0. (@6

By keeping only first order terms, we obtain

(AH ) Ztr( Ta (up)> Apy(5) 27)

or equivalently:
g =BAp, (28)

with g(i) = tr (Ang—j(up)) and B(i, j) = tr (H%(%)), which allows to

conclude the proof:
Ap, =B g (29)

O

The previous proposition indicates that the error Ay, is directly related to the
estimation error AIT on the projector IT. The following proposition links AII to
the estimation error on the data covariance matrix AR = R — R.

Proposition 4.2. The covariance matrix of Ap,, is given by:
ElAp,Ap,] =B Elgg"|(B™)" (30)

with
E[ggH](i,j) = Zil,k’,l’:l E [AR(k7 Z)AR(klv ll)] (31)
A(Ci(l,k) +D;(l,k)) (C;(I', k') + D,(I', K'))

where C; = STg—i(up)H € C*t, D; = Hg—i(up)ST € CH*L and ST =

25:1 ——uul € CH*F (with {u,}1 p are the P first eigenvectors of R).
p
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PROOEF. As stated before, the estimation error AIT is the result of the estimation
error AR. The relation between AII and AR is given in [24]:

ATI = STARII + TTARS' (32)
From Eq. (21) and since the matrix B is deterministic, we have:
E[Ap,Apy,] =B Elgg”|(B™H)" (33)

with
Elgg”|(i.j) = E[tr(AR(C; + D))tr(AR(C; +D,))] (34

Moreover, we have the following relation for all deterministic matrices By, B, €
(CLXL:

E[tr(ARB,)tr(ARBy))] =

> E[AR(k,DAR(K, 1)) By(l, k)By(I', k), (35)

kLK =1
which concludes the proof. 0

This general proposition will be applied to derive the theoretical MSE of both
LV-MUSIC and T-MUSIC algorithms. The difference between the performance
of these two algorithms comes from the expression of £ [AR(k,[)AR(k’,1’)] and
is explicited hereafter. Also note that, for T-MUSIC, performance differ whether
we consider DOA or polarization parameters.

4.2. Application to LV-MUSIC and T-MUSIC
4.2.1. LV-MUSIC

For LV-MUSIC, we have . = [0 p” ¢”]7 and L = MN,. The SCM R is
Wishart distributed with parameter matrix R and N, degrees of freedom. The
second order moment of its elements is well known to be given by [27]:

1
E[AR(k,D)AR(K ') = FR(k:’,l)R(k, ) (36)
4.2.2. T-MUSIC
For the T-MUSIC algorithm, we have shown in lemma 3.1 that the crite-
rion (17) could be decomposed into two criteria (18): the first for DOA’s and
the second for polarization parameters.
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DoA estimation by T-MUSIC. In this case, L = M and the criterion is:
Hr,poa(0) = tr(ILA(0)d(6)"), (37)

where vector g is only equal to 6. The derivation of E [AR(k,)AR(K',1")] in
this case is based on the two following propositions.

Proposition 4.3. Let Ry = E[X(n)X(n)"] € CM*M and R, its estimate ob-
tained from Ny i.i.d. samples X (n), based on the model of Eq. (14):

N,

N% > X(n)X"(n) (38)

R, —
The eigenvectors of [R] (resp. [R]1) are equal to those of Ry (resp. Ry). There-
fore, the projector 11, (resp. I1,) can be built from [R]1 (resp. [R]1) or Ry (resp.
Ry).

PrOOF. II; = UV UM is obtained by the SVD of [R]; € CM*NeMNe which is
the unfolding of the SCT R in the first direction:

R, = UOnOyOHA (39)
o = @b, Al (40)

Let X € CM*NexNs pe the tensor composed of all matricial observations

~

X(n). From [5], [R]; and [X]; share the same left eigenvectors:

A~ ~

(R, = UWxOyOHHA (41)

(X, = UWxvH (42)
Moreover, the left eigenvectors of [X]; are obtained by diagonalizing the matrix
[XC]1 [X]#. But matrix [X]; [X] can be rewritten as:

N
XX = > X ()X (n) (43)
n 11 ..
— N5FZX(n)XH(n). (44)
S n=1
= N,R, (45)

~

We deduce that fil and [R]; have the same left eigenvectors. The proof for R;
and [R]; is similar. O
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The previous proposition allows to conclude that the values of £ [AR(k, [)AR(K',')]
are equal to F [AR;(k,[)AR;(k',1")]. In the following proposition, we derive
therefore the expression of ' [AR, (k,)AR; (K, 1)].

Proposition 4.4. Let AR, = f{l — R be the estimation error on R,. The second
order moments of AR are given by:

N E(AR1(k AR (K1) =

Z o (ApAD) (K, D (Ay A (K1)
p,p'=1
+> o2 (ALA (k1) (K 1)

p—l

+Za (A, A (K 1)o?5(k, 1)

=1

—|—N oo (K' D)(k, 1), Ve, LE I =1... M.
where A, = A(0,, p(p), ¢(p))-
PROOF. The proof is given in the appendix. U

Polarization parameters estimation by T-MUSIC. In this case, . = N, and the
criterion is:

HT,PolaT<p7 ¢> = tT(ﬂQI)(p, ¢>p(p> ¢)H) (46)

where vector p is equal to [p? ¢T]T. The derivation of E [AR(k,[)AR(K',1')] in
this case is based on the two following propositions.

Proposition 4.5. Let Ry = E[X(n)X*(n)] € CN*Ne and R, its estimate ob-
tained from Ny i.i.d. samples X (n), based on the model of Eq. (14):

N,

1
2 X ()X (n) (47)
S n=1

A~

R, =

The eigenvectors of [R]; (resp. [R]s) are equal to those of Ry (resp. Ry). There-

Jfore, the projector 11 (resp. 1ly) can be built from [R]; (resp. [fjl]g ) or Ry (resp.
R»).

PROOF. The proof is similar to that of proposition 4.3 and is omitted. U
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In the following proposition, we express E [ARqy(k, [) ARy (K, 1")].

Proposition 4.6. Let AR, = f{g — R, be the estimation error on Ro. The second
order moments of ARy are given by:

N, E(ARz(k DARs(K, 1)) =

Z oo (ATAL) (k1) (ALAY) (K1)
p,p'=1

P
+Za§(A§A;)(k, 1Na5(1, )

—|-Zo‘ (ATAY) (K, 1)o?s(1', k)
—|—M04(5(k Dok, 1),
where A, = A(0,, p(p), d(p)).

PROOF. The proof is similar to that of proposition 4.4 and is omitted. U

5. Simulations

We consider an Uniform Linear Array (ULA) composed of M = 10 sensors,
which are able to receive in H and V polarizations: this results in N, = 3. The
wavelength is equal to A = 0.1m. The spacing between inter-sensor is d = % The
number of secondary data is Ny, = 300. When we consider more than 1 source, we
assume that they will have the same power. The Signal to Noise Ratio is defined
by:

2

O'
SNR = (48)

02
First, we validate the presented theoretical performance of LV-MUSIC and
T-MUSIC. This study focuses on the the DOA and the polarization parameters
estimation. We consider P = 1 source with a DoA of § = —3°. The polarization
parameters are p = [111]7 and ¢ = [0 — 0.2rad 0.2rad]”. Propositions 4.2, 4.4
and 4.6 are used to compute the theoretical MSEs of the DoA and the polarization
parameters for LV-MUSIC and T-MUSIC. The experimental MSEs of LV-MUSIC
and T-MUSIC are computed from N,.., = 1000 Monte-Carlo trials by minimizing
criteria (13) and (18). We define the MSE for 6 as:

MSEy = E[|0 — 0)?] (49)
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and for the polarization parameters p and ¢ as:

MSE, =
MSE, =

1
2
1
2

. > (50)

Figure 1 shows the experimental and theoretical MSEs of the DOA for LV-
MUSIC and T-MUSIC. This figure illustrates the validity of the presented results
since at high SNR the experimental and theoretical MSEs are identical. We no-
tice that performance of LV-MUSIC and T-MUSIC are very close for 1 source.
Figure 2 shows the mean of the experimental and theoretical MSEs of the 4 po-
larization parameters p(2), p(3), #(2), ¢(3) for LV-MUSIC and T-MUSIC. As for
DOA:s, this simulation validates our theoretical result for the polarization param-
eters estimated by T-MUSIC and LV-MUSIC.

Now, we investigate the performance of both algorithms when two sources are
present. First, we consider two sources having the same polarization parameters.
Figures 3 and 4 show the theoretical MSEs of all parameters for LV-MUSIC and T-
MUSIC as a function of the sources separation in degree. For these configurations
and parameters, one may notice that T-MUSIC outperforms the LV-MUSIC in
terms of estimation accuracy, which illustrates its practical interest.

Figures 5 and 6 still show the theoretical MSEs of all parameters for LV-
MUSIC and T-MUSIC as a function of the sources separation. The two sources
now have different polarization parameters. We conclude that LV-MUSIC achieves
better performance than T-MUSIC for DoA estimation but we have the opposite
conclusion for the polarization parameters estimation.

Let us comment the obtained results. One problem with LV — MUSIC is
that the data size has been increased (M N, instead of M for a classical DOA
problem). Therefore, the estimation of the covariance matrix (and that of fI)
requires more samples than for classical MUSIC. The interest of T-MUSIC is
that the data size reduces to M for DOA estimation and to N, for polarization
parameters estimation. Therefore, less samples are needed for a good estimation
of the subspace projectors II, and II,: this is a positive point for T-MUSIC.
On the other hand, LV-MUSIC takes full advantage of the possibility to resolve
sources jointly in the angular and polarization domains through the composite
steering vector of Eq. (8): closely spaced sources may have almost orthogonal
steering vectors (8) when their polarization parameters are different enough. This
is not the case for T-MUSIC which treats separately angles and polarizations,
and it turns out to be a drawback compared to LV-MUSIC. So, depending on the
scenario, T-MUSIC or LV-MUSIC may exhibit superior theoretical performance.
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6. Conclusion

In this paper, we have derived the theoretical performance of a Tensor MUSIC
algorithm based on the Higher Order Singular Value Decomposition (HOSVD).
This derivation has been performed by means of a perturbation analysis and has
lead to the theoretical MSEs for DOAs and polarization parameters of polarized
sources. These results allow a comparison of the theoretical performance of T-
MUSIC and LV-MUSIC algorithms in a given scenario. Numerical simulations
have illustrated the agreement between theoretical results and experimental MSEs.

appendix: proof of proposition 4.4
Let X(n) be the random matrix defined by (14). From (38) we have:
ER] = EX(n)X"(n)] = Ry (51)

and consequently
E(AR,) =0 (52)

Let us now investigate the second order moments of AR;. Let us set X a
random matrix sharing the same distribution as X (n). We have obviously:

E[AR, (k,)AR, (K, 1)] =

1
7 (B [(XXT) (k1) (XXH) (K, 1)] = Ra(k, DR (K, 1)) (53)
where R, is easily obtained from (14):
P
Ry = E[XX"] =Y 07 A, A} + Neo’Ly, (54)
p=1

where A, = A(6,, p,, ¢,). This leads, in Eq. (53), to:

R (k, )R (K1 Z o202 (ApAT (K, D)(Ay AD) (K1)
p.p'=1

P
+ Y op(ApA ) (kNS (K1)
p=1

P
+) o2 (A A (K 1) Neo®5(k, 1)

p=1
+ o N25(k, 1)6(K', 1)) (55)
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Table 1: Vanishing terms in E[(XX*)(k, [)(XX)(k',I')]: 0 indicates terms with
a vanishing expectation.

E[...] | (56) | (57) | (58) | (59)
(56) X 0 0 X

(57) 0 0 X 0
(58) 0 X 0 0
(59) X 0 0 X

Let us turn to the term E [ (XX*) (k, 1) (XX (k',1')] in (53). First, (XX*)(k, 1)
can be decomposed as the sum of 4 terms:

P
(XXM (k1) = > spsn (A,AL) (k1) + (56)
p=1
D,p B
> sp(AN) (k1) + (57)
p=1
P
> s (NAJ) (k1) + (58)
p=1
(NN) (K, 1). (59)

In the same way, the corresponding terms of (XX*)(k’,1") are numbered (56)’,
(57)’, (58) and (59)’. The derivation of E[(XXH)(k,1)(XXH)(K',1")] is the sum
of 16 terms E[(56)(56)'], E[(56)(57)'], ..., E[(59)(59)'] out of which only 6 of
them are non-zero: they are listed in Table 1.

Therefore E[(XXH)(k, 1)(X (k)X (k))(K',1")] reduces to:

E[(XX) (k. 1) (X (k)X (k) (K, 1)] =
E[(56)(56) + E[(56)(59)
+ E[(56)'(59)] + E[(57)(58)]
+ E[(57)(58)] + E[(59)(59)']. (60)

It remains 4 terms to compute since the two last one could be deducing from the
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others by inverting &, [ and k', [’
E [(56)(56) | =

- Z o’ )k, D) (Ay AR (K1)

pp =1

+ Z 2 (A, AT (k1) (Ay AT (K, T)

p.p'=1

E((56)(59)] = > _o2(A, AL (k,[)N.o (K, 1) 61)

p=1

P
E[(57)(58)] = ) oy (A, A)) (K, 1)o3(K', 1) (62)
p=1
E[(59)(59)] = N6 (k, I)o(K 1) + N2c45(k, 1)6 (K, 1'). (63)
We finally obtain:

P
BIXXT)(k, ) (XX (K, V)] = 3 0202 (A,AL) (k, )(Ay AL (K, 1)

p,p'=1
P

> orol (A AL (kD) (Ay A (K1)

p,p'=1
P

+Y o2 (AL ALk, DN (K 1)

p=1
+) oy (ApA (K 1) No®S(k, D)
p=1

+> o (AL AT (k10?6 (K1)

p=1
P

+> o (AL AT (K 1)o?6(k, 1)
p=1
NS (K D)5 (k, 1) + N2o*5(k, D)o (K, 1').
(64)
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The final result follows from Eqgs. (55), (64) and (53):

NsE(AR; (k,)AR4 (K, 1)) = (65)
P
> oo (A AL (B, D)(Ay AT (K1)
pp'=1

P
+) o2 (A A (K, 1)a?5(K 1)
p=1

P
+> o (AL AT (K Do?5(k, 1)
p=1
+ N6 (K, )6k, 1). (66)
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MSE of 6 for one source
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Figure 1: Theoretical and experimental MSEs of DoA as a function of the SNR.
The DoA is equal to # = —3°. Its polarization parameters are p = (1,1,1), ¢ =
(0,—0.2 rad, 0.2 rad). The other parameters of the simulation are: Ny, = 300,
Nyea = 10000.
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Figure 2: Theoretical MSEs of polarization parameters (p in (a) and ¢ in (b)) as a
function of the SNR. The DoA is equal to § = —3°. Its polarization parameters are
p=(1,1,1), o = (0,-0.2 rad, 0.2 rad). The other parameters of the simulation

are: Ny = 300, N,., = 10000.
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MSE of 0 for two sources with equal polarization parameters
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Figure 3: Theoretical MSEs of DoAs as a function of the sources separation. The
SNR is equal to 0 dB. The polarization parameters of the two sources are the same

and are equal to p; = py = (1,1,1), 1 = o = (0,—0.2 rad, 0.2 rad). The
number of secondary data is N, = 300.
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Figure 4: Theoretical MSEs of polarization parameters (p in (a) and ¢ in (b)) as
a function of the sources separation. The SNR is equal to 0 dB. The polarization
parameters of the two sources are the same and are equal to p; = po = (1,1, 1),
p1 = 2 = (0,—0.2 rad, 0.2 rad). The number of secondary data is N, = 300.
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MSE of 6 for two sources with different polarization parameters
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Figure 5: Theoretical MSEs of DoA as a function of the sources separation. The
SNR is equal to O dB. The polarization parameters of the two sources are equal
to p1 = (1,1,1), ¢1 = (0,—0.2 rad, 0.25 rad) for source 1 and p, = (1,1,1),
w2 = (0,0.2 rad, —0.25 rad) for source 2. The number of secondary data is
N, = 300.
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Figure 6: Theoretical MSEs of polarization parameters (p in (a) and ¢ in

(b)) as a function of the sources separation.

The SNR is equal to 0 dB.

The polarization parameters of the two sources are equal to p; = (1,1,1),

w1 = (0,—-0.2 rad,0.25 rad) for source 1 and p; =

(17 ]-7 1)’ P2 =

(0,0.2 rad, —0.25 rad) for source 2. The number of secondary data is N, = 300.
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